Estimation of local daily PM2.5 concentration during wildfire episodes: integrating MODIS AOD with multivariate linear mixed effect (LME) models

Seasonal peaks of air pollution from wildfires are increasing in frequency and severity in the western provinces of Canada. During these episodes, populations are exposed to adverse short-term health effects due to elevated levels of fine particulate matter, which is the primary pollutant associated...

Full description

Saved in:
Bibliographic Details
Published inAir quality, atmosphere and health Vol. 13; no. 2; pp. 173 - 185
Main Authors Mirzaei, Mojgan, Bertazzon, Stefania, Couloigner, Isabelle, Farjad, Babak, Ngom, Roland
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.02.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Seasonal peaks of air pollution from wildfires are increasing in frequency and severity in the western provinces of Canada. During these episodes, populations are exposed to adverse short-term health effects due to elevated levels of fine particulate matter, which is the primary pollutant associated with smoke. The spatial resolution of ground-based monitoring records generally is not sufficient for emergency preparedness and epidemiological studies of such events. Accurate spatial and temporal models of smoke pollution for the study of smoke exposure effects require reliable, fine-scale input data. Satellite aerosol optical depth (AOD) measures can provide a valuable alternative to the coarse spatial resolution of ground PM 2.5 monitoring network measurements. Numerous statistical approaches have been used to estimate the link between AOD and PM 2.5 , most of which consider the relationship between AOD and PM 2.5 as being fixed over space and for an entire day; however, due to time-varying meteorological variables, that relationship changes over time and space. Hence, to capture the effects of temporal and spatial variations on the AOD-PM 2.5 relationship, two nested linear mixed effect (LME) models are developed herein. Daily estimation of PM 2.5 concentration is derived by incorporating nested period-zone-specific random effects of the AOD-PM 2.5 relationship over the province of Alberta, Canada. Model validation shows that LME improves the estimation performance of the model compared with ordinary multivariate linear regression by more than 115%. Our findings indicate that the potential of the LME model increases when additional variables are integrated with AOD measures in a multivariate framework. This single model yields an array of reliable spatial-temporal estimates of daily PM 2.5 concentrations from wildfire at fine spatial resolution.
AbstractList Seasonal peaks of air pollution from wildfires are increasing in frequency and severity in the western provinces of Canada. During these episodes, populations are exposed to adverse short-term health effects due to elevated levels of fine particulate matter, which is the primary pollutant associated with smoke. The spatial resolution of ground-based monitoring records generally is not sufficient for emergency preparedness and epidemiological studies of such events. Accurate spatial and temporal models of smoke pollution for the study of smoke exposure effects require reliable, fine-scale input data. Satellite aerosol optical depth (AOD) measures can provide a valuable alternative to the coarse spatial resolution of ground PM 2.5 monitoring network measurements. Numerous statistical approaches have been used to estimate the link between AOD and PM 2.5 , most of which consider the relationship between AOD and PM 2.5 as being fixed over space and for an entire day; however, due to time-varying meteorological variables, that relationship changes over time and space. Hence, to capture the effects of temporal and spatial variations on the AOD-PM 2.5 relationship, two nested linear mixed effect (LME) models are developed herein. Daily estimation of PM 2.5 concentration is derived by incorporating nested period-zone-specific random effects of the AOD-PM 2.5 relationship over the province of Alberta, Canada. Model validation shows that LME improves the estimation performance of the model compared with ordinary multivariate linear regression by more than 115%. Our findings indicate that the potential of the LME model increases when additional variables are integrated with AOD measures in a multivariate framework. This single model yields an array of reliable spatial-temporal estimates of daily PM 2.5 concentrations from wildfire at fine spatial resolution.
Seasonal peaks of air pollution from wildfires are increasing in frequency and severity in the western provinces of Canada. During these episodes, populations are exposed to adverse short-term health effects due to elevated levels of fine particulate matter, which is the primary pollutant associated with smoke. The spatial resolution of ground-based monitoring records generally is not sufficient for emergency preparedness and epidemiological studies of such events. Accurate spatial and temporal models of smoke pollution for the study of smoke exposure effects require reliable, fine-scale input data. Satellite aerosol optical depth (AOD) measures can provide a valuable alternative to the coarse spatial resolution of ground PM2.5 monitoring network measurements. Numerous statistical approaches have been used to estimate the link between AOD and PM2.5, most of which consider the relationship between AOD and PM2.5 as being fixed over space and for an entire day; however, due to time-varying meteorological variables, that relationship changes over time and space. Hence, to capture the effects of temporal and spatial variations on the AOD-PM2.5 relationship, two nested linear mixed effect (LME) models are developed herein. Daily estimation of PM2.5 concentration is derived by incorporating nested period-zone-specific random effects of the AOD-PM2.5 relationship over the province of Alberta, Canada. Model validation shows that LME improves the estimation performance of the model compared with ordinary multivariate linear regression by more than 115%. Our findings indicate that the potential of the LME model increases when additional variables are integrated with AOD measures in a multivariate framework. This single model yields an array of reliable spatial-temporal estimates of daily PM2.5 concentrations from wildfire at fine spatial resolution.
