Estimation of local daily PM2.5 concentration during wildfire episodes: integrating MODIS AOD with multivariate linear mixed effect (LME) models
Seasonal peaks of air pollution from wildfires are increasing in frequency and severity in the western provinces of Canada. During these episodes, populations are exposed to adverse short-term health effects due to elevated levels of fine particulate matter, which is the primary pollutant associated...
Saved in:
Published in | Air quality, atmosphere and health Vol. 13; no. 2; pp. 173 - 185 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.02.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Seasonal peaks of air pollution from wildfires are increasing in frequency and severity in the western provinces of Canada. During these episodes, populations are exposed to adverse short-term health effects due to elevated levels of fine particulate matter, which is the primary pollutant associated with smoke. The spatial resolution of ground-based monitoring records generally is not sufficient for emergency preparedness and epidemiological studies of such events. Accurate spatial and temporal models of smoke pollution for the study of smoke exposure effects require reliable, fine-scale input data. Satellite aerosol optical depth (AOD) measures can provide a valuable alternative to the coarse spatial resolution of ground PM
2.5
monitoring network measurements. Numerous statistical approaches have been used to estimate the link between AOD and PM
2.5
, most of which consider the relationship between AOD and PM
2.5
as being fixed over space and for an entire day; however, due to time-varying meteorological variables, that relationship changes over time and space. Hence, to capture the effects of temporal and spatial variations on the AOD-PM
2.5
relationship, two nested linear mixed effect (LME) models are developed herein. Daily estimation of PM
2.5
concentration is derived by incorporating nested period-zone-specific random effects of the AOD-PM
2.5
relationship over the province of Alberta, Canada. Model validation shows that LME improves the estimation performance of the model compared with ordinary multivariate linear regression by more than 115%. Our findings indicate that the potential of the LME model increases when additional variables are integrated with AOD measures in a multivariate framework. This single model yields an array of reliable spatial-temporal estimates of daily PM
2.5
concentrations from wildfire at fine spatial resolution. |
---|---|
AbstractList | Seasonal peaks of air pollution from wildfires are increasing in frequency and severity in the western provinces of Canada. During these episodes, populations are exposed to adverse short-term health effects due to elevated levels of fine particulate matter, which is the primary pollutant associated with smoke. The spatial resolution of ground-based monitoring records generally is not sufficient for emergency preparedness and epidemiological studies of such events. Accurate spatial and temporal models of smoke pollution for the study of smoke exposure effects require reliable, fine-scale input data. Satellite aerosol optical depth (AOD) measures can provide a valuable alternative to the coarse spatial resolution of ground PM
2.5
monitoring network measurements. Numerous statistical approaches have been used to estimate the link between AOD and PM
2.5
, most of which consider the relationship between AOD and PM
2.5
as being fixed over space and for an entire day; however, due to time-varying meteorological variables, that relationship changes over time and space. Hence, to capture the effects of temporal and spatial variations on the AOD-PM
2.5
relationship, two nested linear mixed effect (LME) models are developed herein. Daily estimation of PM
2.5
concentration is derived by incorporating nested period-zone-specific random effects of the AOD-PM
2.5
relationship over the province of Alberta, Canada. Model validation shows that LME improves the estimation performance of the model compared with ordinary multivariate linear regression by more than 115%. Our findings indicate that the potential of the LME model increases when additional variables are integrated with AOD measures in a multivariate framework. This single model yields an array of reliable spatial-temporal estimates of daily PM
2.5
