Parametric Geometric Model and Hydrodynamic Shape Optimization of A Flying-Wing Structure Underwater Glider
Combining high precision numerical analysis methods with optimization algorithms to make a systematic exploration of a design space has become an important topic in the modern design methods. During the design process of an underwater glider's flying-wing structure, a surrogate model is introduced t...
Saved in:
Published in | China ocean engineering Vol. 31; no. 6; pp. 709 - 715 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Nanjing
Chinese Ocean Engineering Society
01.12.2017
Springer Nature B.V State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016,China University of Chinese Academy of Sciences, Beijing 100049, China%State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016,China |
Subjects | |
Online Access | Get full text |
ISSN | 0890-5487 2191-8945 |
DOI | 10.1007/s13344-017-0081-7 |
Cover
Loading…
Abstract | Combining high precision numerical analysis methods with optimization algorithms to make a systematic exploration of a design space has become an important topic in the modern design methods. During the design process of an underwater glider's flying-wing structure, a surrogate model is introduced to decrease the computation time for a high precision analysis. By these means, the contradiction between precision and efficiency is solved effectively. Based on the parametric geometry modeling, mesh generation and computational fluid dynamics analysis, a surrogate model is constructed by adopting the design of experiment (DOE) theory to solve the multi-objects design optimization problem of the underwater glider. The procedure of a surrogate model construction is presented, and the Gaussian kernel function is specifically discussed. The Particle Swarm Optimization (PSO) algorithm is applied to hydrodynamic design optimization. The hydrodynamic performance of the optimized flying-wing structure underwater glider increases by 9.1%. |
---|---|
AbstractList | Combining high precision numerical analysis methods with optimization algorithms to make a systematic exploration of a design space has become an important topic in the modern design methods. During the design process of an underwater glider’s flying-wing structure, a surrogate model is introduced to decrease the computation time for a high precision analysis. By these means, the contradiction between precision and efficiency is solved effectively. Based on the parametric geometry modeling, mesh generation and computational fluid dynamics analysis, a surrogate model is constructed by adopting the design of experiment (DOE) theory to solve the multi-objects design optimization problem of the underwater glider. The procedure of a surrogate model construction is presented, and the Gaussian kernel function is specifically discussed. The Particle Swarm Optimization (PSO) algorithm is applied to hydrodynamic design optimization. The hydrodynamic performance of the optimized flying-wing structure underwater glider increases by 9.1%. Combining high precision numerical analysis methods with optimization algorithms to make a systematic exploration of a design space has become an important topic in the modern design methods. During the design process of an underwater glider's flying-wing structure, a surrogate model is introduced to decrease the