The structural diversity of artificial genetic polymers

Synthetic genetics is a subdiscipline of synthetic biology that aims to develop artificial genetic polymers (also referred to as xeno-nucleic acids or XNAs) that can replicate in vitro and eventually in model cellular organisms. This field of science combines organic chemistry with polymerase engine...

Full description

Saved in:
Bibliographic Details
Published inNucleic acids research Vol. 44; no. 3; pp. 1007 - 1021
Main Authors Anosova, Irina, Kowal, Ewa A, Dunn, Matthew R, Chaput, John C, Van Horn, Wade D, Egli, Martin
Format Journal Article
LanguageEnglish
Published England Oxford University Press 18.02.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Synthetic genetics is a subdiscipline of synthetic biology that aims to develop artificial genetic polymers (also referred to as xeno-nucleic acids or XNAs) that can replicate in vitro and eventually in model cellular organisms. This field of science combines organic chemistry with polymerase engineering to create alternative forms of DNA that can store genetic information and evolve in response to external stimuli. Practitioners of synthetic genetics postulate that XNA could be used to safeguard synthetic biology organisms by storing genetic information in orthogonal chromosomes. XNA polymers are also under active investigation as a source of nuclease resistant affinity reagents (aptamers) and catalysts (xenozymes) with practical applications in disease diagnosis and treatment. In this review, we provide a structural perspective on known antiparallel duplex structures in which at least one strand of the Watson-Crick duplex is composed entirely of XNA. Currently, only a handful of XNA structures have been archived in the Protein Data Bank as compared to the more than 100 000 structures that are now available. Given the growing interest in xenobiology projects, we chose to compare the structural features of XNA polymers and discuss their potential to access new regions of nucleic acid fold space.
AbstractList Synthetic genetics is a subdiscipline of synthetic biology that aims to develop artificial genetic polymers (also referred to as xeno-nucleic acids or XNAs) that can replicate in vitro and eventually in model cellular organisms. This field of science combines organic chemistry with polymerase engineering to create alternative forms of DNA that can store genetic information and evolve in response to external stimuli. Practitioners of synthetic genetics postulate that XNA could be used to safeguard synthetic biology organisms by storing genetic information in orthogonal chromosomes. XNA polymers are also under active investigation as a source of nuclease resistant affinity reagents (aptamers) and catalysts (xenozymes) with practical applications in disease diagnosis and treatment. In this review, we provide a structural perspective on known antiparallel duplex structures in which at least one strand of the Watson-Crick duplex is composed entirely of XNA. Currently, only a handful of XNA structures have been archived in the Protein Data Bank as compared to the more than 100 000 structures that are now available. Given the growing interest in xenobiology projects, we chose to compare the structural features of XNA polymers and discuss their potential to access new regions of nucleic acid fold space.
Synthetic genetics is a subdiscipline of synthetic biology that aims to develop artificial genetic polymers (also referred to as xeno-nucleic acids or XNAs) that can replicate in vitro and eventually in model cellular organisms. This field of science combines organic chemistry with polymerase engineering to create alternative forms of DNA that can store genetic information and evolve in response to external stimuli. Practitioners of synthetic genetics postulate that XNA could be used to safeguard synthetic biology organisms by storing genetic information in orthogonal chromosomes. XNA polymers are also under active investigation as a source of nuclease resistant affinity reagents (aptamers) and catalysts (xenozymes) with practical applications in disease diagnosis and treatment. In this review, we provide a structural perspective on known antiparallel duplex structures in which at least one strand of the Watson–Crick duplex is composed entirely of XNA. Currently, only a handful of XNA structures have been archived in the Protein Data Bank as compared to the more than 100 000 structures that are now available. Given the growing interest in xenobiology projects, we chose to compare the structural features of XNA polymers and discuss their potential to access new regions of nucleic acid fold space.
Author Van Horn, Wade D
Kowal, Ewa A
Egli, Martin
Anosova, Irina
Dunn, Matthew R
Chaput, John C
Author_xml – sequence: 1
  givenname: Irina
  surname: Anosova
  fullname: Anosova, Irina