concentrations from wildfire at fine spatial resolution. Seasonal peaks of air pollution from wildfires are increasing in frequency and severity in the western provinces of Canada. During these episodes, populations are exposed to adverse short-term health effects due to elevated levels of fine particulate matter, which is the primary pollutant associated with smoke. The spatial resolution of ground-based monitoring records generally is not sufficient for emergency preparedness and epidemiological studies of such events. Accurate spatial and temporal models of smoke pollution for the study of smoke exposure effects require reliable, fine-scale input data. Satellite aerosol optical depth (AOD) measures can provide a valuable alternative to the coarse spatial resolution of ground PM2.5 monitoring network measurements. Numerous statistical approaches have been used to estimate the link between AOD and PM2.5, most of which consider the relationship between AOD and PM2.5 as being fixed over space and for an entire day; however, due to time-varying meteorological variables, that relationship changes over time and space. Hence, to capture the effects of temporal and spatial variations on the AOD-PM2.5 relationship, two nested linear mixed effect (LME) models are developed herein. Daily estimation of PM2.5 concentration is derived by incorporating nested period-zone-specific random effects of the AOD-PM2.5 relationship over the province of Alberta, Canada. Model validation shows that LME improves the estimation performance of the model compared with ordinary multivariate linear regression by more than 115%. Our findings indicate that the potential of the LME model increases when additional variables are integrated with AOD measures in a multivariate framework. This single model yields an array of reliable spatial-temporal estimates of daily PM2.5 concentrations from wildfire at fine spatial resolution. |
Author | Couloigner, Isabelle Mirzaei, Mojgan Ngom, Roland Bertazzon, Stefania Farjad, Babak |
Author_xml | – sequence: 1 givenname: Mojgan orcidid: 0000-0003-1474-7546 surname: Mirzaei fullname: Mirzaei, Mojgan email: mojgan.mirzaei@ucalgary.ca organization: Department of Geography, University of Calgary – sequence: 2 givenname: Stefania surname: Bertazzon fullname: Bertazzon, Stefania organization: Department of Geography, University of Calgary, Department of History, Archaeology, Geography, and Fine & Performing Arts, University of Florence – sequence: 3 givenname: Isabelle surname: Couloigner fullname: Couloigner, Isabelle organization: Department of Geography, University of Calgary, Department of Ecosystem and Public Health, University of Calgary – sequence: 4 givenname: Babak surname: Farjad fullname: Farjad, Babak organization: Alberta Environment and Parks, Government of Alberta, Department of Geomatics Engineering, University of Calgary – sequence: 5 givenname: Roland surname: Ngom fullname: Ngom, Roland organization: Health Information Management, World Health Emergency, World Health Organization |
BookMark | eNp9kE1PHCEYgEljk_rRP9ATSS96GH0ZZplZb0bXarKbbaI9EwbesRgWVmBt91_4k8s6TZt48EAg4XleyHNA9nzwSMgXBqcMoD1LjHViWgErC9oOqu0Hss-6lldTXou9f2fWfSIHKT0CCGhA7JOXWcp2pbINnoaBuqCVo0ZZt6XfF_XphOrgNfocR8RsovUP9Jd1ZrARKa5tCgbTObU-48OOKteL5dXtHb1YXhUw_6Srjcv2WUWrMlJnPapIV_Y3GorDgDrT4_lidkJXZZBLR-TjoFzCz3_3Q_LjenZ_eVPNl99uLy_mleZtm6tescEw1iDXHIXpeW_0hAs2rTWA5oqB4n07NaoGbPumMLVpJgLBdLxG6Pgh-TrOXcfwtMGU5WPYRF-elDWfCADeiKZQ3UjpGFKKOEht82uKUsQ6yUDu-suxvyz95Wt_uS1q_UZdx1I6bt-X-Cil9S40xv-_esf6AzX5nC0 |
CitedBy_id | crossref_primary_10_3390_rs13214341 crossref_primary_10_1016_j_rsase_2022_100864 crossref_primary_10_1016_j_envint_2024_108430 crossref_primary_10_1016_j_envpol_2024_124899 crossref_primary_10_1139_er_2022_0125 crossref_primary_10_1029_2022GL099175 crossref_primary_10_1016_j_atmosres_2020_104999 crossref_primary_10_3390_ijerph191710811 crossref_primary_10_1016_j_apr_2023_101739 crossref_primary_10_1016_j_atmosenv_2022_119453 crossref_primary_10_3390_geomatics1010003 crossref_primary_10_1016_j_rse_2022_112890 crossref_primary_10_3390_atmos11101066 crossref_primary_10_1038_s41597_022_01488_y |
Cites_doi | 10.1016/j.atmosenv.2014.02.019 10.1016/j.envres.2012.11.003 10.1029/2007EO020003 10.1007/s11869-012-0192-5 10.1016/j.rse.2006.05.022 10.1016/j.atmosenv.2011.08.066 10.1080/08958370600985875 10.1080/10962247.2012.695321 10.1016/j.envpol.2017.01.074 10.1002/2017GH000049 10.1016/0004-6981(84)90201-4 10.5194/acp-11-7991-2011 10.1136/oem.2004.017012 10.1021/es302673e 10.1289/ehp.1409481 10.1007/s11356-011-0546-9 10.1097/EDE.0b013e3181812bb7 10.1080/10473289.1996.10467528 10.1016/j.sste.2015.06.002 10.1021/acs.est.5b01413 10.3390/ijgi7090368 10.3155/1047-3289.60.5.596 10.4081/gh.2014.292 10.1016/j.envint.2012.02.003 10.5194/acp-8-3311-2008 10.1186/s12940-016-0146-8 10.1016/j.atmosenv.2014.07.014 10.1016/j.envpol.2012.08.016 10.1016/j.scitotenv.2016.12.049 10.1016/j.atmosenv.2013.04.024 10.1007/s11869-017-0514-8 10.3390/rs8030184 10.1038/sj.jes.7500530 10.1080/10962247.2013.822838 10.5194/acp-6-4843-2006 10.3390/atmos9090335 10.1002/2017GL076763 10.1117/12.864954 |
ContentType | Journal Article |
Copyright | Springer Nature B.V. 2019 Air Quality, Atmosphere and Health is a copyright of Springer, (2019). All Rights Reserved. |