Author Couloigner, Isabelle
Mirzaei, Mojgan
Ngom, Roland
Bertazzon, Stefania
Farjad, Babak
Author_xml – sequence: 1
  givenname: Mojgan
  orcidid: 0000-0003-1474-7546
  surname: Mirzaei
  fullname: Mirzaei, Mojgan
  email: mojgan.mirzaei@ucalgary.ca
  organization: Department of Geography, University of Calgary
– sequence: 2
  givenname: Stefania
  surname: Bertazzon
  fullname: Bertazzon, Stefania
  organization: Department of Geography, University of Calgary, Department of History, Archaeology, Geography, and Fine & Performing Arts, University of Florence
– sequence: 3
  givenname: Isabelle
  surname: Couloigner
  fullname: Couloigner, Isabelle
  organization: Department of Geography, University of Calgary, Department of Ecosystem and Public Health, University of Calgary
– sequence: 4
  givenname: Babak
  surname: Farjad
  fullname: Farjad, Babak
  organization: Alberta Environment and Parks, Government of Alberta, Department of Geomatics Engineering, University of Calgary
– sequence: 5
  givenname: Roland
  surname: Ngom
  fullname: Ngom, Roland
  organization: Health Information Management, World Health Emergency, World Health Organization
BookMark eNp9kE1PHCEYgEljk_rRP9ATSS96GH0ZZplZb0bXarKbbaI9EwbesRgWVmBt91_4k8s6TZt48EAg4XleyHNA9nzwSMgXBqcMoD1LjHViWgErC9oOqu0Hss-6lldTXou9f2fWfSIHKT0CCGhA7JOXWcp2pbINnoaBuqCVo0ZZt6XfF_XphOrgNfocR8RsovUP9Jd1ZrARKa5tCgbTObU-48OOKteL5dXtHb1YXhUw_6Srjcv2WUWrMlJnPapIV_Y3GorDgDrT4_lidkJXZZBLR-TjoFzCz3_3Q_LjenZ_eVPNl99uLy_mleZtm6tescEw1iDXHIXpeW_0hAs2rTWA5oqB4n07NaoGbPumMLVpJgLBdLxG6Pgh-TrOXcfwtMGU5WPYRF-elDWfCADeiKZQ3UjpGFKKOEht82uKUsQ6yUDu-suxvyz95Wt_uS1q_UZdx1I6bt-X-Cil9S40xv-_esf6AzX5nC0
CitedBy_id crossref_primary_10_3390_rs13214341
crossref_primary_10_1016_j_rsase_2022_100864
crossref_primary_10_1016_j_envint_2024_108430
crossref_primary_10_1016_j_envpol_2024_124899
crossref_primary_10_1139_er_2022_0125
crossref_primary_10_1029_2022GL099175
crossref_primary_10_1016_j_atmosres_2020_104999
crossref_primary_10_3390_ijerph191710811
crossref_primary_10_1016_j_apr_2023_101739
crossref_primary_10_1016_j_atmosenv_2022_119453
crossref_primary_10_3390_geomatics1010003
crossref_primary_10_1016_j_rse_2022_112890
crossref_primary_10_3390_atmos11101066
crossref_primary_10_1038_s41597_022_01488_y
Cites_doi 10.1016/j.atmosenv.2014.02.019
10.1016/j.envres.2012.11.003
10.1029/2007EO020003
10.1007/s11869-012-0192-5
10.1016/j.rse.2006.05.022
10.1016/j.atmosenv.2011.08.066
10.1080/08958370600985875
10.1080/10962247.2012.695321
10.1016/j.envpol.2017.01.074
10.1002/2017GH000049
10.1016/0004-6981(84)90201-4
10.5194/acp-11-7991-2011
10.1136/oem.2004.017012
10.1021/es302673e
10.1289/ehp.1409481
10.1007/s11356-011-0546-9
10.1097/EDE.0b013e3181812bb7
10.1080/10473289.1996.10467528
10.1016/j.sste.2015.06.002
10.1021/acs.est.5b01413
10.3390/ijgi7090368
10.3155/1047-3289.60.5.596
10.4081/gh.2014.292
10.1016/j.envint.2012.02.003
10.5194/acp-8-3311-2008
10.1186/s12940-016-0146-8
10.1016/j.atmosenv.2014.07.014
10.1016/j.envpol.2012.08.016
10.1016/j.scitotenv.2016.12.049
10.1016/j.atmosenv.2013.04.024
10.1007/s11869-017-0514-8
10.3390/rs8030184
10.1038/sj.jes.7500530
10.1080/10962247.2013.822838
10.5194/acp-6-4843-2006
10.3390/atmos9090335
10.1002/2017GL076763
10.1117/12.864954
ContentType Journal Article
Copyright Springer Nature B.V. 2019
Air Quality, Atmosphere and Health is a copyright of Springer, (2019). All Rights Reserved.
Copyright_xml – notice: Springer Nature B.V. 2019
– notice: Air Quality, Atmosphere and Health is a copyright of Springer, (2019). All Rights Reserved.
DBID AAYXX
CITATION
3V.
7T2
7TG
7TV
7WY
7WZ
7X7
7XB
87Z
88I
8C1
8FI
8FJ
8FK
8FL
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BEZIV
BHPHI
BKSAR
C1K
CCPQU
DWQXO
FRNLG
FYUFA
F~G
GHDGH
GNUQQ
HCIFZ
K60
K6~
K9.
KL.
L.-
M0C
M0S
M2P
PATMY
PCBAR
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQBIZ
PQBZA
PQEST
PQQKQ
PQUKI
PYCSY
Q9U
DOI 10.1007/s11869-019-00780-y
DatabaseName CrossRef
ProQuest Central (Corporate)
Health and Safety Science Abstracts (Full archive)
Meteorological & Geoastrophysical Abstracts
Pollution Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Science Database (Alumni Edition)
Public Health Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Business Premium Collection (Alumni)
Health Research Premium Collection
ABI/INFORM Global (Corporate)
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
ProQuest Health & Medical Complete (Alumni)
Meteorological & Geoastrophysical Abstracts - Academic
ABI/INFORM Professional Advanced
ABI/INFORM Global
ProQuest Health & Medical Collection
Science Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ABI/INFORM Complete
Environmental Sciences and Pollution Management
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
ProQuest Central (New)
Business Premium Collection
ABI/INFORM Global
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Business Collection
ProQuest Hospital Collection (Alumni)
Environmental Science Collection
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Pollution Abstracts
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ABI/INFORM Professional Advanced
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Agricultural & Environmental Science Collection
Health & Safety Science Abstracts
ABI/INFORM Complete (Alumni Edition)
ProQuest Public Health
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
ProQuest Business Collection (Alumni Edition)
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Geography
EISSN 1873-9326
EndPage 185
ExternalDocumentID 10_1007_s11869_019_00780_y
GeographicLocations Canada
GeographicLocations_xml – name: Canada
GroupedDBID -5A
-5G
-BR
-EM
-Y2
-~C
06D
0R~
0VY
1N0
203
23M
2JN
2KG
2VQ
2~H
30V
3V.