  organization: The Biodesign Institute, Virginia G. Piper Center for Personalized Diagnostics, School of Molecular Sciences, Magnetic Resonance Research Center, Arizona State University, Tempe, AZ 85287-5001, USA
– sequence: 2
  givenname: Ewa A
  surname: Kowal
  fullname: Kowal, Ewa A
  organization: Department of Biochemistry, Center for Structural Biology, and Vanderbilt Ingram Cancer Center, Vanderbilt University, School of Medicine, Nashville, TN 37232-0146, USA
– sequence: 3
  givenname: Matthew R
  surname: Dunn
  fullname: Dunn, Matthew R
  organization: Department of Pharmaceutical Sciences, University of California-Irvine, Irvine, CA 92697, USA
– sequence: 4
  givenname: John C
  surname: Chaput
  fullname: Chaput, John C
  email: jchaput@uci.edu
  organization: Department of Pharmaceutical Sciences, University of California-Irvine, Irvine, CA 92697, USA jchaput@uci.edu
– sequence: 5
  givenname: Wade D
  surname: Van Horn
  fullname: Van Horn, Wade D
  email: wade.van.horn@asu.edu
  organization: The Biodesign Institute, Virginia G. Piper Center for Personalized Diagnostics, School of Molecular Sciences, Magnetic Resonance Research Center, Arizona State University, Tempe, AZ 85287-5001, USA wade.van.horn@asu.edu
– sequence: 6
  givenname: Martin
  surname: Egli
  fullname: Egli, Martin
  email: martin.egli@vanderbilt.edu
  organization: Department of Biochemistry, Center for Structural Biology, and Vanderbilt Ingram Cancer Center, Vanderbilt University, School of Medicine, Nashville, TN 37232-0146, USA martin.egli@vanderbilt.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26673703$$D View this record in MEDLINE/PubMed
BookMark eNpVkEtLAzEUhYMo9qEr9zJLQcbmNcnMRpDiCwpuug-ZPNrozKQmM4X-e1Nai64u997DOYdvAs473xkAbhB8QLAis06G2epriyjHZ2CMCMM5rRg-B2NIYJEjSMsRmMT4CSGiqKCXYIQZ44RDMgZ8uTZZ7MOg-iHIJtNua0J0_S7zNpOhd9Ypl-4r05neqWzjm12bFFfgwsommuvjnILly_Ny_pYvPl7f50-LXBHO-1xqhAuLKZao1NjwSpaWYWVraLSGaTWYaUkLaVENKymRpiWuWc1UpZUiZAoeD7aboW6NVqbrU0uxCa6VYSe8dOL_p3NrsfJbQXnBSoKTwd3RIPjvwcRetC4q0zSyM36IAnHGYaJR7bPuD1IVfIzB2FMMgmJPWiTS4kg6qW__Njtpf9GSH4jvfuU
CitedBy_id crossref_primary_10_1002_ejic_202100193
crossref_primary_10_1093_nar_gkaa1159
crossref_primary_10_1021_acssynbio_9b00104
crossref_primary_10_1246_cl_170971
crossref_primary_10_3390_cancers9060069
crossref_primary_10_1002_bip_22999
crossref_primary_10_1007_s13194_018_0243_3
crossref_primary_10_1021_acscatal_9b01155
crossref_primary_10_1002_cbic_201600136
crossref_primary_10_3390_ijms232314969
crossref_primary_10_3390_v13101983
crossref_primary_10_1021_acs_analchem_7b03807
crossref_primary_10_1039_D4CB00017J
crossref_primary_10_3390_sym13101949
crossref_primary_10_1002_cpz1_609
crossref_primary_10_1080_15583724_2021_2014519
crossref_primary_10_1080_07391102_2017_1369164
crossref_primary_10_1002_anie_201701448
crossref_primary_10_1016_j_bioorg_2023_106921
crossref_primary_10_1186_s13062_022_00353_7
crossref_primary_10_1002_cbic_201600701
crossref_primary_10_1002_cpz1_297
crossref_primary_10_1021_acscatal_8b03363
crossref_primary_10_1021_jacs_7b13031
crossref_primary_10_1021_acs_jpclett_2c02338
crossref_primary_10_1021_acssynbio_1c00048
crossref_primary_10_1021_jacs_3c14626
crossref_primary_10_1016_j_cbpa_2016_08_001
crossref_primary_10_1002_cbic_201800411
crossref_primary_10_1002_chem_202401254
crossref_primary_10_3762_bjoc_17_76
crossref_primary_10_1101_cshperspect_a032490
crossref_primary_10_1002_cpnc_4
crossref_primary_10_1021_acs_chemrev_1c00386
crossref_primary_10_1021_jacs_7b01116
crossref_primary_10_1002_bip_23388
crossref_primary_10_1002_cpnc_34
crossref_primary_10_3389_fchem_2019_00612
crossref_primary_10_1002_cpnc_33
crossref_primary_10_1016_j_neuropharm_2021_108761
crossref_primary_10_1038_s42004_020_00400_2
crossref_primary_10_1142_S2529732523500074
crossref_primary_10_1093_nar_gkz551
crossref_primary_10_1002_cbic_202000203
crossref_primary_10_1002_cpz1_188
crossref_primary_10_1038_s41467_021_23725_5
crossref_primary_10_1261_rna_079526_122
crossref_primary_10_1021_acs_jctc_1c00270
crossref_primary_10_1021_acschembio_9b00237
crossref_primary_10_1093_nar_gkad067
crossref_primary_10_1021_acs_biochem_3c00352
crossref_primary_10_1017_S0033583520000050
crossref_primary_10_1063_5_0121820
crossref_primary_10_1002_cpch_44
crossref_primary_10_1021_acs_accounts_7b00056
crossref_primary_10_1002_bip_23410
crossref_primary_10_1002_cbic_201900725
crossref_primary_10_1093_nar_gkad592
crossref_primary_10_1093_nar_gkad716
crossref_primary_10_1002_ange_201701448
crossref_primary_10_1016_j_tet_2017_09_006
crossref_primary_10_1021_acssynbio_9b00028
crossref_primary_10_1039_C8RA05568H
crossref_primary_10_1016_j_jmgm_2018_01_007
crossref_primary_10_1021_acs_jpcb_0c01420
crossref_primary_10_1039_C8NJ01739E
crossref_primary_10_1007_s11274_021_03024_3
crossref_primary_10_1007_s11229_023_04185_4
crossref_primary_10_1093_nar_gkz773
crossref_primary_10_1002_asia_201700374
crossref_primary_10_1017_S0033583517000038
