Clustering with the Average Silhouette Width

The Average Silhouette Width (ASW) is a popular cluster validation index to estimate the number of clusters. The question whether it also is suitable as a general objective function to be optimized for finding a clustering is addressed. Two algorithms (the standard version OSil and a fast version FO...

Full description

Saved in:
Bibliographic Details
Published inComputational statistics & data analysis Vol. 158; p. 107190
Main Authors Batool, Fatima, Hennig, Christian
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.06.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The Average Silhouette Width (ASW) is a popular cluster validation index to estimate the number of clusters. The question whether it also is suitable as a general objective function to be optimized for finding a clustering is addressed. Two algorithms (the standard version OSil and a fast version FOSil) are proposed, and they are compared with existing clustering methods in an extensive simulation study covering known and unknown numbers of clusters. Real data sets are analysed, partly exploring the use of the new methods with non-Euclidean distances. The ASW is shown to satisfy some axioms that have been proposed for cluster quality functions. The new methods prove useful and sensible in many cases, but some weaknesses are also highlighted. These also concern the use of the ASW for estimating the number of clusters together with other methods, which is of general interest due to the popularity of the ASW for this task.
AbstractList The Average Silhouette Width (ASW) is a popular cluster validation index to estimate the number of clusters. The question whether it also is suitable as a general objective function to be optimized for finding a clustering is addressed. Two algorithms (the standard version OSil and a fast version FOSil) are proposed, and they are compared with existing clustering methods in an extensive simulation study covering known and unknown numbers of clusters. Real data sets are analysed, partly exploring the use of the new methods with non-Euclidean distances. The ASW is shown to satisfy some axioms that have been proposed for cluster quality functions. The new methods prove useful and sensible in many cases, but some weaknesses are also highlighted. These also concern the use of the ASW for estimating the number of clusters together with other methods, which is of general interest due to the popularity of the ASW for this task.
ArticleNumber 107190
Author Batool, Fatima
Hennig, Christian
Author_xml – sequence: 1
  givenname: Fatima
  orcidid: 0000-0003-1354-0375
  surname: Batool
  fullname: Batool, Fatima
  email: fatima.batool.14@ucl.ac.uk
  organization: Department of Statistical Science, University College London, Gower Street, London WC1E 6BT, United Kingdom
– sequence: 2
  givenname: Christian
  surname: Hennig
  fullname: Hennig, Christian
  email: christian.hennig@unibo.it
  organization: Dipartimento di Scienze Statistiche “Paolo Fortunati”, Universita di Bologna, Bologna, Via delle belle Arti, 41, 40126, Italy
BookMark eNp9kD1PwzAQhi1UJNrCH2DKyECK7Th2LLFUFV9SJQZAjJZjX1pXaVJsp4h_T6IwMXR6daf3OemeGZo0bQMIXRO8IJjwu93CBKsXFFPSLwSR-AxNSSFoKrKcTtC0L4lUMpFdoFkIO4wxZaKYottV3YUI3jWb5NvFbRK3kCyP4PUGkjdXb9sOYoTk09m4vUTnla4DXP3lHH08PryvntP169PLarlOTSZETLUpidVEgujHSmLJGRgreTUELwWupMwNKzJmuDC2yssSLJHCSkpNxWg2Rzfj3YNvvzoIUe1dMFDXuoG2C4ryjDNW5Jz31WKsGt-G4KFSxkUdXdtEr12tCFaDILVTgyA1CFKjoB6l_9CDd3vtf05D9yME_f9HB14F46AxYJ0HE5Vt3Sn8F03xgIw
CitedBy_id crossref_primary_10_1016_j_ecosta_2023_03_002
crossref_primary_10_1111_spol_13080
crossref_primary_10_1245_s10434_024_16860_y
crossref_primary_10_1371_journal_pone_0300358
crossref_primary_10_1007_s12145_024_01303_9
crossref_primary_10_1016_j_patcog_2022_109144
crossref_primary_10_3389_fpls_2024_1468395
crossref_primary_10_1016_j_cor_2022_106135
crossref_primary_10_1097_CCE_0000000000000566
crossref_primary_10_1051_e3sconf_202449604001
crossref_primary_10_1093_geronb_gbad108
crossref_primary_10_1108_JEPP_01_2023_0007
crossref_primary_10_1016_j_gecco_2024_e03144
crossref_primary_10_2139_ssrn_4141620
crossref_primary_10_1111_mms_13013