4.4
406
408
40D
5GY
5VS
67M
67Z
6NX
7WY
7X7
7XC
875
88I
8C1
8FE
8FH
8FI
8FJ
8FL
8TC
8UJ
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJOX
ABKCH
ABLJU
ABMNI
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACCUX
ACDTI
ACGFS
ACGOD
ACHSB
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHMBA
AHSBF
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
ATCPS
AUKKA
AXYYD
AYJHY
AZQEC
B-.
BDATZ
BENPR
BEZIV
BGNMA
BHPHI
BKSAR
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
D1K
DDRTE
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GROUPED_ABI_INFORM_COMPLETE
H13
HCIFZ
HF~
HG6
HLICF
HMCUK
HMJXF
HRMNR
HZ~
I0C
IJ-
IKXTQ
IWAJR
IXC
IXD
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
K6-
K60
K6~
KOV
LLZTM
M0C
M2P
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OK1
P2P
PATMY
PCBAR
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PYCSY
Q2X
QOS
R89
RLLFE
RNS
RSV
S16
S1Z
S27
S3B
SAP
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TR2
TSG
TSK
U2A
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VFIZW
W48
WK8
YLTOR
Z45
Z5O
Z7W
ZMTXR
~A9
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ROL
7T2
7TG
7TV
7XB
8FK
ABRTQ
C1K
K9.
KL.
L.-
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c377t-ba1fd114e3c3e6db3bdc536192c00c3a10a3b79da20e7b43e62d456e0d832e083
IEDL.DBID 7X7
ISSN 1873-9318
IngestDate Sat Jul 26 01:06:23 EDT 2025
Thu Apr 24 23:02:42 EDT 2025
Tue Jul 01 01:46:15 EDT 2025
Fri Feb 21 02:38:04 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Aerosol optical depth (AOD)
Fine particulate matter (PM
Spatial modelling
Linear mixed effect (LME) model
Land use regression (LUR)
Wildfire smoke
)
Spatiotemporal modelling
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c377t-ba1fd114e3c3e6db3bdc536192c00c3a10a3b79da20e7b43e62d456e0d832e083
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1474-7546
PQID 2356003464
PQPubID 54453
PageCount 13
ParticipantIDs proquest_journals_2356003464
crossref_citationtrail_10_1007_s11869_019_00780_y
crossref_primary_10_1007_s11869_019_00780_y
springer_journals_10_1007_s11869_019_00780_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-02-01
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Air quality, atmosphere and health
PublicationTitleAbbrev Air Qual Atmos Health
PublicationYear 2020
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References Chudnovsky, Lee, Kostinski, Kotlov, Koutrakis (CR12) 2012; 62
Mirzaei, Bertazzon, Couloigner (CR36) 2018; 9
Liu, He, Li, Wang, Christiani, Koutrakis (CR31) 2012; 44
Chen, Sverdlik, Imashev, Solomon, Lantz, Schauer, Shafer, Artamonova, Carmichael (CR8) 2012; 6
Zeka (CR48) 2005; 62
Mao, Qiu, Kusano, Xu (CR34) 2012; 19
Wu, Chen, Pan, Zeng, Chen, Guo, Lung (CR45) 2017; 224
CR38
Franklin, Koutrakis, Schwartz (CR16) 2008; 19
Kloog, Chudnovsky, Just, Nordio, Koutrakis, Coull, Lyapustin, Wang, Schwartz (CR23) 2014; 95
Lary, Faruque, Malakar, Moore, Roscoe, Adams (CR26) 2014; 8
Mirzaei, Bertazzon, Couloigner (CR35) 2019; 7
CR2
Chudnovsky, Koutrakis, Kloog, Melly, Nordio, Lyapustin, Wang, Schwartz (CR11) 2014; 89
Kloog, Nordio, Coull, Schwartz (CR25) 2012; 46
Naeher, Brauer, Lipsett, Zelikoff, Simpson, Koenig, Smith (CR37) 2007; 19
CR3
Acker, Leptoukh (CR1) 2007; 88
(CR39) 2017
CR7
CR42
CR41
CR40
Strawa, Chatfield, Legg, Scarnato, Esswein (CR44) 2013; 63
Lassman, Ford, Gan, Pfister, Magzamen, Fischer, Pierce (CR27) 2017; 1
Alman, Pfister, Hao, Stowell, Hu, Liu, Strickland (CR4) 2016; 15
Schwartz, Dockery, Neas (CR43) 1996; 46
Kloog, Koutrakis, Coull, Lee, Schwartz (CR24) 2011; 45
Chudnovsky, Kostinski, Lyapustin, Koutrakis (CR10) 2013; 172
Franklin, Zeka, Schwartz (CR17) 2007; 17
Hu, Waller, Al-Hamdan, Crosson, Estes, Estes, Quattrochi, Sarnat, Liu (CR19) 2013; 121
Gupta, Christopher (CR18) 2008; 8
Lee, Liu, Coull, Schwartz, Koutrakis (CR28) 2011; 11
Xie, Wang, Zhang, Dong, Lv, Bai (CR46) 2015; 49
CR15
Kacenelenbogen, Léon, Chiapello, Tanré (CR21) 2006; 6
You, Zang, Zhang, Li, Pan, Wang (CR47) 2016; 8
Christopher, Gupta (CR9) 2010; 60
Ma, Hu, Sayer, Levy, Zhang, Xue, Tong, Bi, Huang, Liu (CR33) 2016; 124
Beckerman, Jerrett, Martin, van Donkelaar, Ross, Burnett (CR5) 2013; 77
Bertazzon, Johnson, Eccles, Kaplan (CR6) 2015; 14-15
(CR14) 2010
Khaykin, Godin‐Beekmann, Hauchecorne, Pelon, Ravetta, Keckhut (CR22) 2018; 45
Chung, Le (CR13) 1984; 18
Liu, Franklin, Kahn, Koutrakis (CR30) 2007; 107
CR29
Zhang, Rui, Fan (CR49) 2018; 7
Lv, Hu, Chang, Russell, Cai, Xu, Bai (CR32) 2017; 580
Jiang, Christakos (CR20) 2018; 11
Q Jiang (780_CR20) 2018; 11
780_CR3
DMTI (780_CR14) 2010
780_CR2