crossref_primary_10_1093_nar_gkae135
crossref_primary_10_1002_cbic_202200521
crossref_primary_10_1038_s41557_022_01021_z
crossref_primary_10_1021_acschembio_5b00949
crossref_primary_10_1002_anie_201911746
crossref_primary_10_1186_s12915_020_00803_6
crossref_primary_10_1002_ange_202316678
crossref_primary_10_1038_s41557_021_00645_x
crossref_primary_10_1021_acs_orglett_7b02099
crossref_primary_10_1002_cbic_201600349
crossref_primary_10_1021_acs_biochem_0c00685
crossref_primary_10_1021_acs_biochem_3c00327
crossref_primary_10_1021_acs_joc_8b00875
crossref_primary_10_3390_diagnostics14050488
crossref_primary_10_1134_S1068162019060153
crossref_primary_10_1021_acsami_0c11684
crossref_primary_10_1016_j_coisb_2020_10_013
crossref_primary_10_3389_fbioe_2021_792489
crossref_primary_10_1021_acs_organomet_9b00851
crossref_primary_10_1039_D1CB00025J
crossref_primary_10_1002_anie_202316678
crossref_primary_10_1039_D4RA03029J
crossref_primary_10_1016_j_crchbi_2021_100012
crossref_primary_10_1093_nar_gkw644
crossref_primary_10_1093_nar_gkw885
crossref_primary_10_1093_nar_gkz513
crossref_primary_10_1016_j_copbio_2017_04_004
crossref_primary_10_1038_s41557_020_0501_9
crossref_primary_10_3389_fmolb_2019_00028
crossref_primary_10_1021_acs_accounts_8b00650
crossref_primary_10_1039_D2CB00116K
crossref_primary_10_1002_chem_201802287
crossref_primary_10_1021_acssynbio_8b00511
crossref_primary_10_1038_ncomms11235
crossref_primary_10_1021_acschemneuro_7b00211
crossref_primary_10_1093_nar_gkab923
crossref_primary_10_1093_nar_gkac577
crossref_primary_10_1021_acs_jpcb_2c08709
crossref_primary_10_1007_s11229_020_02567_6
crossref_primary_10_1016_j_carres_2024_109055
crossref_primary_10_1021_acs_joc_6b01615
crossref_primary_10_1038_s41467_017_02014_0
crossref_primary_10_2903_j_efsa_2020_6263
crossref_primary_10_1021_acsomega_2c04784
crossref_primary_10_1016_j_bbrc_2019_04_024
crossref_primary_10_1002_cbic_202000758
crossref_primary_10_1002_ange_201911746
crossref_primary_10_1039_D2SC00679K
crossref_primary_10_1021_acschembio_9b00202
Cites_doi 10.1038/9304
10.1002/cbic.201402289
10.1002/cbic.200600501
10.1126/science.290.5495.1347
10.1002/cbdv.200900177
10.1016/S0040-4020(98)00094-5
10.1261/rna.2880311
10.1038/nature13314
10.1007/978-1-4939-2763-0
10.1093/nar/gkp1225
10.1081/NCN-200059757
10.1021/bi000280v
10.1021/ja016570w
10.1126/science.284.5423.2118
10.1126/science.1962210
10.1093/nar/28.1.235
10.1016/j.chembiol.2009.02.004
10.1021/ja8041959
10.1021/ja800079j
10.1126/science.1217622
10.1093/nar/gkt808
10.1146/annurev-biochem-060713-035445
10.1093/nar/gkq1270
10.1039/B606807C
10.1021/ja077313f
10.1107/S0907444903017815
10.1038/282680a0
10.1002/(SICI)1097-0282(1998)48:4<234::AID-BIP4>3.0.CO;2-H
10.1021/ja035917n
10.1038/nchem.1241
10.1021/ja802788g
10.1016/j.chembiol.2012.10.011
10.1002/anie.201100535
10.1017/S0033583500005886
10.1002/anie.201103672
10.1016/j.cbpa.2009.09.030
10.1038/nrg3681
10.1021/bi052322r
10.1073/pnas.1311778111
10.1016/j.cell.2005.04.024
10.1073/pnas.97.10.5633
10.1038/nsb0297-98
10.1002/chem.201102509
10.1002/anie.200352553
10.1021/ja109817p
10.1021/ja042564z
10.1021/ja3118703
10.1093/nar/gkv719
10.1016/S1367-5931(00)00122-8
10.1002/cbdv.201000096
10.1021/ja069100g
10.1002/anie.201301659
10.1016/S0960-894X(03)00441-4
10.1080/07391102.1996.10508916
10.1002/cbic.201100648
10.1002/hlca.19920750503
10.1002/chem.201000392
10.1126/science.1088334
10.1038/nbt.2556
10.1002/chem.201003594
10.1073/pnas.88.9.3569
10.1021/jo201469b
10.1515/9783110284959
10.1073/pnas.89.2.534
10.1021/ja800652h
10.1021/ja028589k
10.1007/978-1-4612-5190-3
10.1146/annurev-biochem-060408-091030
10.1093/nar/gkh988
10.1093/nar/28.18.3625
10.1021/bc034145h
10.1021/ja0428255
10.1002/anie.201006519
10.1002/anie.201305710
10.1093/nar/gks672
10.1107/S1399004714004684
10.1016/j.sbi.2007.05.008
10.1016/S0141-8130(01)00123-4
10.1016/j.tibtech.2014.03.010
10.1006/jmbi.1994.1134
10.1002/anie.201502890
10.1093/nar/gkj454
10.1016/j.jmb.2008.10.041
10.1107/S0907444906055624
10.1002/(SICI)1097-0282(199707)42:1<113::AID-BIP10>3.0.CO;2-O
10.1002/anie.201204946
10.1038/365566a0
10.1038/206757a0
10.1002/cbic.200300700
10.1038/nsmb.2936
10.1093/nar/gkq505
10.1021/ja971962h
10.1126/science.7519361
10.1002/anie.201203459
10.1039/B916851F
10.1093/nar/gkg833
10.1146/annurev.biophys.36.040306.132556
10.1126/science.1218753
10.1021/ja062548x
10.1006/jmbi.2000.3690
10.1002/hlca.19930760119
10.1038/nature13982
10.1016/S1074-5521(00)00017-X
10.1093/nar/gkg407
10.1039/9781847555380
10.1038/nsb0596-410
10.1016/j.sbi.2010.03.001
10.1073/pnas.96.19.10614
10.1021/ja045843v
ContentType Journal Article
Copyright The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research. 2016
Copyright_xml – notice: The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
– notice: The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research. 2016
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
5PM
DOI 10.1093/nar/gkv1472