crossref_primary_10_1186_s40536_023_00164_w
crossref_primary_10_1038_s42256_022_00518_z
crossref_primary_10_1186_s13059_024_03401_9
crossref_primary_10_1016_j_isci_2022_104480
crossref_primary_10_1016_j_xpro_2023_102548
crossref_primary_10_1007_s10518_024_02003_x
crossref_primary_10_14718_revfinanzpolitecon_v16_n2_2024_4
crossref_primary_10_1080_19312458_2023_2242774
crossref_primary_10_1007_s41748_024_00516_8
crossref_primary_10_3390_rs16152712
crossref_primary_10_1177_01902725241311306
crossref_primary_10_1109_ACCESS_2024_3350791
crossref_primary_10_1080_14459795_2022_2135753
crossref_primary_10_1111_sjos_12692
crossref_primary_10_1016_j_spasta_2023_100785
crossref_primary_10_1007_s10479_023_05321_6
crossref_primary_10_1186_s12913_023_10218_y
crossref_primary_10_1016_j_is_2023_102290
crossref_primary_10_1038_s44168_023_00080_3
crossref_primary_10_1016_j_compbiomed_2025_109709
crossref_primary_10_1016_j_fcr_2023_108945
crossref_primary_10_1080_14697688_2024_2412687
crossref_primary_10_1007_s11356_023_31414_7
crossref_primary_10_1002_lary_31272
crossref_primary_10_1016_j_ins_2022_12_057
crossref_primary_10_1007_s11135_021_01263_y
crossref_primary_10_1016_j_heliyon_2024_e32479
crossref_primary_10_1109_ACCESS_2021_3071654
crossref_primary_10_1515_ijb_2023_0061
crossref_primary_10_1073_pnas_2313719121
crossref_primary_10_1016_j_envc_2025_101105
crossref_primary_10_1016_j_rineng_2022_100544
crossref_primary_10_1016_j_ijepes_2022_108813
crossref_primary_10_1016_j_tibtech_2022_02_005
crossref_primary_10_1007_s12065_021_00667_x
crossref_primary_10_3389_fpubh_2023_1298693
crossref_primary_10_1186_s40462_023_00386_1
crossref_primary_10_1002_pca_3436
crossref_primary_10_1007_s11042_023_17129_4
crossref_primary_10_2147_NSS_S455705
crossref_primary_10_1038_s41467_021_25534_2
crossref_primary_10_1186_s12885_024_13387_z
crossref_primary_10_3390_nursrep14030126
crossref_primary_10_3390_land10060589
crossref_primary_10_1109_ACCESS_2025_3527715
crossref_primary_10_3233_WOR_230307
crossref_primary_10_1007_s10639_024_12793_x
crossref_primary_10_1016_j_ijar_2022_11_021
crossref_primary_10_1016_j_jcmg_2024_06_013
crossref_primary_10_1136_bjo_2023_323592
crossref_primary_10_1007_s10618_024_01086_z
crossref_primary_10_1109_ACCESS_2023_3235724
crossref_primary_10_1016_j_procs_2023_10_268
crossref_primary_10_1186_s12874_024_02427_8
crossref_primary_10_1016_j_jss_2022_111538
crossref_primary_10_1002_ppul_26712
crossref_primary_10_1177_14614456241237378
crossref_primary_10_1016_j_eswa_2024_125369
crossref_primary_10_1080_19466315_2024_2308882
crossref_primary_10_3390_axioms11120674
crossref_primary_10_1016_j_cie_2022_107975
crossref_primary_10_1186_s40163_023_00186_3
crossref_primary_10_1007_s12530_023_09530_z
crossref_primary_10_1002_joe_22230
crossref_primary_10_1177_08862605221137712
crossref_primary_10_3390_healthcare12151499
crossref_primary_10_1016_j_jclepro_2025_144792
crossref_primary_10_1016_j_oceaneng_2024_118492
crossref_primary_10_1007_s00520_024_08500_8
crossref_primary_10_1109_OJCS_2025_3545261
crossref_primary_10_1016_j_jneumeth_2023_110049
crossref_primary_10_18069_firatsbed_1029895
crossref_primary_10_1515_snde_2023_0024
crossref_primary_10_1002_eng2_12793
crossref_primary_10_1371_journal_pone_0313425
crossref_primary_10_3390_d15030386
Cites_doi 10.1093/comjnl/41.8.578
10.1016/j.cell.2016.01.047
10.1109/TIT.1982.1056489
10.1080/0094965031000136012
10.1080/01621459.1963.10500845
10.1111/1467-9868.00293
10.1007/BF01908075
10.1093/comjnl/11.2.177
10.1016/0022-5193(67)90046-X
10.1175/JCLI-D-12-00836.1
10.1016/0377-0427(87)90125-7
10.1126/science.aaa1934
10.1016/j.patcog.2013.02.016
10.1007/s11222-015-9566-5
10.1080/03610927408827101
10.1016/0031-3203(73)90048-4
10.1016/j.stem.2015.09.011
10.1016/j.patrec.2015.04.009
10.1007/s10208-012-9141-9
10.1093/biomet/58.1.91
10.1101/gr.177725.114
10.1016/0031-0182(93)90084-V
10.1016/j.patcog.2012.07.021
10.1016/j.jmva.2007.07.002
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.csda.2021.107190
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Statistics
EISSN 1872-7352
ExternalDocumentID 10_1016_j_csda_2021_107190
S0167947321000244
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AI.