780_CR7
DJ Lary (780_CR26) 2014; 8
Y.-S. Chung (780_CR13) 1984; 18
JG Acker (780_CR1) 2007; 88
A Zeka (780_CR48) 2005; 62
AA Chudnovsky (780_CR11) 2014; 89
I Kloog (780_CR24) 2011; 45
Wei You (780_CR47) 2016; 8
NEO (780_CR39) 2017
I Kloog (780_CR23) 2014; 95
M Mirzaei (780_CR36) 2018; 9
Guangyuan Zhang (780_CR49) 2018; 7
780_CR15
I Kloog (780_CR25) 2012; 46
SA Christopher (780_CR9) 2010; 60
HJ Lee (780_CR28) 2011; 11
L Mao (780_CR34) 2012; 19
B Lv (780_CR32) 2017; 580
LP Naeher (780_CR37) 2007; 19
Y Xie (780_CR46) 2015; 49
M. Kacenelenbogen (780_CR21) 2006; 6
BL Alman (780_CR4) 2016; 15
BS Beckerman (780_CR5) 2013; 77
S Bertazzon (780_CR6) 2015; 14-15
780_CR29
Yang Liu (780_CR31) 2012; 44
Y Liu (780_CR30) 2007; 107
J Schwartz (780_CR43) 1996; 46
AA Chudnovsky (780_CR10) 2013; 172
Z Ma (780_CR33) 2016; 124
AA Chudnovsky (780_CR12) 2012; 62
S. M. Khaykin (780_CR22) 2018; 45
C Wu (780_CR45) 2017; 224
780_CR38
M Mirzaei (780_CR35) 2019; 7
M Franklin (780_CR16) 2008; 19
P Gupta (780_CR18) 2008; 8
Boris B. Chen (780_CR8) 2012; 6
W Lassman (780_CR27) 2017; 1
M Franklin (780_CR17) 2007; 17
AW Strawa (780_CR44) 2013; 63
X Hu (780_CR19) 2013; 121
780_CR40
780_CR41
780_CR42
References_xml – volume: 89
  start-page: 189
  year: 2014
  end-page: 198
  ident: CR11
  article-title: Fine particulate matter predictions using high resolution aerosol optical depth (AOD) retrievals
  publication-title: Atmos Environ
  doi: 10.1016/j.atmosenv.2014.02.019
– volume: 121
  start-page: 1
  year: 2013
  end-page: 10
  ident: CR19
  article-title: Estimating ground-level PM2.5 concentrations in the southeastern US using geographically weighted regression
  publication-title: Environ Res
  doi: 10.1016/j.envres.2012.11.003
– volume: 88
  start-page: 14
  issue: 2
  year: 2007
  end-page: 17
  ident: CR1
  article-title: Online analysis enhances use of NASA earth science data
  publication-title: Eos, Trans AGU
  doi: 10.1029/2007EO020003
– volume: 6
  start-page: 385
  issue: 2
  year: 2012
  end-page: 396
  ident: CR8
  article-title: Empirical relationship between particulate matter and aerosol optical depth over Northern Tien-Shan, Central Asia
  publication-title: Air Quality, Atmosphere & Health
  doi: 10.1007/s11869-012-0192-5
– volume: 107
  start-page: 33
  year: 2007
  end-page: 44
  ident: CR30
  article-title: Using aerosol optical thickness to predict ground-level PM2.5 concentrations in the St. Louis area: a comparison between MISR and MODIS
  publication-title: Remote Sens Environ
  doi: 10.1016/j.rse.2006.05.022
– volume: 45
  start-page: 6267
  year: 2011
  end-page: 6275
  ident: CR24
  article-title: Assessing temporally and spatially resolved PM2.5 exposures for epidemiological studies using satellite aerosol optical depth measurements
  publication-title: Atmos Environ
  doi: 10.1016/j.atmosenv.2011.08.066
– volume: 19
  start-page: 67
  issue: 1
  year: 2007
  end-page: 106
  ident: CR37
  article-title: Woodsmoke health effects: a review
  publication-title: Inhal Toxicol
  doi: 10.1080/08958370600985875
– volume: 62
  start-page: 1022
  issue: 9
  year: 2012
  end-page: 1031
  ident: CR12
  article-title: Prediction of daily fine particulate matter concentrations using aerosol optical depth retrievals from the Geostationary Operational Environmental Satellite (GOES)
  publication-title: J Air Waste Manage Assoc
  doi: 10.1080/10962247.2012.695321
– ident: CR29
– volume: 224
  start-page: 148
  year: 2017
  end-page: 157
  ident: CR45
  article-title: Land-use regression with long-term satellite-based greenness index and culture-specific sources to model PM 2.5 spatial-temporal variability
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2017.01.074
– year: 2017
  ident: CR39
  publication-title: Nasa earth observations
– volume: 1
  start-page: 106
  issue: 3
  year: 2017
  end-page: 121
  ident: CR27
  article-title: Spatial and temporal estimates of population exposure to wildfire smoke during the Washington state 2012 wildfire season using blended model, satellite, and in situ data
  publication-title: GeoHealth
  doi: 10.1002/2017GH000049
– ident: CR42
– volume: 18
  start-page: 2143
  issue: 10
  year: 1984
  end-page: 2151
  ident: CR13
  article-title: Detection of forest-fire smoke plumes by satellite imagery
  publication-title: Atmospheric Environment (1967)
  doi: 10.1016/0004-6981(84)90201-4
– volume: 11
  start-page: 7991
  issue: 15
  year: 2011
  end-page: 8002
  ident: CR28
  article-title: A novel calibration approach of MODIS AOD data to predict PM concentrations
