High-sensitivity magnetometry based on quantum beats in diamond nitrogen-vacancy centers

We demonstrate an absolute magnetometer based on quantum beats in the ground state of nitrogen-vacancy centers in diamond. We show that, by eliminating the dependence of spin evolution on the zero-field splitting D, the magnetometer is immune to temperature fluctuation and strain inhomogeneity. We a...

Full description

Saved in:
Bibliographic Details
Published inPhysical review letters Vol. 110; no. 13; p. 130802
Main Authors Fang, Kejie, Acosta, Victor M, Santori, Charles, Huang, Zhihong, Itoh, Kohei M, Watanabe, Hideyuki, Shikata, Shinichi, Beausoleil, Raymond G
Format Journal Article
LanguageEnglish
Published United States 26.03.2013
Online AccessGet more information

Cover

Loading…
Abstract We demonstrate an absolute magnetometer based on quantum beats in the ground state of nitrogen-vacancy centers in diamond. We show that, by eliminating the dependence of spin evolution on the zero-field splitting D, the magnetometer is immune to temperature fluctuation and strain inhomogeneity. We apply this technique to measure low-frequency magnetic field noise by using a single nitrogen-vacancy center located within 500 nm of the surface of an isotopically pure (99.99% 12C) diamond. The photon-shot-noise limited sensitivity achieves 38  nT/sqrt[Hz] for 4.45 s acquisition time, a factor of sqrt[2] better than the implementation which uses only two spin levels. For long acquisition times (>10  s), we realize up to a factor of 15 improvement in magnetic sensitivity, which demonstrates the robustness of our technique against thermal drifts. Applying our technique to nitrogen-vacancy center ensembles, we eliminate dephasing from longitudinal strain inhomogeneity, resulting in a factor of 2.3 improvement in sensitivity.
AbstractList We demonstrate an absolute magnetometer based on quantum beats in the ground state of nitrogen-vacancy centers in diamond. We show that, by eliminating the dependence of spin evolution on the zero-field splitting D, the magnetometer is immune to temperature fluctuation and strain inhomogeneity. We apply this technique to measure low-frequency magnetic field noise by using a single nitrogen-vacancy center located within 500 nm of the surface of an isotopically pure (99.99% 12C) diamond. The photon-shot-noise limited sensitivity achieves 38  nT/sqrt[Hz] for 4.45 s acquisition time, a factor of sqrt[2] better than the implementation which uses only two spin levels. For long acquisition times (>10  s), we realize up to a factor of 15 improvement in magnetic sensitivity, which demonstrates the robustness of our technique against thermal drifts. Applying our technique to nitrogen-vacancy center ensembles, we eliminate dephasing from longitudinal strain inhomogeneity, resulting in a factor of 2.3 improvement in sensitivity.
Author Shikata, Shinichi
Huang, Zhihong
Itoh, Kohei M
Santori, Charles
Beausoleil, Raymond G
Watanabe, Hideyuki
Acosta, Victor M
Fang, Kejie
Author_xml – sequence: 1
  givenname: Kejie