Copyright_xml | – notice: Springer Nature B.V. 2019 – notice: Air Quality, Atmosphere and Health is a copyright of Springer, (2019). All Rights Reserved. |
DBID | AAYXX CITATION 3V. 7T2 7TG 7TV 7WY 7WZ 7X7 7XB 87Z 88I 8C1 8FI 8FJ 8FK 8FL ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BEZIV BHPHI BKSAR C1K CCPQU DWQXO FRNLG FYUFA F~G GHDGH GNUQQ HCIFZ K60 K6~ K9. KL. L.- M0C M0S M2P PATMY PCBAR PHGZM PHGZT PJZUB PKEHL PPXIY PQBIZ PQBZA PQEST PQQKQ PQUKI PYCSY Q9U |
DOI | 10.1007/s11869-019-00780-y |
DatabaseName | CrossRef ProQuest Central (Corporate) Health and Safety Science Abstracts (Full archive) Meteorological & Geoastrophysical Abstracts Pollution Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Science Database (Alumni Edition) Public Health Database Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Business Premium Collection (Alumni) Health Research Premium Collection ABI/INFORM Global (Corporate) Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection ProQuest Health & Medical Complete (Alumni) Meteorological & Geoastrophysical Abstracts - Academic ABI/INFORM Professional Advanced ABI/INFORM Global ProQuest Health & Medical Collection Science Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection ProQuest Central Basic |
DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ABI/INFORM Complete Environmental Sciences and Pollution Management ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection ProQuest Central (New) Business Premium Collection ABI/INFORM Global ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Business Collection ProQuest Hospital Collection (Alumni) Environmental Science Collection ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Pollution Abstracts ProQuest Central Earth, Atmospheric & Aquatic Science Collection ABI/INFORM Professional Advanced Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Agricultural & Environmental Science Collection Health & Safety Science Abstracts ABI/INFORM Complete (Alumni Edition) ProQuest Public Health ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ProQuest Business Collection (Alumni Edition) |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Geography |
EISSN | 1873-9326 |
EndPage | 185 |
ExternalDocumentID | 10_1007_s11869_019_00780_y |
GeographicLocations | Canada |
GeographicLocations_xml | – name: Canada |
GroupedDBID | -5A -5G -BR -EM -Y2 -~C 06D 0R~ 0VY 1N0 203 23M 2JN 2KG 2VQ 2~H 30V 3V. 4.4 406 408 40D 5GY 5VS 67M 67Z 6NX 7WY 7X7 7XC 875 88I 8C1 8FE 8FH 8FI 8FJ 8FL 8TC 8UJ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTV ABHLI ABHQN ABJOX ABKCH ABLJU ABMNI ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACCUX ACDTI ACGFS ACGOD ACHSB ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHMBA AHSBF AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG ATCPS AUKKA AXYYD AYJHY AZQEC B-. BDATZ BENPR BEZIV BGNMA BHPHI BKSAR BPHCQ BVXVI CAG CCPQU COF CS3 CSCUP D1K DDRTE DNIVK DPUIP DWQXO EBLON EBS EIOEI EJD ESBYG F5P FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GROUPED_ABI_INFORM_COMPLETE H13 HCIFZ HF~ HG6 HLICF HMCUK HMJXF HRMNR HZ~ I0C IJ- IKXTQ IWAJR IXC IXD IZQ I~X I~Z J-C J0Z JBSCW JZLTJ K6- K60 K6~ KOV LLZTM M0C M2P M4Y MA- NPVJJ NQJWS NU0 O9- O93 O9J OK1 P2P PATMY PCBAR PQBIZ PQBZA PQQKQ PROAC PT4 PYCSY Q2X QOS R89 RLLFE RNS RSV S16 S1Z S27 S3B SAP SDH SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TR2 TSG TSK U2A UG4 UKHRP UOJIU UTJUX UZXMN VFIZW W48 WK8 YLTOR Z45 Z5O Z7W ZMTXR ~A9 ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT ROL 7T2 7TG 7TV 7XB 8FK ABRTQ C1K K9. KL. L.- PJZUB PKEHL PPXIY PQEST PQUKI Q9U |
ID | FETCH-LOGICAL-c377t-ba1fd114e3c3e6db3bdc536192c00c3a10a3b79da20e7b43e62d456e0d832e083 |
IEDL.DBID | 7X7 |
ISSN | 1873-9318 |
IngestDate | Sat Jul 26 01:06:23 EDT 2025 Thu Apr 24 23:02:42 EDT 2025 Tue Jul 01 01:46:15 EDT 2025 Fri Feb 21 02:38:04 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Aerosol optical depth (AOD) Fine particulate matter (PM Spatial modelling Linear mixed effect (LME) model Land use regression (LUR) Wildfire smoke ) Spatiotemporal modelling |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c377t-ba1fd114e3c3e6db3bdc536192c00c3a10a3b79da20e7b43e62d456e0d832e083 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1474-7546 |
PQID | 2356003464 |
PQPubID | 54453 |
PageCount | 13 |
ParticipantIDs | proquest_journals_2356003464 crossref_citationtrail_10_1007_s11869_019_00780_y crossref_primary_10_1007_s11869_019_00780_y springer_journals_10_1007_s11869_019_00780_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-02-01 |
PublicationDateYYYYMMDD | 2020-02-01 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht |
PublicationSubtitle | An International Journal |
PublicationTitle | Air quality, atmosphere and health |
PublicationTitleAbbrev | Air Qual Atmos Health |