  publication-title: Atmos Chem Phys
  doi: 10.5194/acp-11-7991-2011
– ident: CR15
– volume: 62
  start-page: 718
  issue: 10
  year: 2005
  end-page: 725
  ident: CR48
  article-title: Short term effects of particulate matter on cause specific mortality: effects of lags and modification by city characteristics
  publication-title: Occupational and Environmental Medicine
  doi: 10.1136/oem.2004.017012
– volume: 46
  start-page: 11913
  issue: 21
  year: 2012
  end-page: 11921
  ident: CR25
  article-title: Incorporating local land use regression and satellite aerosol optical depth in a hybrid model of spatiotemporal PM exposures in the mid-Atlantic states
  publication-title: Environ Sci Technol
  doi: 10.1021/es302673e
– volume: 124
  start-page: 184
  issue: 2
  year: 2016
  end-page: 192
  ident: CR33
  article-title: Satellite-based spatiotemporal trends in PM2. 5 concentrations: China, 2004−2013
  publication-title: Environ Health Perspect
  doi: 10.1289/ehp.1409481
– volume: 19
  start-page: 128
  year: 2012
  end-page: 138
  ident: CR34
  article-title: Predicting regional space-time variation of PM2.5 with land-use regression model and MODIS data
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-011-0546-9
– volume: 19
  start-page: 680
  issue: 5
  year: 2008
  end-page: 689
  ident: CR16
  article-title: The role of particle composition on the association between PM and mortality
  publication-title: Epidemiology
  doi: 10.1097/EDE.0b013e3181812bb7
– volume: 46
  start-page: 927
  issue: 10
  year: 1996
  end-page: 939
  ident: CR43
  article-title: Is daily mortality associated specifically with fine particles?
  publication-title: J Air Waste Manage Assoc
  doi: 10.1080/10473289.1996.10467528
– volume: 14-15
  start-page: 9
  year: 2015
  end-page: 21
  ident: CR6
  article-title: Accounting for spatial effects in land use regression for urban air pollution modeling
  publication-title: Spatial Spatio-temporal Epidemiol
  doi: 10.1016/j.sste.2015.06.002
– volume: 49
  start-page: 12280
  issue: 20
  year: 2015
  end-page: 12288
  ident: CR46
  article-title: Daily estimation of ground-level PM 2.5 concentrations over Beijing using 3 km resolution MODIS AOD
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.5b01413
– volume: 7
  start-page: 368
  issue: 9
  year: 2018
  ident: CR49
  article-title: Critical Review of Methods to Estimate PM2.5 Concentrations within Specified Research Region
  publication-title: ISPRS International Journal of Geo-Information
  doi: 10.3390/ijgi7090368
– volume: 60
  start-page: 596
  issue: 5
  year: 2010
  end-page: 602
  ident: CR9
  article-title: Satellite remote sensing of particulate matter air quality: the cloud-cover problem
  publication-title: J Air Waste Manage Assoc
  doi: 10.3155/1047-3289.60.5.596
– ident: CR2
– volume: 8
  start-page: S611
  issue: 3
  year: 2014
  end-page: S630
  ident: CR26
  article-title: Estimating the global abundance of ground level presence of particulate matter (PM )
  publication-title: Geospat Health
  doi: 10.4081/gh.2014.292
– volume: 44
  start-page: 100
  year: 2012
  end-page: 105
  ident: CR31
  article-title: A statistical model to evaluate the effectiveness of PM2.5 emissions control during the Beijing 2008 Olympic Games
  publication-title: Environment International
  doi: 10.1016/j.envint.2012.02.003
– ident: CR40
– volume: 8
  start-page: 3311
  issue: 12
  year: 2008
  end-page: 3324
  ident: CR18
  article-title: Seven year particulate matter air quality assessment from surface and satellite measurements
  publication-title: Atmos Chem Phys
  doi: 10.5194/acp-8-3311-2008
– volume: 15
  start-page: 1
  issue: 64
  year: 2016
  end-page: 9
  ident: CR4
  article-title: The Association of Wildfire Smoke with respiratory and cardiovascular emergency department visits in Colorado in 2012: a case crossover study
  publication-title: Environ Health
  doi: 10.1186/s12940-016-0146-8
– volume: 7
  start-page: 3
  issue: 2
  year: 2019
  ident: CR35
  article-title: OLS and GWR LUR models of wildfire smoke using remote sensing and spatiotemporal data in Alberta
  publication-title: Spatial Knowledge and Information Canada
– volume: 95
  start-page: 581
  year: 2014
  end-page: 590
  ident: CR23
  article-title: A new hybrid spatio-temporal model for estimating daily multi-year PM2.5 concentrations across northeastern USA using high resolution aerosol optical depth data
  publication-title: Atmos Environ
  doi: 10.1016/j.atmosenv.2014.07.014
– volume: 172
  start-page: 131
  year: 2013