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1362-4962
EndPage 1021
ExternalDocumentID 10_1093_nar_gkv1472
26673703
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Review
GroupedDBID ---
-DZ
-~X
.I3
0R~
123
18M
1TH
29N
2WC
4.4
482
53G
5VS
5WA
70E
85S
A8Z
AAFWJ
AAHBH
AAMVS
AAOGV
AAPPN
AAPXW
AAUQX
AAVAP
ABPTD
ABQLI
ABXVV
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ADBBV
ADHZD
AEGXH
AENEX
AENZO
AFFNX
AFPKN
AFRAH
AFULF
AHMBA
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ALUQC
AOIJS
BAWUL
BAYMD
BCNDV
BTTYL
CAG
CGR
CIDKT
CS3
CUY
CVF
CZ4
DIK
DU5
D~K
E3Z
EBD
EBS
ECM
EIF
EJD
EMOBN
ESTFP
F5P
GROUPED_DOAJ
GX1
H13
HH5
HYE
HZ~
IH2
KAQDR
KQ8
KSI
M49
M~E
NPM
NU-
OAWHX
OBC
OBS
OEB
OES
OJQWA
P2P
PEELM
PQQKQ
R44
RD5
RNS
ROL
ROX
ROZ
RPM
RXO
SV3
TN5
TOX
TR2
WG7
WOQ
X7H
XSB
YSK
ZKX
~91
~D7
~KM
AAYXX
CITATION
7X8
5PM
ABQTQ
ID FETCH-LOGICAL-c377t-ad125f242a18d2e79a8f62cfb0edd079ae26da45af1b09aa1d482b6b6c9dcc33
IEDL.DBID RPM
ISSN 0305-1048
IngestDate Tue Sep 17 21:27:03 EDT 2024
Fri Aug 16 04:45:56 EDT 2024
Fri Aug 23 03:05:06 EDT 2024
Sat Sep 28 07:57:59 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c377t-ad125f242a18d2e79a8f62cfb0edd079ae26da45af1b09aa1d482b6b6c9dcc33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-2
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4756832/
PMID 26673703
PQID 1767066793
PQPubID 23479
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4756832
proquest_miscellaneous_1767066793
crossref_primary_10_1093_nar_gkv1472
pubmed_primary_26673703
PublicationCentury 2000
PublicationDate 2016-02-18
PublicationDateYYYYMMDD 2016-02-18
PublicationDate_xml – month: 02
  year: 2016
  text: 2016-02-18
  day: 18
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Nucleic acids research
PublicationTitleAlternate Nucleic Acids Res
PublicationYear 2016
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References 18992257 - J Mol Biol. 2009 Jan 16;385(2):469-90
10982885 - Nucleic Acids Res. 2000 Sep 15;28(18):3625-35
25470036 - Nature. 2015 Feb 19;518(7539):427-30
11082060 - Science. 2000 Nov 17;290(5495):1347-51
10891271 - J Mol Biol. 2000 Jul 21;300(4):819-40
24379378 - Proc Natl Acad Sci U S A. 2014 Jan 28;111(4):1449-54
12799423 - Nucleic Acids Res. 2003 Jun 15;31(12):2975-89
18781753 - J Am Chem Soc. 2008 Oct 8;130(40):13264-73
22628655 - Science. 2012 May 25;336(6084):1033-7
21351337 - Angew Chem Int Ed Engl. 2011 Mar 1;50(10):2284-8
22162282 - Chembiochem. 2012 Jan 2;13(1):19-25
22798499 - Nucleic Acids Res. 2012 Oct;40(18):9329-39
24580643 - Annu Rev Biochem. 2014;83:467-86
10381870 - Science. 1999 Jun 25;284(5423):2118-24
14523911 - Chembiochem. 2003 Oct 6;4(10):936-62
20530536 - Nucleic Acids Res. 2010 Oct;38(19):6729-36
18407636 - J Am Chem Soc. 2008 May 7;130(18):5846-7
15783191 - J Am Chem Soc. 2005 Mar 30;127(12):4174-5
26476448 - Nucleic Acids Res. 2015 Nov 16;43(20):9587-99
20071751 - Nucleic Acids Res. 2010 Apr;38(7):2498-511
17574833 - Curr Opin Struct Biol. 2007 Jun;17(3):325-33
22517858 - Science. 2012 Apr 20;336(6079):341-4
7692304 - Nature. 1993 Oct 7;365(6446):566-8
24013560 - Nucleic Acids Res. 2013 Dec;41(22):10593-604
10699842 - Biopolymers. 1998;48(4):234-52
8832384 - J Biomol Struct Dyn. 1996 Jun;13(6):1015-27
24115468 - Angew Chem Int Ed Engl. 2013 Nov 11;52(46):12065-8
25044483 - Chembiochem. 2014 Sep 5;15(13):1869-71
14593180 - Science. 2003 Oct 31;302(5646):868-71
17327674 - Acta Crystallogr D Biol Crystallogr. 2007 Mar;63(Pt 3):366-80
1962210 - Science. 1991 Dec 6;254(5037):1497-500
21878548 - RNA. 2011 Oct;17(10):1870-83
15149171 - Bioconjug Chem. 2004 May-Jun;15(3):449-57
10485874 - Proc Natl Acad Sci U S A. 1999 Sep 14;96(19):10614-9
23563318 - Nat Biotechnol. 2013 May;31(5):453-7
24805238 - Nature. 2014 May 15;509(7500):385-8
26304162 - Angew Chem Int Ed Engl. 2015 Oct 5;54(41):11930-44
21710668 - Angew Chem Int Ed Engl. 2011 Jul 25;50(31):7109-14
23177191 - Chem Biol. 2012 Nov 21;19(11):1360-71
9080548 - Q Rev Biophys. 1996 Dec;29(4):369-94
22162284 - Angew Chem Int Ed Engl. 2011 Dec 23;50(52):12412-72
2023903 - Proc Natl Acad Sci U S A. 1991 May 1;88(9):3569-73
20381338 - Curr Opin Struct Biol. 2010 Jun;20(3):262-75
12889939 - J Am Chem Soc. 2003 Aug 6;125(31):9274-5
14573942 - Acta Crystallogr D Biol Crystallogr. 2003 Nov;59(Pt 11):1881-90
26175047 - Nucleic Acids Res. 2015 Sep 3;43(15):7189-200
23432469 - J Am Chem Soc. 2013 Mar 6;135(9):3583-91
23670912 - Angew Chem Int Ed Engl. 2013 Jun 24;52(26):6662-5
24745974 - Trends Biotechnol. 2014 Jun;32(6):321-8
21171597 - J Am Chem Soc. 2011 Feb 2;133(4):728-31
10360355 - Nat Struct Biol. 1999 Jun;6(6):535-9
15598822 - Nucleic Acids Res. 2004;32(22):6501-10
10592235 - Nucleic Acids Res. 2000 Jan 1;28(1):235-42
18928287 - J Am Chem Soc. 2008 Nov 12;130(45):15105-15
11311717 - Int J Biol Macromol. 2001 Apr 12;28(4):273-84
22767484 - Angew Chem Int Ed Engl. 2012 Aug 6;51(32):7952-5