PublicationYear | 2020 |
Publisher | Springer Netherlands Springer Nature B.V |
Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
References | Chudnovsky, Lee, Kostinski, Kotlov, Koutrakis (CR12) 2012; 62 Mirzaei, Bertazzon, Couloigner (CR36) 2018; 9 Liu, He, Li, Wang, Christiani, Koutrakis (CR31) 2012; 44 Chen, Sverdlik, Imashev, Solomon, Lantz, Schauer, Shafer, Artamonova, Carmichael (CR8) 2012; 6 Zeka (CR48) 2005; 62 Mao, Qiu, Kusano, Xu (CR34) 2012; 19 Wu, Chen, Pan, Zeng, Chen, Guo, Lung (CR45) 2017; 224 CR38 Franklin, Koutrakis, Schwartz (CR16) 2008; 19 Kloog, Chudnovsky, Just, Nordio, Koutrakis, Coull, Lyapustin, Wang, Schwartz (CR23) 2014; 95 Lary, Faruque, Malakar, Moore, Roscoe, Adams (CR26) 2014; 8 Mirzaei, Bertazzon, Couloigner (CR35) 2019; 7 CR2 Chudnovsky, Koutrakis, Kloog, Melly, Nordio, Lyapustin, Wang, Schwartz (CR11) 2014; 89 Kloog, Nordio, Coull, Schwartz (CR25) 2012; 46 Naeher, Brauer, Lipsett, Zelikoff, Simpson, Koenig, Smith (CR37) 2007; 19 CR3 Acker, Leptoukh (CR1) 2007; 88 (CR39) 2017 CR7 CR42 CR41 CR40 Strawa, Chatfield, Legg, Scarnato, Esswein (CR44) 2013; 63 Lassman, Ford, Gan, Pfister, Magzamen, Fischer, Pierce (CR27) 2017; 1 Alman, Pfister, Hao, Stowell, Hu, Liu, Strickland (CR4) 2016; 15 Schwartz, Dockery, Neas (CR43) 1996; 46 Kloog, Koutrakis, Coull, Lee, Schwartz (CR24) 2011; 45 Chudnovsky, Kostinski, Lyapustin, Koutrakis (CR10) 2013; 172 Franklin, Zeka, Schwartz (CR17) 2007; 17 Hu, Waller, Al-Hamdan, Crosson, Estes, Estes, Quattrochi, Sarnat, Liu (CR19) 2013; 121 Gupta, Christopher (CR18) 2008; 8 Lee, Liu, Coull, Schwartz, Koutrakis (CR28) 2011; 11 Xie, Wang, Zhang, Dong, Lv, Bai (CR46) 2015; 49 CR15 Kacenelenbogen, Léon, Chiapello, Tanré (CR21) 2006; 6 You, Zang, Zhang, Li, Pan, Wang (CR47) 2016; 8 Christopher, Gupta (CR9) 2010; 60 Ma, Hu, Sayer, Levy, Zhang, Xue, Tong, Bi, Huang, Liu (CR33) 2016; 124 Beckerman, Jerrett, Martin, van Donkelaar, Ross, Burnett (CR5) 2013; 77 Bertazzon, Johnson, Eccles, Kaplan (CR6) 2015; 14-15 (CR14) 2010 Khaykin, Godin‐Beekmann, Hauchecorne, Pelon, Ravetta, Keckhut (CR22) 2018; 45 Chung, Le (CR13) 1984; 18 Liu, Franklin, Kahn, Koutrakis (CR30) 2007; 107 CR29 Zhang, Rui, Fan (CR49) 2018; 7 Lv, Hu, Chang, Russell, Cai, Xu, Bai (CR32) 2017; 580 Jiang, Christakos (CR20) 2018; 11 Q Jiang (780_CR20) 2018; 11 780_CR3 DMTI (780_CR14) 2010 780_CR2 780_CR7 DJ Lary (780_CR26) 2014; 8 Y.-S. Chung (780_CR13) 1984; 18 JG Acker (780_CR1) 2007; 88 A Zeka (780_CR48) 2005; 62 AA Chudnovsky (780_CR11) 2014; 89 I Kloog (780_CR24) 2011; 45 Wei You (780_CR47) 2016; 8 NEO (780_CR39) 2017 I Kloog (780_CR23) 2014; 95 M Mirzaei (780_CR36) 2018; 9 Guangyuan Zhang (780_CR49) 2018; 7 780_CR15 I Kloog (780_CR25) 2012; 46 SA Christopher (780_CR9) 2010; 60 HJ Lee (780_CR28) 2011; 11 L Mao (780_CR34) 2012; 19 B Lv (780_CR32) 2017; 580 LP Naeher (780_CR37) 2007; 19 Y Xie (780_CR46) 2015; 49 M. Kacenelenbogen (780_CR21) 2006; 6 BL Alman (780_CR4) 2016; 15 BS Beckerman (780_CR5) 2013; 77 S Bertazzon (780_CR6) 2015; 14-15 780_CR29 Yang Liu (780_CR31) 2012; 44 Y Liu (780_CR30) 2007; 107 J Schwartz (780_CR43) 1996; 46 AA Chudnovsky (780_CR10) 2013; 172 Z Ma (780_CR33) 2016; 124 AA Chudnovsky (780_CR12) 2012; 62 S. M. Khaykin (780_CR22) 2018; 45 C Wu (780_CR45) 2017; 224 780_CR38 M Mirzaei (780_CR35) 2019; 7 M Franklin (780_CR16) 2008; 19 P Gupta (780_CR18) 2008; 8 Boris B. Chen (780_CR8) 2012; 6 W Lassman (780_CR27) 2017; 1 M Franklin (780_CR17) 2007; 17 AW Strawa (780_CR44) 2013; 63 X Hu (780_CR19) 2013; 121 780_CR40 780_CR41 780_CR42 |
References_xml | – volume: 89 start-page: 189 year: 2014 end-page: 198 ident: CR11 article-title: Fine particulate matter predictions using high resolution aerosol optical depth (AOD) retrievals publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2014.02.019 – volume: 121 start-page: 1 year: 2013 end-page: 10 ident: CR19 article-title: Estimating ground-level PM2.5 concentrations in the southeastern US using geographically weighted regression publication-title: Environ Res doi: 10.1016/j.envres.2012.11.003 – volume: 88 start-page: 14 issue: 2 year: 2007 end-page: 17 ident: CR1 article-title: Online analysis enhances use of NASA earth science data publication-title: Eos, Trans AGU doi: 10.1029/2007EO020003 – volume: 6 start-page: 385 issue: 2 year: 2012 end-page: 396 ident: CR8 article-title: Empirical relationship between particulate matter and aerosol optical depth over Northern Tien-Shan, Central Asia publication-title: Air Quality, Atmosphere & Health doi: 10.1007/s11869-012-0192-5 – volume: 107 start-page: 33 year: 2007 end-page: 44 ident: CR30 article-title: Using aerosol optical thickness to predict ground-level PM2.5 concentrations in the St. Louis area: a comparison between MISR and MODIS publication-title: Remote Sens Environ doi: 10.1016/j.rse.2006.05.022 – volume: 45 start-page: 6267 