  end-page: 138
  ident: CR10
  article-title: Spatial scales of pollution from variable resolution satellite imaging
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2012.08.016
– volume: 580
  start-page: 235
  year: 2017
  end-page: 244
  ident: CR32
  article-title: Daily estimation of ground-level PM concentrations at 4 km resolution over Beijing-Tianjin-Hebei by fusing MODIS AOD and ground observations
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2016.12.049
– ident: CR3
– ident: CR38
– volume: 77
  start-page: 172
  year: 2013
  end-page: 177
  ident: CR5
  article-title: Application of the deletion/substitution/addition algorithm to selecting land use regression models for interpolating air pollution measurements in California
  publication-title: Atmos Environ
  doi: 10.1016/j.atmosenv.2013.04.024
– volume: 11
  start-page: 23
  issue: 2
  year: 2018
  end-page: 33
  ident: CR20
  article-title: Space-time mapping of ground-level PM and NO2 concentrations in heavily polluted northern China during winter using the Bayesian maximum entropy technique with satellite data
  publication-title: Air Qual Atmos Health
  doi: 10.1007/s11869-017-0514-8
– volume: 8
  start-page: 184
  issue: 3
  year: 2016
  ident: CR47
  article-title: National-Scale Estimates of Ground-Level PM2.5 Concentration in China Using Geographically Weighted Regression Based on 3 km Resolution MODIS AOD
  publication-title: Remote Sensing
  doi: 10.3390/rs8030184
– volume: 17
  start-page: 279
  issue: 3
  year: 2007
  end-page: 287
  ident: CR17
  article-title: Association between PM and all-cause and specific-cause mortality in 27 US communities
  publication-title: J Expo Sci Environ Epidemiol
  doi: 10.1038/sj.jes.7500530
– volume: 63
  start-page: 1434
  issue: 12
  year: 2013
  end-page: 1446
  ident: CR44
  article-title: Improving retrievals of regional fine particulate matter concentrations from Moderate Resolution Imaging Spectroradiometer (MODIS) and Ozone Monitoring Instrument (OMI) multi satellite observations
  publication-title: J Air Waste Manage Assoc
  doi: 10.1080/10962247.2013.822838
– year: 2010
  ident: CR14
  publication-title: The gold standard Canada’s most complete and accurate mapping data
– volume: 6
  start-page: 4843
  issue: 12
  year: 2006
  end-page: 4849
  ident: CR21
  article-title: Characterization of aerosol pollution events in France using ground-based and POLDER-2 satellite data
  publication-title: Atmospheric Chemistry and Physics
  doi: 10.5194/acp-6-4843-2006
– volume: 9
  start-page: 335
  issue: 9
  year: 2018
  ident: CR36
  article-title: Modeling wildfire smoke pollution by integrating land use regression and remote sensing data: regional multi-temporal estimates for public health and exposure models
  publication-title: Atmosphere
  doi: 10.3390/atmos9090335
– ident: CR7
– ident: CR41
– volume: 45
  start-page: 1639
  issue: 3
  year: 2018
  end-page: 1646
  ident: CR22
  article-title: Stratospheric Smoke With Unprecedentedly High Backscatter Observed by Lidars Above Southern France
  publication-title: Geophysical Research Letters
  doi: 10.1002/2017GL076763
– volume: 62
  start-page: 1022
  issue: 9
  year: 2012
  ident: 780_CR12
  publication-title: J Air Waste Manage Assoc
  doi: 10.1080/10962247.2012.695321
– volume: 580
  start-page: 235
  year: 2017
  ident: 780_CR32
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2016.12.049
– volume: 19
  start-page: 128
  year: 2012
  ident: 780_CR34
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-011-0546-9
– volume: 45
  start-page: 6267
  year: 2011
  ident: 780_CR24
  publication-title: Atmos Environ
  doi: 10.1016/j.atmosenv.2011.08.066
– volume: 1
  start-page: 106
  issue: 3
  year: 2017
  ident: 780_CR27
  publication-title: GeoHealth
  doi: 10.1002/2017GH000049
– volume: 49
  start-page: 12280
  issue: 20
  year: 2015
  ident: 780_CR46
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.5b01413
– volume: 63
  start-page: 1434
  issue: 12
  year: 2013
  ident: 780_CR44
  publication-title: J Air Waste Manage Assoc
  doi: 10.1080/10962247.2013.822838
– volume: 6
  start-page: 4843
  issue: 12
  year: 2006
  ident: 780_CR21
  publication-title: Atmospheric Chemistry and Physics
  doi: 10.5194/acp-6-4843-2006
– ident: 780_CR42
– volume: 45
  start-page: 1639
  issue: 3
  year: 2018
  ident: 780_CR22
  publication-title: Geophysical Research Letters
  doi: 10.1002/2017GL076763
– ident: 780_CR3
– volume: 44
  start-page: 100
  year: 2012
  ident: 780_CR31
  publication-title: Environment International
