Parametric Geometric Model and Hydrodynamic Shape Optimization of A Flying-Wing Structure Underwater Glider

Combining high precision numerical analysis methods with optimization algorithms to make a systematic exploration of a design space has become an important topic in the modern design methods. During the design process of an underwater glider's flying-wing structure, a surrogate model is introduced t...

Full description

Saved in:
Bibliographic Details
Published inChina ocean engineering Vol. 31; no. 6; pp. 709 - 715
Main Authors Wang, Zhen-yu, Yu, Jian-cheng, Zhang, Ai-qun, Wang, Ya-xing, Zhao, Wen-tao
Format Journal Article
LanguageEnglish
Published Nanjing Chinese Ocean Engineering Society 01.12.2017
Springer Nature B.V
State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016,China
University of Chinese Academy of Sciences, Beijing 100049, China%State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016,China
Subjects
Online AccessGet full text
ISSN0890-5487
2191-8945
DOI10.1007/s13344-017-0081-7

Cover

Loading…
Abstract Combining high precision numerical analysis methods with optimization algorithms to make a systematic exploration of a design space has become an important topic in the modern design methods. During the design process of an underwater glider's flying-wing structure, a surrogate model is introduced to decrease the computation time for a high precision analysis. By these means, the contradiction between precision and efficiency is solved effectively. Based on the parametric geometry modeling, mesh generation and computational fluid dynamics analysis, a surrogate model is constructed by adopting the design of experiment (DOE) theory to solve the multi-objects design optimization problem of the underwater glider. The procedure of a surrogate model construction is presented, and the Gaussian kernel function is specifically discussed. The Particle Swarm Optimization (PSO) algorithm is applied to hydrodynamic design optimization. The hydrodynamic performance of the optimized flying-wing structure underwater glider increases by 9.1%.
AbstractList Combining high precision numerical analysis methods with optimization algorithms to make a systematic exploration of a design space has become an important topic in the modern design methods. During the design process of an underwater glider’s flying-wing structure, a surrogate model is introduced to decrease the computation time for a high precision analysis. By these means, the contradiction between precision and efficiency is solved effectively. Based on the parametric geometry modeling, mesh generation and computational fluid dynamics analysis, a surrogate model is constructed by adopting the design of experiment (DOE) theory to solve the multi-objects design optimization problem of the underwater glider. The procedure of a surrogate model construction is presented, and the Gaussian kernel function is specifically discussed. The Particle Swarm Optimization (PSO) algorithm is applied to hydrodynamic design optimization. The hydrodynamic performance of the optimized flying-wing structure underwater glider increases by 9.1%.
Combining high precision numerical analysis methods with optimization algorithms to make a systematic exploration of a design space has become an important topic in the modern design methods. During the design process of an underwater glider's flying-wing structure, a surrogate model is introduced to decrease the computation time for a high precision analysis. By these means, the contradiction between precision and efficiency is solved effectively. Based on the parametric geometry modeling, mesh generation and computational fluid dynamics analysis, a surrogate model is constructed by adopting the design of experiment (DOE) theory to solve the multi-objects design optimization problem of the underwater glider. The procedure of a surrogate model construction is presented, and the Gaussian kernel function is specifically discussed. The Particle Swarm Optimization (PSO) algorithm is applied to hydrodynamic design optimization. The hydrodynamic performance of the optimized flying-wing structure underwater glider increases by 9.1%.
Combining high precision numerical analysis methods with optimization algorithms to make a systematic exploration of a design space has become an important topic in the modem design methods.During the design process of an underwater glider's flying-wing structure,a surrogate model is introduced to decrease the computation time for a high precision analysis.By these means,the contradiction between precision and efficiency is solved effectively.Based on the parametric geometry modeling,mesh generation and computational fluid dynamics analysis,a surrogate model is constructed by adopting the design of experiment (DOE) theory to solve the multi-objects design optimization problem of the underwater glider.The procedure of a surrogate model construction is presented,and the Gaussian kernel function is specifically discussed.The Particle Swarm Optimization (PSO) algorithm is applied to hydrodynamic design optimization.The hydrodynamic performance of the optimized flying-wing structure underwater glider increases by 9.1%.