year: 2011 end-page: 6275 ident: CR24 article-title: Assessing temporally and spatially resolved PM2.5 exposures for epidemiological studies using satellite aerosol optical depth measurements publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2011.08.066 – volume: 19 start-page: 67 issue: 1 year: 2007 end-page: 106 ident: CR37 article-title: Woodsmoke health effects: a review publication-title: Inhal Toxicol doi: 10.1080/08958370600985875 – volume: 62 start-page: 1022 issue: 9 year: 2012 end-page: 1031 ident: CR12 article-title: Prediction of daily fine particulate matter concentrations using aerosol optical depth retrievals from the Geostationary Operational Environmental Satellite (GOES) publication-title: J Air Waste Manage Assoc doi: 10.1080/10962247.2012.695321 – ident: CR29 – volume: 224 start-page: 148 year: 2017 end-page: 157 ident: CR45 article-title: Land-use regression with long-term satellite-based greenness index and culture-specific sources to model PM 2.5 spatial-temporal variability publication-title: Environ Pollut doi: 10.1016/j.envpol.2017.01.074 – year: 2017 ident: CR39 publication-title: Nasa earth observations – volume: 1 start-page: 106 issue: 3 year: 2017 end-page: 121 ident: CR27 article-title: Spatial and temporal estimates of population exposure to wildfire smoke during the Washington state 2012 wildfire season using blended model, satellite, and in situ data publication-title: GeoHealth doi: 10.1002/2017GH000049 – ident: CR42 – volume: 18 start-page: 2143 issue: 10 year: 1984 end-page: 2151 ident: CR13 article-title: Detection of forest-fire smoke plumes by satellite imagery publication-title: Atmospheric Environment (1967) doi: 10.1016/0004-6981(84)90201-4 – volume: 11 start-page: 7991 issue: 15 year: 2011 end-page: 8002 ident: CR28 article-title: A novel calibration approach of MODIS AOD data to predict PM concentrations publication-title: Atmos Chem Phys doi: 10.5194/acp-11-7991-2011 – ident: CR15 – volume: 62 start-page: 718 issue: 10 year: 2005 end-page: 725 ident: CR48 article-title: Short term effects of particulate matter on cause specific mortality: effects of lags and modification by city characteristics publication-title: Occupational and Environmental Medicine doi: 10.1136/oem.2004.017012 – volume: 46 start-page: 11913 issue: 21 year: 2012 end-page: 11921 ident: CR25 article-title: Incorporating local land use regression and satellite aerosol optical depth in a hybrid model of spatiotemporal PM exposures in the mid-Atlantic states publication-title: Environ Sci Technol doi: 10.1021/es302673e – volume: 124 start-page: 184 issue: 2 year: 2016 end-page: 192 ident: CR33 article-title: Satellite-based spatiotemporal trends in PM2. 5 concentrations: China, 2004−2013 publication-title: Environ Health Perspect doi: 10.1289/ehp.1409481 – volume: 19 start-page: 128 year: 2012 end-page: 138 ident: CR34 article-title: Predicting regional space-time variation of PM2.5 with land-use regression model and MODIS data publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-011-0546-9 – volume: 19 start-page: 680 issue: 5 year: 2008 end-page: 689 ident: CR16 article-title: The role of particle composition on the association between PM and mortality publication-title: Epidemiology doi: 10.1097/EDE.0b013e3181812bb7 – volume: 46 start-page: 927 issue: 10 year: 1996 end-page: 939 ident: CR43 article-title: Is daily mortality associated specifically with fine particles? publication-title: J Air Waste Manage Assoc doi: 10.1080/10473289.1996.10467528 – volume: 14-15 start-page: 9 year: 2015 end-page: 21 ident: CR6 article-title: Accounting for spatial effects in land use regression for urban air pollution modeling publication-title: Spatial Spatio-temporal Epidemiol doi: 10.1016/j.sste.2015.06.002 – volume: 49 start-page: 12280 issue: 20 year: 2015 end-page: 12288 ident: CR46 article-title: Daily estimation of ground-level PM 2.5 concentrations over Beijing using 3 km resolution MODIS AOD publication-title: Environ Sci Technol doi: 10.1021/acs.est.5b01413 – volume: 7 start-page: 368 issue: 9 year: 2018 ident: CR49 article-title: Critical Review of Methods to Estimate PM2.5 Concentrations within Specified Research Region publication-title: ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7090368 – volume: 60 start-page: 596 issue: 5 year: 2010 end-page: 602 ident: CR9 article-title: Satellite remote sensing of particulate matter air quality: the cloud-cover problem publication-title: J Air Waste Manage Assoc doi: 10.3155/1047-3289.60.5.596 – ident: CR2 – volume: 8 start-page: S611 issue: 3 year: 2014 end-page: S630 ident: CR26 article-title: Estimating the global abundance of ground level presence of particulate matter (PM ) publication-title: Geospat Health doi: 10.4081/gh.2014.292 – volume: 44 start-page: 100 year: 2012 end-page: 