  surname: Fang
  fullname: Fang, Kejie
  organization: Department of Physics, Stanford University, Stanford, California 94305, USA
– sequence: 2
  givenname: Victor M
  surname: Acosta
  fullname: Acosta, Victor M
– sequence: 3
  givenname: Charles
  surname: Santori
  fullname: Santori, Charles
– sequence: 4
  givenname: Zhihong
  surname: Huang
  fullname: Huang, Zhihong
– sequence: 5
  givenname: Kohei M
  surname: Itoh
  fullname: Itoh, Kohei M
– sequence: 6
  givenname: Hideyuki
  surname: Watanabe
  fullname: Watanabe, Hideyuki
– sequence: 7
  givenname: Shinichi
  surname: Shikata
  fullname: Shikata, Shinichi
– sequence: 8
  givenname: Raymond G
  surname: Beausoleil
  fullname: Beausoleil, Raymond G
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23581305$$D View this record in MEDLINE/PubMed
BookMark eNo1j11LwzAYhYMo7kP_wsgf6MybLEt6KUOdMPBGwbuRJm-7yJrWJi3031uZXhweODwcOAtyHZqAhKyArQGYeGhPY-xwOGNKv8UaBNOMX5E5MJVnCmAzI4sYvxhjwLf6lsy4kHqy5Jx87n11yiKG6JMffBppbaqAqakxdSMtTERHm0C_exNSX9MCTYrUB-q8qZvgaPCpayoM2WCsCXakFkPCLt6Rm9KcI97_cUk-np_ed_vs8Pbyuns8ZFYolbJCMeGkyCeC4FY7pTQozYvcFJsSyilWCLeVFnSpQaLImTZSOwQtHRq-JKvLbtsXNbpj2_nadOPx_yL_AVafV98
CitedBy_id crossref_primary_10_1134_S2635167622040267
crossref_primary_10_1103_PhysRevA_108_010101
crossref_primary_10_1103_PhysRevResearch_2_023394
crossref_primary_10_1103_RevModPhys_92_015004
crossref_primary_10_1088_1367_2630_ab00be
crossref_primary_10_1039_D2TC01258H
crossref_primary_10_1007_s10948_018_4877_3
crossref_primary_10_1103_PhysRevA_92_013825
crossref_primary_10_1557_mrc_2014_32
crossref_primary_10_1103_PhysRevB_106_054110
crossref_primary_10_1063_5_0129706
crossref_primary_10_1038_ncomms14000
crossref_primary_10_1116_5_0180456
crossref_primary_10_7567_1347_4065_ab1412
crossref_primary_10_1103_PhysRevB_101_104411
crossref_primary_10_1103_PhysRevB_102_134210
crossref_primary_10_1016_j_physb_2020_412767
crossref_primary_10_1088_2058_9565_acb72f
crossref_primary_10_1103_PhysRevB_89_245202
crossref_primary_10_1038_srep05303
crossref_primary_10_1103_PhysRevApplied_15_054032
crossref_primary_10_1103_PhysRevX_14_031017
crossref_primary_10_1103_PhysRevLett_113_030803
crossref_primary_10_1109_JSEN_2024_3443284
crossref_primary_10_1103_PhysRevB_104_035201
crossref_primary_10_1038_nphys3291
crossref_primary_10_1063_1_5026678
crossref_primary_10_1103_PhysRevApplied_19_044086
crossref_primary_10_1103_PhysRevLett_118_197201
crossref_primary_10_1088_2040_8986_aa52cd
crossref_primary_10_1073_pnas_1306825110
crossref_primary_10_1103_PhysRevApplied_15_064075
crossref_primary_10_1103_PhysRevLett_126_220402
crossref_primary_10_1038_s41534_022_00674_5
crossref_primary_10_1103_PhysRevLett_110_213605
crossref_primary_10_1515_nanoph_2020_0387
crossref_primary_10_3390_mi13071007
crossref_primary_10_1103_PhysRevResearch_6_043148
crossref_primary_10_1088_1367_2630_18_1_013015
crossref_primary_10_1116_5_0025186
crossref_primary_10_1103_PhysRevA_95_032129
crossref_primary_10_1103_PhysRevB_98_174114
crossref_primary_10_1103_PhysRevA_90_062130