Author WANG Zhen-yu;YU Jian-cheng;ZHANG Ai-quna;WANG Ya-xing;ZHAO Wen-tao
AuthorAffiliation State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China;University of Chinese Academy of Sciences, Beijing 100049, China
AuthorAffiliation_xml – name: State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016,China;University of Chinese Academy of Sciences, Beijing 100049, China%State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016,China
Author_xml – sequence: 1
  givenname: Zhen-yu
  surname: Wang
  fullname: Wang, Zhen-yu
  organization: State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, University of Chinese Academy of Sciences
– sequence: 2
  givenname: Jian-cheng
  surname: Yu
  fullname: Yu, Jian-cheng
  email: yjc@sia.cn
  organization: State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences
– sequence: 3
  givenname: Ai-qun
  surname: Zhang
  fullname: Zhang, Ai-qun
  organization: State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences
– sequence: 4
  givenname: Ya-xing
  surname: Wang
  fullname: Wang, Ya-xing
  organization: State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences
– sequence: 5
  givenname: Wen-tao
  surname: Zhao
  fullname: Zhao, Wen-tao
  organization: State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, University of Chinese Academy of Sciences
BookMark eNp9kUFv3CAUhFGVSt2k-QG9ofbUAy1gY8wxippNpVSplEY5IgzPXqde2GBWkfPri-tVG-WQCzyhb96gmWN05IMHhD4w-oVRKr-OrCjKklAmCaU1I_INWnGmGKlVKY7QitaKElHW8h06Hsd7SgUTJVuh3z9NNFtIsbd4DeEw_QgOBmy8w5eTi8FN3mzz883G7ABf71K_7Z9M6oPHocVn-GKYet-Ru3zgmxT3Nu0j4FvvID6aBBGvhz7P79Hb1gwjnB7uE3R78e3X-SW5ul5_Pz-7IraQMpHGMllJ4AZcw5gRTslWOFGIgldcOdlaYLxqQNQtr0RTSq6sFQaUazgXyhUn6POy99H41vhO34d99NlRP3WbqbMaeM6JVjm3zH5a2F0MD3sY03-YqXomlJgpuVA2hnGM0Grbp78BpGj6QTOq5xb00oLO2_Xcgp6V7IVyF_utidOrGr5oxsz6DuKzP70i-ngw2gTfPWTdP6dKllxSSlnxBwQvp3w
CitedBy_id crossref_primary_10_1007_s13344_019_0054_0
crossref_primary_10_1051_jnwpu_20224051125
crossref_primary_10_1007_s40747_023_00969_w
crossref_primary_10_1063_5_0169938
crossref_primary_10_1016_j_oceaneng_2023_116111
crossref_primary_10_32604_fdmp_2023_026814
crossref_primary_10_1007_s00500_023_08227_4
crossref_primary_10_1007_s13344_021_0064_6
crossref_primary_10_1007_s13344_022_0047_2
crossref_primary_10_1080_17445302_2023_2181494
crossref_primary_10_1155_2021_6939863
crossref_primary_10_2139_ssrn_4188470
crossref_primary_10_1016_j_oceaneng_2020_108212
crossref_primary_10_1177_09544062211036481
crossref_primary_10_1080_17445302_2019_1611989
crossref_primary_10_1016_j_apm_2020_10_015
crossref_primary_10_1016_j_apor_2021_102807
crossref_primary_10_1016_j_oceaneng_2019_106502
crossref_primary_10_3390_drones7070427
crossref_primary_10_1080_17445302_2022_2126126
crossref_primary_10_1080_17445302_2022_2140522
crossref_primary_10_1016_j_oceaneng_2022_111250
crossref_primary_10_1016_j_apor_2021_102625
crossref_primary_10_1177_00368504221131380
crossref_primary_10_1051_jnwpu_20213910085
crossref_primary_10_1177_0036850420950144
