Recovering dark states by non-Hermiticity

Dark states, which are incapable of absorbing and emitting light, have been widely applied in multiple disciplines of physics. However, the existence of dark states relies on certain strict constraints on the system. For instance, in the fundamental Λ system, a perturbation breaking the degeneracy b...

Full description

Saved in:
Bibliographic Details
Published inAAPPS Bulletin Vol. 35; no. 1; p. 8
Main Author Zhou, Qi
Format Journal Article
LanguageEnglish
Published Singapore Springer Nature Singapore 01.12.2025
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Dark states, which are incapable of absorbing and emitting light, have been widely applied in multiple disciplines of physics. However, the existence of dark states relies on certain strict constraints on the system. For instance, in the fundamental Λ system, a perturbation breaking the degeneracy between two energy levels may destroy the destructive interference and demolish the dark state. Here, we show that non-Hermiticity can be exploited as a constructive means to restore a dark state. By compensating for the undesired perturbations, non-Hermiticity produces unidirectional couplings such that the dark state remains decoupled from the rest of the system. Implementing this scheme in many-body systems, flat bands and edge states can be recovered by losses and gains. Further taking into account interactions, a range of novel quantum phases could arise in such non-Hermitian systems.
AbstractList Dark states, which are incapable of absorbing and emitting light, have been widely applied in multiple disciplines of physics. However, the existence of dark states relies on certain strict constraints on the system. For instance, in the fundamental [Formula omitted] system, a perturbation breaking the degeneracy between two energy levels may destroy the destructive interference and demolish the dark state. Here, we show that non-Hermiticity can be exploited as a constructive means to restore a dark state. By compensating for the undesired perturbations, non-Hermiticity produces unidirectional couplings such that the dark state remains decoupled from the rest of the system. Implementing this scheme in many-body systems, flat bands and edge states can be recovered by losses and gains. Further taking into account interactions, a range of novel quantum phases could arise in such non-Hermitian systems.
Abstract Dark states, which are incapable of absorbing and emitting light, have been widely applied in multiple disciplines of physics. However, the existence of dark states relies on certain strict constraints on the system. For instance, in the fundamental $$\Lambda$$ Λ system, a perturbation breaking the degeneracy between two energy levels may destroy the destructive interference and demolish the dark state. Here, we show that non-Hermiticity can be exploited as a constructive means to restore a dark state. By compensating for the undesired perturbations, non-Hermiticity produces unidirectional couplings such that the dark state remains decoupled from the rest of the system. Implementing this scheme in many-body systems, flat bands and edge states can be recovered by losses and gains. Further taking into account interactions, a range of novel quantum phases could arise in such non-Hermitian systems.
Dark states, which are incapable of absorbing and emitting light, have been widely applied in multiple disciplines of physics. However, the existence of dark states relies on certain strict constraints on the system. For instance, in the fundamental Λ system, a perturbation breaking the degeneracy between two energy levels may destroy the destructive interference and demolish the dark state. Here, we show that non-Hermiticity can be exploited as a constructive means to restore a dark state. By compensating for the undesired perturbations, non-Hermiticity produces unidirectional couplings such that the dark state remains decoupled from the rest of the system. Implementing this scheme in many-body systems, flat bands and edge states can be recovered by losses and gains. Further taking into account interactions, a range of novel quantum phases could arise in such non-Hermitian systems.
Dark states, which are incapable of absorbing and emitting light, have been widely applied in multiple disciplines of physics. However, the existence of dark states relies on certain strict constraints on the system. For instance, in the fundamental Λ system, a perturbation breaking the degeneracy between two energy levels may destroy the destructive interference and demolish the dark state. Here, we show that non-Hermiticity can be exploited as a constructive means to restore a dark state. By compensating for the undesired perturbations, non-Hermiticity produces unidirectional couplings such that the dark state remains decoupled from the rest of the system. Implementing this scheme in many-body systems, flat bands and edge states can be recovered by losses and gains. Further taking into account interactions, a range of novel quantum phases could arise in such non-Hermitian systems.
Dark states, which are incapable of absorbing and emitting light, have been widely applied in multiple disciplines of physics. However, the existence of dark states relies on certain strict constraints on the system. For instance, in the fundamental $$\Lambda$$ Λ system, a perturbation breaking the degeneracy between two energy levels may destroy the destructive interference and demolish the dark state. Here, we show that non-Hermiticity can be exploited as a constructive means to restore a dark state. By compensating for the undesired perturbations, non-Hermiticity produces unidirectional couplings such that the dark state remains decoupled from the rest of the system. Implementing this scheme in many-body systems, flat bands and edge states can be recovered by losses and gains. Further taking into account interactions, a range of novel quantum phases could arise in such non-Hermitian systems.