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HMJ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDS
SES
SEW
SME
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
VH1
VOH
WUQ
XPP
ZMT
ZY4
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c377t-acb1da19e7377f90964ecd96f4ecd6b70f995c4834c67cdf5bbed197d922cf423
IEDL.DBID .~1
ISSN 0167-9473
IngestDate Tue Aug 05 10:14:34 EDT 2025
Thu Apr 24 22:53:53 EDT 2025
Tue Jul 01 02:24:35 EDT 2025
Fri Feb 23 02:47:18 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Axiomatic clustering
Partitioning around medoids
Number of clusters
Distance-based clustering
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c377t-acb1da19e7377f90964ecd96f4ecd6b70f995c4834c67cdf5bbed197d922cf423
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1354-0375
OpenAccessLink https://hdl.handle.net/11585/848943
PQID 2636448566
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2636448566
crossref_citationtrail_10_1016_j_csda_2021_107190
crossref_primary_10_1016_j_csda_2021_107190
elsevier_sciencedirect_doi_10_1016_j_csda_2021_107190
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2021
2021-06-00
20210601
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: June 2021
PublicationDecade 2020
PublicationTitle Computational statistics & data analysis
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Correa-Morris (b8) 2013; 46
Ackerman, Ben-David (b1) 2009
Wright (b38) 1973; 5
Maechler, Rousseeuw, Struyf, Hubert, Hornik (b27) 2017
Hennig (b14) 2008; 99
Ward (b37) 1963; 58
Shi (b33) 1993; 105
Carlsson, Mémoli (b7) 2013; 13
Hubert, Arabie (b18) 1985; 2
Kaufman, Rousseeuw (b21) 1990
Tibshirani, Walther, Hastie (b35) 2001; 63
Hennig (b15) 2015; 64
Lun, McCarthy, Marioni (b26) 2016
Lloyd (b25) 1982; 28
Hennig, Meila, Murtagh, Rocci (b17) 2015
Fraley, Raftery (b10) 1998; 41
Rubin (b31) 1967; 15
Kolodziejczyk, Kim, Tsang, Ilicic, Henriksson, Natarajan, Tuck, Gao, Bühler, Liu (b23) 2015; 17
Zadeh, Ben-David (b40) 2009
Jardine, Sibson (b19) 1968; 11
Zeileis, Hornik, Smola, Karatzoglou (b41) 2004; 11
Ng, Jordan, Weiss (b29) 2001
Hartigan, Wong (b13) 1979; 28
Van der Laan, Pollard, Bryan (b24) 2003; 73
Fisher, Ness (b9) 1971; 58
Kaufman, Rousseeuw (b20) 1987
Halkidi, Vazirgiannis, Hennig (b12) 2015
Bernard, Naveau, Vrac, Mestre (b4) 2013; 26
Scrucca, Fop, Murphy, Raftery (b32) 2017; 8
Zeisel, Muñoz Manchado, Codeluppi, Lönnerberg, La Manno, Juréus, Marques, Munguba, He, Betsholtz (b42) 2015; 347
Sokal, Michener (b34) 1958; 38
Batool (b3) 2020
Caliński, Harabasz (b6) 1974; 3
Martinez-Ortega, Delgado, Albach, Elena-Rossello, Rico (b28) 2004; 29
Von Luxburg, U., Williamson, R.C., Guyon, I., 2012. Clustering: Science or art? In: Proceedings of ICML Workshop on Unsupervised and Transfer Learning, pp. 65–79.