computation time for a high precision analysis. By these means, the contradiction between precision and efficiency is solved effectively. Based on the parametric geometry modeling, mesh generation and computational fluid dynamics analysis, a surrogate model is constructed by adopting the design of experiment (DOE) theory to solve the multi-objects design optimization problem of the underwater glider. The procedure of a surrogate model construction is presented, and the Gaussian kernel function is specifically discussed. The Particle Swarm Optimization (PSO) algorithm is applied to hydrodynamic design optimization. The hydrodynamic performance of the optimized flying-wing structure underwater glider increases by 9.1%. Combining high precision numerical analysis methods with optimization algorithms to make a systematic exploration of a design space has become an important topic in the modem design methods.During the design process of an underwater glider's flying-wing structure,a surrogate model is introduced to decrease the computation time for a high precision analysis.By these means,the contradiction between precision and efficiency is solved effectively.Based on the parametric geometry modeling,mesh generation and computational fluid dynamics analysis,a surrogate model is constructed by adopting the design of experiment (DOE) theory to solve the multi-objects design optimization problem of the underwater glider.The procedure of a surrogate model construction is presented,and the Gaussian kernel function is specifically discussed.The Particle Swarm Optimization (PSO) algorithm is applied to hydrodynamic design optimization.The hydrodynamic performance of the optimized flying-wing structure underwater glider increases by 9.1%. |
Author | WANG Zhen-yu;YU Jian-cheng;ZHANG Ai-quna;WANG Ya-xing;ZHAO Wen-tao |
AuthorAffiliation | State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China;University of Chinese Academy of Sciences, Beijing 100049, China |
AuthorAffiliation_xml | – name: State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016,China;University of Chinese Academy of Sciences, Beijing 100049, China%State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016,China |
Author_xml | – sequence: 1 givenname: Zhen-yu surname: Wang fullname: Wang, Zhen-yu organization: State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, University of Chinese Academy of Sciences – sequence: 2 givenname: Jian-cheng surname: Yu fullname: Yu, Jian-cheng email: yjc@sia.cn organization: State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences – sequence: 3 givenname: Ai-qun surname: Zhang fullname: Zhang, Ai-qun organization: State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences – sequence: 4 givenname: Ya-xing surname: Wang fullname: Wang, Ya-xing organization: State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences – sequence: 5 givenname: Wen-tao surname: Zhao fullname: Zhao, Wen-tao organization: State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, University of Chinese Academy of Sciences |
BookMark | eNp9kUFv3CAUhFGVSt2k-QG9ofbUAy1gY8wxippNpVSplEY5IgzPXqde2GBWkfPri-tVG-WQCzyhb96gmWN05IMHhD4w-oVRKr-OrCjKklAmCaU1I_INWnGmGKlVKY7QitaKElHW8h06Hsd7SgUTJVuh3z9NNFtIsbd4DeEw_QgOBmy8w5eTi8FN3mzz883G7ABf71K_7Z9M6oPHocVn-GKYet-Ru3zgmxT3Nu0j4FvvID6aBBGvhz7P79Hb1gwjnB7uE3R78e3X-SW5ul5_Pz-7IraQMpHGMllJ4AZcw5gRTslWOFGIgldcOdlaYLxqQNQtr0RTSq6sFQaUazgXyhUn6POy99H41vhO34d99NlRP3WbqbMaeM6JVjm3zH5a2F0MD3sY03-YqXomlJgpuVA2hnGM0Grbp78BpGj6QTOq5xb00oLO2_Xcgp6V7IVyF_utidOrGr5oxsz6DuKzP70i-ngw2gTfPWTdP6dKllxSSlnxBwQvp3w |
