Recovering dark states by non-Hermiticity
Dark states, which are incapable of absorbing and emitting light, have been widely applied in multiple disciplines of physics. However, the existence of dark states relies on certain strict constraints on the system. For instance, in the fundamental Λ system, a perturbation breaking the degeneracy b...
Saved in:
Published in | AAPPS Bulletin Vol. 35; no. 1; p. 8 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Singapore
Springer Nature Singapore
01.12.2025
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Dark states, which are incapable of absorbing and emitting light, have been widely applied in multiple disciplines of physics. However, the existence of dark states relies on certain strict constraints on the system. For instance, in the fundamental
Λ
system, a perturbation breaking the degeneracy between two energy levels may destroy the destructive interference and demolish the dark state. Here, we show that non-Hermiticity can be exploited as a constructive means to restore a dark state. By compensating for the undesired perturbations, non-Hermiticity produces unidirectional couplings such that the dark state remains decoupled from the rest of the system. Implementing this scheme in many-body systems, flat bands and edge states can be recovered by losses and gains. Further taking into account interactions, a range of novel quantum phases could arise in such non-Hermitian systems. |
---|---|
AbstractList | Dark states, which are incapable of absorbing and emitting light, have been widely applied in multiple disciplines of physics. However, the existence of dark states relies on certain strict constraints on the system. For instance, in the fundamental [Formula omitted] system, a perturbation breaking the degeneracy between two energy levels may destroy the destructive interference and demolish the dark state. Here, we show that non-Hermiticity can be exploited as a constructive means to restore a dark state. By compensating for the undesired perturbations, non-Hermiticity produces unidirectional couplings such that the dark state remains decoupled from the rest of the system. Implementing this scheme in many-body systems, flat bands and edge states can be recovered by losses and gains. Further taking into account interactions, a range of novel quantum phases could arise in such non-Hermitian systems. Abstract Dark states, which are incapable of absorbing and emitting light, have been widely applied in multiple disciplines of physics. However, the existence of dark states relies on certain strict constraints on the system. For instance, in the fundamental $$\Lambda$$ Λ system, a perturbation breaking the degeneracy between two energy levels may destroy the destructive interference and demolish the dark state. Here, we show that non-Hermiticity can be exploited as a constructive means to restore a dark state. By compensating for the undesired perturbations, non-Hermiticity produces unidirectional couplings such that the dark state remains decoupled from the rest of the system. Implementing this scheme in many-body systems, flat bands and edge states can be recovered by losses and gains. Further taking into account interactions, a range of novel quantum phases could arise in such non-Hermitian systems. Dark states, which are incapable of absorbing and emitting light, have been widely applied in multiple disciplines of physics. However, the existence of dark states relies on certain strict