Goolam, Scialdone, Graham, Macaulay, Jedrusik, Hupalowska, Voet, Marioni, Zernicka-Goetz (b11) 2016; 165
Hennig, Lin (b16) 2015; 25
Arbelaitz, Gurrutxaga, Muguerza, Perez, Perona (b2) 2012; 46
Biase, Cao, Zhong (b5) 2014; 24
Kleinberg (b22) 2003
Rousseeuw (b30) 1987; 20
Yan, Yang, Guo, Yang, Wu, Li, Liu, Lian, Zheng, Yan (b39) 2013; 20
Rubin (10.1016/j.csda.2021.107190_b31) 1967; 15
Bernard (10.1016/j.csda.2021.107190_b4) 2013; 26
Lloyd (10.1016/j.csda.2021.107190_b25) 1982; 28
Yan (10.1016/j.csda.2021.107190_b39) 2013; 20
Tibshirani (10.1016/j.csda.2021.107190_b35) 2001; 63
Hennig (10.1016/j.csda.2021.107190_b17) 2015
Scrucca (10.1016/j.csda.2021.107190_b32) 2017; 8
Shi (10.1016/j.csda.2021.107190_b33) 1993; 105
Zeileis (10.1016/j.csda.2021.107190_b41) 2004; 11
Biase (10.1016/j.csda.2021.107190_b5) 2014; 24
Arbelaitz (10.1016/j.csda.2021.107190_b2) 2012; 46
Fisher (10.1016/j.csda.2021.107190_b9) 1971; 58
Goolam (10.1016/j.csda.2021.107190_b11) 2016; 165
Hennig (10.1016/j.csda.2021.107190_b15) 2015; 64
Wright (10.1016/j.csda.2021.107190_b38) 1973; 5
Ng (10.1016/j.csda.2021.107190_b29) 2001
Carlsson (10.1016/j.csda.2021.107190_b7) 2013; 13
Sokal (10.1016/j.csda.2021.107190_b34) 1958; 38
10.1016/j.csda.2021.107190_b36
Ward (10.1016/j.csda.2021.107190_b37) 1963; 58
Zadeh (10.1016/j.csda.2021.107190_b40) 2009
Halkidi (10.1016/j.csda.2021.107190_b12) 2015
Kolodziejczyk (10.1016/j.csda.2021.107190_b23) 2015; 17
Van der Laan (10.1016/j.csda.2021.107190_b24) 2003; 73
Batool (10.1016/j.csda.2021.107190_b3) 2020
Martinez-Ortega (10.1016/j.csda.2021.107190_b28) 2004; 29
Ackerman (10.1016/j.csda.2021.107190_b1) 2009
Fraley (10.1016/j.csda.2021.107190_b10) 1998; 41
Hubert (10.1016/j.csda.2021.107190_b18) 1985; 2
Hennig (10.1016/j.csda.2021.107190_b14) 2008; 99
Lun (10.1016/j.csda.2021.107190_b26) 2016
Maechler (10.1016/j.csda.2021.107190_b27) 2017
Zeisel (10.1016/j.csda.2021.107190_b42) 2015; 347
Kaufman (10.1016/j.csda.2021.107190_b20) 1987
Kaufman (10.1016/j.csda.2021.107190_b21) 1990
Kleinberg (10.1016/j.csda.2021.107190_b22) 2003
Rousseeuw (10.1016/j.csda.2021.107190_b30) 1987; 20
Jardine (10.1016/j.csda.2021.107190_b19) 1968; 11
Caliński (10.1016/j.csda.2021.107190_b6) 1974; 3
Hennig (10.1016/j.csda.2021.107190_b16) 2015; 25
Correa-Morris (10.1016/j.csda.2021.107190_b8) 2013; 46
Hartigan (10.1016/j.csda.2021.107190_b13) 1979; 28
References_xml – volume: 28
  start-page: 129
  year: 1982
  end-page: 137
  ident: b25
  article-title: Least squares quantization in pcm
  publication-title: IEEE Trans. Inform. Theory
– start-page: 595
  year: 2015
  end-page: 618
  ident: b12
  article-title: Method-independent indices for cluster validation and estimating the number of clusters
  publication-title: Handbook of Cluster Analysis
– volume: 165
  start-page: 61
  year: 2016
  end-page: 74
  ident: b11
  article-title: Heterogeneity in oct4 and sox2 targets biases cell fate in 4-cell mouse embryos
  publication-title: Cell
– volume: 38
  start-page: 1409
  year: 1958
  end-page: 1438
  ident: b34
  article-title: A statistical method for evaluating systematic relationships
  publication-title: Univ. Kansas Sci. Bull.
– volume: 20
  year: 2013
  ident: b39
  article-title: Single-cell rna-seq profiling of human preimplantation embryos and embryonic stem cells
  publication-title: Nat. Struct. Mol. Biol.
– reference: Von Luxburg, U., Williamson, R.C., Guyon, I., 2012. Clustering: Science or art? In: Proceedings of ICML Workshop on Unsupervised and Transfer Learning, pp. 65–79.
– volume: 24
  start-page: 1787
  year: 2014
  end-page: 1796
  ident: b5
  article-title: Cell fate inclination within 2-cell and 4-cell mouse embryos revealed by single-cell rna sequencing
  publication-title: Genome Res.
– volume: 46
  start-page: 243
  year: 2012
  end-page: 256
  ident: b2
  article-title: An extensive comparative study of cluster validity indices
  publication-title: Pattern Recognit.