CitedBy_id | crossref_primary_10_1007_s13344_019_0054_0 crossref_primary_10_1051_jnwpu_20224051125 crossref_primary_10_1007_s40747_023_00969_w crossref_primary_10_1063_5_0169938 crossref_primary_10_1016_j_oceaneng_2023_116111 crossref_primary_10_32604_fdmp_2023_026814 crossref_primary_10_1007_s00500_023_08227_4 crossref_primary_10_1007_s13344_021_0064_6 crossref_primary_10_1007_s13344_022_0047_2 crossref_primary_10_1080_17445302_2023_2181494 crossref_primary_10_1155_2021_6939863 crossref_primary_10_2139_ssrn_4188470 crossref_primary_10_1016_j_oceaneng_2020_108212 crossref_primary_10_1177_09544062211036481 crossref_primary_10_1080_17445302_2019_1611989 crossref_primary_10_1016_j_apm_2020_10_015 crossref_primary_10_1016_j_apor_2021_102807 crossref_primary_10_1016_j_oceaneng_2019_106502 crossref_primary_10_3390_drones7070427 crossref_primary_10_1080_17445302_2022_2126126 crossref_primary_10_1080_17445302_2022_2140522 crossref_primary_10_1016_j_oceaneng_2022_111250 crossref_primary_10_1016_j_apor_2021_102625 crossref_primary_10_1177_00368504221131380 crossref_primary_10_1051_jnwpu_20213910085 crossref_primary_10_1177_0036850420950144 crossref_primary_10_1007_s13344_020_0036_2 crossref_primary_10_1088_1757_899X_491_1_012001 crossref_primary_10_3390_jmse11101946 crossref_primary_10_3390_jmse8060407 crossref_primary_10_1109_JAS_2022_105671 crossref_primary_10_1016_j_asoc_2022_108798 crossref_primary_10_1016_j_oceaneng_2023_115869 crossref_primary_10_1007_s42235_020_0010_y crossref_primary_10_3390_machines13030194 |
Cites_doi | 10.3901/JME.2009.12.007 10.1109/48.972077 10.1515/ijnaoe-2015-0069 10.1016/j.paerosci.2004.08.001 10.1016/j.ress.2015.01.019 10.1109/48.972076 10.1109/48.972073 10.1016/j.oceaneng.2016.05.051 10.1016/S1000-9361(11)60414-7 10.5670/oceanog.1989.26 |
ContentType | Journal Article |
Copyright | Chinese Ocean Engineering Society and Springer-Verlag GmbH Germany, part of Springer Nature 2017 Copyright Springer Science & Business Media 2017 Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Chinese Ocean Engineering Society and Springer-Verlag GmbH Germany, part of Springer Nature 2017 – notice: Copyright Springer Science & Business Media 2017 – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2RA 92L CQIGP W94 ~WA AAYXX CITATION 7TN F1W H96 L.G 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.1007/s13344-017-0081-7 |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 中文科技期刊数据库-7.0平台 中文科技期刊数据库-自然科学 中文科技期刊数据库- 镜像站点 CrossRef Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Oceanography |
DocumentTitleAlternate | Parametric Geometric Model and Hydrodynamic Shape Optimization of A Flying-Wing Structure Underwater Glider |
EISSN | 2191-8945 |
EndPage | 715 |
ExternalDocumentID | zghygc_e201706007 10_1007_s13344_017_0081_7 674270001 |
GrantInformation_xml | – fundername: This work was financially supported by the National Natural Science Foundation of China funderid: (Grant 61233013) |