ArticleNumber 8
Audience Academic
Author Zhou, Qi
Author_xml – sequence: 1
  givenname: Qi
  orcidid: 0000-0002-9772-718X
  surname: Zhou
  fullname: Zhou, Qi
  email: zhou753@purdue.edu
  organization: Department of Physics and Astronomy, Purdue University
BookMark eNp9kVtLAzEQhYMoqNU_4FPBJx9WJ5fdpI-leANBEH0Os9nZkmo3NVmF_nvTrngBkXnIMMw5c8J3yHa70BFjJxzOOYC-SEpWWhYgygKAK1OYHXYgJEwKpTns_uj32WFKCwClpDAH7OyBXHin6Lv5uMH4PE499pTG9XqcTxQ3FJe-98736yO21-JLouPPd8Seri4fZzfF3f317Wx6VzipdV_UWhkDSMBdWaPMuQAlYiPAkaxq0ZhJ1Tjp6gpq3goHpgRETQpIG2yNHLHbwbcJuLCr6JcY1zagt9tBiHOLMUd6IStAVFRqMGrSKFlDbcqmklogtlpOKspep4PXKobXN0q9XYS32OX4VnLDuRFg9PfWHLOp79rQR3RLn5ydGilKLYza5Dr_YytXQ0vvMo7W5_kvgRgELoaUIrVfn-FgN9TsQM1manZLzW5EchCl1YYJxe_E_6g-AMWzmCI
Cites_doi 10.1038/s41467-019-08596-1
10.1103/PhysRevA.88.063613
10.1103/PhysRevLett.66.2593
10.1103/PhysRevB.107.054105
10.1088/1742-5468/ac7644
10.1038/nphys1073
10.1103/PhysRevA.96.011802
10.1103/RevModPhys.77.633
10.1103/PhysRevA.90.051601
10.3390/physics1010002
10.1038/srep16044
10.1088/1361-648X/ad744c
10.1017/CBO9780511813993
10.1103/PhysRevB.109.195124
10.1103/PhysRevLett.129.070401
10.1103/PhysRevLett.114.245504
10.1103/PhysRevLett.123.183601
10.1103/PhysRevB.88.220510
10.1364/OE.473770
10.1007/s11467-024-1412-9
10.22331/q-2021-11-25-591
10.1103/PhysRevB.105.035102
10.1103/PhysRevB.82.184502
10.1038/s42005-022-01021-y
10.1103/PhysRevResearch.5.L012012
10.1103/PhysRevA.79.023614
10.1080/09500349808231909
10.1103/PhysRevB.104.035115
10.1103/PhysRevA.95.061601
10.1103/PhysRevResearch.2.033127
10.1038/nphys4105
10.1103/PhysRevB.96.064305
10.1088/1361-648X/acdbae
10.1103/PhysRevA.102.063315
ContentType Journal Article
Copyright The Author(s) 2025
COPYRIGHT 2025 Springer
Copyright Springer Nature B.V. Dec 2025
Copyright_xml – notice: The Author(s) 2025
– notice: COPYRIGHT 2025 Springer
– notice: Copyright Springer Nature B.V. Dec 2025
DBID C6C
AAYXX
CITATION
3V.
7XB
88I
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BHPHI
BKSAR
CCPQU
DWQXO
GNUQQ
HCIFZ
M2P
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
DOA
DOI 10.1007/s43673-025-00148-8
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Science Database (ProQuest)
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Sustainability
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList

Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2309-4710
EndPage 8
ExternalDocumentID oai_doaj_org_article_2026e570849d43b0b85d6372aaf7396e
A832572848
10_1007_s43673_025_00148_8
GrantInformation_xml – fundername: Air Force Office of Scientific Research
  grantid: FA9550-23-1-0491
  funderid: http://dx.doi.org/10.13039/100000181
GroupedDBID 0R~
23M
2WC
5GY
6J9
88I
AAFWJ
AAJSJ
AAKKN
AASML
ABEEZ
ABUWG
ACACY
ACULB
AEGXH
AEUYN
AFGXO
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARTTT
AZQEC
BAPOH
BENPR
BHPHI
BKSAR
C24
C6C
CCPQU
DWQXO
E3Z
EAZ
EBLON
EBS
EJD
FRP
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
IHR
ITC
M2P
OK1
PCBAR
PHGZT
PIMPY
RNS
SOJ
TR2
XSB
AAYXX
CITATION
OVT
PHGZM
3V.