crossref_primary_10_1007_s13344_020_0036_2
crossref_primary_10_1088_1757_899X_491_1_012001
crossref_primary_10_3390_jmse11101946
crossref_primary_10_3390_jmse8060407
crossref_primary_10_1109_JAS_2022_105671
crossref_primary_10_1016_j_asoc_2022_108798
crossref_primary_10_1016_j_oceaneng_2023_115869
crossref_primary_10_1007_s42235_020_0010_y
crossref_primary_10_3390_machines13030194
Cites_doi 10.3901/JME.2009.12.007
10.1109/48.972077
10.1515/ijnaoe-2015-0069
10.1016/j.paerosci.2004.08.001
10.1016/j.ress.2015.01.019
10.1109/48.972076
10.1109/48.972073
10.1016/j.oceaneng.2016.05.051
10.1016/S1000-9361(11)60414-7
10.5670/oceanog.1989.26
ContentType Journal Article
Copyright Chinese Ocean Engineering Society and Springer-Verlag GmbH Germany, part of Springer Nature 2017
Copyright Springer Science & Business Media 2017
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Chinese Ocean Engineering Society and Springer-Verlag GmbH Germany, part of Springer Nature 2017
– notice: Copyright Springer Science & Business Media 2017
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W94
~WA
AAYXX
CITATION
7TN
F1W
H96
L.G
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1007/s13344-017-0081-7
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-自然科学
中文科技期刊数据库- 镜像站点
CrossRef
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
DatabaseTitleList


Aquatic Science & Fisheries Abstracts (ASFA) Professional
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Oceanography
DocumentTitleAlternate Parametric Geometric Model and Hydrodynamic Shape Optimization of A Flying-Wing Structure Underwater Glider
EISSN 2191-8945
EndPage 715
ExternalDocumentID zghygc_e201706007
10_1007_s13344_017_0081_7
674270001
GrantInformation_xml – fundername: This work was financially supported by the National Natural Science Foundation of China
  funderid: (Grant 61233013)
GroupedDBID -01
-0A
-EM
-SA
-S~
06D
0R~
0VY
188
29B
29~
2B.
2C.
2KG
2KM
2RA
30V
4.4
406
408
5GY
5VR
5XA
5XB
5XL
8RM
92E
92I
92L
92M
92Q
93N
96X
9D9
9DA
AAAVM
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
AAZMS
ABDZT
ABECU
ABFGW
ABFTV
ABJNI
ABJOX
ABKAS
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ACAOD
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACTTH
ACVWB
ACWMK
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADMDM
ADOXG
ADRFC
ADURQ
ADYFF
ADZKW
AEBTG
AEFTE
AEGNC
AEJHL
AEJRE
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETCA
AEVLU
AEVTX
AEXYK
AFLOW
AFNRJ
AFQWF
AFUIB
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGJBK
AGMZJ
AGQMX
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AKQUC
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
AXYYD
BGNMA
CAJEA
CAJUS
CCEZO
CCVFK
CHBEP
CQIGP
CW9
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FA0
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
HF~
HMJXF
HRMNR
HZ~
I0C
IKXTQ
IWAJR
J-C
JBSCW
JUIAU
JZLTJ
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9-
O9J
P2P
P9P
PT4
Q--
Q-0
R-A
R9I
RLLFE
RSV
RT1
S..