constraints on the system. For instance, in the fundamental Λ system, a perturbation breaking the degeneracy between two energy levels may destroy the destructive interference and demolish the dark state. Here, we show that non-Hermiticity can be exploited as a constructive means to restore a dark state. By compensating for the undesired perturbations, non-Hermiticity produces unidirectional couplings such that the dark state remains decoupled from the rest of the system. Implementing this scheme in many-body systems, flat bands and edge states can be recovered by losses and gains. Further taking into account interactions, a range of novel quantum phases could arise in such non-Hermitian systems. Dark states, which are incapable of absorbing and emitting light, have been widely applied in multiple disciplines of physics. However, the existence of dark states relies on certain strict constraints on the system. For instance, in the fundamental Λ system, a perturbation breaking the degeneracy between two energy levels may destroy the destructive interference and demolish the dark state. Here, we show that non-Hermiticity can be exploited as a constructive means to restore a dark state. By compensating for the undesired perturbations, non-Hermiticity produces unidirectional couplings such that the dark state remains decoupled from the rest of the system. Implementing this scheme in many-body systems, flat bands and edge states can be recovered by losses and gains. Further taking into account interactions, a range of novel quantum phases could arise in such non-Hermitian systems. Dark states, which are incapable of absorbing and emitting light, have been widely applied in multiple disciplines of physics. However, the existence of dark states relies on certain strict constraints on the system. For instance, in the fundamental $$\Lambda$$ Λ system, a perturbation breaking the degeneracy between two energy levels may destroy the destructive interference and demolish the dark state. Here, we show that non-Hermiticity can be exploited as a constructive means to restore a dark state. By compensating for the undesired perturbations, non-Hermiticity produces unidirectional couplings such that the dark state remains decoupled from the rest of the system. Implementing this scheme in many-body systems, flat bands and edge states can be recovered by losses and gains. Further taking into account interactions, a range of novel quantum phases could arise in such non-Hermitian systems. |
ArticleNumber | 8 |
Audience | Academic |
Author | Zhou, Qi |
Author_xml | – sequence: 1 givenname: Qi orcidid: 0000-0002-9772-718X surname: Zhou fullname: Zhou, Qi email: zhou753@purdue.edu organization: Department of Physics and Astronomy, Purdue University |
BookMark | eNp9kVtLAzEQhYMoqNU_4FPBJx9WJ5fdpI-leANBEH0Os9nZkmo3NVmF_nvTrngBkXnIMMw5c8J3yHa70BFjJxzOOYC-SEpWWhYgygKAK1OYHXYgJEwKpTns_uj32WFKCwClpDAH7OyBXHin6Lv5uMH4PE499pTG9XqcTxQ3FJe-98736yO21-JLouPPd8Seri4fZzfF3f317Wx6VzipdV_UWhkDSMBdWaPMuQAlYiPAkaxq0ZhJ1Tjp6gpq3goHpgRETQpIG2yNHLHbwbcJuLCr6JcY1zagt9tBiHOLMUd6IStAVFRqMGrSKFlDbcqmklogtlpOKspep4PXKobXN0q9XYS32OX4VnLDuRFg9PfWHLOp79rQR3RLn5ydGilKLYza5Dr_YytXQ0vvMo7W5_kvgRgELoaUIrVfn-FgN9TsQM1manZLzW5EchCl1YYJxe_E_6g-AMWzmCI |