15898792 - J Am Chem Soc. 2005 May 25;127(20):7427-34
16566588 - Biochemistry. 2006 Apr 4;45(13):4141-52
14576309 - Nucleic Acids Res. 2003 Nov 1;31(21):6221-6
12537469 - J Am Chem Soc. 2003 Jan 29;125(4):856-7
17173143 - Chem Soc Rev. 2007 Jan;36(1):31-45
5891407 - Nature. 1965 May 22;206(4986):757-61
19350745 - Biopolymers. 1997;42(1):113-24
20859960 - Chemistry. 2010 Oct 18;16(39):11867-75
10852702 - Biochemistry. 2000 Jun 20;39(24):7050-62
20860021 - Chem Biodivers. 2010 Sep;7(9):2103-28
1370582 - Proc Natl Acad Sci U S A. 1992 Jan 15;89(2):534-8
12824019 - Bioorg Med Chem Lett. 2003 Jul 21;13(14):2285-90
11006535 - Curr Opin Chem Biol. 2000 Oct;4(5):495-9
20087997 - Chem Biodivers. 2010 Jan;7(1):60-89
25504322 - Nat Struct Mol Biol. 2015 Jan;22(1):44-9
10805816 - Proc Natl Acad Sci U S A. 2000 May 9;97(10):5633-8
18198873 - J Am Chem Soc. 2008 Feb 13;130(6):1979-84
25004957 - Acta Crystallogr D Biol Crystallogr. 2014 Jul;70(Pt 7):1790-800
9033585 - Nat Struct Biol. 1997 Feb;4(2):98-101
11829600 - J Am Chem Soc. 2002 Feb 13;124(6):928-33
21618623 - Chemistry. 2011 Jul 4;17(28):7823-30
15740130 - J Am Chem Soc. 2005 Mar 9;127(9):2937-43
10980452 - Chem Biol. 2000 Sep;7(9):719-31
24821474 - Nat Rev Genet. 2014 Jul;15(7):469-79
16910680 - J Am Chem Soc. 2006 Aug 23;128(33):10847-56
22180030 - Chemistry. 2012 Jan 16;18(3):869-79
21838272 - J Org Chem. 2011 Oct 7;76(19):7964-74
514347 - Nature. 1979 Dec 13;282(5740):680-6
18529005 - J Am Chem Soc. 2008 Jul 2;130(26):8158-9
21183463 - Nucleic Acids Res. 2011 Apr;39(8):3482-95
19318208 - Chem Biol. 2009 Mar 27;16(3):265-76
8612069 - Nat Struct Biol. 1996 May;3(5):410-3
7519361 - Science. 1994 Aug 5;265(5173):777-80
17315250 - Chembiochem. 2007 Mar 26;8(5):490-2
7508984 - J Mol Biol. 1994 Feb 11;236(1):275-85
22354431 - Nat Chem. 2012 Mar;4(3):183-7
17288535 - Annu Rev Biophys Biomol Struct. 2007;36:281-305
14673929 - Angew Chem Int Ed Engl. 2003;42(47):5893-5
20334529 - Annu Rev Biochem. 2010;79:233-69
17419631 - J Am Chem Soc. 2007 May 2;129(17):5310-1
15989951 - Cell. 2005 Jul 1;121(7):1005-16
16449200 - Nucleic Acids Res. 2006;34(2):564-74
20126724 - Chem Commun (Camb). 2010 Feb 21;46(7):1094-6
16248085 - Nucleosides Nucleotides Nucleic Acids. 2005;24(5-7):1029-32
19879178 - Curr Opin Chem Biol. 2009 Dec;13(5-6):687-96
23055396 - Angew Chem Int Ed Engl. 2012 Nov 19;51(47):11863-6
2016021705441004000_44.3.1007.89
2016021705441004000_44.3.1007.88
2016021705441004000_44.3.1007.87
2016021705441004000_44.3.1007.9
2016021705441004000_44.3.1007.93
2016021705441004000_44.3.1007.92
2016021705441004000_44.3.1007.91
2016021705441004000_44.3.1007.90
2016021705441004000_44.3.1007.97
Raiber (2016021705441004000_44.3.1007.46) 2015; 22
2016021705441004000_44.3.1007.96
2016021705441004000_44.3.1007.95
2016021705441004000_44.3.1007.94
2016021705441004000_44.3.1007.1
2016021705441004000_44.3.1007.2
2016021705441004000_44.3.1007.3
2016021705441004000_44.3.1007.4
2016021705441004000_44.3.1007.5
2016021705441004000_44.3.1007.6
2016021705441004000_44.3.1007.7
2016021705441004000_44.3.1007.8
2016021705441004000_44.3.1007.19
2016021705441004000_44.3.1007.18
2016021705441004000_44.3.1007.13
2016021705441004000_44.3.1007.12
2016021705441004000_44.3.1007.11
2016021705441004000_44.3.1007.99
2016021705441004000_44.3.1007.10
2016021705441004000_44.3.1007.98
2016021705441004000_44.3.1007.17
2016021705441004000_44.3.1007.16
2016021705441004000_44.3.1007.15
2016021705441004000_44.3.1007.14
2016021705441004000_44.3.1007.20
2016021705441004000_44.3.1007.68
2016021705441004000_44.3.1007.67
2016021705441004000_44.3.1007.66
2016021705441004000_44.3.1007.65
2016021705441004000_44.3.1007.69
2016021705441004000_44.3.1007.71
2016021705441004000_44.3.1007.75
2016021705441004000_44.3.1007.74
2016021705441004000_44.3.1007.73
2016021705441004000_44.3.1007.72
2016021705441004000_44.3.1007.79
2016021705441004000_44.3.1007.78
2016021705441004000_44.3.1007.77
2016021705441004000_44.3.1007.76
Maiti (2016021705441004000_44.3.1007.70) 2012; 18
2016021705441004000_44.3.1007.82
2016021705441004000_44.3.1007.81
2016021705441004000_44.3.1007.80
2016021705441004000_44.3.1007.86
2016021705441004000_44.3.1007.84
2016021705441004000_44.3.1007.83
2016021705441004000_44.3.1007.45
2016021705441004000_44.3.1007.44
2016021705441004000_44.3.1007.43
2016021705441004000_44.3.1007.49
2016021705441004000_44.3.1007.47
Taylor (2016021705441004000_44.3.1007.109) 2015; 518
2016021705441004000_44.3.1007.53
2016021705441004000_44.3.1007.52
2016021705441004000_44.3.1007.51
2016021705441004000_44.3.1007.50
2016021705441004000_44.3.1007.57
2016021705441004000_44.3.1007.56
2016021705441004000_44.3.1007.55
2016021705441004000_44.3.1007.59
2016021705441004000_44.3.1007.58
2016021705441004000_44.3.1007.60
2016021705441004000_44.3.1007.64
2016021705441004000_44.3.1007.63
2016021705441004000_44.3.1007.62
2016021705441004000_44.3.1007.61
Yeh (2016021705441004000_44.3.1007.54) 2010; 16