GroupedDBID | -01 -0A -EM -SA -S~ 06D 0R~ 0VY 188 29B 29~ 2B. 2C. 2KG 2KM 2RA 30V 4.4 406 408 5GY 5VR 5XA 5XB 5XL 8RM 92E 92I 92L 92M 92Q 93N 96X 9D9 9DA AAAVM AAFGU AAHNG AAIAL AAJKR AANZL AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO AAZMS ABDZT ABECU ABFGW ABFTV ABJNI ABJOX ABKAS ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABXPI ACAOD ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACTTH ACVWB ACWMK ACZOJ ADHHG ADHIR ADINQ ADKNI ADMDM ADOXG ADRFC ADURQ ADYFF ADZKW AEBTG AEFTE AEGNC AEJHL AEJRE AENEX AEOHA AEPYU AESKC AESTI AETCA AEVLU AEVTX AEXYK AFLOW AFNRJ AFQWF AFUIB AFWTZ AFZKB AGAYW AGDGC AGGBP AGJBK AGMZJ AGQMX AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AKQUC ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG AXYYD BGNMA CAJEA CAJUS CCEZO CCVFK CHBEP CQIGP CW9 DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FA0 FERAY FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 HF~ HMJXF HRMNR HZ~ I0C IKXTQ IWAJR J-C JBSCW JUIAU JZLTJ LLZTM M4Y NPVJJ NQJWS NU0 O9- O9J P2P P9P PT4 Q-- Q-0 R-A R9I RLLFE RSV RT1 S.. S1Z S27 S3B SCL SEG SHX SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 T8Q TCJ TGP TSG U1F U1G U2A U5A U5K UG4 UOJIU UTJUX UZ4 UZXMN VC2 VFIZW W48 W94 WK8 Z7R ZMTXR ~A9 ~LH ~WA AACDK AAJBT AASML AAXDM AAYZH ABAKF ACDTI ACPIV AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU H13 HG6 ROL SJYHP AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION 7TN ABRTQ F1W H96 L.G 4A8 PSX |
ID | FETCH-LOGICAL-c377t-bc1767e2aedb11a5d97f5d53532629d7fce126be58f265b4729cc5ae9db2259d3 |
IEDL.DBID | U2A |
ISSN | 0890-5487 |
IngestDate | Thu May 29 03:55:51 EDT 2025 Wed Aug 13 03:12:39 EDT 2025 Tue Jul 01 01:29:47 EDT 2025 Thu Apr 24 23:03:24 EDT 2025 Fri Feb 21 02:36:05 EST 2025 Wed Feb 14 09:55:32 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | surrogate model blended-wing-body design optimization underwater glider |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c377t-bc1767e2aedb11a5d97f5d53532629d7fce126be58f265b4729cc5ae9db2259d3 |
Notes | surrogate model, underwater glider, design optimization, blended-wing-body 32-1441/P Combining high precision numerical analysis methods with optimization algorithms to make a systematic exploration of a design space has become an important topic in the modern design methods. During the design process of an underwater glider's flying-wing structure, a surrogate model is introduced to decrease the computation time for a high precision analysis. By these means, the contradiction between precision and efficiency is solved effectively. Based on the parametric geometry modeling, mesh generation and computational fluid dynamics analysis, a surrogate model is constructed by adopting the design of experiment (DOE) theory to solve the multi-objects design optimization problem of the underwater glider. The procedure of a surrogate model construction is presented, and the Gaussian kernel function is specifically discussed. The Particle Swarm Optimization (PSO) algorithm is applied to hydrodynamic design optimization. The hydrodynamic performance of the optimized flying-wing structure underwater glider increases by 9.1%. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1980073957 |
PQPubID | 2043672 |
PageCount | 7 |
ParticipantIDs | wanfang_journals_zghygc_e201706007 proquest_journals_1980073957 crossref_citationtrail_10_1007_s13344_017_0081_7 crossref_primary_10_1007_s13344_017_0081_7 springer_journals_10_1007_s13344_017_0081_7 chongqing_primary_674270001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-12-01 |