  doi: 10.1016/j.envint.2012.02.003
– volume: 60
  start-page: 596
  issue: 5
  year: 2010
  ident: 780_CR9
  publication-title: J Air Waste Manage Assoc
  doi: 10.3155/1047-3289.60.5.596
– volume-title: Nasa earth observations
  year: 2017
  ident: 780_CR39
– ident: 780_CR7
– volume: 172
  start-page: 131
  year: 2013
  ident: 780_CR10
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2012.08.016
– volume: 8
  start-page: S611
  issue: 3
  year: 2014
  ident: 780_CR26
  publication-title: Geospat Health
  doi: 10.4081/gh.2014.292
– volume: 8
  start-page: 3311
  issue: 12
  year: 2008
  ident: 780_CR18
  publication-title: Atmos Chem Phys
  doi: 10.5194/acp-8-3311-2008
– ident: 780_CR38
– volume: 18
  start-page: 2143
  issue: 10
  year: 1984
  ident: 780_CR13
  publication-title: Atmospheric Environment (1967)
  doi: 10.1016/0004-6981(84)90201-4
– volume: 77
  start-page: 172
  year: 2013
  ident: 780_CR5
  publication-title: Atmos Environ
  doi: 10.1016/j.atmosenv.2013.04.024
– ident: 780_CR41
– volume: 6
  start-page: 385
  issue: 2
  year: 2012
  ident: 780_CR8
  publication-title: Air Quality, Atmosphere & Health
  doi: 10.1007/s11869-012-0192-5
– volume: 107
  start-page: 33
  year: 2007
  ident: 780_CR30
  publication-title: Remote Sens Environ
  doi: 10.1016/j.rse.2006.05.022
– volume: 62
  start-page: 718
  issue: 10
  year: 2005
  ident: 780_CR48
  publication-title: Occupational and Environmental Medicine
  doi: 10.1136/oem.2004.017012
– ident: 780_CR29
  doi: 10.1117/12.864954
– volume: 7
  start-page: 3
  issue: 2
  year: 2019
  ident: 780_CR35
  publication-title: Spatial Knowledge and Information Canada
– volume: 8
  start-page: 184
  issue: 3
  year: 2016
  ident: 780_CR47
  publication-title: Remote Sensing
  doi: 10.3390/rs8030184
– volume: 89
  start-page: 189
  year: 2014
  ident: 780_CR11
  publication-title: Atmos Environ
  doi: 10.1016/j.atmosenv.2014.02.019
– volume: 46
  start-page: 11913
  issue: 21
  year: 2012
  ident: 780_CR25
  publication-title: Environ Sci Technol
  doi: 10.1021/es302673e
– volume: 224
  start-page: 148
  year: 2017
  ident: 780_CR45
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2017.01.074
– volume: 19
  start-page: 680
  issue: 5
  year: 2008
  ident: 780_CR16
  publication-title: Epidemiology
  doi: 10.1097/EDE.0b013e3181812bb7
– volume: 14-15
  start-page: 9
  year: 2015
  ident: 780_CR6
  publication-title: Spatial Spatio-temporal Epidemiol
  doi: 10.1016/j.sste.2015.06.002
– volume: 11
  start-page: 7991
  issue: 15
  year: 2011
  ident: 780_CR28
  publication-title: Atmos Chem Phys
  doi: 10.5194/acp-11-7991-2011
– volume: 19
  start-page: 67
  issue: 1
  year: 2007
  ident: 780_CR37
  publication-title: Inhal Toxicol
  doi: 10.1080/08958370600985875
– ident: 780_CR40
– volume: 17
  start-page: 279
  issue: 3
  year: 2007
  ident: 780_CR17
  publication-title: J Expo Sci Environ Epidemiol
  doi: 10.1038/sj.jes.7500530
– volume: 7
  start-page: 368
  issue: 9
  year: 2018
  ident: 780_CR49
  publication-title: ISPRS International Journal of Geo-Information
  doi: 10.3390/ijgi7090368
– volume: 9
  start-page: 335
  issue: 9
  year: 2018
  ident: 780_CR36
  publication-title: Atmosphere
  doi: 10.3390/atmos9090335
– volume-title: The gold standard Canada’s most complete and accurate mapping data
  year: 2010
  ident: 780_CR14
– volume: 121
  start-page: 1
  year: 2013
  ident: 780_CR19
  publication-title: Environ Res
  doi: 10.1016/j.envres.2012.11.003
– volume: 88
  start-page: 14
  issue: 2
  year: 2007
  ident: 780_CR1
  publication-title: Eos, Trans AGU
  doi: 10.1029/2007EO020003
– volume: 124
  start-page: 184
  issue: 2
  year: 2016
  ident: 780_CR33
  publication-title: Environ Health Perspect
  doi: 10.1289/ehp.1409481
– ident: 780_CR15
– volume: 11
  start-page: 23
  issue: 2
  year: 2018
  ident: 780_CR20
  publication-title: Air Qual Atmos Health
  doi: 10.1007/s11869-017-0514-8
– volume: 15
  start-page: 1
  issue: 64
  year: 2016
  ident: 780_CR4
  publication-title: Environ Health
  doi: 10.1186/s12940-016-0146-8
– volume: 46
  start-page: 927
  issue: 10
  year: 1996
  ident: 780_CR43
  publication-title: J Air Waste Manage Assoc
  doi: 10.1080/10473289.1996.10467528
– volume: 95
  start-page: 581
  year: 2014
  ident: 780_CR23
  publication-title: Atmos Environ
  doi: 10.1016/j.atmosenv.2014.07.014
– ident: 780_CR2
SSID ssj0060406
Score 2.2721217
Snippet Seasonal peaks of air pollution from wildfires are increasing in frequency and severity in the western provinces of Canada. During these episodes, populations...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 173