105 ident: CR31 article-title: A statistical model to evaluate the effectiveness of PM2.5 emissions control during the Beijing 2008 Olympic Games publication-title: Environment International doi: 10.1016/j.envint.2012.02.003 – ident: CR40 – volume: 8 start-page: 3311 issue: 12 year: 2008 end-page: 3324 ident: CR18 article-title: Seven year particulate matter air quality assessment from surface and satellite measurements publication-title: Atmos Chem Phys doi: 10.5194/acp-8-3311-2008 – volume: 15 start-page: 1 issue: 64 year: 2016 end-page: 9 ident: CR4 article-title: The Association of Wildfire Smoke with respiratory and cardiovascular emergency department visits in Colorado in 2012: a case crossover study publication-title: Environ Health doi: 10.1186/s12940-016-0146-8 – volume: 7 start-page: 3 issue: 2 year: 2019 ident: CR35 article-title: OLS and GWR LUR models of wildfire smoke using remote sensing and spatiotemporal data in Alberta publication-title: Spatial Knowledge and Information Canada – volume: 95 start-page: 581 year: 2014 end-page: 590 ident: CR23 article-title: A new hybrid spatio-temporal model for estimating daily multi-year PM2.5 concentrations across northeastern USA using high resolution aerosol optical depth data publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2014.07.014 – volume: 172 start-page: 131 year: 2013 end-page: 138 ident: CR10 article-title: Spatial scales of pollution from variable resolution satellite imaging publication-title: Environ Pollut doi: 10.1016/j.envpol.2012.08.016 – volume: 580 start-page: 235 year: 2017 end-page: 244 ident: CR32 article-title: Daily estimation of ground-level PM concentrations at 4 km resolution over Beijing-Tianjin-Hebei by fusing MODIS AOD and ground observations publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2016.12.049 – ident: CR3 – ident: CR38 – volume: 77 start-page: 172 year: 2013 end-page: 177 ident: CR5 article-title: Application of the deletion/substitution/addition algorithm to selecting land use regression models for interpolating air pollution measurements in California publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2013.04.024 – volume: 11 start-page: 23 issue: 2 year: 2018 end-page: 33 ident: CR20 article-title: Space-time mapping of ground-level PM and NO2 concentrations in heavily polluted northern China during winter using the Bayesian maximum entropy technique with satellite data publication-title: Air Qual Atmos Health doi: 10.1007/s11869-017-0514-8 – volume: 8 start-page: 184 issue: 3 year: 2016 ident: CR47 article-title: National-Scale Estimates of Ground-Level PM2.5 Concentration in China Using Geographically Weighted Regression Based on 3 km Resolution MODIS AOD publication-title: Remote Sensing doi: 10.3390/rs8030184 – volume: 17 start-page: 279 issue: 3 year: 2007 end-page: 287 ident: CR17 article-title: Association between PM and all-cause and specific-cause mortality in 27 US communities publication-title: J Expo Sci Environ Epidemiol doi: 10.1038/sj.jes.7500530 – volume: 63 start-page: 1434 issue: 12 year: 2013 end-page: 1446 ident: CR44 article-title: Improving retrievals of regional fine particulate matter concentrations from Moderate Resolution Imaging Spectroradiometer (MODIS) and Ozone Monitoring Instrument (OMI) multi satellite observations publication-title: J Air Waste Manage Assoc doi: 10.1080/10962247.2013.822838 – year: 2010 ident: CR14 publication-title: The gold standard Canada’s most complete and accurate mapping data – volume: 6 start-page: 4843 issue: 12 year: 2006 end-page: 4849 ident: CR21 article-title: Characterization of aerosol pollution events in France using ground-based and POLDER-2 satellite data publication-title: Atmospheric Chemistry and Physics doi: 10.5194/acp-6-4843-2006 – volume: 9 start-page: 335 issue: 9 year: 2018 ident: CR36 article-title: Modeling wildfire smoke pollution by integrating land use regression and remote sensing data: regional multi-temporal estimates for public health and exposure models publication-title: Atmosphere doi: 10.3390/atmos9090335 – ident: CR7 – ident: CR41 – volume: 45 start-page: 1639 issue: 3 year: 2018 end-page: 1646 ident: CR22 article-title: Stratospheric Smoke With Unprecedentedly High Backscatter Observed by Lidars Above Southern France publication-title: Geophysical Research Letters doi: 10.1002/2017GL076763 – volume: 62 start-page: 1022 issue: 9 year: 2012 ident: 780_CR12 publication-title: J Air Waste Manage Assoc doi: 10.1080/10962247.2012.695321 – volume: 580 start-page: 235 year: 2017 ident: 780_CR32 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2016.12.049 – volume: 19 start-page: 128 year: 2012 ident: 780_CR34 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-011-0546-9 – volume: 45 start-page: 6267 year: 2011 ident: 780_CR24 publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2011.08.066 – volume: 1 start-page: 106 issue: 3 year: 2017 ident: 780_CR27 publication-title: GeoHealth doi: 10.1002/2017GH000049 – volume: 49 start-page: 12280 issue: 20 year: 2015 ident: 780_CR46 publication-title: Environ Sci Technol doi: 10.1021/acs.est.5b01413 – volume: 63 start-page: 1434 issue: 12 year: 2013 ident: 780_CR44 publication-title: J Air Waste Manage Assoc doi: 10.1080/10962247.2013.822838 – volume: 6 start-page: 4843 issue: 12 year: 2006 ident: 780_CR21 publication-title: Atmospheric Chemistry and Physics doi: 10.5194/acp-6-4843-2006 – ident: 780_CR42 – volume: 45 start-page: 1639 issue: 3 year: 2018 ident: 780_CR22 publication-title: Geophysical Research Letters doi: 10.1002/2017GL076763 – ident: 780_CR3 – volume: 44 start-page: 100 year: 2012 ident: 780_CR31 publication-title: Environment International doi: 10.1016/j.envint.2012.02.003 – volume: 60 start-page: 596 issue: 5 year: 2010 ident: 780_CR9 publication-title: J Air Waste Manage Assoc doi: 10.3155/1047-3289.60.5.596 – volume-title: Nasa earth observations year: 2017 ident: 780_CR39 – ident: 780_CR7 – volume: 172 start-page: 131 year: 2013 ident: 780_CR10 publication-title: Environ Pollut doi: 10.1016/j.envpol.2012.08.016 – volume: 8 start-page: S611 issue: 3 year: 2014 ident: 780_CR26 publication-title: Geospat Health doi: 10.4081/gh.2014.292 – volume: 8 start-page: 3311 issue: 12 year: 2008 ident: 780_CR18 publication-title: Atmos Chem Phys doi: 10.5194/acp-8-3311-2008 – ident: 780_CR38 – volume: 18 start-page: 2143 issue: 10 year: 1984 ident: 780_CR13 publication-title: Atmospheric Environment (1967) doi: 10.1016/0004-6981(84)90201-4 – volume: 77 start-page: 172 year: 2013 ident: 780_CR5 publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2013.04.024 – ident: 780_CR41 – volume: 6 start-page: 385 issue: 2 year: 2012 ident: 780_CR8 publication-title: Air Quality, Atmosphere & Health doi: 10.1007/s11869-012-0192-5 – volume: 107 start-page: 33 year: 2007 ident: 780_CR30 publication-title: Remote Sens Environ doi: 10.1016/j.rse.2006.05.022 – volume: 62 start-page: 718 issue: 10 year: 2005 ident: 780_CR48 publication-title: Occupational and Environmental Medicine doi: 10.1136/oem.2004.017012 – ident: 780_CR29 doi: 10.1117/12.864954 – volume: 7 start-page: 3 issue: 2 year: 2019 ident: 780_CR35 publication-title: Spatial Knowledge and Information Canada – volume: 8 start-page: 184 issue: 3 year: 2016 ident: 780_CR47 publication-title: Remote Sensing doi: 10.3390/rs8030184 – volume: 89 start-page: 189 year: 2014 ident: 780_CR11 publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2014.02.019 – volume: 46 start-page: 11913 issue: 21 year: 2012 ident: 780_CR25 publication-title: Environ Sci Technol doi: 10.1021/es302673e – volume: 224 start-page: 148 year: 2017 ident: 780_CR45 publication-title: Environ Pollut doi: 10.1016/j.envpol.2017.01.074 – volume: 19 start-page: 680 issue: 5 year: 2008 ident: 780_CR16 publication-title: Epidemiology doi: 10.1097/EDE.0b013e3181812bb7 – volume: 14-15 start-page: 9 year: 2015 ident: 780_CR6 publication-title: Spatial Spatio-temporal Epidemiol doi: 10.1016/j.sste.2015.06.002 – volume: 11 start-page: 7991 issue: 15 year: 2011 ident: 780_CR28 publication-title: Atmos Chem Phys doi: 10.5194/acp-11-7991-2011 – volume: 19 start-page: 67 issue: 1 year: 2007 ident: 780_CR37 publication-title: Inhal Toxicol doi: 10.1080/08958370600985875 – ident: 780_CR40 – volume: 17 start-page: 279 issue: 3 year: 2007 ident: 780_CR17 publication-title: J Expo Sci Environ Epidemiol doi: 10.1038/sj.jes.7500530 – volume: 7 start-page: 368 issue: 9 year: 2018 ident: 780_CR49 publication-title: ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7090368 – volume: 9 start-page: 335 issue: 9 year: 2018 ident: 780_CR36 publication-title: Atmosphere doi: 10.3390/atmos9090335 – volume-title: The gold standard Canada’s most complete and accurate mapping data year: 2010 ident: 780_CR14 – volume: 121 start-page: 1 year: 2013 ident: 780_CR19 publication-title: Environ Res doi: 10.1016/j.envres.2012.11.003 – volume: 88 start-page: 14 issue: 2 year: 2007 ident: 780_CR1 publication-title: Eos, Trans AGU doi: 10.1029/2007EO020003 – volume: 124 start-page: 184 issue: 2 year: 2016 ident: 780_CR33 publication-title: Environ Health Perspect doi: 10.1289/ehp.1409481 – ident: 780_CR15 – volume: 11 start-page: 23 issue: 2 year: 2018 ident: 780_CR20 publication-title: Air Qual Atmos Health doi: 10.1007/s11869-017-0514-8 – volume: 15 start-page: 1 issue: 64 year: 2016 ident: 780_CR4 publication-title: Environ Health doi: 10.1186/s12940-016-0146-8 – volume: 46 start-page: 927 issue: 10 year: 1996 ident: 780_CR43 publication-title: J Air Waste Manage Assoc doi: 10.1080/10473289.1996.10467528 – volume: 95 start-page: 581 year: 2014 ident: 780_CR23 publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2014.07.014 – ident: 780_CR2 |