– volume: 3
  start-page: 1
  year: 1974
  end-page: 27
  ident: b6
  article-title: A dendrite method for cluster analysis
  publication-title: Comm. Statist. Theory Methods
– volume: 41
  start-page: 578
  year: 1998
  end-page: 588
  ident: b10
  article-title: How many clusters? which clustering method? answers via model-based cluster analysis
  publication-title: Comput. J.
– volume: 105
  start-page: 199
  year: 1993
  end-page: 234
  ident: b33
  article-title: Multivariate data analysis in palaeoecology and palaeobiogeography-a review
  publication-title: Palaeogeogr. Palaeoclimatol. Palaeoecol.
– volume: 63
  start-page: 411
  year: 2001
  end-page: 423
  ident: b35
  article-title: Estimating the number of clusters in a data set via the gap statistic
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
– volume: 25
  start-page: 821
  year: 2015
  end-page: 833
  ident: b16
  article-title: Flexible parametric bootstrap for testing homogeneity against clustering and assessing the number of clusters
  publication-title: Stat. Comput.
– volume: 5
  start-page: 273
  year: 1973
  end-page: 282
  ident: b38
  article-title: A formalization of cluster analysis
  publication-title: Pattern Recognit.
– start-page: 121
  year: 2009
  end-page: 128
  ident: b1
  article-title: Measures of clustering quality: A working set of axioms for clustering
  publication-title: Advances in Neural Information Processing Systems
– start-page: 463
  year: 2003
  end-page: 470
  ident: b22
  article-title: An impossibility theorem for clustering
  publication-title: Advances in Neural Information Processing Systems
– volume: 20
  start-page: 53
  year: 1987
  end-page: 65
  ident: b30
  article-title: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis
  publication-title: J. Comput. Appl. Math.
– start-page: 849
  year: 2001
  end-page: 856
  ident: b29
  article-title: On spectral clustering: Analysis and an algorithm
  publication-title: NIPS
– volume: 11
  start-page: 177
  year: 1968
  end-page: 184
  ident: b19
  article-title: The construction of hierarchic and non-hierarchic classifications
  publication-title: Comput. J.
– volume: 2
  start-page: 193
  year: 1985
  end-page: 218
  ident: b18
  article-title: Comparing partitions
  publication-title: J. Classification
– volume: 73
  start-page: 575
  year: 2003
  end-page: 584
  ident: b24
  article-title: A new partitioning around medoids algorithm
  publication-title: J. Stat. Comput. Simul.
– volume: 46
  start-page: 2548
  year: 2013
  end-page: 2561
  ident: b8
  article-title: An indication of unification for different clustering approaches
  publication-title: Pattern Recognit.
– start-page: 639
  year: 2009
  end-page: 646
  ident: b40
  article-title: A uniqueness theorem for clustering
  publication-title: Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence
– volume: 28
  start-page: 100
  year: 1979
  end-page: 108
  ident: b13
  article-title: Algorithm as 136: A k-means clustering algorithm
  publication-title: J. R. Stat. Soc. Ser. C. Appl. Stat.
– year: 2015
  ident: b17
  article-title: Handbook of Cluster Analysis
– volume: 15
  start-page: 103
  year: 1967
  end-page: 144
  ident: b31
  article-title: Optimal classification into groups: an approach for solving the taxonomy problem
  publication-title: J. Theoret. Biol.
– year: 1990
  ident: b21
  article-title: Finding Groups in Data: An Introduction to Cluster Analysis. Volume, 344
– volume: 347
  start-page: 1138
  year: 2015
  end-page: 1142
  ident: b42
  article-title: Cell types in the mouse cortex and hippocampus revealed by single-cell rna-seq
  publication-title: Science
– volume: 58
  start-page: 91
  year: 1971
  end-page: 104
  ident: b9
  article-title: Admissible clustering procedures
  publication-title: Biometrika
– volume: 64
  start-page: 53
  year: 2015
  end-page: 62
  ident: b15
  article-title: What are the true clusters?
  publication-title: Pattern Recognit. Lett.
– volume: 58
  start-page: 236
  year: 1963
  end-page: 244
  ident: b37
  article-title: Hierarchical grouping to optimize an objective function
  publication-title: J. Amer. Statist. Assoc.
– volume: 13
  start-page: 221
  year: 2013
  end-page: 252
  ident: b7
  article-title: Classifying clustering schemes
  publication-title: Found. Comput. Math.
– volume: 29
  start-page: 965
  year: 2004
  end-page: 986
  ident: b28
  article-title: Species boundaries and phylogeographic patterns in cryptic taxa inferred from aflp markers: Veronica subgen. pentasepalae (scrophulariaceae) in the western mediterranean
  publication-title: Syst. Biol.