7XB
8FK
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
PUEGO
ID FETCH-LOGICAL-c377t-b74880ae01c5ba34360a3aad20ce36b2d896dc3cb60b1f2c0850aa7e40e78af83
IEDL.DBID DOA
ISSN 2309-4710
0218-2203
IngestDate Wed Aug 27 01:24:10 EDT 2025
Thu Jul 24 01:41:30 EDT 2025
Thu Apr 03 02:33:52 EDT 2025
Tue Apr 01 03:56:31 EDT 2025
Tue Jul 01 05:19:31 EDT 2025
Wed Mar 26 01:23:11 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c377t-b74880ae01c5ba34360a3aad20ce36b2d896dc3cb60b1f2c0850aa7e40e78af83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9772-718X
OpenAccessLink https://doaj.org/article/2026e570849d43b0b85d6372aaf7396e
PQID 3181182087
PQPubID 5643011
ParticipantIDs doaj_primary_oai_doaj_org_article_2026e570849d43b0b85d6372aaf7396e
proquest_journals_3181182087
gale_infotracmisc_A832572848
gale_infotracacademiconefile_A832572848
crossref_primary_10_1007_s43673_025_00148_8
springer_journals_10_1007_s43673_025_00148_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20251201
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: 20251201
  day: 01
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Beijing
PublicationTitle AAPPS Bulletin
PublicationTitleAbbrev AAPPS Bull
PublicationYear 2025
Publisher Springer Nature Singapore
Springer
Springer Nature B.V
Publisher_xml – name: Springer Nature Singapore
– name: Springer
– name: Springer Nature B.V
References C Li (148_CR24) 2018; 1
S Zhang (148_CR15) 2020; 2
J Zurita (148_CR25) 2021; 5
E Zhao (148_CR18) 2022; 30
W Maimaiti (148_CR16) 2021; 104
J Li (148_CR20) 2019; 10
SD Huber (148_CR33) 2010; 82
F Ares (148_CR27) 2022; 2022
M Ghuneim (148_CR32) 2024; 36
K Qian (148_CR28) 2023; 5
148_CR1
JH Kang (148_CR10) 2020; 102
T Zhang (148_CR8) 2015; 5
148_CR14
MR Slot (148_CR7) 2017; 13
Q Liang (148_CR21) 2022; 129
R Dias (148_CR26) 2022; 105
X Li (148_CR17) 2024; 19
L Zhou (148_CR23) 2022; 5
S Mandal (148_CR31) 2024; 109
M Fleischhauer (148_CR2) 2005; 77
S Diehl (148_CR5) 2008; 4
N Ara (148_CR30) 2023; 35
M Tovmasyan (148_CR35) 2013; 88
SL Zhang (148_CR19) 2017; 95
S Takayoshi (148_CR34) 2013; 88
S Dürr (148_CR22) 2009; 79
D Leykam (148_CR11) 2017; 96
H Ramezani (148_CR12) 2017; 96
T Biesenthal (148_CR13) 2019; 123
S Mukherjee (148_CR6) 2015; 114
KJ Boller (148_CR4) 1991; 66
SL Zhang (148_CR9) 2014; 90
JP Marangos (148_CR3) 1998; 45
X Zhou (148_CR29) 2023; 107
References_xml – volume: 10
  start-page: 855
  issue: 1
  year: 2019
  ident: 148_CR20
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-08596-1
– volume: 88
  start-page: 063613
  issue: 6
  year: 2013
  ident: 148_CR34
  publication-title: Phys. Rev. A At. Mol. Opt. Phys.
  doi: 10.1103/PhysRevA.88.063613
– volume: 66
  start-page: 2593
  issue: 20
  year: 1991
  ident: 148_CR4
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.66.2593
– volume: 107
  start-page: 054105
  issue: 5
  year: 2023
  ident: 148_CR29
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.107.054105
– volume: 2022
  start-page: 063104
  issue: 6
  year: 2022
  ident: 148_CR27
  publication-title: J. Stat. Mech. Theory Exp.
  doi: 10.1088/1742-5468/ac7644
– volume: 4
  start-page: 878
  issue: 11
  year: 2008
  ident: 148_CR5
  publication-title: Nat. Phys.