PublicationDateYYYYMMDD | 2017-12-01 |
PublicationDate_xml | – month: 12 year: 2017 text: 2017-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Nanjing |
PublicationPlace_xml | – name: Nanjing – name: Heidelberg |
PublicationTitle | China ocean engineering |
PublicationTitleAbbrev | China Ocean Eng |
PublicationTitleAlternate | China Ocean Engineering |
PublicationTitle_FL | China Ocean Engineering |
PublicationYear | 2017 |
Publisher | Chinese Ocean Engineering Society Springer Nature B.V State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016,China University of Chinese Academy of Sciences, Beijing 100049, China%State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016,China |
Publisher_xml | – name: Chinese Ocean Engineering Society – name: Springer Nature B.V – name: State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016,China – name: University of Chinese Academy of Sciences, Beijing 100049, China%State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016,China |
References | Graver (CR4) 2005 Isa, Arshad (CR7) 2012; 41 Lee, Jo, Lee, Choi (CR10) 2016; 121 Marrel, Marie, De Lozzo (CR13) 2015; 138 Kroo (CR9) 2004 Sun, Song, Wang (CR19) 2015; 7 Eriksen, Osse, Light, Wen, Lehman, Sabin, Ballard, Chiodi (CR2) 2001; 26 Graver, Bachmayer, Leonard (CR3) 2003; 1 Gu, Lin, Hu, Yu (CR5) 2009; 45 Hildebrand, D’Spain, Roch (CR6) 2001 Qin, Vavalle, Moigne, Laban, Hackett, Weinerfelt (CR16) 2004; 40 Jenkins, Humphreys, Sherman, Osse, Jones, Leonard, Graver, Bachmayer (CR8) 2003 CR15 Li, Cui (CR12) 2012; 16 Wang, Ye, Aobo, Wang (CR20) 2015 Stommel (CR18) 1989; 2 Chiplunkar, Rachelson, Colombo, Morlier (CR1) 2016 Mulvany, Chen, Tu (CR14) 2004 Webb, Simonetti, Jones (CR21) 2001; 26 Sherman, Davis, Owens, Valdes (CR17) 2001; 26 Li, Zhang, Chen, Yuan, Lin (CR11) 2012; 25 S.A. Jenkins (81_CR8) 2003 Z.W. Li (81_CR12) 2012; 16 H. Stommel (81_CR18) 1989; 2 C.Y. Sun (81_CR19) 2015; 7 Z.H. Wang (81_CR20) 2015 H.T. Gu (81_CR5) 2009; 45 D.C. Webb (81_CR21) 2001; 26 K. Isa (81_CR7) 2012; 41 J.G. Graver (81_CR3) 2003; 1 N.J. Mulvany (81_CR14) 2004 N. Qin (81_CR16) 2004; 40 81_CR15 I. Kroo (81_CR9) 2004 A. Marrel (81_CR13) 2015; 138 J.G. Graver (81_CR4) 2005 H. Lee (81_CR10) 2016; 121 P.F. Li (81_CR11) 2012; 25 J. Sherman (81_CR17) 2001; 26 J.A. Hildebrand (81_CR6) 2001 A. Chiplunkar (81_CR1) 2016 C.C. Eriksen (81_CR2) 2001; 26 |
References_xml | – volume: 16 start-page: 829 issue: 7 year: 2012 end-page: 837 ident: CR12 article-title: Overview on the hydrodynamic performance of underwater gliders publication-title: Journal of Ship Mechanics – volume: 45 start-page: 7 issue: 12 year: 2009 end-page: 14 ident: CR5 article-title: Surrogate models based optimization methods for the design of underwater glider wing publication-title: Journal of Mechanical Engineering doi: 10.3901/JME.2009.12.007 – volume: 26 start-page: 447 issue: 4 year: 2001 end-page: 452 ident: CR21 article-title: SLOCUM: An underwater glider propelled by environmental energy publication-title: IEEE Journal of Oceanic Engineering doi: 10.1109/48.972077 – start-page: 5 year: 2004 end-page: 8 ident: CR9 article-title: Innovations in aeronautics publication-title: Proceedings of the 42nd AIAA Aerospace Sciences Meeting and Exhibit – volume: 7 start-page: 995 issue: 6 year: 2015 end-page: 1006 ident: CR19 article-title: Parametric geometric model and shape optimization