crossref_primary_10_1038_srep26284
crossref_primary_10_1088_0034_4885_77_5_056503
crossref_primary_10_1088_1674_1056_ac0527
crossref_primary_10_1088_0953_8984_28_27_275302
crossref_primary_10_1063_1_5024401
crossref_primary_10_1109_JSEN_2019_2929505
crossref_primary_10_1103_PhysRevB_96_115142
crossref_primary_10_1038_srep31634
crossref_primary_10_1103_PhysRevLett_111_227602
crossref_primary_10_1364_PRJ_471266
crossref_primary_10_52396_JUSTC_2021_0249
crossref_primary_10_1364_OE_26_000382
crossref_primary_10_1103_PhysRevX_8_031025
crossref_primary_10_1021_nl402286v
crossref_primary_10_1103_RevModPhys_92_021001
crossref_primary_10_1103_PhysRevApplied_15_044020
crossref_primary_10_1002_lpor_201900075
crossref_primary_10_1103_PRXQuantum_3_010343
crossref_primary_10_1103_PhysRevX_4_031022
crossref_primary_10_1103_PhysRevLett_113_020503
crossref_primary_10_1103_PhysRevApplied_12_051001
crossref_primary_10_1103_PhysRevA_91_052315
crossref_primary_10_1038_s41467_019_09429_x
crossref_primary_10_1063_5_0054809
crossref_primary_10_1103_PhysRevApplied_13_024021
crossref_primary_10_1021_acsnano_4c16703
crossref_primary_10_1021_nl501841d
crossref_primary_10_1103_PhysRevLett_115_087602
crossref_primary_10_1063_1_4949357
crossref_primary_10_1103_PhysRevB_90_041201
crossref_primary_10_1364_OPTICA_2_000233
crossref_primary_10_1063_5_0142448
crossref_primary_10_1103_PhysRevA_91_021801
crossref_primary_10_1109_TIM_2022_3169541
crossref_primary_10_1093_nsr_nwad100
crossref_primary_10_3103_S1068335623010086
crossref_primary_10_1088_1555_6611_abe46e
crossref_primary_10_1103_PhysRevA_95_053417
crossref_primary_10_1038_s41534_024_00838_5
crossref_primary_10_1103_PhysRevResearch_2_023094
crossref_primary_10_1016_j_rinp_2023_106575
crossref_primary_10_1364_JOSAB_33_0000B1
crossref_primary_10_1073_pnas_1601513113
crossref_primary_10_1103_PhysRevApplied_14_044058
crossref_primary_10_1103_PhysRevX_10_031003
crossref_primary_10_1126_sciadv_adp4033
crossref_primary_10_1016_j_cossms_2016_08_001
crossref_primary_10_1038_s41598_017_12486_1
crossref_primary_10_1103_PhysRevX_10_031002
crossref_primary_10_1103_PhysRevA_105_012824
crossref_primary_10_1364_OE_25_019568
crossref_primary_10_1070_QEL17624
crossref_primary_10_1109_JSEN_2021_3138831
crossref_primary_10_1002_adma_202201064
crossref_primary_10_1103_PhysRevA_89_052317
crossref_primary_10_1088_1555_6611_aae035
crossref_primary_10_1103_PhysRevResearch_6_033256
crossref_primary_10_1088_1361_6501_ac95b6
crossref_primary_10_1103_PhysRevA_88_063609
crossref_primary_10_35848_1347_4065_abc399
crossref_primary_10_1103_PhysRevLett_114_120501
crossref_primary_10_1126_sciadv_abl3840
crossref_primary_10_1103_PhysRevApplied_22_044069
crossref_primary_10_1103_PhysRevA_94_021401
crossref_primary_10_1140_epjqt_s40507_020_00088_2
crossref_primary_10_1021_acs_jpclett_3c00314
crossref_primary_10_1002_pssr_202200415
crossref_primary_10_1103_PhysRevApplied_17_044028
crossref_primary_10_1140_epjd_e2019_90702_3
crossref_primary_10_1002_pssb_202200613
crossref_primary_10_35848_1347_4065_abc02d
crossref_primary_10_7498_aps_68_20190147