  doi: 10.1038/nphys1073
– volume: 96
  start-page: 011802
  issue: 1
  year: 2017
  ident: 148_CR12
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.96.011802
– volume: 77
  start-page: 633
  issue: 2
  year: 2005
  ident: 148_CR2
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.77.633
– volume: 90
  start-page: 051601
  issue: 5
  year: 2014
  ident: 148_CR9
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.90.051601
– volume: 1
  start-page: 2
  issue: 1
  year: 2018
  ident: 148_CR24
  publication-title: Physics
  doi: 10.3390/physics1010002
– volume: 5
  start-page: 16044
  issue: 1
  year: 2015
  ident: 148_CR8
  publication-title: Sci. Rep.
  doi: 10.1038/srep16044
– volume: 36
  start-page: 495402
  issue: 49
  year: 2024
  ident: 148_CR32
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/1361-648X/ad744c
– ident: 148_CR1
  doi: 10.1017/CBO9780511813993
– volume: 109
  start-page: 195124
  issue: 19
  year: 2024
  ident: 148_CR31
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.109.195124
– volume: 129
  start-page: 070401
  issue: 7
  year: 2022
  ident: 148_CR21
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.129.070401
– volume: 114
  start-page: 245504
  issue: 24
  year: 2015
  ident: 148_CR6
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.245504
– volume: 123
  start-page: 183601
  issue: 18
  year: 2019
  ident: 148_CR13
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.123.183601
– volume: 88
  start-page: 220510
  issue: 22
  year: 2013
  ident: 148_CR35
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.88.220510
– volume: 30
  start-page: 37786
  issue: 21
  year: 2022
  ident: 148_CR18
  publication-title: Opt. Express
  doi: 10.1364/OE.473770
– volume: 19
  start-page: 33211
  issue: 3
  year: 2024
  ident: 148_CR17
  publication-title: Front. Phys.
  doi: 10.1007/s11467-024-1412-9
– volume: 5
  start-page: 591
  year: 2021
  ident: 148_CR25
  publication-title: Quantum
  doi: 10.22331/q-2021-11-25-591
– volume: 105
  start-page: 035102
  issue: 3
  year: 2022
  ident: 148_CR26
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.105.035102
– volume: 82
  start-page: 184502
  issue: 18
  year: 2010
  ident: 148_CR33
  publication-title: Phys. Rev. B Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.82.184502
– volume: 5
  start-page: 252
  issue: 1
  year: 2022
  ident: 148_CR23
  publication-title: Commun. Phys.
  doi: 10.1038/s42005-022-01021-y
– volume: 5
  start-page: L012012
  issue: 1
  year: 2023
  ident: 148_CR28
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.5.L012012
– volume: 79
  start-page: 023614
  issue: 2
  year: 2009
  ident: 148_CR22
  publication-title: Phys. Rev. A At. Mol. Opt. Phys.
  doi: 10.1103/PhysRevA.79.023614
– volume: 45
  start-page: 471
  issue: 3
  year: 1998
  ident: 148_CR3
  publication-title: J. Mod. Opt.
  doi: 10.1080/09500349808231909
– ident: 148_CR14
– volume: 104
  start-page: 035115
  issue: 3
  year: 2021
  ident: 148_CR16
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.104.035115
– volume: 95
  start-page: 061601
  issue: 6
  year: 2017
  ident: 148_CR19
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.95.061601
– volume: 2
  start-page: 033127
  issue: 3
  year: 2020
  ident: 148_CR15
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.2.033127
– volume: 13
  start-page: 672
  issue: 7
  year: 2017
  ident: 148_CR7
  publication-title: Nat. Phys.
  doi: 10.1038/nphys4105
– volume: 96
  start-page: 064305
  issue: 6
  year: 2017
  ident: 148_CR11
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.96.064305
– volume: 35
  start-page: 385502
  issue: 38
  year: 2023
  ident: 148_CR30
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/1361-648X/acdbae
– volume: 102
  start-page: 063315
  issue: 6
  year: 2020
  ident: 148_CR10
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.102.063315
SSID ssj0044328
ssib044727542
ssib051457334
Score 2.310733
Snippet Dark states, which are incapable of absorbing and emitting light, have been widely applied in multiple disciplines of physics. However, the existence of dark...
Abstract Dark states, which are incapable of absorbing and emitting light, have been widely applied in multiple disciplines of physics. However, the existence...