Cites_doi | 10.1038/s41467-019-08596-1 10.1103/PhysRevA.88.063613 10.1103/PhysRevLett.66.2593 10.1103/PhysRevB.107.054105 10.1088/1742-5468/ac7644 10.1038/nphys1073 10.1103/PhysRevA.96.011802 10.1103/RevModPhys.77.633 10.1103/PhysRevA.90.051601 10.3390/physics1010002 10.1038/srep16044 10.1088/1361-648X/ad744c 10.1017/CBO9780511813993 10.1103/PhysRevB.109.195124 10.1103/PhysRevLett.129.070401 10.1103/PhysRevLett.114.245504 10.1103/PhysRevLett.123.183601 10.1103/PhysRevB.88.220510 10.1364/OE.473770 10.1007/s11467-024-1412-9 10.22331/q-2021-11-25-591 10.1103/PhysRevB.105.035102 10.1103/PhysRevB.82.184502 10.1038/s42005-022-01021-y 10.1103/PhysRevResearch.5.L012012 10.1103/PhysRevA.79.023614 10.1080/09500349808231909 10.1103/PhysRevB.104.035115 10.1103/PhysRevA.95.061601 10.1103/PhysRevResearch.2.033127 10.1038/nphys4105 10.1103/PhysRevB.96.064305 10.1088/1361-648X/acdbae 10.1103/PhysRevA.102.063315 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 COPYRIGHT 2025 Springer Copyright Springer Nature B.V. Dec 2025 |
Copyright_xml | – notice: The Author(s) 2025 – notice: COPYRIGHT 2025 Springer – notice: Copyright Springer Nature B.V. Dec 2025 |
DBID | C6C AAYXX CITATION 3V. 7XB 88I 8FK ABUWG AEUYN AFKRA AZQEC BENPR BHPHI BKSAR CCPQU DWQXO GNUQQ HCIFZ M2P PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS Q9U DOA |
DOI | 10.1007/s43673-025-00148-8 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection Science Database (ProQuest) Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Science Journals (Alumni Edition) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Sustainability ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2309-4710 |
EndPage | 8 |
ExternalDocumentID | oai_doaj_org_article_2026e570849d43b0b85d6372aaf7396e A832572848 10_1007_s43673_025_00148_8 |
GrantInformation_xml | – fundername: Air Force Office of Scientific Research grantid: FA9550-23-1-0491 funderid: http://dx.doi.org/10.13039/100000181 |
GroupedDBID | 0R~ 23M 2WC 5GY 6J9 88I AAFWJ AAJSJ AAKKN AASML ABEEZ ABUWG ACACY ACULB AEGXH AEUYN AFGXO AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AMTXH ARTTT AZQEC BAPOH BENPR BHPHI BKSAR C24 C6C CCPQU DWQXO E3Z EAZ EBLON EBS EJD FRP GNUQQ GROUPED_DOAJ HCIFZ IAO IHR ITC M2P OK1 PCBAR PHGZT PIMPY RNS SOJ TR2 XSB AAYXX CITATION OVT PHGZM 3V. 7XB 8FK PKEHL PQEST PQQKQ PQUKI PRINS Q9U PUEGO |
ID | FETCH-LOGICAL-c377t-b74880ae01c5ba34360a3aad20ce36b2d896dc3cb60b1f2c0850aa7e40e78af83 |
IEDL.DBID | DOA |
ISSN | 2309-4710 0218-2203 |
IngestDate | Wed Aug 27 01:24:10 EDT 2025 Thu Jul 24 01:41:30 EDT 2025 Thu Apr 03 02:33:52 EDT 2025 Tue Apr 01 03:56:31 EDT 2025 Tue Jul 01 05:19:31 EDT 2025 Wed Mar 26 01:23:11 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c377t-b74880ae01c5ba34360a3aad20ce36b2d896dc3cb60b1f2c0850aa7e40e78af83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9772-718X |
OpenAccessLink | https://doaj.org/article/2026e570849d43b0b85d6372aaf7396e |
PQID | 3181182087 |
PQPubID | 5643011 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2026e570849d43b0b85d6372aaf7396e proquest_journals_3181182087 gale_infotracmisc_A832572848 gale_infotracacademiconefile_A832572848 crossref_primary_10_1007_s43673_025_00148_8 springer_journals_10_1007_s43673_025_00148_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20251201 |
PublicationDateYYYYMMDD | 2025-12-01 |
PublicationDate_xml | – month: 12 year: 2025 text: 20251201 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore – name: Beijing |
PublicationTitle | AAPPS Bulletin |
PublicationTitleAbbrev | AAPPS Bull |
PublicationYear | 2025 |
Publisher | Springer Nature Singapore Springer Springer Nature B.V |
Publisher_xml | – name: Springer Nature Singapore – name: Springer – name: Springer Nature B.V |