2016021705441004000_44.3.1007.29
Ovaere (2016021705441004000_44.3.1007.85) 2011; 17
2016021705441004000_44.3.1007.24
2016021705441004000_44.3.1007.23
2016021705441004000_44.3.1007.22
2016021705441004000_44.3.1007.110
2016021705441004000_44.3.1007.21
2016021705441004000_44.3.1007.28
2016021705441004000_44.3.1007.27
2016021705441004000_44.3.1007.26
2016021705441004000_44.3.1007.25
Egli (2016021705441004000_44.3.1007.48) 1998; 48
Ferreira-Bravo (2016021705441004000_44.3.1007.108) 2015; 43
2016021705441004000_44.3.1007.31
2016021705441004000_44.3.1007.112
2016021705441004000_44.3.1007.30
2016021705441004000_44.3.1007.111
2016021705441004000_44.3.1007.114
2016021705441004000_44.3.1007.113
2016021705441004000_44.3.1007.35
2016021705441004000_44.3.1007.34
2016021705441004000_44.3.1007.33
2016021705441004000_44.3.1007.32
2016021705441004000_44.3.1007.39
2016021705441004000_44.3.1007.38
2016021705441004000_44.3.1007.37
2016021705441004000_44.3.1007.36
2016021705441004000_44.3.1007.105
2016021705441004000_44.3.1007.104
2016021705441004000_44.3.1007.107
2016021705441004000_44.3.1007.106
2016021705441004000_44.3.1007.42
2016021705441004000_44.3.1007.101
2016021705441004000_44.3.1007.41
2016021705441004000_44.3.1007.100
2016021705441004000_44.3.1007.40
2016021705441004000_44.3.1007.103
2016021705441004000_44.3.1007.102
References_xml – ident: 2016021705441004000_44.3.1007.16
  doi: 10.1038/9304
– ident: 2016021705441004000_44.3.1007.106
  doi: 10.1002/cbic.201402289
– ident: 2016021705441004000_44.3.1007.105
  doi: 10.1002/cbic.200600501
– ident: 2016021705441004000_44.3.1007.64
  doi: 10.1126/science.290.5495.1347
– ident: 2016021705441004000_44.3.1007.14
  doi: 10.1002/cbdv.200900177
– ident: 2016021705441004000_44.3.1007.67
  doi: 10.1016/S0040-4020(98)00094-5
– ident: 2016021705441004000_44.3.1007.113
  doi: 10.1261/rna.2880311
– ident: 2016021705441004000_44.3.1007.34
  doi: 10.1038/nature13314
– ident: 2016021705441004000_44.3.1007.42
  doi: 10.1007/978-1-4939-2763-0
– ident: 2016021705441004000_44.3.1007.79
  doi: 10.1093/nar/gkp1225
– ident: 2016021705441004000_44.3.1007.114
  doi: 10.1081/NCN-200059757
– ident: 2016021705441004000_44.3.1007.65
  doi: 10.1021/bi000280v
– ident: 2016021705441004000_44.3.1007.52
  doi: 10.1021/ja016570w
– ident: 2016021705441004000_44.3.1007.10
  doi: 10.1126/science.284.5423.2118
– ident: 2016021705441004000_44.3.1007.60
  doi: 10.1126/science.1962210
– ident: 2016021705441004000_44.3.1007.3
  doi: 10.1093/nar/28.1.235
– ident: 2016021705441004000_44.3.1007.38
  doi: 10.1016/j.chembiol.2009.02.004
– ident: 2016021705441004000_44.3.1007.51
  doi: 10.1021/ja8041959
– ident: 2016021705441004000_44.3.1007.110
  doi: 10.1021/ja800079j
– ident: 2016021705441004000_44.3.1007.27
  doi: 10.1126/science.1217622
– ident: 2016021705441004000_44.3.1007.111
  doi: 10.1093/nar/gkt808
– ident: 2016021705441004000_44.3.1007.7
  doi: 10.1146/annurev-biochem-060713-035445
– ident: 2016021705441004000_44.3.1007.22
  doi: 10.1093/nar/gkq1270
– ident: 2016021705441004000_44.3.1007.9
– ident: 2016021705441004000_44.3.1007.43
  doi: 10.1039/B606807C
– ident: 2016021705441004000_44.3.1007.53
  doi: 10.1021/ja077313f
– ident: 2016021705441004000_44.3.1007.40
  doi: 10.1107/S0907444903017815
– ident: 2016021705441004000_44.3.1007.2
  doi: 10.1038/282680a0
– volume: 48
  start-page: 234
  year: 1998
  ident: 2016021705441004000_44.3.1007.48
  article-title: X-ray crystallographic analysis of the hydration of A- and B-form DNA at atomic resolution
  publication-title: Biopolymers (Nucleic Acid Sci.)
  doi: 10.1002/(SICI)1097-0282(1998)48:4<234::AID-BIP4>3.0.CO;2-H
  contributor:
    fullname: Egli
– ident: 2016021705441004000_44.3.1007.101
  doi: 10.1021/ja035917n
– ident: 2016021705441004000_44.3.1007.107
  doi: 10.1038/nchem.1241
– ident: 2016021705441004000_44.3.1007.74
  doi: 10.1021/ja802788g
– ident: 2016021705441004000_44.3.1007.25
  doi: 10.1016/j.chembiol.2012.10.011
– ident: 2016021705441004000_44.3.1007.35
  doi: 10.1002/anie.201100535
– ident: 2016021705441004000_44.3.1007.98
  doi: 10.1017/S0033583500005886
– ident: 2016021705441004000_44.3.1007.11
  doi: 10.1002/anie.201103672
– ident: 2016021705441004000_44.3.1007.37
  doi: 10.1016/j.cbpa.2009.09.030
– ident: 2016021705441004000_44.3.1007.6
  doi: 10.1038/nrg3681
– ident: 2016021705441004000_44.3.1007.81
  doi: 10.1021/bi052322r
– ident: 2016021705441004000_44.3.1007.29
  doi: 10.1073/pnas.1311778111
– ident: 2016021705441004000_44.3.1007.20
  doi: 10.1016/j.cell.2005.04.024
– ident: 2016021705441004000_44.3.1007.84
  doi: 10.1073/pnas.97.10.5633
– ident: 2016021705441004000_44.3.1007.76
  doi: 10.1038/nsb0297-98
– volume: 43
  start-page: 9578
  year: 2015
  ident: 2016021705441004000_44.3.1007.108
  article-title: Selection of 2′-deoxy-2′-fluoroarabinonucleotide (FANA) aptamers that bind HIV-1 reverse transcriptase
  publication-title: Nucleic Acids Res.