S1Z
S27
S3B
SCL
SEG
SHX
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
T8Q
TCJ
TGP
TSG
U1F
U1G
U2A
U5A
U5K
UG4
UOJIU
UTJUX
UZ4
UZXMN
VC2
VFIZW
W48
W94
WK8
Z7R
ZMTXR
~A9
~LH
~WA
AACDK
AAJBT
AASML
AAXDM
AAYZH
ABAKF
ACDTI
ACPIV
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
H13
HG6
ROL
SJYHP
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
7TN
ABRTQ
F1W
H96
L.G
4A8
PSX
ID FETCH-LOGICAL-c377t-bc1767e2aedb11a5d97f5d53532629d7fce126be58f265b4729cc5ae9db2259d3
IEDL.DBID U2A
ISSN 0890-5487
IngestDate Thu May 29 03:55:51 EDT 2025
Wed Aug 13 03:12:39 EDT 2025
Tue Jul 01 01:29:47 EDT 2025
Thu Apr 24 23:03:24 EDT 2025
Fri Feb 21 02:36:05 EST 2025
Wed Feb 14 09:55:32 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords surrogate model
blended-wing-body
design optimization
underwater glider
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c377t-bc1767e2aedb11a5d97f5d53532629d7fce126be58f265b4729cc5ae9db2259d3
Notes surrogate model, underwater glider, design optimization, blended-wing-body
32-1441/P
Combining high precision numerical analysis methods with optimization algorithms to make a systematic exploration of a design space has become an important topic in the modern design methods. During the design process of an underwater glider's flying-wing structure, a surrogate model is introduced to decrease the computation time for a high precision analysis. By these means, the contradiction between precision and efficiency is solved effectively. Based on the parametric geometry modeling, mesh generation and computational fluid dynamics analysis, a surrogate model is constructed by adopting the design of experiment (DOE) theory to solve the multi-objects design optimization problem of the underwater glider. The procedure of a surrogate model construction is presented, and the Gaussian kernel function is specifically discussed. The Particle Swarm Optimization (PSO) algorithm is applied to hydrodynamic design optimization. The hydrodynamic performance of the optimized flying-wing structure underwater glider increases by 9.1%.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1980073957
PQPubID 2043672
PageCount 7
ParticipantIDs wanfang_journals_zghygc_e201706007
proquest_journals_1980073957
crossref_citationtrail_10_1007_s13344_017_0081_7
crossref_primary_10_1007_s13344_017_0081_7
springer_journals_10_1007_s13344_017_0081_7
chongqing_primary_674270001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-12-01
PublicationDateYYYYMMDD 2017-12-01
PublicationDate_xml – month: 12
  year: 2017
  text: 2017-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Nanjing
PublicationPlace_xml – name: Nanjing
– name: Heidelberg
PublicationTitle China ocean engineering
PublicationTitleAbbrev China Ocean Eng
PublicationTitleAlternate China Ocean Engineering
PublicationTitle_FL China Ocean Engineering
PublicationYear 2017
Publisher Chinese Ocean Engineering Society
Springer Nature B.V
State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016,China
University of Chinese Academy of Sciences, Beijing 100049, China%State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016,China
Publisher_xml – name: Chinese Ocean Engineering Society
– name: Springer Nature B.V
– name: State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016,China
