Improved blast capacity of pre-engineered metal buildings using coupled CFD and FEA modeling

Current industry accepted methods for predicting structural blast damage to pre-engineered metal buildings (PEMBs) subject to vapor cloud explosions are quick and cost-effective to perform. However, they also tend to be overly conservative; while costs may be saved on analysis, the results may promp...

Full description

Saved in:
Bibliographic Details
Published inJournal of loss prevention in the process industries Vol. 56; pp. 486 - 497
Main Authors Milner, David, Wesevich, James, Nikodym, Lisa, Nasri, Vincent, Lawver, Darell, Mould, John
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.11.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Current industry accepted methods for predicting structural blast damage to pre-engineered metal buildings (PEMBs) subject to vapor cloud explosions are quick and cost-effective to perform. However, they also tend to be overly conservative; while costs may be saved on analysis, the results may prompt unnecessary mitigation. This paper investigates the effectiveness of using more advanced computational techniques with increasing levels of refinement and sophistication to produce more realistic estimates of structural damage and corresponding human injury. The goal is to reduce the amount of over-conservatism in results and avoid the degree of costly mitigation measures that may be unnecessary. In this study, a typical PEMB is selected and assessed for selected loads using a variety of approaches of increasing analytical sophistication. The extent of building damage is determined by each method and the results are compared to demonstrate the benefit of each analytical method. The use of refined analytical methods is shown to estimate significantly less damage in the PEMB for the loads considered. •Finite element analysis predicted dramatically better performance than simplified methods.•Consideration of internal air pressure can help improve building performance.•Consideration of more representative blast waveforms can help improve building performance.
AbstractList Current industry accepted methods for predicting structural blast damage to pre-engineered metal buildings (PEMBs) subject to vapor cloud explosions are quick and cost-effective to perform. However, they also tend to be overly conservative; while costs may be saved on analysis, the results may prompt unnecessary mitigation. This paper investigates the effectiveness of using more advanced computational techniques with increasing levels of refinement and sophistication to produce more realistic estimates of structural damage and corresponding human injury. The goal is to reduce the amount of over-conservatism in results and avoid the degree of costly mitigation measures that may be unnecessary. In this study, a typical PEMB is selected and assessed for selected loads using a variety of approaches of increasing analytical sophistication. The extent of building damage is determined by each method and the results are compared to demonstrate the benefit of each analytical method. The use of refined analytical methods is shown to estimate significantly less damage in the PEMB for the loads considered. •Finite element analysis predicted dramatically better performance than simplified methods.•Consideration of internal air pressure can help improve building performance.•Consideration of more representative blast waveforms can help improve building performance.
Author Mould, John
Lawver, Darell
Milner, David
Wesevich, James
Nikodym, Lisa
Nasri, Vincent
Author_xml – sequence: 1
  givenname: David
  surname: Milner
  fullname: Milner, David
  email: DMilner@ThorntonTomasetti.com
– sequence: 2
  givenname: James
  surname: Wesevich
  fullname: Wesevich, James
– sequence: 3
  givenname: Lisa
  surname: Nikodym
  fullname: Nikodym, Lisa
– sequence: 4
  givenname: Vincent
  surname: Nasri
  fullname: Nasri, Vincent
– sequence: 5
  givenname: Darell
  surname: Lawver
  fullname: Lawver, Darell
– sequence: 6
  givenname: John
  surname: Mould
  fullname: Mould, John
BookMark eNp9kE1qwzAQRrVIoUnaA3SnC9jVj2NbdBXSpA0Euml3BSFL4yAjW0ZyArl9FdJ1VsPMN28Y3gLNBj8AQi-U5JTQ8rXLOzfmjNA69Tkh9QzNiViRrGCcPKJFjB0htCJ1NUe_-34M_gwGN07FCWs1Km2nC_YtHgNkMBztABDSQg-Tcrg5WWfscIz4FFPB2p9Gl9LN7h2rweDddo17b8Cl8Ak9tMpFeP6vS_Sz235vPrPD18d-sz5kmlfVlKnWMMUFUF4yXgExRSMKTpk2omQrLYxmpADKaC2KRmmqCgWMtgCi5IlVfIno7a4OPsYArRyD7VW4SErkVYnsZFIir0quo6QkMW83BtJjZwtBRm1h0GBsAD1J4-0d-g_Pdm47
CitedBy_id crossref_primary_10_1016_j_matpr_2020_12_942
crossref_primary_10_29121_ijesrt_v9_i7_2020_1
crossref_primary_10_1007_s41062_023_01146_1
crossref_primary_10_1088_1755_1315_1130_1_012028
crossref_primary_10_1016_j_jlp_2020_104252
Cites_doi 10.1016/j.jlp.2017.09.015
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright_xml – notice: 2018 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.jlp.2018.10.008
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 497
ExternalDocumentID 10_1016_j_jlp_2018_10_008
S0950423018300949
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BJAXD
BKOJK
BLXMC
CS3
D-I
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HLY
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LX7
M41
MO0
MS~
N9A
NDZJH
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SCE
SDF
SDG
SES
SEW
SPC
SPCBC
SSG
SST
SSZ
T5K
WUQ
ZY4
~G-
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
ID FETCH-LOGICAL-c377t-afd2a39e136237e0d4b94312cd9625c9dc204e121894bac1a4ae21fee963afda3
IEDL.DBID .~1
ISSN 0950-4230
IngestDate Thu Sep 26 15:31:06 EDT 2024
Fri Feb 23 02:47:50 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Blast loading
Pre-engineered metal building (PEMB)
Petrochemical facility siting
Finite element analysis (FEA)
Vapor cloud explosion (VCE)
Computational fluid dynamics (CFD)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c377t-afd2a39e136237e0d4b94312cd9625c9dc204e121894bac1a4ae21fee963afda3
OpenAccessLink https://oaktrust.library.tamu.edu/bitstream/1969.1/193588/1/Wesevich%2c%20James.pdf
PageCount 12
ParticipantIDs crossref_primary_10_1016_j_jlp_2018_10_008
elsevier_sciencedirect_doi_10_1016_j_jlp_2018_10_008
PublicationCentury 2000
PublicationDate 2018-11-01
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-01
  day: 01
PublicationDecade 2010
PublicationTitle Journal of loss prevention in the process industries
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Ritzel, Crocker, Whitehouse (bib7) 2009
CCPS (Center for Chemical Process Safety) (bib4) 2012
CCPS (Center for Chemical Process Safety) (bib2) 1996
CCPS (Center for Chemical Process Safety) (bib3) 2010
Hoorelbeke, Bakke, Izatt, Renoult, Brewerton (bib6) 2006
Wesevich, Hassig, Nikodym, Nasri, Mould (bib10) 2017, November; 50
ASCE (American Society of Civil Engineers) (bib1) 2010
Hassig (bib5) 2017
US Army Corps of Engineers (bib8) 2012, December
Vaughan (bib9) 2017
CCPS (Center for Chemical Process Safety) (10.1016/j.jlp.2018.10.008_bib2) 1996
CCPS (Center for Chemical Process Safety) (10.1016/j.jlp.2018.10.008_bib4) 2012
Ritzel (10.1016/j.jlp.2018.10.008_bib7) 2009
US Army Corps of Engineers (10.1016/j.jlp.2018.10.008_bib8) 2012
Wesevich (10.1016/j.jlp.2018.10.008_bib10) 2017; 50
ASCE (American Society of Civil Engineers) (10.1016/j.jlp.2018.10.008_bib1) 2010
Hassig (10.1016/j.jlp.2018.10.008_bib5) 2017
CCPS (Center for Chemical Process Safety) (10.1016/j.jlp.2018.10.008_bib3) 2010
Vaughan (10.1016/j.jlp.2018.10.008_bib9) 2017
Hoorelbeke (10.1016/j.jlp.2018.10.008_bib6) 2006
References_xml – year: 1996
  ident: bib2
  article-title: Guidelines for Evaluating Process Plant Buildings for External Explosions and Fires
  contributor:
    fullname: CCPS (Center for Chemical Process Safety)
– year: 2012, December
  ident: bib8
  article-title: Single Degree of Freedom Blast Effects Design Spreadsheet (SBEDS)
  contributor:
    fullname: US Army Corps of Engineers
– year: 2010
  ident: bib1
  publication-title: Design of Blast-resistant Buildings in Petrochemical Facilities
  contributor:
    fullname: ASCE (American Society of Civil Engineers)
– year: 2017
  ident: bib5
  article-title: VCFD User Manual
  contributor:
    fullname: Hassig
– year: 2006
  ident: bib6
  article-title: Vapor cloud explosion analysis of onshore petrochemical facilities
  publication-title: 7th Professional Development Conference & Exhibition
  contributor:
    fullname: Brewerton
– year: 2017
  ident: bib9
  article-title: Flex User's Guide
  contributor:
    fullname: Vaughan
– volume: 50
  start-page: 205
  year: 2017, November
  end-page: 220
  ident: bib10
  article-title: Accounting for channeling and shielding effects for vapor cloud explosions
  publication-title: J. Loss Prev. Process. Ind.
  contributor:
    fullname: Mould
– year: 2009
  ident: bib7
  article-title: Blast Response of Soft-skinned Shelters and Occupant Vulnerability
  contributor:
    fullname: Whitehouse
– year: 2010
  ident: bib3
  article-title: Guidelines for Vapor Cloud Explosion, Pressure Vessel Burst, BLEVE and Flash Fire Hazards
  contributor:
    fullname: CCPS (Center for Chemical Process Safety)
– year: 2012
  ident: bib4
  article-title: Guidelines for Evaluating Process Plant Buildings for External Explosions, Fires, and Toxic Releases
  contributor:
    fullname: CCPS (Center for Chemical Process Safety)
– year: 2012
  ident: 10.1016/j.jlp.2018.10.008_bib4
  contributor:
    fullname: CCPS (Center for Chemical Process Safety)
– year: 1996
  ident: 10.1016/j.jlp.2018.10.008_bib2
  contributor:
    fullname: CCPS (Center for Chemical Process Safety)
– year: 2012
  ident: 10.1016/j.jlp.2018.10.008_bib8
  contributor:
    fullname: US Army Corps of Engineers
– volume: 50
  start-page: 205
  year: 2017
  ident: 10.1016/j.jlp.2018.10.008_bib10
  article-title: Accounting for channeling and shielding effects for vapor cloud explosions
  publication-title: J. Loss Prev. Process. Ind.
  doi: 10.1016/j.jlp.2017.09.015
  contributor:
    fullname: Wesevich
– year: 2010
  ident: 10.1016/j.jlp.2018.10.008_bib3
  contributor:
    fullname: CCPS (Center for Chemical Process Safety)
– year: 2017
  ident: 10.1016/j.jlp.2018.10.008_bib5
  contributor:
    fullname: Hassig
– year: 2010
  ident: 10.1016/j.jlp.2018.10.008_bib1
  contributor:
    fullname: ASCE (American Society of Civil Engineers)
– year: 2017
  ident: 10.1016/j.jlp.2018.10.008_bib9
  contributor:
    fullname: Vaughan
– year: 2009
  ident: 10.1016/j.jlp.2018.10.008_bib7
  contributor:
    fullname: Ritzel
– year: 2006
  ident: 10.1016/j.jlp.2018.10.008_bib6
  article-title: Vapor cloud explosion analysis of onshore petrochemical facilities
  contributor:
    fullname: Hoorelbeke
SSID ssj0017087
Score 2.2384272
Snippet Current industry accepted methods for predicting structural blast damage to pre-engineered metal buildings (PEMBs) subject to vapor cloud explosions are quick...
SourceID crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 486
SubjectTerms Blast loading
Computational fluid dynamics (CFD)
Finite element analysis (FEA)
Petrochemical facility siting
Pre-engineered metal building (PEMB)
Vapor cloud explosion (VCE)
Title Improved blast capacity of pre-engineered metal buildings using coupled CFD and FEA modeling
URI https://dx.doi.org/10.1016/j.jlp.2018.10.008
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5KvehBfGJ9lD14ErbNY5NsjqU2VMVetNCDEPYVaalp0fTqb3c2D6mgF4_ZnYXw7WbmS_LNDMC1FAqjaqip0FJT5Lch5VwEVIhA2AJqQezbROHHSTiesvtZMGvBsMmFsbLK2vdXPr301vVIv0azv57P-09IDqyow8FDafVxNomPYTDCM937_JZ5uJFTNsmzxtRaN382S43XYmlLVrq8Vwq8-O-xaSveJAewXxNFMqju5RBaJj-Cva3ygcfwUn0RMJpI5MAFURj4FLJqssqIVXeY2hgN3gySbCLrHtgfxMrdX4labdZLnB0mt0TkmiSjASlb4-DkCUyT0fNwTOtuCVT5UVRQkWlP-LFxMST5kXE0kzGyA0_pGN9xVKyV5zDjYkiPGe6QK5gwnpsZg48grhX-KbTzVW7OgEjFNQ5FXErNtMe4w2WMCGe-yfzMkx24aXBK11VRjLRRiy1SBDW1oNohBLUDrEEy_bGzKTrtv5ed_2_ZBezaqypb8BLaxfvGXCFtKGS3PBdd2BncPYwnXzCuwqI
link.rule.ids 315,786,790,4521,24144,27957,27958,45620,45714
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2V9gAcEKsoqw-ckEKzOI1zrApVSpcLrdQDUuQtqFVJK0j_n3EWVCS4cLU9UvTszLzEb2YA7gSXGFXbyuJKKAv5bdtijPsW5z43BdT80DOJwqNxO5rS55k_q0G3yoUxssrS9xc-PffW5UirRLO1ns9bL0gOjKjDxkNp9HHhDjSoHzi0Do1OfxCNvy8TAjvvk2fWW8agutzMZV6Lpala6bCHXOPFfg9PWyGndwgHJVckneJxjqCm02PY36ogeAKvxU8BrYhAGpwRibFPIrEmq4QYgYcuF-OCd408m4iyDfYnMYr3NyJXm_USZ7u9R8JTRXpPHZJ3x8HJU5j2nibdyCobJljSC4LM4olyuRdqB6OSF2hbUREiQXClCvEzR4ZKujbVDkb1kOImOZxy7TqJ1vgWoi33zqCerlJ9DkRIpnAoYEIoqlzKbCZCBDnxdOIlrmjCfYVTvC7qYsSVYGwRI6ixAdUMIahNoBWS8Y_NjdFv_2128T-zW9iNJqNhPOyPB5ewZ2aK5MErqGcfG32NLCITN-Up-QL848VY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+blast+capacity+of+pre-engineered+metal+buildings+using+coupled+CFD+and+FEA+modeling&rft.jtitle=Journal+of+loss+prevention+in+the+process+industries&rft.au=Milner%2C+David&rft.au=Wesevich%2C+James&rft.au=Nikodym%2C+Lisa&rft.au=Nasri%2C+Vincent&rft.date=2018-11-01&rft.pub=Elsevier+Ltd&rft.issn=0950-4230&rft.volume=56&rft.spage=486&rft.epage=497&rft_id=info:doi/10.1016%2Fj.jlp.2018.10.008&rft.externalDocID=S0950423018300949
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-4230&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-4230&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-4230&client=summon