SubjectTerms Aerosol optical depth
Aerosols
Air pollution
Atmospheric Protection/Air Quality Control/Air Pollution
Earth and Environmental Science
Emergency management
Emergency preparedness
Environment
Environmental Health
Epidemiology
Geography
Health Promotion and Disease Prevention
Land use
Multivariate analysis
Optical analysis
Optical thickness
Outdoor air quality
Particulate matter
Particulate matter monitoring
Pollutants
Pollution monitoring
Regression analysis
Satellites
Smoke
Spatial resolution
Spatial variations
Statistical analysis
Wildfires
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA4-LnoQn7i-mIMHRSNtkj7W26K7qLiuoAveStKksKBdsau4_8Kf7CRtXRUVPPSUNIfOZOb7Oi9CdpUvdZoxnyIaVlRkzYzKSAZUZpFisWkGXNmIbvcqPOuLi7vgrioKK-ps9zok6Sz1pNjNTk9C6osP-jWPjqfJbGC5O2pxn7Vq-xuiWrqaojjitIkqW5XK_HzGV3c0wZjfwqLO23QWyUIFE6FVynWJTJl8mcx_ah64Qt7aeDvLwkMYZuCcEmg5uB_DdZcdBZDaisS8aosLZT0iIDTWGZo5MI-DYqhNcQx1xwi73O2dnt9Aq3cK9gctuHTDF6TTiEjBAlL5BA-DV6OhzAOBvctuex_cOJ1ilfQ77duTM1rNV6Apj6IRVdLPNPIhw1NuQq240mnALaNKPS_l0vckV1FTS-aZSAncwzTiLeNpNAMGsdsamcmHuVknIE2sA515QgtfIGmMjYiZ8lmIdE4xZRrErz9zklbNx-0MjPtk0jbZiiZB0SRONMm4QQ4-3nksW2_8uXurll5SXcMiYdwCOi5C0SCHtUQny7-ftvG_7Ztkjlke7rK5t8jM6OnZbCNYGakdp5vvr6rhuw
  priority: 102
  providerName: Springer Nature
Title Estimation of local daily PM2.5 concentration during wildfire episodes: integrating MODIS AOD with multivariate linear mixed effect (LME) models
URI https://link.springer.com/article/10.1007/s11869-019-00780-y
https://www.proquest.com/docview/2356003464
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELYoHFoOqNBWXaBoDj20at0mtvPYXtACofSxgNqutD1FfkWsBLsLWSr2X_Qnd-w4bKlUDkmk2PEhM_Z8nz0PQl6qWBpdsZgiGlZUVN2KykwmVFaZYrntJly5E93-cXo0EJ-HyTBsuNXBrbJdE_1CbSba7ZG_Z9zZZi5SsTu9pK5qlDtdDSU0HpAVl7rMuXRlw1vClaKC-uiiPOO0i8obgmaa0DlXiwmJNF5oJSM6v2uYFmjznwNSb3cOH5O1ABih10h4nSzZ8QZZ_SuN4AZ5GCqZn82fkN8FztkmHBEmFXhTBUaOzudw2mfvEtAuTnEckuVCE6UICJhNhYsf2Omonhhbf4A2j4Rr7p8cfPoOvZMDcNu24J0QfyHJRpwKDqbKK7gY3VgDjXcIvPraL16DL7JTPyWDw-LH_hENVReo5lk2o0rGlUGWZLnmNjWKK6MT7niWjiLNZRxJrrKukSyymRLYhxlEYTYyuDhYRHTPyPJ4MrbPCUibm8RUkTAiFkglcytypmKWIslTTNkOidtfXuqQktxVxjgvF8mUnZhKFFPpxVTOO-TN7TfTJiHHvb23W0mWYXLW5UKVOuRtK91F8_9H27x_tC3yiDk27n26t8ny7OravkDIMlM7Xi_xnu_HO2Sl9_HnlwKfe8Xx6Td8O2C9P67w7Mw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6V9FB6QFBABArMASQQuOza3keQECokVUKzaQWt1NvWXntFpJKEbnjsv-CX8BsZ74MAEr31sCc_Djvjme-z5wHwSPvKZDn3GaFhzWTey5mKVMBUHmke214gtHvRTSbh8Fi-OwlO1uBnmwvjwipbm1gZajPP3B35Cy6cbxYylK8Xn5nrGuVeV9sWGrVa7NvyG1G24tWoT_J9zPne4OjtkDVdBVgmomjJtPJzQyzAikzY0GihTRYIxyMyz8uE8j0ldNQzins20pLmcEMow3qGlN8SYqF9r8C6FERlOrD-ZjA5fN_a_pCORJXPFEeC9ei4NGk6dbKe6_5E1J0-8sseK_92hSt8-8-TbOXp9q7DtQai4m6tUzdgzc62YPOPwoVbsNH0Tv9Y3oQfA7ISdQIkznOsnCMaNT0r8TDhOwFmLjNy1pTnxTovEgmim5zMLdrFtJgbW7zEtnKFG04O-qMPuHvQR3dRjFXY41ei9YSM0QFjdY6fpt-twToeBZ-Mk8FTrNr6FLfg-FIkchs6s_nM3gFUNjaByT1ppC-JvMZWxlz7PCRaqbm2XfDbX55mTRF014vjLF2Vb3ZiSklMaSWmtOzCs99rFnUJkAtnb7eSTBtzUKQr5e3C81a6q-H_73b34t0ewsbwKBmn49Fk_x5c5e4uoIoo34bO8vyLvU-AaakfNFqKcHrZB-MXOf4mbg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtNAFL0qReKxqKBQEShwFyCBYFp7xq8gIVSRRA1t2kpQKTt3XhaRShLqQPFf8D18HXfGdgNIdNeFV2PPwvd1zsx9ADxToTS64CEjNKxYVHQLJlMZM1mkime2GwvlbnRHB8nucfRhHI9X4FdbC-PSKluf6B21mWl3Rr7NhYvNIkqi7aJJizjqDd7NvzI3QcrdtLbjNGoV2bPVOdG38u2wR7J-zvmg_-n9LmsmDDAt0nTBlAwLQ4zACi1sYpRQRsfCcQodBFrIMJBCpV0jeWBTFdE73BDisIEhQ7CEXmjfa3A9FXHobCwdX5C9hIzDVzZlqWBdMpymYKcu23NzoIjE00MROmDV30FxiXT_uZz1MW9wB9YasIo7tXbdhRU7XYfbf7QwXIebzRT1z9U9-Nknf1GXQuKsQB8m0cjJaYVHI74Vo3Y1ktOmUS_WFZJIYN0U5HjRziflzNjyDbY9LNzy6LA3_Ig7hz10R8boEyC_E8EnjIwOIssz_DL5YQ3WmSn4Yn_Uf4l-wE95H46vRB4bsDqdTe0DQGkzE5siiEwURkRjMxtlXIU8IYKpuLIdCNtfnuumHbqbynGaLxs5OzHlJKbciymvOvDq4pt53Qzk0rc3W0nmjWMo86Uad-B1K93l8v93e3j5bk_hBplDvj882HsEt7g7FPCp5Zuwujj7Zh8TclqoJ15FEU6u2iZ-A9j1KT4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimation+of+local+daily+PM2.5+concentration+during+wildfire+episodes%3A+integrating+MODIS+AOD+with+multivariate+linear+mixed+effect+%28LME%29+models&rft.jtitle=Air+quality%2C+atmosphere+and+health&rft.au=Mirzaei+Mojgan&rft.au=Bertazzon+Stefania&rft.au=Couloigner+Isabelle&rft.au=Farjad+Babak&rft.date=2020-02-01&rft.pub=Springer+Nature+B.V&rft.issn=1873-9318&rft.eissn=1873-9326&rft.volume=13&rft.issue=2&rft.spage=173&rft.epage=185&rft_id=info:doi/10.1007%2Fs11869-019-00780-y&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1873-9318&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1873-9318&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1873-9318&client=summon