– name: University of Chinese Academy of Sciences, Beijing 100049, China%State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016,China
References Graver (CR4) 2005
Isa, Arshad (CR7) 2012; 41
Lee, Jo, Lee, Choi (CR10) 2016; 121
Marrel, Marie, De Lozzo (CR13) 2015; 138
Kroo (CR9) 2004
Sun, Song, Wang (CR19) 2015; 7
Eriksen, Osse, Light, Wen, Lehman, Sabin, Ballard, Chiodi (CR2) 2001; 26
Graver, Bachmayer, Leonard (CR3) 2003; 1
Gu, Lin, Hu, Yu (CR5) 2009; 45
Hildebrand, D’Spain, Roch (CR6) 2001
Qin, Vavalle, Moigne, Laban, Hackett, Weinerfelt (CR16) 2004; 40
Jenkins, Humphreys, Sherman, Osse, Jones, Leonard, Graver, Bachmayer (CR8) 2003
CR15
Li, Cui (CR12) 2012; 16
Wang, Ye, Aobo, Wang (CR20) 2015
Stommel (CR18) 1989; 2
Chiplunkar, Rachelson, Colombo, Morlier (CR1) 2016
Mulvany, Chen, Tu (CR14) 2004
Webb, Simonetti, Jones (CR21) 2001; 26
Sherman, Davis, Owens, Valdes (CR17) 2001; 26
Li, Zhang, Chen, Yuan, Lin (CR11) 2012; 25
S.A. Jenkins (81_CR8) 2003
Z.W. Li (81_CR12) 2012; 16
H. Stommel (81_CR18) 1989; 2
C.Y. Sun (81_CR19) 2015; 7
Z.H. Wang (81_CR20) 2015
H.T. Gu (81_CR5) 2009; 45
D.C. Webb (81_CR21) 2001; 26
K. Isa (81_CR7) 2012; 41
J.G. Graver (81_CR3) 2003; 1
N.J. Mulvany (81_CR14) 2004
N. Qin (81_CR16) 2004; 40
81_CR15
I. Kroo (81_CR9) 2004
A. Marrel (81_CR13) 2015; 138
J.G. Graver (81_CR4) 2005
H. Lee (81_CR10) 2016; 121
P.F. Li (81_CR11) 2012; 25
J. Sherman (81_CR17) 2001; 26
J.A. Hildebrand (81_CR6) 2001
A. Chiplunkar (81_CR1) 2016
C.C. Eriksen (81_CR2) 2001; 26
References_xml – volume: 16
  start-page: 829
  issue: 7
  year: 2012
  end-page: 837
  ident: CR12
  article-title: Overview on the hydrodynamic performance of underwater gliders
  publication-title: Journal of Ship Mechanics
– volume: 45
  start-page: 7
  issue: 12
  year: 2009
  end-page: 14
  ident: CR5
  article-title: Surrogate models based optimization methods for the design of underwater glider wing
  publication-title: Journal of Mechanical Engineering
  doi: 10.3901/JME.2009.12.007
– volume: 26
  start-page: 447
  issue: 4
  year: 2001
  end-page: 452
  ident: CR21
  article-title: SLOCUM: An underwater glider propelled by environmental energy
  publication-title: IEEE Journal of Oceanic Engineering
  doi: 10.1109/48.972077
– start-page: 5
  year: 2004
  end-page: 8
  ident: CR9
  article-title: Innovations in aeronautics
  publication-title: Proceedings of the 42nd AIAA Aerospace Sciences Meeting and Exhibit
– volume: 7
  start-page: 995
  issue: 6
  year: 2015
  end-page: 1006
  ident: CR19
  article-title: Parametric geometric model and shape optimization of an underwater glider with blendedwing-body
  publication-title: International Journal of Naval Architecture and Ocean Engineering
  doi: 10.1515/ijnaoe-2015-0069
– volume: 40
  start-page: 321
  issue: 6
  year: 2004
  end-page: 343
  ident: CR16
  article-title: Aerodynamic considerations of blended wing body aircraft
  publication-title: Progress in Aerospace Sciences
  doi: 10.1016/j.paerosci.2004.08.001
– ident: CR15
– year: 2016
  ident: CR1
  article-title: Adding flight mechanics to flight loads surrogate model using multioutput Gaussian processes
  publication-title: Proceedings of the 17th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference
– start-page: 74
  year: 2015
  end-page: 77
  ident: CR20
  article-title: Flying wing underwater glider: Design, analysis, and performance prediction
  publication-title: Proceedings of 2015 International Conference on Control, Automation and Robotics (ICCAR)
– volume: 138
  start-page: 232
  year: 2015
  end-page: 241
  ident: CR13
  article-title: Advanced surrogate model and sensitivity analysis methods for sodium fast reactor accident assessment
  publication-title: Reliability Engineering & System Safety
  doi: 10.1016/j.ress.2015.01.019
– volume: 26
  start-page: 437
  issue: 4
  year: 2001
  end-page: 446
  ident: CR17
  article-title: The autonomous underwater glider “Spray”
  publication-title: IEEE Journal of Oceanic Engineering
  doi: 10.1109/48.972076
– volume: 26
  start-page: 424
  issue: 4
  year: 2001
  end-page: 436
  ident: CR2
  article-title: Sea glider: A longrange autonomous underwater vehicle for oceanographic research
  publication-title: IEEE Journal of Oceanic Engineering
  doi: 10.1109/48.972073
– volume: 41
  start-page: 516
  issue: 6
  year: 2012
  end-page: 526
  ident: CR7
  article-title: Buoyancy-driven underwater glider modelling and analysis of motion control
  publication-title: Indian Journal of Geo-Marine Sciences
– volume: 121
  start-page: 422
  year: 2016
  end-page: 436
  ident: CR10
  article-title: Surrogate model based design optimization of multiple wing sails considering flow interaction effect
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2016.05.051
– volume: 25
  start-page: 508
  issue: 4
  year: 2012
  end-page: 516
  ident: CR11
  article-title: Aerodynamic design methodology for blended wing body transport
  publication-title: Chinese Journal of Aeronautics
  doi: 10.1016/S1000-9361(11)60414-7
– year: 2001
  ident: CR6
  publication-title: Glider-Based Passive Acoustic Monitoring Techniques in the Southern California Region
– year: 2005
  ident: CR4
  publication-title: Underwater Gliders: Dynamics, Control and Design
– year: 2004
  ident: CR14
  publication-title: Steady-State Evaluation of ‘Two-Equation’ RANS (Reynolds-Averaged Navier-Stokes) Turbulence Models for High-Reynolds Number Hydrodynamic Flow Simulations
– volume: 2
  start-page: 22
  issue: 1
  year: 1989
  end-page: 25
  ident: CR18
  article-title: The Slocum mission
  publication-title: Oceanography
  doi: 10.5670/oceanog.1989.26
– year: 2003
  ident: CR8
  publication-title: Underwater Glider System Study
– volume: 1
  start-page: 12
  year: 2003
  end-page: 13
  ident: CR3
  article-title: Underwater glider model parameter identification
  publication-title: Proceedings of the 13th International Symposium on Unmanned Untethered Submersible Technology (UUST), Durham NH
– volume: 138
  start-page: 232
  year: 2015
  ident: 81_CR13
  publication-title: Reliability Engineering & System Safety
  doi: 10.1016/j.ress.2015.01.019
– volume: 25
  start-page: 508
  issue: 4
  year: 2012
  ident: 81_CR11
  publication-title: Chinese Journal of Aeronautics
  doi: 10.1016/S1000-9361(11)60414-7
– ident: 81_CR15
– volume: 40
  start-page: 321
  issue: 6
  year: 2004
  ident: 81_CR16
  publication-title: Progress in Aerospace Sciences
  doi: 10.1016/j.paerosci.2004.08.001
