High-sensitivity magnetometry based on quantum beats in diamond nitrogen-vacancy centers
We demonstrate an absolute magnetometer based on quantum beats in the ground state of nitrogen-vacancy centers in diamond. We show that, by eliminating the dependence of spin evolution on the zero-field splitting D, the magnetometer is immune to temperature fluctuation and strain inhomogeneity. We a...
Saved in:
Published in | Physical review letters Vol. 110; no. 13; p. 130802 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
26.03.2013
|
Online Access | Get more information |
Cover
Loading…
Abstract | We demonstrate an absolute magnetometer based on quantum beats in the ground state of nitrogen-vacancy centers in diamond. We show that, by eliminating the dependence of spin evolution on the zero-field splitting D, the magnetometer is immune to temperature fluctuation and strain inhomogeneity. We apply this technique to measure low-frequency magnetic field noise by using a single nitrogen-vacancy center located within 500 nm of the surface of an isotopically pure (99.99% 12C) diamond. The photon-shot-noise limited sensitivity achieves 38 nT/sqrt[Hz] for 4.45 s acquisition time, a factor of sqrt[2] better than the implementation which uses only two spin levels. For long acquisition times (>10 s), we realize up to a factor of 15 improvement in magnetic sensitivity, which demonstrates the robustness of our technique against thermal drifts. Applying our technique to nitrogen-vacancy center ensembles, we eliminate dephasing from longitudinal strain inhomogeneity, resulting in a factor of 2.3 improvement in sensitivity. |
---|---|
AbstractList | We demonstrate an absolute magnetometer based on quantum beats in the ground state of nitrogen-vacancy centers in diamond. We show that, by eliminating the dependence of spin evolution on the zero-field splitting D, the magnetometer is immune to temperature fluctuation and strain inhomogeneity. We apply this technique to measure low-frequency magnetic field noise by using a single nitrogen-vacancy center located within 500 nm of the surface of an isotopically pure (99.99% 12C) diamond. The photon-shot-noise limited sensitivity achieves 38 nT/sqrt[Hz] for 4.45 s acquisition time, a factor of sqrt[2] better than the implementation which uses only two spin levels. For long acquisition times (>10 s), we realize up to a factor of 15 improvement in magnetic sensitivity, which demonstrates the robustness of our technique against thermal drifts. Applying our technique to nitrogen-vacancy center ensembles, we eliminate dephasing from longitudinal strain inhomogeneity, resulting in a factor of 2.3 improvement in sensitivity. |
Author | Shikata, Shinichi Huang, Zhihong Itoh, Kohei M Santori, Charles Beausoleil, Raymond G Watanabe, Hideyuki Acosta, Victor M Fang, Kejie |