SourceID doaj
proquest
gale
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 8
SubjectTerms Astronomy
Astrophysics and Cosmology
Atomic
Electrons
Magnetic fields
Molecular
Optical and Plasma Physics
Original Article
Particle and Nuclear Physics
Physics
Physics and Astronomy
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxQxEB_0iuCLWD_wtJZ9EEQ0mE2ym-yTtKXlKFhELPQtTLJZH4S79m4V-t87k2ZbjqKPuwmb7GS-ksz8BuDdQGxDu-MkTAidMInYGJ2KpAxVl5Ib6nrg3OGvZ-3i3JxeNBflwG1TwionnZgVdb-KfEb-mXiPfWHp7JfLK8FVo_h2tZTQeAg7pIKdm8HO4fHZt-8TRxlD5nkq8UrP5B0w_p-ZdLUxOldfZUMnlJK6pNXk5DqjW8t3nI2Q-djNbZmujPB_X4_fu1DNdurkKTwpDmZ1cMMRu_AgLZ_BoxzoGTfP4QPvN_9k_MGqx_WvKmcUbapwXS1XS7Hg2BgOtB6vX8D5yfGPo4Uo5RJE1NaOIlgWRkyyjk1ATdOXqBF7JWPSbVC969o-6hhaGepBRQarQ7TJyGQdDk6_hBmNlF5BhQ3WgUtRqxhMjxLJaxwiOXMM6IXSzuHjRAl_eYOK4W_xjzPdPNHNZ7p5N4dDJtZtT0a0zi9W65--CIhXtBlMjZXOdL3RQQbX9K22CnGwumvTHN4zqT3L3bjGiCV9gCbMCFb-gFRTY8nY0nB7Wz1JXuJ287RYvsjrxt9x1xw-TQt41_zvf3v9_6-9gceKOSjHv-zBbFz_Tm_JixnDfmHVv8LU5lQ
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwQxDC66IngRn7i-mIMgooOdPqadoy7KIujJhb2VtNO5CCK7o-C_N6mzK-vj4HXaoW2SpkmTfGXspEGxQe845sr7KlcRxRisCKgMRRWjbYqiodrh-4dyOFJ3Yz3uYHKoFuZb_P5yqmRpKNKoc54uv-wyW9GFNPRMw6AczLSuUlLYrijm9_8WDp6Ez_9TC_8Ih6ZT5naDrXfmYXb1yc9NthSft9hqStMM0212Rt7iW0IPzGqYPGWpHmia-fcM3fh8SJktlCbdvu-w0e3N42CYd48d5EEa0-be0FaCyIugPUicPgcJUAseoiy9qG1V1kEGX3JfNCIQ1ByAiYpHY6Gxcpf1cKS4xzLQUHh6SFoEr2rggDZfE9AUIzgu4KbPzmeUcC-fmBZujl6c6OaQbi7Rzdk-uyZizXsSHnX6gGxynXg7ga5c1IZbVdVKeu6trktpBEBjZFXGPjslUjvaNe0EAnTJ_zhhwp9yV6hYtMGjEoc7XOiJ0h4Wm2fMct1umzrUS-QncYtLu5gx8Kv577Xt_6_7AVsTJFEpm-WQ9drJazxCm6T1x0kYPwAYqtTQ
  priority: 102
  providerName: Springer Nature
Title Recovering dark states by non-Hermiticity
URI https://link.springer.com/article/10.1007/s43673-025-00148-8
https://www.proquest.com/docview/3181182087
https://doaj.org/article/2026e570849d43b0b85d6372aaf7396e
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxsxEBapQ6CXkLYpdR5mD4VSkgWtpJW0x8Q4mIJNCA3kJkZa7aUQir0p-NLfnhnt2okJIZdcdFgJJM2M5rGa-cTY9wbFBqPjmCvvq1xFFGOwIqAyFFWMtimKhmqHZ3M9vVW_7sq7Z099UU5YBw_cEY6Ccx1Lw62qaiU997astTQCoDGy0pG0L9q8dTDV6WClpLB9iUwqlFNSG7qvLHOefqHZLTOU0Ppf6uQXl6PJ5lwdsP3eWcwuukV-Yjvx_jPbS0mbYfmF_aTY8V_CEsxqWPzJUnXQMvOrDIP6fEp5LpQ03a4O2e3V5Pd4mvdPH-RBGtPm3tDBgsiLUHqQuHwOEqAWPESpvahtpesgg9fcF40IBDwHYKLi0VhorPzKBjhT_MYyKKHw9Ky0CF7VwAE9wCagY0bgXMDNkJ2tKeH-dggXboNlnOjmkG4u0c3ZIbskYm1GEjp1-oA8cz3P3Fs8G7IfRGpHZ6hdQIC-FAAXTGhU7gLVTGnQcOJ0J1sjUfbDdveaWa4_e0uHWoqiJm5xa-drBj51v763o_fY2zH7KEjOUsbLCRu0i4d4in5L60ds93Iyv74ZsQ9joajV41ESW2xn_yePgdTn8w