References | C Li (148_CR24) 2018; 1 S Zhang (148_CR15) 2020; 2 J Zurita (148_CR25) 2021; 5 E Zhao (148_CR18) 2022; 30 W Maimaiti (148_CR16) 2021; 104 J Li (148_CR20) 2019; 10 SD Huber (148_CR33) 2010; 82 F Ares (148_CR27) 2022; 2022 M Ghuneim (148_CR32) 2024; 36 K Qian (148_CR28) 2023; 5 148_CR1 JH Kang (148_CR10) 2020; 102 T Zhang (148_CR8) 2015; 5 148_CR14 MR Slot (148_CR7) 2017; 13 Q Liang (148_CR21) 2022; 129 R Dias (148_CR26) 2022; 105 X Li (148_CR17) 2024; 19 L Zhou (148_CR23) 2022; 5 S Mandal (148_CR31) 2024; 109 M Fleischhauer (148_CR2) 2005; 77 S Diehl (148_CR5) 2008; 4 N Ara (148_CR30) 2023; 35 M Tovmasyan (148_CR35) 2013; 88 SL Zhang (148_CR19) 2017; 95 S Takayoshi (148_CR34) 2013; 88 S Dürr (148_CR22) 2009; 79 D Leykam (148_CR11) 2017; 96 H Ramezani (148_CR12) 2017; 96 T Biesenthal (148_CR13) 2019; 123 S Mukherjee (148_CR6) 2015; 114 KJ Boller (148_CR4) 1991; 66 SL Zhang (148_CR9) 2014; 90 JP Marangos (148_CR3) 1998; 45 X Zhou (148_CR29) 2023; 107 |
References_xml | – volume: 10 start-page: 855 issue: 1 year: 2019 ident: 148_CR20 publication-title: Nat. Commun. doi: 10.1038/s41467-019-08596-1 – volume: 88 start-page: 063613 issue: 6 year: 2013 ident: 148_CR34 publication-title: Phys. Rev. A At. Mol. Opt. Phys. doi: 10.1103/PhysRevA.88.063613 – volume: 66 start-page: 2593 issue: 20 year: 1991 ident: 148_CR4 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.66.2593 – volume: 107 start-page: 054105 issue: 5 year: 2023 ident: 148_CR29 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.107.054105 – volume: 2022 start-page: 063104 issue: 6 year: 2022 ident: 148_CR27 publication-title: J. Stat. Mech. Theory Exp. doi: 10.1088/1742-5468/ac7644 – volume: 4 start-page: 878 issue: 11 year: 2008 ident: 148_CR5 publication-title: Nat. Phys. doi: 10.1038/nphys1073 – volume: 96 start-page: 011802 issue: 1 year: 2017 ident: 148_CR12 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.96.011802 – volume: 77 start-page: 633 issue: 2 year: 2005 ident: 148_CR2 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.77.633 – volume: 90 start-page: 051601 issue: 5 year: 2014 ident: 148_CR9 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.90.051601 – volume: 1 start-page: 2 issue: 1 year: 2018 ident: 148_CR24 publication-title: Physics doi: 10.3390/physics1010002 – volume: 5 start-page: 16044 issue: 1 year: 2015 ident: 148_CR8 publication-title: Sci. Rep. doi: 10.1038/srep16044 – volume: 36 start-page: 495402 issue: 49 year: 2024 ident: 148_CR32 publication-title: J. Phys. Condens. Matter doi: 10.1088/1361-648X/ad744c – ident: 148_CR1 doi: 10.1017/CBO9780511813993 – volume: 109 start-page: 195124 issue: 19 year: 2024 ident: 148_CR31 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.109.195124 – volume: 129 start-page: 070401 issue: 7 year: 2022 ident: 148_CR21 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.129.070401 – volume: 114 start-page: 245504 issue: 24 year: 2015 ident: 148_CR6 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.114.245504 – volume: 123 start-page: 183601 issue: 18 year: 2019 ident: 148_CR13 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.123.183601 – volume: 88 start-page: 220510 issue: 22 year: 2013 ident: 148_CR35 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.88.220510 – volume: 30 start-page: 37786 issue: 21 year: 2022 ident: 148_CR18 publication-title: Opt. Express doi: 10.1364/OE.473770 – volume: 19 start-page: 33211 issue: 3 year: 2024 ident: 148_CR17 publication-title: Front. Phys. doi: 10.1007/s11467-024-1412-9 – volume: 5 start-page: 591 year: 2021 ident: 148_CR25 publication-title: Quantum doi: 10.22331/q-2021-11-25-591 – volume: 105 start-page: 035102 issue: 3 year: 2022 ident: 148_CR26 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.105.035102 – volume: 82 start-page: 184502 issue: 18 year: 2010 ident: 148_CR33 publication-title: Phys. Rev. B Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.82.184502 – volume: 5 start-page: 252 issue: 1 year: 2022 ident: 148_CR23 publication-title: Commun. Phys. doi: 10.1038/s42005-022-01021-y – volume: 5 start-page: L012012 issue: 1 year: 2023 ident: 148_CR28 publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.5.L012012 – volume: 79 start-page: 023614 issue: 2 year: 2009 ident: 148_CR22 publication-title: Phys. Rev. A At. Mol. Opt. Phys. doi: 10.1103/PhysRevA.79.023614 – volume: 45 start-page: 471 issue: 3 year: 1998 ident: 148_CR3 publication-title: J. Mod. Opt. doi: 10.1080/09500349808231909 – ident: 148_CR14 – volume: 104 start-page: 035115 issue: 3 year: 2021 ident: 148_CR16 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.104.035115 – volume: 95 start-page: 061601 issue: 6 year: 2017 ident: 148_CR19 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.95.061601 – volume: 2 start-page: 033127 issue: 3 year: 2020 ident: 148_CR15 publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.2.033127 – volume: 13 start-page: 672 issue: 7 year: 2017 ident: 148_CR7 publication-title: Nat. Phys. doi: 10.1038/nphys4105 – volume: 96 start-page: 064305 issue: 6 year: 2017 ident: 148_CR11 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.96.064305 – volume: 35 start-page: 385502 issue: 38 year: 2023 ident: 148_CR30 publication-title: J. Phys. Condens. Matter doi: 10.1088/1361-648X/acdbae – volume: 102 start-page: 063315 issue: 6 year: 2020 ident: 148_CR10 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.102.063315 |
SSID | ssj0044328 ssib044727542 ssib051457334 |
Score | 2.310733 |
Snippet | Dark states, which are incapable of absorbing and emitting light, have been widely applied in multiple disciplines of physics. However, the existence of dark... Abstract Dark states, which are incapable of absorbing and emitting light, have been widely applied in multiple disciplines of physics. However, the existence... |
SourceID | doaj proquest gale crossref springer |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 8 |
SubjectTerms | Astronomy Astrophysics and Cosmology Atomic Electrons Magnetic fields Molecular Optical and Plasma Physics Original Article Particle and Nuclear Physics Physics Physics and Astronomy |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxQxEB_0iuCLWD_wtJZ9EEQ0mE2ym-yTtKXlKFhELPQtTLJZH4S79m4V-t87k2ZbjqKPuwmb7GS-ksz8BuDdQGxDu-MkTAidMInYGJ2KpAxVl5Ib6nrg3OGvZ-3i3JxeNBflwG1TwionnZgVdb-KfEb-mXiPfWHp7JfLK8FVo_h2tZTQeAg7pIKdm8HO4fHZt-8TRxlD5nkq8UrP5B0w_p-ZdLUxOldfZUMnlJK6pNXk5DqjW8t3nI2Q-djNbZmujPB_X4_fu1DNdurkKTwpDmZ1cMMRu_AgLZ_BoxzoGTfP4QPvN_9k_MGqx_WvKmcUbapwXS1XS7Hg2BgOtB6vX8D5yfGPo4Uo5RJE1NaOIlgWRkyyjk1ATdOXqBF7JWPSbVC969o-6hhaGepBRQarQ7TJyGQdDk6_hBmNlF5BhQ3WgUtRqxhMjxLJaxwiOXMM6IXSzuHjRAl_eYOK4W_xjzPdPNHNZ7p5N4dDJtZtT0a0zi9W65--CIhXtBlMjZXOdL3RQQbX9K22CnGwumvTHN4zqT3L3bjGiCV9gCbMCFb-gFRTY8nY0nB7Wz1JXuJ287RYvsjrxt9x1xw-TQt41_zvf3v9_6-9gceKOSjHv-zBbFz_Tm_JixnDfmHVv8LU5lQ priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwQxDC66IngRn7i-mIMgooOdPqadoy7KIujJhb2VtNO5CCK7o-C_N6mzK-vj4HXaoW2SpkmTfGXspEGxQe845sr7KlcRxRisCKgMRRWjbYqiodrh-4dyOFJ3Yz3uYHKoFuZb_P5yqmRpKNKoc54uv-wyW9GFNPRMw6AczLSuUlLYrijm9_8WDp6Ez_9TC_8Ih6ZT5naDrXfmYXb1yc9NthSft9hqStMM0212Rt7iW0IPzGqYPGWpHmia-fcM3fh8SJktlCbdvu-w0e3N42CYd48d5EEa0-be0FaCyIugPUicPgcJUAseoiy9qG1V1kEGX3JfNCIQ1ByAiYpHY6Gxcpf1cKS4xzLQUHh6SFoEr2rggDZfE9AUIzgu4KbPzmeUcC-fmBZujl6c6OaQbi7Rzdk-uyZizXsSHnX6gGxynXg7ga5c1IZbVdVKeu6trktpBEBjZFXGPjslUjvaNe0EAnTJ_zhhwp9yV6hYtMGjEoc7XOiJ0h4Wm2fMct1umzrUS-QncYtLu5gx8Kv577Xt_6_7AVsTJFEpm-WQ9drJazxCm6T1x0kYPwAYqtTQ priority: 102 providerName: Springer Nature |