– volume: 45
  start-page: 7
  issue: 12
  year: 2009
  ident: 81_CR5
  publication-title: Journal of Mechanical Engineering
  doi: 10.3901/JME.2009.12.007
– volume: 26
  start-page: 424
  issue: 4
  year: 2001
  ident: 81_CR2
  publication-title: IEEE Journal of Oceanic Engineering
  doi: 10.1109/48.972073
– volume: 121
  start-page: 422
  year: 2016
  ident: 81_CR10
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2016.05.051
– volume-title: Underwater Glider System Study
  year: 2003
  ident: 81_CR8
– start-page: 5
  volume-title: Proceedings of the 42nd AIAA Aerospace Sciences Meeting and Exhibit
  year: 2004
  ident: 81_CR9
– volume: 2
  start-page: 22
  issue: 1
  year: 1989
  ident: 81_CR18
  publication-title: Oceanography
  doi: 10.5670/oceanog.1989.26
– volume: 7
  start-page: 995
  issue: 6
  year: 2015
  ident: 81_CR19
  publication-title: International Journal of Naval Architecture and Ocean Engineering
  doi: 10.1515/ijnaoe-2015-0069
– volume: 1
  start-page: 12
  year: 2003
  ident: 81_CR3
  publication-title: Proceedings of the 13th International Symposium on Unmanned Untethered Submersible Technology (UUST), Durham NH
– volume-title: Underwater Gliders: Dynamics, Control and Design
  year: 2005
  ident: 81_CR4
– volume: 16
  start-page: 829
  issue: 7
  year: 2012
  ident: 81_CR12
  publication-title: Journal of Ship Mechanics
– volume: 26
  start-page: 447
  issue: 4
  year: 2001
  ident: 81_CR21
  publication-title: IEEE Journal of Oceanic Engineering
  doi: 10.1109/48.972077
– volume-title: Proceedings of the 17th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference
  year: 2016
  ident: 81_CR1
– volume: 41
  start-page: 516
  issue: 6
  year: 2012
  ident: 81_CR7
  publication-title: Indian Journal of Geo-Marine Sciences
– volume-title: Glider-Based Passive Acoustic Monitoring Techniques in the Southern California Region
  year: 2001
  ident: 81_CR6
– volume-title: Steady-State Evaluation of ‘Two-Equation’ RANS (Reynolds-Averaged Navier-Stokes) Turbulence Models for High-Reynolds Number Hydrodynamic Flow Simulations
  year: 2004
  ident: 81_CR14
– start-page: 74
  volume-title: Proceedings of 2015 International Conference on Control, Automation and Robotics (ICCAR)
  year: 2015
  ident: 81_CR20
– volume: 26
  start-page: 437
  issue: 4
  year: 2001
  ident: 81_CR17
  publication-title: IEEE Journal of Oceanic Engineering
  doi: 10.1109/48.972076
SSID ssj0051541
Score 2.261884
Snippet Combining high precision numerical analysis methods with optimization algorithms to make a systematic exploration of a design space has become an important...
SourceID wanfang
proquest
crossref
springer
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 709
SubjectTerms Algorithms
Coastal Sciences
Computation
Computational fluid dynamics
Design
Design of experiments
Design optimization
Dynamics
Engineering
Finite element method
Flight
Fluid dynamics
Fluid- and Aerodynamics
Hydrodynamics
Kernel functions
Marine & Freshwater Sciences
Mathematical models
Mesh generation
Modelling
Numerical analysis
Numerical and Computational Physics
Numerical methods
Oceanography
Offshore Engineering
Particle swarm optimization
Shape optimization
Simulation
Underwater
Underwater construction