– year: 2020
  ident: b3
  article-title: Initialization methods for optimum average silhouette width clustering
– volume: 8
  start-page: 205
  year: 2017
  end-page: 233
  ident: b32
  article-title: Mclust 5: clustering, classification and density estimation using Gaussian finite mixture models
  publication-title: R J.
– volume: 11
  start-page: 1
  year: 2004
  end-page: 20
  ident: b41
  article-title: Kernlab – an s4 package for kernel methods in r
  publication-title: J. Stat. Softw.
– volume: 26
  start-page: 7929
  year: 2013
  end-page: 7937
  ident: b4
  article-title: Clustering of maxima: Spatial dependencies among heavy rainfall in france
  publication-title: J. Clim.
– volume: 99
  start-page: 1154
  year: 2008
  end-page: 1176
  ident: b14
  article-title: Dissolution point and isolation robustness: robustness criteria for general cluster analysis methods
  publication-title: J. Multivariate Anal.
– year: 2017
  ident: b27
  article-title: Cluster: Cluster analysis basics and extensions. R package version 2.0.6
– year: 1987
  ident: b20
  article-title: Clustering by Means of Medoids
– volume: 17
  start-page: 471
  year: 2015
  end-page: 485
  ident: b23
  article-title: Single cell rna-sequencing of pluripotent states unlocks modular transcriptional variation
  publication-title: Cell Stem Cell
– start-page: 5
  year: 2016
  ident: b26
  publication-title: A Step-By-Step Workflow for Low-Level Analysis of Single-Cell Rna-Seq Data with Bioconductor
– volume: 41
  start-page: 578
  year: 1998
  ident: 10.1016/j.csda.2021.107190_b10
  article-title: How many clusters? which clustering method? answers via model-based cluster analysis
  publication-title: Comput. J.
  doi: 10.1093/comjnl/41.8.578
– volume: 165
  start-page: 61
  year: 2016
  ident: 10.1016/j.csda.2021.107190_b11
  article-title: Heterogeneity in oct4 and sox2 targets biases cell fate in 4-cell mouse embryos
  publication-title: Cell
  doi: 10.1016/j.cell.2016.01.047
– volume: 28
  start-page: 129
  year: 1982
  ident: 10.1016/j.csda.2021.107190_b25
  article-title: Least squares quantization in pcm
  publication-title: IEEE Trans. Inform. Theory
  doi: 10.1109/TIT.1982.1056489
– volume: 8
  start-page: 205
  year: 2017
  ident: 10.1016/j.csda.2021.107190_b32
  article-title: Mclust 5: clustering, classification and density estimation using Gaussian finite mixture models
  publication-title: R J.
– start-page: 849
  year: 2001
  ident: 10.1016/j.csda.2021.107190_b29
  article-title: On spectral clustering: Analysis and an algorithm
– start-page: 639
  year: 2009
  ident: 10.1016/j.csda.2021.107190_b40
  article-title: A uniqueness theorem for clustering
– volume: 73
  start-page: 575
  year: 2003
  ident: 10.1016/j.csda.2021.107190_b24
  article-title: A new partitioning around medoids algorithm
  publication-title: J. Stat. Comput. Simul.
  doi: 10.1080/0094965031000136012
– volume: 58
  start-page: 236
  year: 1963
  ident: 10.1016/j.csda.2021.107190_b37
  article-title: Hierarchical grouping to optimize an objective function
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1080/01621459.1963.10500845
– volume: 63
  start-page: 411
  year: 2001
  ident: 10.1016/j.csda.2021.107190_b35
  article-title: Estimating the number of clusters in a data set via the gap statistic
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
  doi: 10.1111/1467-9868.00293
– start-page: 595
  year: 2015
  ident: 10.1016/j.csda.2021.107190_b12
  article-title: Method-independent indices for cluster validation and estimating the number of clusters
– volume: 2
  start-page: 193
  year: 1985
  ident: 10.1016/j.csda.2021.107190_b18
  article-title: Comparing partitions
  publication-title: J. Classification
  doi: 10.1007/BF01908075
– volume: 11
  start-page: 177
  year: 1968
  ident: 10.1016/j.csda.2021.107190_b19
  article-title: The construction of hierarchic and non-hierarchic classifications
  publication-title: Comput. J.
  doi: 10.1093/comjnl/11.2.177
– volume: 15
  start-page: 103
  year: 1967
  ident: 10.1016/j.csda.2021.107190_b31
  article-title: Optimal classification into groups: an approach for solving the taxonomy problem
  publication-title: J. Theoret. Biol.
  doi: 10.1016/0022-5193(67)90046-X
– volume: 26
  start-page: 7929
  year: 2013
  ident: 10.1016/j.csda.2021.107190_b4
  article-title: Clustering of maxima: Spatial dependencies among heavy rainfall in france
  publication-title: J. Clim.
  doi: 10.1175/JCLI-D-12-00836.1
– volume: 20
  start-page: 53
  year: 1987
  ident: 10.1016/j.csda.2021.107190_b30
  article-title: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/0377-0427(87)90125-7
– volume: 28
  start-page: 100
  year: 1979
  ident: 10.1016/j.csda.2021.107190_b13
  article-title: Algorithm as 136: A k-means clustering algorithm
  publication-title: J. R. Stat. Soc. Ser. C. Appl. Stat.
– ident: 10.1016/j.csda.2021.107190_b36
– year: 2020
  ident: 10.1016/j.csda.2021.107190_b3
– volume: 347
  start-page: 1138
  year: 2015
  ident: 10.1016/j.csda.2021.107190_b42
  article-title: Cell types in the mouse cortex and hippocampus revealed by single-cell rna-seq
  publication-title: Science
  doi: 10.1126/science.aaa1934
– volume: 46
  start-page: 2548
  year: 2013
  ident: 10.1016/j.csda.2021.107190_b8
  article-title: An indication of unification for different clustering approaches
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2013.02.016
– volume: 25
  start-page: 821
  year: 2015
  ident: 10.1016/j.csda.2021.107190_b16
  article-title: Flexible parametric bootstrap for testing homogeneity against clustering and assessing the number of clusters
  publication-title: Stat. Comput.
  doi: 10.1007/s11222-015-9566-5
– volume: 3
  start-page: 1
  year: 1974
  ident: 10.1016/j.csda.2021.107190_b6
  article-title: A dendrite method for cluster analysis
  publication-title: Comm. Statist. Theory Methods
  doi: 10.1080/03610927408827101
– volume: 5
  start-page: 273
  year: 1973
  ident: 10.1016/j.csda.2021.107190_b38
  article-title: A formalization of cluster analysis
  publication-title: Pattern Recognit.
  doi: 10.1016/0031-3203(73)90048-4
– volume: 17
  start-page: 471
  year: 2015
  ident: 10.1016/j.csda.2021.107190_b23
  article-title: Single cell rna-sequencing of pluripotent states unlocks modular transcriptional variation
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2015.09.011
– year: 2017
  ident: 10.1016/j.csda.2021.107190_b27
– volume: 29
  start-page: 965
  year: 2004
  ident: 10.1016/j.csda.2021.107190_b28
  article-title: Species boundaries and phylogeographic patterns in cryptic taxa inferred from aflp markers: Veronica subgen. pentasepalae (scrophulariaceae) in the western mediterranean
  publication-title: Syst. Biol.
– volume: 64
  start-page: 53
  year: 2015
  ident: 10.1016/j.csda.2021.107190_b15
  article-title: What are the true clusters?
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2015.04.009
– year: 1987
  ident: 10.1016/j.csda.2021.107190_b20
– year: 2015
  ident: 10.1016/j.csda.2021.107190_b17
– volume: 11
  start-page: 1
  year: 2004
  ident: 10.1016/j.csda.2021.107190_b41
  article-title: Kernlab – an s4 package for kernel methods in r
  publication-title: J. Stat. Softw.
– volume: 20
  issue: 1131
  year: 2013
  ident: 10.1016/j.csda.2021.107190_b39
  article-title: Single-cell rna-seq profiling of human preimplantation embryos and embryonic stem cells
  publication-title: Nat. Struct. Mol. Biol.
– volume: 13
  start-page: 221
  year: 2013
  ident: 10.1016/j.csda.2021.107190_b7
  article-title: Classifying clustering schemes
  publication-title: Found. Comput. Math.
  doi: 10.1007/s10208-012-9141-9
– volume: 58
  start-page: 91
  year: 1971
  ident: 10.1016/j.csda.2021.107190_b9
  article-title: Admissible clustering procedures
  publication-title: Biometrika
  doi: 10.1093/biomet/58.1.91
– start-page: 121
  year: 2009
  ident: 10.1016/j.csda.2021.107190_b1
  article-title: Measures of clustering quality: A working set of axioms for clustering
– year: 1990
  ident: 10.1016/j.csda.2021.107190_b21
– volume: 38
  start-page: 1409
  year: 1958
  ident: 10.1016/j.csda.2021.107190_b34
  article-title: A statistical method for evaluating systematic relationships
  publication-title: Univ. Kansas Sci. Bull.
– volume: 24
  start-page: 1787
  year: 2014
  ident: 10.1016/j.csda.2021.107190_b5
  article-title: Cell fate inclination within 2-cell and 4-cell mouse embryos revealed by single-cell rna sequencing
  publication-title: Genome Res.
  doi: 10.1101/gr.177725.114
– start-page: 5
  year: 2016
  ident: 10.1016/j.csda.2021.107190_b26
– volume: 105
  start-page: 199
  year: 1993
  ident: 10.1016/j.csda.2021.107190_b33
  article-title: Multivariate data analysis in palaeoecology and palaeobiogeography-a review
  publication-title: Palaeogeogr. Palaeoclimatol. Palaeoecol.
  doi: 10.1016/0031-0182(93)90084-V
– volume: 46
  start-page: 243
  year: 2012
  ident: 10.1016/j.csda.2021.107190_b2
  article-title: An extensive comparative study of cluster validity indices
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2012.07.021
– volume: 99
  start-page: 1154
  year: 2008
  ident: 10.1016/j.csda.2021.107190_b14
  article-title: Dissolution point and isolation robustness: robustness criteria for general cluster analysis methods
  publication-title: J. Multivariate Anal.
  doi: 10.1016/j.jmva.2007.07.002
– start-page: 463
  year: 2003
  ident: 10.1016/j.csda.2021.107190_b22
  article-title: An impossibility theorem for clustering
SSID ssj0002478
Score 2.5996132
Snippet The Average Silhouette Width (ASW) is a popular cluster validation index to estimate the number of clusters. The question whether it also is suitable as a...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 107190
SubjectTerms algorithms
Axiomatic clustering
data analysis
data collection
Distance-based clustering
Number of clusters
objectives
Partitioning around medoids
statistics
Title Clustering with the Average Silhouette Width
URI https://dx.doi.org/10.1016/j.csda.2021.107190
https://www.proquest.com/docview/2636448566
Volume 158
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFG8IXvRg_Iz4QWbiTSdu61p6JESCEjiIBG7N1nZhhAwi29W_3ff2gdEYDp6adu2yvL6-j-7XXwm5C1yujYs77tyBBIWqwA6E4piqMM8IGJVD_ocj1p_Q15k_q5FudRYGYZWl7S9sem6ty5ZWKc3WOo5bYwTQC8rxEAp6GuQEpZSjlj9-fsM8XFpYY-T3xt7lwZkC46U2GrmHXAcauIN2-W_n9MtM576nd0QOy6DR6hTfdUxqJjkhB8Mt4-rmlDx0lxlyHoAnsnBv1YJnVgf0FOyFNY6X81WGoB5rGut0fkYmvef3bt8ub0Kwlcd5agcqdHTgCMOhGglIO6hRWrAICxbyp0gIX-G-oGJc6cgPQ6MdwbVwXRVBxHRO6skqMRfEgvVolBeGvkDimci0dZsFEMNxRb0281iDOJUIpCppwvG2iqWs8GALiWKTKDZZiK1B7rdj1gVJxs7efiVZ-WOqJVjxneNuq2mQsAbwx0aQmFW2kaBWmGZCZHr5z3dfkX2sFRiwa1JPPzJzA9FGGjZzdWqSvc7LoD_CcvA2HXwBiSXTSQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT8IwGG4IHtSD8TPi50z0pIjbupUePBCUgHxcgMitbm0XZsggwmK8-Kf8g74v2zAaw8HE07J2XZan7fvRPX1KyLlnMaUtXHFnJiQoVHpFj0uGqYpraw6t5pT_dset9-nDwBnkyEe2FwZplantT2z63FqnJaUUzdIkDEtdJNBzynATCnoamjIrm_rtFfK26W3jDjr5wrJq971qvZgeLVCUNmOzoid9U3km1wxuAw5xPNVScTfAi-uzm4BzR-JCm3SZVIHj-1qZnCluWTKgqHYAdn-FgrnAYxOu3794JRZNzD8KiuPnpTt1ElKZnCoUO7JMKGAmOoLfveEPvzB3drVNspFGqUYlAWKL5HS0TdbbC4nX6Q65qo5iFFkA12fgYq4BdUYFJgYYKKMbjobjGFlExmOoZsNd0v8XfPZIPhpHep8YYAC0tH3f4ah0E-iyKrseBI1MUrvs2m6BmBkEQqa65Hg8xkhkBLRngbAJhE0ksBXI5aLNJFHlWPq0kyErvo0tAW5jabuzrBsETDr8k-JFehxPBYxjzGshFD7447tPyWq9126JVqPTPCRrWJMQ0I5IfvYS62MIdWb-yXxoGeTpv8fyJ_DEDus
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Clustering+with+the+Average+Silhouette+Width&rft.jtitle=Computational+statistics+%26+data+analysis&rft.au=Batool%2C+Fatima&rft.au=Hennig%2C+Christian&rft.date=2021-06-01&rft.issn=0167-9473&rft.volume=158+p.107190-&rft_id=info:doi/10.1016%2Fj.csda.2021.107190&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-9473&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-9473&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-9473&client=summon