Title | Recovering dark states by non-Hermiticity |
URI | https://link.springer.com/article/10.1007/s43673-025-00148-8 https://www.proquest.com/docview/3181182087 https://doaj.org/article/2026e570849d43b0b85d6372aaf7396e |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxsxEBapQ6CXkLYpdR5mD4VSkgWtpJW0x8Q4mIJNCA3kJkZa7aUQir0p-NLfnhnt2okJIZdcdFgJJM2M5rGa-cTY9wbFBqPjmCvvq1xFFGOwIqAyFFWMtimKhmqHZ3M9vVW_7sq7Z099UU5YBw_cEY6Ccx1Lw62qaiU997astTQCoDGy0pG0L9q8dTDV6WClpLB9iUwqlFNSG7qvLHOefqHZLTOU0Ppf6uQXl6PJ5lwdsP3eWcwuukV-Yjvx_jPbS0mbYfmF_aTY8V_CEsxqWPzJUnXQMvOrDIP6fEp5LpQ03a4O2e3V5Pd4mvdPH-RBGtPm3tDBgsiLUHqQuHwOEqAWPESpvahtpesgg9fcF40IBDwHYKLi0VhorPzKBjhT_MYyKKHw9Ky0CF7VwAE9wCagY0bgXMDNkJ2tKeH-dggXboNlnOjmkG4u0c3ZIbskYm1GEjp1-oA8cz3P3Fs8G7IfRGpHZ6hdQIC-FAAXTGhU7gLVTGnQcOJ0J1sjUfbDdveaWa4_e0uHWoqiJm5xa-drBj51v763o_fY2zH7KEjOUsbLCRu0i4d4in5L60ds93Iyv74ZsQ9joajV41ESW2xn_yePgdTn8w |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEE-xUCAHEEIQ4dhO7D0g1EKrLW1XCLVSb2bsOByQdstuAO2f4jcy401arSq49ZjEsZPx53nY8wB43hBsyDqOufZ-lOtIMEYrAzFDOYrRNkXRcOzw0aQan-hPp-XpBvzpY2HYrbLniYlR17PAe-RvCXusCwtr3p_9yLlqFJ-u9iU0VrA4iMvfZLIt3u1_pPl9IeXe7vGHcd5VFciDMqbNvWHMYhRFKD0qrSqBCrGWIkRVeVnbUVUHFXwlfNHIwDndEE3UIhqLjVXU7zXY5PfkADZ3diefv_QI1prUgb6kLF2TNsL5BnUvG7RWqdorC9ZcSqG6MJ4UzEc9Gj5TLXORtvnsmqhMFQUuy41LB7hJLu7dhludQpttrxB4Bzbi9C5cT46lYXEPXrF9-yvlO8xqnH_PUgTTIvPLbDqb5mP2xWHH7nZ5H06uhJAPYEAjxYeQYYmF59LXMnhdo0DSUptAyiMnEENhhvC6p4Q7W2XhcOf5lhPdHNHNJbo5O4QdJtZ5S86gnW7M5t9ctyCdJOMzlkZYPaq18sLbsq6UkYiNUaMqDuElk9rxOm_nGLALV6AP5oxZbptYYWlIuNNwW2staX2G9cf9ZLmOPyzcBZqH8KafwIvH__63R__v7RncGB8fHbrD_cnBY7gpGU3J92YLBu38Z3xCGlTrn3awzeDrVa-UvzanI-Y |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcEE-xpUAOIIQgqmM7sXNAqKVdbSmsKkSl3oztOBwq7ZbdANq_xq9jxhu3WlVw6zEPxc74m5c9D4AXLcIGveOQS-fqXAaEsdXcozDkdQi6LYqWcoc_T6rxifx4Wp5uwJ-UC0NhlUkmRkHdzDztke8g9sgWZlrttH1YxPH-6P35j5w6SNFJa2qnsYLIUVj-Rvdt8e5wH9f6Jeejg68fxnnfYSD3Qqkud4rwawMrfOmskKJiVljbcOaDqBxvdF01XnhXMVe03FN9N2tVkCwobVst8Ls3YFORVzSAzb2DyfGXhGYp0TRI7WXxGi0Tqj0ok56QUsTOr6Rkc86Z6FN6YmIfzkTR-WqZs7jlp9fUZuwucFWHXDnMjTpydBfu9MZttrtC4z3YCNP7cDMGmfrFA3hNvu6vWPswa-z8LIvZTIvMLbPpbJqPKS6Hgry75UM4uRZCPoIBjhQeQ2ZLWzhqg829k41lFi3W1qMhScXELFNDeJMoYc5XFTnMRe3lSDeDdDORbkYPYY-IdfEmVdOON2bz76ZnTsPREQ2lYlrWjRSOOV02lVDc2laJugpDeEWkNsTz3dx626cu4ISpepbZRbFYKlT0ONz22pvIq379cVos08uKhblE9hDepgW8fPzvf9v6_9eewy3kEPPpcHL0BG4X6DhSiBvn2zDo5j_DUzSmOvesR20G366bUf4CPo8oLQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recovering+dark+states+by+non-Hermiticity&rft.jtitle=AAPPS+bulletin&rft.au=Qi+Zhou&rft.date=2025-12-01&rft.pub=Springer&rft.eissn=2309-4710&rft.volume=35&rft.issue=1&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1007%2Fs43673-025-00148-8&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_2026e570849d43b0b85d6372aaf7396e |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2309-4710&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2309-4710&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2309-4710&client=summon |