of an underwater glider with blendedwing-body publication-title: International Journal of Naval Architecture and Ocean Engineering doi: 10.1515/ijnaoe-2015-0069 – volume: 40 start-page: 321 issue: 6 year: 2004 end-page: 343 ident: CR16 article-title: Aerodynamic considerations of blended wing body aircraft publication-title: Progress in Aerospace Sciences doi: 10.1016/j.paerosci.2004.08.001 – ident: CR15 – year: 2016 ident: CR1 article-title: Adding flight mechanics to flight loads surrogate model using multioutput Gaussian processes publication-title: Proceedings of the 17th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference – start-page: 74 year: 2015 end-page: 77 ident: CR20 article-title: Flying wing underwater glider: Design, analysis, and performance prediction publication-title: Proceedings of 2015 International Conference on Control, Automation and Robotics (ICCAR) – volume: 138 start-page: 232 year: 2015 end-page: 241 ident: CR13 article-title: Advanced surrogate model and sensitivity analysis methods for sodium fast reactor accident assessment publication-title: Reliability Engineering & System Safety doi: 10.1016/j.ress.2015.01.019 – volume: 26 start-page: 437 issue: 4 year: 2001 end-page: 446 ident: CR17 article-title: The autonomous underwater glider “Spray” publication-title: IEEE Journal of Oceanic Engineering doi: 10.1109/48.972076 – volume: 26 start-page: 424 issue: 4 year: 2001 end-page: 436 ident: CR2 article-title: Sea glider: A longrange autonomous underwater vehicle for oceanographic research publication-title: IEEE Journal of Oceanic Engineering doi: 10.1109/48.972073 – volume: 41 start-page: 516 issue: 6 year: 2012 end-page: 526 ident: CR7 article-title: Buoyancy-driven underwater glider modelling and analysis of motion control publication-title: Indian Journal of Geo-Marine Sciences – volume: 121 start-page: 422 year: 2016 end-page: 436 ident: CR10 article-title: Surrogate model based design optimization of multiple wing sails considering flow interaction effect publication-title: Ocean Engineering doi: 10.1016/j.oceaneng.2016.05.051 – volume: 25 start-page: 508 issue: 4 year: 2012 end-page: 516 ident: CR11 article-title: Aerodynamic design methodology for blended wing body transport publication-title: Chinese Journal of Aeronautics doi: 10.1016/S1000-9361(11)60414-7 – year: 2001 ident: CR6 publication-title: Glider-Based Passive Acoustic Monitoring Techniques in the Southern California Region – year: 2005 ident: CR4 publication-title: Underwater Gliders: Dynamics, Control and Design – year: 2004 ident: CR14 publication-title: Steady-State Evaluation of ‘Two-Equation’ RANS (Reynolds-Averaged Navier-Stokes) Turbulence Models for High-Reynolds Number Hydrodynamic Flow Simulations – volume: 2 start-page: 22 issue: 1 year: 1989 end-page: 25 ident: CR18 article-title: The Slocum mission publication-title: Oceanography doi: 10.5670/oceanog.1989.26 – year: 2003 ident: CR8 publication-title: Underwater Glider System Study – volume: 1 start-page: 12 year: 2003 end-page: 13 ident: CR3 article-title: Underwater glider model parameter identification publication-title: Proceedings of the 13th International Symposium on Unmanned Untethered Submersible Technology (UUST), Durham NH – volume: 138 start-page: 232 year: 2015 ident: 81_CR13 publication-title: Reliability Engineering & System Safety