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEE-xUCAHEEIQ4dhO7D0g1EKrLW1XCLVSb2bsOByQdstuAO2f4jcy401arSq49ZjEsZPx53nY8wB43hBsyDqOufZ-lOtIMEYrAzFDOYrRNkXRcOzw0aQan-hPp-XpBvzpY2HYrbLniYlR17PAe-RvCXusCwtr3p_9yLlqFJ-u9iU0VrA4iMvfZLIt3u1_pPl9IeXe7vGHcd5VFciDMqbNvWHMYhRFKD0qrSqBCrGWIkRVeVnbUVUHFXwlfNHIwDndEE3UIhqLjVXU7zXY5PfkADZ3diefv_QI1prUgb6kLF2TNsL5BnUvG7RWqdorC9ZcSqG6MJ4UzEc9Gj5TLXORtvnsmqhMFQUuy41LB7hJLu7dhludQpttrxB4Bzbi9C5cT46lYXEPXrF9-yvlO8xqnH_PUgTTIvPLbDqb5mP2xWHH7nZ5H06uhJAPYEAjxYeQYYmF59LXMnhdo0DSUptAyiMnEENhhvC6p4Q7W2XhcOf5lhPdHNHNJbo5O4QdJtZ5S86gnW7M5t9ctyCdJOMzlkZYPaq18sLbsq6UkYiNUaMqDuElk9rxOm_nGLALV6AP5oxZbptYYWlIuNNwW2staX2G9cf9ZLmOPyzcBZqH8KafwIvH__63R__v7RncGB8fHbrD_cnBY7gpGU3J92YLBu38Z3xCGlTrn3awzeDrVa-UvzanI-Y
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcEE-xpUAOIIQgqmM7sXNAqKVdbSmsKkSl3oztOBwq7ZbdANq_xq9jxhu3WlVw6zEPxc74m5c9D4AXLcIGveOQS-fqXAaEsdXcozDkdQi6LYqWcoc_T6rxifx4Wp5uwJ-UC0NhlUkmRkHdzDztke8g9sgWZlrttH1YxPH-6P35j5w6SNFJa2qnsYLIUVj-Rvdt8e5wH9f6Jeejg68fxnnfYSD3Qqkud4rwawMrfOmskKJiVljbcOaDqBxvdF01XnhXMVe03FN9N2tVkCwobVst8Ls3YFORVzSAzb2DyfGXhGYp0TRI7WXxGi0Tqj0ok56QUsTOr6Rkc86Z6FN6YmIfzkTR-WqZs7jlp9fUZuwucFWHXDnMjTpydBfu9MZttrtC4z3YCNP7cDMGmfrFA3hNvu6vWPswa-z8LIvZTIvMLbPpbJqPKS6Hgry75UM4uRZCPoIBjhQeQ2ZLWzhqg829k41lFi3W1qMhScXELFNDeJMoYc5XFTnMRe3lSDeDdDORbkYPYY-IdfEmVdOON2bz76ZnTsPREQ2lYlrWjRSOOV02lVDc2laJugpDeEWkNsTz3dx626cu4ISpepbZRbFYKlT0ONz22pvIq379cVos08uKhblE9hDepgW8fPzvf9v6_9eewy3kEPPpcHL0BG4X6DhSiBvn2zDo5j_DUzSmOvesR20G366bUf4CPo8oLQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recovering+dark+states+by+non-Hermiticity&rft.jtitle=AAPPS+bulletin&rft.au=Qi+Zhou&rft.date=2025-12-01&rft.pub=Springer&rft.eissn=2309-4710&rft.volume=35&rft.issue=1&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1007%2Fs43673-025-00148-8&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_2026e570849d43b0b85d6372aaf7396e
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2309-4710&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2309-4710&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2309-4710&client=summon