  contributor:
    fullname: Ferreira-Bravo
– volume: 18
  start-page: 869
  year: 2012
  ident: 2016021705441004000_44.3.1007.70
  article-title: Solution structure and conformational dynamics of deoxyxylonucleic acids (dXNA): an orthogonal nucleic acid candidate
  publication-title: Chemistry
  doi: 10.1002/chem.201102509
  contributor:
    fullname: Maiti
– ident: 2016021705441004000_44.3.1007.78
  doi: 10.1002/anie.200352553
– ident: 2016021705441004000_44.3.1007.80
  doi: 10.1021/ja109817p
– ident: 2016021705441004000_44.3.1007.61
  doi: 10.1021/ja042564z
– ident: 2016021705441004000_44.3.1007.28
  doi: 10.1021/ja3118703
– ident: 2016021705441004000_44.3.1007.69
  doi: 10.1093/nar/gkv719
– ident: 2016021705441004000_44.3.1007.41
  doi: 10.1016/S1367-5931(00)00122-8
– ident: 2016021705441004000_44.3.1007.95
  doi: 10.1002/cbdv.201000096
– ident: 2016021705441004000_44.3.1007.104
  doi: 10.1021/ja069100g
– ident: 2016021705441004000_44.3.1007.72
  doi: 10.1002/anie.201301659
– ident: 2016021705441004000_44.3.1007.49
– ident: 2016021705441004000_44.3.1007.71
  doi: 10.1016/S0960-894X(03)00441-4
– ident: 2016021705441004000_44.3.1007.93
  doi: 10.1080/07391102.1996.10508916
– ident: 2016021705441004000_44.3.1007.99
  doi: 10.1002/cbic.201100648
– ident: 2016021705441004000_44.3.1007.62
  doi: 10.1002/hlca.19920750503
– volume: 16
  start-page: 11867
  year: 2010
  ident: 2016021705441004000_44.3.1007.54
  article-title: The crystal structure of non-modified and bipyridine-modified PNA duplexes
  publication-title: Chemistry
  doi: 10.1002/chem.201000392
  contributor:
    fullname: Yeh
– ident: 2016021705441004000_44.3.1007.31
  doi: 10.1126/science.1088334
– ident: 2016021705441004000_44.3.1007.30
  doi: 10.1038/nbt.2556
– volume: 17
  start-page: 7823
  year: 2011
  ident: 2016021705441004000_44.3.1007.85
  article-title: The crystal structure of the CeNA:RNA hybrid ce(GCGTAGCG):r(CGCUACGC)
  publication-title: Chemistry
  doi: 10.1002/chem.201003594
  contributor:
    fullname: Ovaere
– ident: 2016021705441004000_44.3.1007.87
  doi: 10.1073/pnas.88.9.3569
– ident: 2016021705441004000_44.3.1007.73
  doi: 10.1021/jo201469b
– ident: 2016021705441004000_44.3.1007.8
  doi: 10.1515/9783110284959
– ident: 2016021705441004000_44.3.1007.19
  doi: 10.1073/pnas.89.2.534
– ident: 2016021705441004000_44.3.1007.55
  doi: 10.1021/ja800652h
– ident: 2016021705441004000_44.3.1007.100
  doi: 10.1021/ja028589k
– ident: 2016021705441004000_44.3.1007.17
  doi: 10.1007/978-1-4612-5190-3
– ident: 2016021705441004000_44.3.1007.91
  doi: 10.1146/annurev-biochem-060408-091030
– ident: 2016021705441004000_44.3.1007.90
  doi: 10.1093/nar/gkh988
– ident: 2016021705441004000_44.3.1007.66
  doi: 10.1093/nar/28.18.3625
– ident: 2016021705441004000_44.3.1007.5
– ident: 2016021705441004000_44.3.1007.83
  doi: 10.1021/bc034145h
– ident: 2016021705441004000_44.3.1007.103
  doi: 10.1021/ja0428255
– ident: 2016021705441004000_44.3.1007.39
– ident: 2016021705441004000_44.3.1007.21
  doi: 10.1002/anie.201006519
– ident: 2016021705441004000_44.3.1007.24
  doi: 10.1002/anie.201305710
– ident: 2016021705441004000_44.3.1007.57
  doi: 10.1093/nar/gks672
– ident: 2016021705441004000_44.3.1007.44
  doi: 10.1107/S1399004714004684
– ident: 2016021705441004000_44.3.1007.89
  doi: 10.1016/j.sbi.2007.05.008
– ident: 2016021705441004000_44.3.1007.97
  doi: 10.1016/S0141-8130(01)00123-4
– ident: 2016021705441004000_44.3.1007.26
  doi: 10.1016/j.tibtech.2014.03.010
– ident: 2016021705441004000_44.3.1007.18
  doi: 10.1006/jmbi.1994.1134
– ident: 2016021705441004000_44.3.1007.36
  doi: 10.1002/anie.201502890
– ident: 2016021705441004000_44.3.1007.88
  doi: 10.1093/nar/gkj454
– ident: 2016021705441004000_44.3.1007.112
  doi: 10.1016/j.jmb.2008.10.041
– ident: 2016021705441004000_44.3.1007.45
  doi: 10.1107/S0907444906055624
– ident: 2016021705441004000_44.3.1007.94
  doi: 10.1002/(SICI)1097-0282(199707)42:1<113::AID-BIP10>3.0.CO;2-O
– ident: 2016021705441004000_44.3.1007.23
  doi: 10.1002/anie.201204946
– ident: 2016021705441004000_44.3.1007.77
  doi: 10.1038/365566a0
– ident: 2016021705441004000_44.3.1007.1
  doi: 10.1038/206757a0
– ident: 2016021705441004000_44.3.1007.50
  doi: 10.1002/cbic.200300700
– volume: 22
  start-page: 44
  year: 2015
  ident: 2016021705441004000_44.3.1007.46
  article-title: 5-Formylcytosine alters the structure of the DNA double helix
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2936
  contributor:
    fullname: Raiber
– ident: 2016021705441004000_44.3.1007.82
  doi: 10.1093/nar/gkq505
– ident: 2016021705441004000_44.3.1007.15
  doi: 10.1021/ja971962h
– ident: 2016021705441004000_44.3.1007.59
  doi: 10.1126/science.7519361
– ident: 2016021705441004000_44.3.1007.33
  doi: 10.1002/anie.201203459
– ident: 2016021705441004000_44.3.1007.75
  doi: 10.1039/B916851F
– ident: 2016021705441004000_44.3.1007.102
  doi: 10.1093/nar/gkg833
– ident: 2016021705441004000_44.3.1007.13
  doi: 10.1146/annurev.biophys.36.040306.132556
– ident: 2016021705441004000_44.3.1007.47
  doi: 10.1126/science.1218753
– ident: 2016021705441004000_44.3.1007.56
  doi: 10.1021/ja062548x
– ident: 2016021705441004000_44.3.1007.92
  doi: 10.1006/jmbi.2000.3690
– ident: 2016021705441004000_44.3.1007.68
  doi: 10.1002/hlca.19930760119
– volume: 518
  start-page: 427
  year: 2015
  ident: 2016021705441004000_44.3.1007.109
  article-title: Catalysts from synthetic genetic polymers
  publication-title: Nature
  doi: 10.1038/nature13982
  contributor:
    fullname: Taylor
– ident: 2016021705441004000_44.3.1007.63
  doi: 10.1016/S1074-5521(00)00017-X
– ident: 2016021705441004000_44.3.1007.86
  doi: 10.1093/nar/gkg407
– ident: 2016021705441004000_44.3.1007.12
  doi: 10.1039/9781847555380
– ident: 2016021705441004000_44.3.1007.58
  doi: 10.1038/nsb0596-410
– ident: 2016021705441004000_44.3.1007.4
  doi: 10.1016/j.sbi.2010.03.001
– ident: 2016021705441004000_44.3.1007.32
  doi: 10.1073/pnas.96.19.10614
– ident: 2016021705441004000_44.3.1007.96
  doi: 10.1021/ja045843v
SSID ssj0014154
Score 2.546965
SecondaryResourceType review_article
Snippet Synthetic genetics is a subdiscipline of synthetic biology that aims to develop artificial genetic polymers (also referred to as xeno-nucleic acids or XNAs)...