Author_xml | – sequence: 1 givenname: Kejie surname: Fang fullname: Fang, Kejie organization: Department of Physics, Stanford University, Stanford, California 94305, USA – sequence: 2 givenname: Victor M surname: Acosta fullname: Acosta, Victor M – sequence: 3 givenname: Charles surname: Santori fullname: Santori, Charles – sequence: 4 givenname: Zhihong surname: Huang fullname: Huang, Zhihong – sequence: 5 givenname: Kohei M surname: Itoh fullname: Itoh, Kohei M – sequence: 6 givenname: Hideyuki surname: Watanabe fullname: Watanabe, Hideyuki – sequence: 7 givenname: Shinichi surname: Shikata fullname: Shikata, Shinichi – sequence: 8 givenname: Raymond G surname: Beausoleil fullname: Beausoleil, Raymond G |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23581305$$D View this record in MEDLINE/PubMed |
BookMark | eNo1j11LwzAYhYMo7kP_wsgf6MybLEt6KUOdMPBGwbuRJm-7yJrWJi3031uZXhweODwcOAtyHZqAhKyArQGYeGhPY-xwOGNKv8UaBNOMX5E5MJVnCmAzI4sYvxhjwLf6lsy4kHqy5Jx87n11yiKG6JMffBppbaqAqakxdSMtTERHm0C_exNSX9MCTYrUB-q8qZvgaPCpayoM2WCsCXakFkPCLt6Rm9KcI97_cUk-np_ed_vs8Pbyuns8ZFYolbJCMeGkyCeC4FY7pTQozYvcFJsSyilWCLeVFnSpQaLImTZSOwQtHRq-JKvLbtsXNbpj2_nadOPx_yL_AVafV98 |
CitedBy_id | crossref_primary_10_1134_S2635167622040267 crossref_primary_10_1103_PhysRevA_108_010101 crossref_primary_10_1103_PhysRevResearch_2_023394 crossref_primary_10_1103_RevModPhys_92_015004 crossref_primary_10_1088_1367_2630_ab00be crossref_primary_10_1039_D2TC01258H crossref_primary_10_1007_s10948_018_4877_3 crossref_primary_10_1103_PhysRevA_92_013825 crossref_primary_10_1557_mrc_2014_32 crossref_primary_10_1103_PhysRevB_106_054110 crossref_primary_10_1063_5_0129706 crossref_primary_10_1038_ncomms14000 crossref_primary_10_1116_5_0180456 crossref_primary_10_7567_1347_4065_ab1412 crossref_primary_10_1103_PhysRevB_101_104411 crossref_primary_10_1103_PhysRevB_102_134210 crossref_primary_10_1016_j_physb_2020_412767 crossref_primary_10_1088_2058_9565_acb72f crossref_primary_10_1103_PhysRevB_89_245202 crossref_primary_10_1038_srep05303 crossref_primary_10_1103_PhysRevApplied_15_054032 crossref_primary_10_1103_PhysRevX_14_031017 crossref_primary_10_1103_PhysRevLett_113_030803 crossref_primary_10_1109_JSEN_2024_3443284 crossref_primary_10_1103_PhysRevB_104_035201 crossref_primary_10_1038_nphys3291 crossref_primary_10_1063_1_5026678 crossref_primary_10_1103_PhysRevApplied_19_044086 crossref_primary_10_1103_PhysRevLett_118_197201 crossref_primary_10_1088_2040_8986_aa52cd crossref_primary_10_1073_pnas_1306825110 crossref_primary_10_1103_PhysRevApplied_15_064075 crossref_primary_10_1103_PhysRevLett_126_220402 crossref_primary_10_1038_s41534_022_00674_5 crossref_primary_10_1103_PhysRevLett_110_213605 crossref_primary_10_1515_nanoph_2020_0387 crossref_primary_10_3390_mi13071007 crossref_primary_10_1103_PhysRevResearch_6_043148 crossref_primary_10_1088_1367_2630_18_1_013015 crossref_primary_10_1116_5_0025186 crossref_primary_10_1103_PhysRevA_95_032129 crossref_primary_10_1103_PhysRevB_98_174114 crossref_primary_10_1103_PhysRevA_90_062130 crossref_primary_10_1038_srep26284 crossref_primary_10_1088_0034_4885_77_5_056503 crossref_primary_10_1088_1674_1056_ac0527 crossref_primary_10_1088_0953_8984_28_27_275302 crossref_primary_10_1063_1_5024401 crossref_primary_10_1109_JSEN_2019_2929505 crossref_primary_10_1103_PhysRevB_96_115142 crossref_primary_10_1038_srep31634 crossref_primary_10_1103_PhysRevLett_111_227602 crossref_primary_10_1364_PRJ_471266 crossref_primary_10_52396_JUSTC_2021_0249 crossref_primary_10_1364_OE_26_000382 crossref_primary_10_1103_PhysRevX_8_031025 crossref_primary_10_1021_nl402286v crossref_primary_10_1103_RevModPhys_92_021001 crossref_primary_10_1103_PhysRevApplied_15_044020 crossref_primary_10_1002_lpor_201900075 crossref_primary_10_1103_PRXQuantum_3_010343 crossref_primary_10_1103_PhysRevX_4_031022 crossref_primary_10_1103_PhysRevLett_113_020503 crossref_primary_10_1103_PhysRevApplied_12_051001 crossref_primary_10_1103_PhysRevA_91_052315 crossref_primary_10_1038_s41467_019_09429_x crossref_primary_10_1063_5_0054809 crossref_primary_10_1103_PhysRevApplied_13_024021 crossref_primary_10_1021_acsnano_4c16703 crossref_primary_10_1021_nl501841d crossref_primary_10_1103_PhysRevLett_115_087602 crossref_primary_10_1063_1_4949357 crossref_primary_10_1103_PhysRevB_90_041201 crossref_primary_10_1364_OPTICA_2_000233 crossref_primary_10_1063_5_0142448 crossref_primary_10_1103_PhysRevA_91_021801 crossref_primary_10_1109_TIM_2022_3169541 crossref_primary_10_1093_nsr_nwad100 crossref_primary_10_3103_S1068335623010086 crossref_primary_10_1088_1555_6611_abe46e crossref_primary_10_1103_PhysRevA_95_053417 crossref_primary_10_1038_s41534_024_00838_5 crossref_primary_10_1103_PhysRevResearch_2_023094 crossref_primary_10_1016_j_rinp_2023_106575 crossref_primary_10_1364_JOSAB_33_0000B1 crossref_primary_10_1073_pnas_1601513113 crossref_primary_10_1103_PhysRevApplied_14_044058 crossref_primary_10_1103_PhysRevX_10_031003 crossref_primary_10_1126_sciadv_adp4033 crossref_primary_10_1016_j_cossms_2016_08_001 crossref_primary_10_1038_s41598_017_12486_1 crossref_primary_10_1103_PhysRevX_10_031002 crossref_primary_10_1103_PhysRevA_105_012824 crossref_primary_10_1364_OE_25_019568 crossref_primary_10_1070_QEL17624 crossref_primary_10_1109_JSEN_2021_3138831 crossref_primary_10_1002_adma_202201064 crossref_primary_10_1103_PhysRevA_89_052317 crossref_primary_10_1088_1555_6611_aae035 crossref_primary_10_1103_PhysRevResearch_6_033256 crossref_primary_10_1088_1361_6501_ac95b6 crossref_primary_10_1103_PhysRevA_88_063609 crossref_primary_10_35848_1347_4065_abc399 crossref_primary_10_1103_PhysRevLett_114_120501 crossref_primary_10_1126_sciadv_abl3840 crossref_primary_10_1103_PhysRevApplied_22_044069 crossref_primary_10_1103_PhysRevA_94_021401 crossref_primary_10_1140_epjqt_s40507_020_00088_2 crossref_primary_10_1021_acs_jpclett_3c00314 crossref_primary_10_1002_pssr_202200415 crossref_primary_10_1103_PhysRevApplied_17_044028 crossref_primary_10_1140_epjd_e2019_90702_3 crossref_primary_10_1002_pssb_202200613 crossref_primary_10_35848_1347_4065_abc02d crossref_primary_10_7498_aps_68_20190147 crossref_primary_10_1088_1367_2630_17_2_023040 crossref_primary_10_1103_PhysRevB_100_024106 crossref_primary_10_1103_PhysRevLett_112_160802 crossref_primary_10_1103_PhysRevApplied_11_034029 crossref_primary_10_1103_RevModPhys_96_025001 crossref_primary_10_1088_2399_6528_aae992 |
ContentType | Journal Article |
DBID | NPM |
DOI | 10.1103/physrevlett.110.130802 |
DatabaseName | PubMed |
DatabaseTitle | PubMed |
DatabaseTitleList | PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1079-7114 |
ExternalDocumentID | 23581305 |
Genre | Journal Article |
GroupedDBID | --- -DZ -~X 123 2-P 29O 3MX 5VS 85S ABSSX ACBEA ACGFO ACNCT AENEX AEQTI AFFNX AFGMR AGDNE AJQPL ALMA_UNASSIGNED_HOLDINGS APKKM AUAIK CS3 D0L DU5 EBS EJD F5P MVM N9A NPBMV NPM P0- P2P ROL S7W SJN TN5 UBE WH7 XSW YNT ZPR ~02 |
ID | FETCH-LOGICAL-c377t-b703d539b70132c8d7781782b9ab4f1f4f1c33d65c18f815e3908a58de185dea2 |
IngestDate | Mon Jul 21 06:05:41 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c377t-b703d539b70132c8d7781782b9ab4f1f4f1c33d65c18f815e3908a58de185dea2 |
PMID | 23581305 |
ParticipantIDs | pubmed_primary_23581305 |
PublicationCentury | 2000 |
PublicationDate | 2013-03-26 |
PublicationDateYYYYMMDD | 2013-03-26 |
PublicationDate_xml | – month: 03 year: 2013 text: 2013-03-26 day: 26 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Physical review letters |
PublicationTitleAlternate | Phys Rev Lett |
PublicationYear | 2013 |
SSID | ssj0001268 |
Score | 2.4959981 |
Snippet | We demonstrate an absolute magnetometer based on quantum beats in the ground state of nitrogen-vacancy centers in diamond. We show that, by eliminating the... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 130802 |
Title | High-sensitivity magnetometry based on quantum beats in diamond nitrogen-vacancy centers |
URI | https://www.ncbi.nlm.nih.gov/pubmed/23581305 |
Volume | 110 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZa0KS-IG4DNkB-2FvlromT2H6cpqEJBOJhQxUvU3zpmmlNxpZOgl_Az-ac5GStuiIuD00rW7USf1-Oj-3z-TC2Z42JnQXywnCiROJkLvJEeRH5WFkDPoQLqB3--Ck7Pk3eT9JJr_dzJWppUduR-7FRV_I_qEIZ4Ioq2X9A9q5RKIDfgC9cAWG4_hXGGKQhbjAEnXJAzPPzMtTVPNTX34c4QHncDPi2gO5bzIcW7G4b_lpgjiE_hNf5uoLWxW3u0MoOMVSTQuI7j_VzBySJXC4b_c9SNULrzR_CRbFkj6vIK_1S4KbAStJizFncittpo3_JK2rp66yYVTSe0nIEpoaQIqbDrFsTOlZGqKiVht7ZWIpdJTLJFZMJg6huRNcbrPkYT5XAJR54RHw8LBrd_wOgcjVvMEbhL9Snf65dO2W7q-qzPsw3MIEqrvoMurW6TJO6HG5pf_MN4bHS1MjaFKVxVU4es0c0x-AHLWGesF4on7KtFsibZ2yyThu-Shve0IZXJSfa8IY2vCg50Yav04YTbZ6z03dHJ4fHghJsCCeVqoUFc-9TaeA7krHTXikdgctoTW6TaTSFj5PSZ6mL9FRHaZBmrPNU-wBeng95vM0elFUZXjLupEuktjZJE3jXk0yDhTLS5y4LqYvH5hV70XbJ2VV7ispZ11k7v63ZZYMlw16zh1N4bcMb8AFr-7YB6BeVAmBw |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-sensitivity+magnetometry+based+on+quantum+beats+in+diamond+nitrogen-vacancy+centers&rft.jtitle=Physical+review+letters&rft.au=Fang%2C+Kejie&rft.au=Acosta%2C+Victor+M&rft.au=Santori%2C+Charles&rft.au=Huang%2C+Zhihong&rft.date=2013-03-26&rft.eissn=1079-7114&rft.volume=110&rft.issue=13&rft.spage=130802&rft_id=info:doi/10.1103%2Fphysrevlett.110.130802&rft_id=info%3Apmid%2F23581305&rft_id=info%3Apmid%2F23581305&rft.externalDocID=23581305 |