doi: 10.1016/j.ress.2015.01.019 – volume: 25 start-page: 508 issue: 4 year: 2012 ident: 81_CR11 publication-title: Chinese Journal of Aeronautics doi: 10.1016/S1000-9361(11)60414-7 – ident: 81_CR15 – volume: 40 start-page: 321 issue: 6 year: 2004 ident: 81_CR16 publication-title: Progress in Aerospace Sciences doi: 10.1016/j.paerosci.2004.08.001 – volume: 45 start-page: 7 issue: 12 year: 2009 ident: 81_CR5 publication-title: Journal of Mechanical Engineering doi: 10.3901/JME.2009.12.007 – volume: 26 start-page: 424 issue: 4 year: 2001 ident: 81_CR2 publication-title: IEEE Journal of Oceanic Engineering doi: 10.1109/48.972073 – volume: 121 start-page: 422 year: 2016 ident: 81_CR10 publication-title: Ocean Engineering doi: 10.1016/j.oceaneng.2016.05.051 – volume-title: Underwater Glider System Study year: 2003 ident: 81_CR8 – start-page: 5 volume-title: Proceedings of the 42nd AIAA Aerospace Sciences Meeting and Exhibit year: 2004 ident: 81_CR9 – volume: 2 start-page: 22 issue: 1 year: 1989 ident: 81_CR18 publication-title: Oceanography doi: 10.5670/oceanog.1989.26 – volume: 7 start-page: 995 issue: 6 year: 2015 ident: 81_CR19 publication-title: International Journal of Naval Architecture and Ocean Engineering doi: 10.1515/ijnaoe-2015-0069 – volume: 1 start-page: 12 year: 2003 ident: 81_CR3 publication-title: Proceedings of the 13th International Symposium on Unmanned Untethered Submersible Technology (UUST), Durham NH – volume-title: Underwater Gliders: Dynamics, Control and Design year: 2005 ident: 81_CR4 – volume: 16 start-page: 829 issue: 7 year: 2012 ident: 81_CR12 publication-title: Journal of Ship Mechanics – volume: 26 start-page: 447 issue: 4 year: 2001 ident: 81_CR21 publication-title: IEEE Journal of Oceanic Engineering doi: 10.1109/48.972077 – volume-title: Proceedings of the 17th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference year: 2016 ident: 81_CR1 – volume: 41 start-page: 516 issue: 6 year: 2012 ident: 81_CR7 publication-title: Indian Journal of Geo-Marine Sciences – volume-title: Glider-Based Passive Acoustic Monitoring Techniques in the Southern California Region year: 2001 ident: 81_CR6 – volume-title: Steady-State Evaluation of ‘Two-Equation’ RANS (Reynolds-Averaged Navier-Stokes) Turbulence Models for High-Reynolds Number Hydrodynamic Flow Simulations year: 2004 ident: 81_CR14 – start-page: 74 volume-title: Proceedings of 2015 International Conference on Control, Automation and Robotics (ICCAR) year: 2015 ident: 81_CR20 – volume: 26 start-page: 437 issue: 4 year: 2001 ident: 81_CR17 publication-title: IEEE Journal of Oceanic Engineering doi: 10.1109/48.972076 |
SSID | ssj0051541 |
Score | 2.261884 |
Snippet | Combining high precision numerical analysis methods with optimization algorithms to make a systematic exploration of a design space has become an important... |
SourceID | wanfang proquest crossref springer chongqing |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 709 |
SubjectTerms | Algorithms Coastal Sciences Computation Computational fluid dynamics Design Design of experiments Design optimization Dynamics Engineering Finite element method Flight Fluid dynamics Fluid- and Aerodynamics Hydrodynamics Kernel functions Marine & Freshwater Sciences Mathematical models Mesh generation Modelling Numerical analysis Numerical and Computational Physics Numerical methods Oceanography Offshore Engineering Particle swarm optimization Shape optimization Simulation Underwater Underwater construction Underwater exploration Underwater gliders Underwater structures |