crossref_primary_10_1088_1367_2630_17_2_023040
crossref_primary_10_1103_PhysRevB_100_024106
crossref_primary_10_1103_PhysRevLett_112_160802
crossref_primary_10_1103_PhysRevApplied_11_034029
crossref_primary_10_1103_RevModPhys_96_025001
crossref_primary_10_1088_2399_6528_aae992
ContentType Journal Article
DBID NPM
DOI 10.1103/physrevlett.110.130802
DatabaseName PubMed
DatabaseTitle PubMed
DatabaseTitleList PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Physics
EISSN 1079-7114
ExternalDocumentID 23581305
Genre Journal Article
GroupedDBID ---
-DZ
-~X
123
2-P
29O
3MX
5VS
85S
ABSSX
ACBEA
ACGFO
ACNCT
AENEX
AEQTI
AFFNX
AFGMR
AGDNE
AJQPL
ALMA_UNASSIGNED_HOLDINGS
APKKM
AUAIK
CS3
D0L
DU5
EBS
EJD
F5P
MVM
N9A
NPBMV
NPM
P0-
P2P
ROL
S7W
SJN
TN5
UBE
WH7
XSW
YNT
ZPR
~02
ID FETCH-LOGICAL-c377t-b703d539b70132c8d7781782b9ab4f1f4f1c33d65c18f815e3908a58de185dea2
IngestDate Mon Jul 21 06:05:41 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c377t-b703d539b70132c8d7781782b9ab4f1f4f1c33d65c18f815e3908a58de185dea2
PMID 23581305
ParticipantIDs pubmed_primary_23581305
PublicationCentury 2000
PublicationDate 2013-03-26
PublicationDateYYYYMMDD 2013-03-26
PublicationDate_xml – month: 03
  year: 2013
  text: 2013-03-26
  day: 26
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Physical review letters
PublicationTitleAlternate Phys Rev Lett
PublicationYear 2013
SSID ssj0001268
Score 2.4959981
Snippet We demonstrate an absolute magnetometer based on quantum beats in the ground state of nitrogen-vacancy centers in diamond. We show that, by eliminating the...
SourceID pubmed
SourceType Index Database
StartPage 130802
Title High-sensitivity magnetometry based on quantum beats in diamond nitrogen-vacancy centers
URI https://www.ncbi.nlm.nih.gov/pubmed/23581305
Volume 110
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZa0KS-IG4DNkB-2FvlromT2H6cpqEJBOJhQxUvU3zpmmlNxpZOgl_Az-ac5GStuiIuD00rW7USf1-Oj-3z-TC2Z42JnQXywnCiROJkLvJEeRH5WFkDPoQLqB3--Ck7Pk3eT9JJr_dzJWppUduR-7FRV_I_qEIZ4Ioq2X9A9q5RKIDfgC9cAWG4_hXGGKQhbjAEnXJAzPPzMtTVPNTX34c4QHncDPi2gO5bzIcW7G4b_lpgjiE_hNf5uoLWxW3u0MoOMVSTQuI7j_VzBySJXC4b_c9SNULrzR_CRbFkj6vIK_1S4KbAStJizFncittpo3_JK2rp66yYVTSe0nIEpoaQIqbDrFsTOlZGqKiVht7ZWIpdJTLJFZMJg6huRNcbrPkYT5XAJR54RHw8LBrd_wOgcjVvMEbhL9Snf65dO2W7q-qzPsw3MIEqrvoMurW6TJO6HG5pf_MN4bHS1MjaFKVxVU4es0c0x-AHLWGesF4on7KtFsibZ2yyThu-Shve0IZXJSfa8IY2vCg50Yav04YTbZ6z03dHJ4fHghJsCCeVqoUFc-9TaeA7krHTXikdgctoTW6TaTSFj5PSZ6mL9FRHaZBmrPNU-wBeng95vM0elFUZXjLupEuktjZJE3jXk0yDhTLS5y4LqYvH5hV70XbJ2VV7ispZ11k7v63ZZYMlw16zh1N4bcMb8AFr-7YB6BeVAmBw
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-sensitivity+magnetometry+based+on+quantum+beats+in+diamond+nitrogen-vacancy+centers&rft.jtitle=Physical+review+letters&rft.au=Fang%2C+Kejie&rft.au=Acosta%2C+Victor+M&rft.au=Santori%2C+Charles&rft.au=Huang%2C+Zhihong&rft.date=2013-03-26&rft.eissn=1079-7114&rft.volume=110&rft.issue=13&rft.spage=130802&rft_id=info:doi/10.1103%2Fphysrevlett.110.130802&rft_id=info%3Apmid%2F23581305&rft_id=info%3Apmid%2F23581305&rft.externalDocID=23581305