SSID | ssj0060406 |
Score | 2.2721217 |
Snippet | Seasonal peaks of air pollution from wildfires are increasing in frequency and severity in the western provinces of Canada. During these episodes, populations... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 173 |
SubjectTerms | Aerosol optical depth Aerosols Air pollution Atmospheric Protection/Air Quality Control/Air Pollution Earth and Environmental Science Emergency management Emergency preparedness Environment Environmental Health Epidemiology Geography Health Promotion and Disease Prevention Land use Multivariate analysis Optical analysis Optical thickness Outdoor air quality Particulate matter Particulate matter monitoring Pollutants Pollution monitoring Regression analysis Satellites Smoke Spatial resolution Spatial variations Statistical analysis Wildfires |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA4-LnoQn7i-mIMHRSNtkj7W26K7qLiuoAveStKksKBdsau4_8Kf7CRtXRUVPPSUNIfOZOb7Oi9CdpUvdZoxnyIaVlRkzYzKSAZUZpFisWkGXNmIbvcqPOuLi7vgrioKK-ps9zok6Sz1pNjNTk9C6osP-jWPjqfJbGC5O2pxn7Vq-xuiWrqaojjitIkqW5XK_HzGV3c0wZjfwqLO23QWyUIFE6FVynWJTJl8mcx_ah64Qt7aeDvLwkMYZuCcEmg5uB_DdZcdBZDaisS8aosLZT0iIDTWGZo5MI-DYqhNcQx1xwi73O2dnt9Aq3cK9gctuHTDF6TTiEjBAlL5BA-DV6OhzAOBvctuex_cOJ1ilfQ77duTM1rNV6Apj6IRVdLPNPIhw1NuQq240mnALaNKPS_l0vckV1FTS-aZSAncwzTiLeNpNAMGsdsamcmHuVknIE2sA515QgtfIGmMjYiZ8lmIdE4xZRrErz9zklbNx-0MjPtk0jbZiiZB0SRONMm4QQ4-3nksW2_8uXurll5SXcMiYdwCOi5C0SCHtUQny7-ftvG_7Ztkjlke7rK5t8jM6OnZbCNYGakdp5vvr6rhuw priority: 102 providerName: Springer Nature |
Title | Estimation of local daily PM2.5 concentration during wildfire episodes: integrating MODIS AOD with multivariate linear mixed effect (LME) models |
URI | https://link.springer.com/article/10.1007/s11869-019-00780-y https://www.proquest.com/docview/2356003464 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELYoHFoOqNBWXaBoDj20at0mtvPYXtACofSxgNqutD1FfkWsBLsLWSr2X_Qnd-w4bKlUDkmk2PEhM_Z8nz0PQl6qWBpdsZgiGlZUVN2KykwmVFaZYrntJly5E93-cXo0EJ-HyTBsuNXBrbJdE_1CbSba7ZG_Z9zZZi5SsTu9pK5qlDtdDSU0HpAVl7rMuXRlw1vClaKC-uiiPOO0i8obgmaa0DlXiwmJNF5oJSM6v2uYFmjznwNSb3cOH5O1ABih10h4nSzZ8QZZ_SuN4AZ5GCqZn82fkN8FztkmHBEmFXhTBUaOzudw2mfvEtAuTnEckuVCE6UICJhNhYsf2Omonhhbf4A2j4Rr7p8cfPoOvZMDcNu24J0QfyHJRpwKDqbKK7gY3VgDjXcIvPraL16DL7JTPyWDw-LH_hENVReo5lk2o0rGlUGWZLnmNjWKK6MT7niWjiLNZRxJrrKukSyymRLYhxlEYTYyuDhYRHTPyPJ4MrbPCUibm8RUkTAiFkglcytypmKWIslTTNkOidtfXuqQktxVxjgvF8mUnZhKFFPpxVTOO-TN7TfTJiHHvb23W0mWYXLW5UKVOuRtK91F8_9H27x_tC3yiDk27n26t8ny7OravkDIMlM7Xi_xnu_HO2Sl9_HnlwKfe8Xx6Td8O2C9P67w7Mw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6V9FB6QFBABArMASQQuOza3keQECokVUKzaQWt1NvWXntFpJKEbnjsv-CX8BsZ74MAEr31sCc_Djvjme-z5wHwSPvKZDn3GaFhzWTey5mKVMBUHmke214gtHvRTSbh8Fi-OwlO1uBnmwvjwipbm1gZajPP3B35Cy6cbxYylK8Xn5nrGuVeV9sWGrVa7NvyG1G24tWoT_J9zPne4OjtkDVdBVgmomjJtPJzQyzAikzY0GihTRYIxyMyz8uE8j0ldNQzins20pLmcEMow3qGlN8SYqF9r8C6FERlOrD-ZjA5fN_a_pCORJXPFEeC9ei4NGk6dbKe6_5E1J0-8sseK_92hSt8-8-TbOXp9q7DtQai4m6tUzdgzc62YPOPwoVbsNH0Tv9Y3oQfA7ISdQIkznOsnCMaNT0r8TDhOwFmLjNy1pTnxTovEgmim5zMLdrFtJgbW7zEtnKFG04O-qMPuHvQR3dRjFXY41ei9YSM0QFjdY6fpt-twToeBZ-Mk8FTrNr6FLfg-FIkchs6s_nM3gFUNjaByT1ppC-JvMZWxlz7PCRaqbm2XfDbX55mTRF014vjLF2Vb3ZiSklMaSWmtOzCs99rFnUJkAtnb7eSTBtzUKQr5e3C81a6q-H_73b34t0ewsbwKBmn49Fk_x5c5e4uoIoo34bO8vyLvU-AaakfNFqKcHrZB-MXOf4mbg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtNAFL0qReKxqKBQEShwFyCBYFp7xq8gIVSRRA1t2kpQKTt3XhaRShLqQPFf8D18HXfGdgNIdNeFV2PPwvd1zsx9ADxToTS64CEjNKxYVHQLJlMZM1mkime2GwvlbnRHB8nucfRhHI9X4FdbC-PSKluf6B21mWl3Rr7NhYvNIkqi7aJJizjqDd7NvzI3QcrdtLbjNGoV2bPVOdG38u2wR7J-zvmg_-n9LmsmDDAt0nTBlAwLQ4zACi1sYpRQRsfCcQodBFrIMJBCpV0jeWBTFdE73BDisIEhQ7CEXmjfa3A9FXHobCwdX5C9hIzDVzZlqWBdMpymYKcu23NzoIjE00MROmDV30FxiXT_uZz1MW9wB9YasIo7tXbdhRU7XYfbf7QwXIebzRT1z9U9-Nknf1GXQuKsQB8m0cjJaYVHI74Vo3Y1ktOmUS_WFZJIYN0U5HjRziflzNjyDbY9LNzy6LA3_Ig7hz10R8boEyC_E8EnjIwOIssz_DL5YQ3WmSn4Yn_Uf4l-wE95H46vRB4bsDqdTe0DQGkzE5siiEwURkRjMxtlXIU8IYKpuLIdCNtfnuumHbqbynGaLxs5OzHlJKbciymvOvDq4pt53Qzk0rc3W0nmjWMo86Uad-B1K93l8v93e3j5bk_hBplDvj882HsEt7g7FPCp5Zuwujj7Zh8TclqoJ15FEU6u2iZ-A9j1KT4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimation+of+local+daily+PM2.5+concentration+during+wildfire+episodes%3A+integrating+MODIS+AOD+with+multivariate+linear+mixed+effect+%28LME%29+models&rft.jtitle=Air+quality%2C+atmosphere+and+health&rft.au=Mirzaei+Mojgan&rft.au=Bertazzon+Stefania&rft.au=Couloigner+Isabelle&rft.au=Farjad+Babak&rft.date=2020-02-01&rft.pub=Springer+Nature+B.V&rft.issn=1873-9318&rft.eissn=1873-9326&rft.volume=13&rft.issue=2&rft.spage=173&rft.epage=185&rft_id=info:doi/10.1007%2Fs11869-019-00780-y&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1873-9318&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1873-9318&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1873-9318&client=summon |