Underwater exploration
Underwater gliders
Underwater structures
Title Parametric Geometric Model and Hydrodynamic Shape Optimization of A Flying-Wing Structure Underwater Glider
URI http://lib.cqvip.com/qk/86654A/201706/674270001.html
https://link.springer.com/article/10.1007/s13344-017-0081-7
https://www.proquest.com/docview/1980073957
https://d.wanfangdata.com.cn/periodical/zghygc-e201706007
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3faxQxEB60fVFBalW8tpYgPimB7I9sNo-HtJYK6oMH9Snk5x547ta7llL_eie72bsTrNCXZWGzs5AvO_OFzHwD8BaDFDM2tzSrAm5QRGmo9CJQU3oWKuZwkfTZFp-rs1l5fsEvUh33asx2H48ke0-9KXYrijJmTAga4xgVD2GX49Y95vHN8unofjE-9-0qWS0ZjXR8PMr8l4koqDDv2uYXfu7vwLRhm-sD0r6spw26bbYi0OkePE3UkUwHrJ_BA9_uw-MtQcF9ePLFet0mFern8OOrjrlXUYSfNL5Ld33zG6JbR-a3Dv3n0JOerOb60pMOXcjPVJtJukA0CYtYCUVv8EIGtdnrpSex9mx5g0R1SZpFLOV7AbPTk28fzmjqrkBtIcQVNTYTlfC59s5kmeZOisAdLzgSulw6EazP8sp4Xoe84qZEFm4t1146gz5AuuIl7LRd618BqaUPhWVOMmPKLEfwvUP8fZ0h3UCLEzhcT7O6HFQ0VIWbchEp5gTYOPHKJmHy2B9joTaSyhE3hbipiJsSE3i3fmW095_BRyOaKv2gK5XJOh1STuD9iPDW47uNvUmLYDP4dzO_bazy-aBFxMTBvUwewqP45pAjcwQ7iKR_jUznyhzD7vTj908nx_0K_wOtJfa6
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7B9sBD4lFAXVrAQpxArvJ2cqxQy0JL4bCVysnyMyt1Sdrdrar21zNO7N0FAVIvUaQ4k8SezHzWzHwD8A6dVCRVomhcWNygsEzSyjBLZWYiW0QalaTLtjguRifZl9P81Ndxz0O2ewhJdpZ6VeyWppnLmGDU-THK7sJGhlvwbAAbe59-HO4HA4weumtYGZVVRB0gD8HMvwlxlAqTtqkv8IG_u6YV3lyGSLvCnsaKpl7zQQePYRzevk89Odu9XMhddfMHseMtP-8JPPKYlOz1SvQU7phmEx6sMRVuwsNvyojG01s_g7PvwiV1OXZ_UpvWn3VddYhoNJlcazTMfbN7Mp-Ic0NatE0_fdEnaS0RxE5diRW9wgPpaWwvZ4a4orbZFSLgGamnrkbwOZwc7I8_jqhv20BVytiCShWzgplEGC3jWOS6YjbXeZojUkwqzawycVJIk5c2KXKZIbxXKhem0hKNS6XTFzBo2sZsASkrY1MV6SqSMosT1CqjUbFMGSOOQYlD2F6uHj_v6Tl4gbt95rDrEKKwnlx5xnPXeGPKV1zNbtI5Tjp3k87ZEN4vbwny_jN4JygJ93_-nMdV6aOfQ_gQVnrt8r-FvfW6tRp8U0-ua8VN0pMcRezlrUS-gXuj8dcjfvT5-HAb7jspfSLODgxwVc0rhFML-dr_Pr8AZeIU5g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9BJyFA4mMMUTbAQjyBsjmfTh4nWBkMjT0waTwZf6bSOqe0nabur-fcOG1BgIR4iaLEucj25e4X3d3vAF6hk6JSJSqKC4s_KCyTUWWYjWRmqC2oRiVZZFscF4en2cez_Cz0OZ122e5dSLKtafAsTW62N9Z2b1X4lqaZz55gkfdpEbsJG5nnZu_Bxv77r0cHnTFGb71oXknLikYenHeBzd8J8fQKw8bV3_HlP7upFfZchksXRT7OClev-aPBffjWzaRNQznfvZzJXXX9C8njf0z1AdwLWJXst8r1EG4Ytwl31hgMN-HuZ2WEC7TXj-D8RPhkL8_6T2rThLNFtx0inCbDuUaDPXfiAi9Ph2JsSIM26yIUg5LGEkHsyJdeRVd4IC297eXEEF_sNrlCZDwh9cjXDm7B6eDgy9vDKLRziFTK2CySKmYFM4kwWsaxyHXFbK7zNEcEmVSaWWXipJAmL21S5DJD2K9ULkylJRqdSqePoecaZ54AKStjU0V1RaXM4gS1zWhUOFPGiG9QYh-2lzvJxy1tBy9Y5qPsNO4D7faWq8CE7htyjPiKw9kvOsdF537ROevD6-Ujnby_DN7pFIYHizDlcVWGqGgf3nS7vnb7z8JeBj1bDb6uh_NacZO05EeUPf0nkS_g1sm7Af_04fhoG257IW1-zg70cFPNM0RZM_k8fEk_AAX4Hco
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parametric+geometric+model+and+hydrodynamic+shape+optimization+of+a+flying-wing+structure+underwater+glider&rft.jtitle=China+ocean+engineering&rft.au=Wang%2C+Zhen-yu&rft.au=Yu%2C+Jian-cheng&rft.au=Zhang%2C+Ai-qun&rft.au=Wang%2C+Ya-xing&rft.date=2017-12-01&rft.issn=0890-5487&rft.eissn=2191-8945&rft.volume=31&rft.issue=6&rft.spage=709&rft.epage=715&rft_id=info:doi/10.1007%2Fs13344-017-0081-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s13344_017_0081_7
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F86654A%2F86654A.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzghygc-e%2Fzghygc-e.jpg