Title | Parametric Geometric Model and Hydrodynamic Shape Optimization of A Flying-Wing Structure Underwater Glider |
URI | http://lib.cqvip.com/qk/86654A/201706/674270001.html https://link.springer.com/article/10.1007/s13344-017-0081-7 https://www.proquest.com/docview/1980073957 https://d.wanfangdata.com.cn/periodical/zghygc-e201706007 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3faxQxEB60fVFBalW8tpYgPimB7I9sNo-HtJYK6oMH9Snk5x547ta7llL_eie72bsTrNCXZWGzs5AvO_OFzHwD8BaDFDM2tzSrAm5QRGmo9CJQU3oWKuZwkfTZFp-rs1l5fsEvUh33asx2H48ke0-9KXYrijJmTAga4xgVD2GX49Y95vHN8unofjE-9-0qWS0ZjXR8PMr8l4koqDDv2uYXfu7vwLRhm-sD0r6spw26bbYi0OkePE3UkUwHrJ_BA9_uw-MtQcF9ePLFet0mFern8OOrjrlXUYSfNL5Ld33zG6JbR-a3Dv3n0JOerOb60pMOXcjPVJtJukA0CYtYCUVv8EIGtdnrpSex9mx5g0R1SZpFLOV7AbPTk28fzmjqrkBtIcQVNTYTlfC59s5kmeZOisAdLzgSulw6EazP8sp4Xoe84qZEFm4t1146gz5AuuIl7LRd618BqaUPhWVOMmPKLEfwvUP8fZ0h3UCLEzhcT7O6HFQ0VIWbchEp5gTYOPHKJmHy2B9joTaSyhE3hbipiJsSE3i3fmW095_BRyOaKv2gK5XJOh1STuD9iPDW47uNvUmLYDP4dzO_bazy-aBFxMTBvUwewqP45pAjcwQ7iKR_jUznyhzD7vTj908nx_0K_wOtJfa6 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7B9sBD4lFAXVrAQpxArvJ2cqxQy0JL4bCVysnyMyt1Sdrdrar21zNO7N0FAVIvUaQ4k8SezHzWzHwD8A6dVCRVomhcWNygsEzSyjBLZWYiW0QalaTLtjguRifZl9P81Ndxz0O2ewhJdpZ6VeyWppnLmGDU-THK7sJGhlvwbAAbe59-HO4HA4weumtYGZVVRB0gD8HMvwlxlAqTtqkv8IG_u6YV3lyGSLvCnsaKpl7zQQePYRzevk89Odu9XMhddfMHseMtP-8JPPKYlOz1SvQU7phmEx6sMRVuwsNvyojG01s_g7PvwiV1OXZ_UpvWn3VddYhoNJlcazTMfbN7Mp-Ic0NatE0_fdEnaS0RxE5diRW9wgPpaWwvZ4a4orbZFSLgGamnrkbwOZwc7I8_jqhv20BVytiCShWzgplEGC3jWOS6YjbXeZojUkwqzawycVJIk5c2KXKZIbxXKhem0hKNS6XTFzBo2sZsASkrY1MV6SqSMosT1CqjUbFMGSOOQYlD2F6uHj_v6Tl4gbt95rDrEKKwnlx5xnPXeGPKV1zNbtI5Tjp3k87ZEN4vbwny_jN4JygJ93_-nMdV6aOfQ_gQVnrt8r-FvfW6tRp8U0-ua8VN0pMcRezlrUS-gXuj8dcjfvT5-HAb7jspfSLODgxwVc0rhFML-dr_Pr8AZeIU5g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9BJyFA4mMMUTbAQjyBsjmfTh4nWBkMjT0waTwZf6bSOqe0nabur-fcOG1BgIR4iaLEucj25e4X3d3vAF6hk6JSJSqKC4s_KCyTUWWYjWRmqC2oRiVZZFscF4en2cez_Cz0OZ122e5dSLKtafAsTW62N9Z2b1X4lqaZz55gkfdpEbsJG5nnZu_Bxv77r0cHnTFGb71oXknLikYenHeBzd8J8fQKw8bV3_HlP7upFfZchksXRT7OClev-aPBffjWzaRNQznfvZzJXXX9C8njf0z1AdwLWJXst8r1EG4Ytwl31hgMN-HuZ2WEC7TXj-D8RPhkL8_6T2rThLNFtx0inCbDuUaDPXfiAi9Ph2JsSIM26yIUg5LGEkHsyJdeRVd4IC297eXEEF_sNrlCZDwh9cjXDm7B6eDgy9vDKLRziFTK2CySKmYFM4kwWsaxyHXFbK7zNEcEmVSaWWXipJAmL21S5DJD2K9ULkylJRqdSqePoecaZ54AKStjU0V1RaXM4gS1zWhUOFPGiG9QYh-2lzvJxy1tBy9Y5qPsNO4D7faWq8CE7htyjPiKw9kvOsdF537ROevD6-Ujnby_DN7pFIYHizDlcVWGqGgf3nS7vnb7z8JeBj1bDb6uh_NacZO05EeUPf0nkS_g1sm7Af_04fhoG257IW1-zg70cFPNM0RZM_k8fEk_AAX4Hco |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parametric+geometric+model+and+hydrodynamic+shape+optimization+of+a+flying-wing+structure+underwater+glider&rft.jtitle=China+ocean+engineering&rft.au=Wang%2C+Zhen-yu&rft.au=Yu%2C+Jian-cheng&rft.au=Zhang%2C+Ai-qun&rft.au=Wang%2C+Ya-xing&rft.date=2017-12-01&rft.issn=0890-5487&rft.eissn=2191-8945&rft.volume=31&rft.issue=6&rft.spage=709&rft.epage=715&rft_id=info:doi/10.1007%2Fs13344-017-0081-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s13344_017_0081_7 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F86654A%2F86654A.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzghygc-e%2Fzghygc-e.jpg |