SourceID pubmedcentral
proquest
crossref
pubmed
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage 1007
SubjectTerms Nucleic Acid Conformation
Nucleic Acids - chemistry
Polymers - chemistry
Survey and Summary
Title The structural diversity of artificial genetic polymers
URI https://www.ncbi.nlm.nih.gov/pubmed/26673703
https://search.proquest.com/docview/1767066793
https://pubmed.ncbi.nlm.nih.gov/PMC4756832
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB7Ui17Et-uLCOKtdtOkSXuURRHBx2GFvZU0DxXd7qKr4L93kjbi4-alUPqgmQydbzJfvgE4Ek4prYRLtGVZwkvlkloIk1BXIH52XKugwHd1LS7u-OUoH81BHvfCBNK-rh9PmufxSfP4ELiV07FOI08svb0acJkL9MR0HuYlYzFF70oHGJFazaggscmLblMeZu5po17S-6d3yqVvYpP5jpcydsuKEekPzPzNlvwWfs5XYLnDjeS0_b5VmLPNGqyfNpgzjz_IMQlMzrBEvgaLg9jFbR0k-gFpRWK9wAYxkYdBJo740bYKEgT9yG9nJNPJ84dfyt6A4fnZcHCRdM0SEs2knCXKIFRxGHAVLUxmZakKJzLt6r41po-nNhNG8Vw5WvdLpajhRVaLWujSaM3YJiw0k8ZuA7HCWfxFUoPQjDNpC5VzXjpqjTRMUduDo2ivatpKYlRtKZtVaOGqs3APDqMtKxyzr0Ooxk7eXisqhfTc2pL1YKu17deL4qT0QP6w-tcNXg775xX0kiCL3XnFzr-f3IUlhEOBk02LPVjAubH7CDlm9UFI1Q-Co-FxeDP6BOCV3DI
link.rule.ids 230,315,733,786,790,870,891,27957,27958,53827,53829
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LTtwwFL2isKAbnm2ZAsWVELtMxoljJ0s0Ak2BQV1MK3aR4wdFzGRG7Uwl-HqunRjxWMEycl7Wuck9to_PBTjkVkoluY2USZOIFdJGFec6ojZH_myZkt6Bb3jJB7_Y2VV2tQRZ2AvjRfuquunW40m3vvnjtZWziYqDTiz-OewzkXGMxPgDrOD3mogwSG8XDzAnNa5R3mST5e22PBy7x7X8G1_f_qdMuDI2iat5KUK9rJCTXhHNl3rJJwnodB1-h1dvdCe33cW86qr7F66Ob-7bBqy1lJQcN82bsGTqLdg-rnE4PrkjR8SLRP3s-xas9kOBuG0QGGKk8Z913h1EB4kHmVriHtaYUxAMUbdTksym4zs3S_4JRqcno_4gauswRCoVYh5JjSzIYi6XNNeJEYXMLU-UrXpG6x4emoRryTJpadUrpKSa5UnFK64KrVSafoblelqbHSCGW4N_X6qR9bFUmFxmjBWWGi10KqnpwGEAopw1bhtls0qelghd2ULXge8BpBL77JY4ZG2mi38lFVw42W6RduBLA9rjjQLaHRDP4Hw8wTltP29BkLzjdgvK13dfeQCrg9Hworz4cXm-Cx-RdXnpN833YBlxMvvIbObVNx_HD4MN_Bw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1dT9swFL1iRdr2MqBsrNtgnoT2lqZOXDt5rMoqYIB46CS0l8jxx6igabW1k7pfv2snRi288RjF-bDOTe6xfXwuwDG3UirJbaRMmkQslzYqOdcRtRnyZ8uU9A58l1f89Ac7v-nfrJX68qJ9VU661f20W01uvbZyPlVx0InF15dDJvocIzGeaxu_gG38ZpM8DNSbBQTMS7VzlDfaZFmzNQ_H73Elf8e_7v5SJlwpm8TVvRShZlbIS0_I5mPN5FoSGu3Az_D6tfbkrrtclF3175Gz47P6twtvGmpKBnWTPdgyVRv2BxUOy6cr8pV4saifhW_Dq2EoFLcPAkON1D60zsOD6CD1IDNL3ANrkwqCoep2TJL57H7lZsvfwnj0bTw8jZp6DJFKhVhEUiMbspjTJc10YkQuM8sTZcue0bqHhybhWrK-tLTs5VJSzbKk5CVXuVYqTd9Bq5pV5j0Qw63BvzDVyP5YKkwm-4zllhotdCqp6cBxAKOY164bRb1anhYIX9HA14EvAagC--yWOmRlZss_BRVcOPlunnbgoAbu4UYB8Q6IDUgfGjjH7c0zCJR33m6A-fDsKz_Dy-uTUXFxdvX9I7xG8uUV4DT7BC2EyRwiwVmURz6U_wNczf6c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+structural+diversity+of+artificial+genetic+polymers&rft.jtitle=Nucleic+acids+research&rft.au=Anosova%2C+Irina&rft.au=Kowal%2C+Ewa+A.&rft.au=Dunn%2C+Matthew+R.&rft.au=Chaput%2C+John+C.&rft.date=2016-02-18&rft.pub=Oxford+University+Press&rft.issn=0305-1048&rft.eissn=1362-4962&rft.volume=44&rft.issue=3&rft.spage=1007&rft.epage=1021&rft_id=info:doi/10.1093%2Fnar%2Fgkv1472&rft_id=info%3Apmid%2F26673703&rft.externalDBID=PMC4756832
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon