On-the-fly determination of active region centers in adaptive-partitioning QM/MM
Quantum mechanics/molecular mechanics (QM/MM) methods are widely used in molecular dynamics (MD) simulations of large systems. By partitioning the system into active and environmental regions and treating them with different levels of theory, QM/MM methods achieve accuracy and efficiency at the same...
Saved in:
Published in | Physical chemistry chemical physics : PCCP Vol. 22; no. 34; pp. 1937 - 19317 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
08.09.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Quantum mechanics/molecular mechanics (QM/MM) methods are widely used in molecular dynamics (MD) simulations of large systems. By partitioning the system into active and environmental regions and treating them with different levels of theory, QM/MM methods achieve accuracy and efficiency at the same time. Adaptive-partitioning (AP) QM/MM allows the partition of the system to change during the MD simulation, making it possible to simulate processes in which the active and environmental regions exchange atoms or molecules, such as processes in solutions or solids. AP-QM/MM methods usually partition the system according to distances to centers of active regions. For energy-conserving AP-QM/MM methods, these centers are chosen beforehand and remain fixed during the MD simulation, making it difficult to simulate processes in which active regions may occur or vanish. In this paper, I develop an adaptive-center (AC) method that allows on-the-fly determination of the centers of active regions according to any geometrical criterion or any criterion dependent on the potential energy. The AC method is compatible with all existing energy-conserving AP-QM/MM methods, and the resulting potential energy surface is smooth. The application of the AC method is demonstrated with two examples in solid systems.
The QM/MM partition is determined on-the-fly using any geometrical property as a criterion, while satisfying energy conservation. |
---|---|
AbstractList | Quantum mechanics/molecular mechanics (QM/MM) methods are widely used in molecular dynamics (MD) simulations of large systems. By partitioning the system into active and environmental regions and treating them with different levels of theory, QM/MM methods achieve accuracy and efficiency at the same time. Adaptive-partitioning (AP) QM/MM allows the partition of the system to change during the MD simulation, making it possible to simulate processes in which the active and environmental regions exchange atoms or molecules, such as processes in solutions or solids. AP-QM/MM methods usually partition the system according to distances to centers of active regions. For energy-conserving AP-QM/MM methods, these centers are chosen beforehand and remain fixed during the MD simulation, making it difficult to simulate processes in which active regions may occur or vanish. In this paper, I develop an adaptive-center (AC) method that allows on-the-fly determination of the centers of active regions according to any geometrical criterion or any criterion dependent on the potential energy. The AC method is compatible with all existing energy-conserving AP-QM/MM methods, and the resulting potential energy surface is smooth. The application of the AC method is demonstrated with two examples in solid systems.Quantum mechanics/molecular mechanics (QM/MM) methods are widely used in molecular dynamics (MD) simulations of large systems. By partitioning the system into active and environmental regions and treating them with different levels of theory, QM/MM methods achieve accuracy and efficiency at the same time. Adaptive-partitioning (AP) QM/MM allows the partition of the system to change during the MD simulation, making it possible to simulate processes in which the active and environmental regions exchange atoms or molecules, such as processes in solutions or solids. AP-QM/MM methods usually partition the system according to distances to centers of active regions. For energy-conserving AP-QM/MM methods, these centers are chosen beforehand and remain fixed during the MD simulation, making it difficult to simulate processes in which active regions may occur or vanish. In this paper, I develop an adaptive-center (AC) method that allows on-the-fly determination of the centers of active regions according to any geometrical criterion or any criterion dependent on the potential energy. The AC method is compatible with all existing energy-conserving AP-QM/MM methods, and the resulting potential energy surface is smooth. The application of the AC method is demonstrated with two examples in solid systems. Quantum mechanics/molecular mechanics (QM/MM) methods are widely used in molecular dynamics (MD) simulations of large systems. By partitioning the system into active and environmental regions and treating them with different levels of theory, QM/MM methods achieve accuracy and efficiency at the same time. Adaptive-partitioning (AP) QM/MM allows the partition of the system to change during the MD simulation, making it possible to simulate processes in which the active and environmental regions exchange atoms or molecules, such as processes in solutions or solids. AP-QM/MM methods usually partition the system according to distances to centers of active regions. For energy-conserving AP-QM/MM methods, these centers are chosen beforehand and remain fixed during the MD simulation, making it difficult to simulate processes in which active regions may occur or vanish. In this paper, I develop an adaptive-center (AC) method that allows on-the-fly determination of the centers of active regions according to any geometrical criterion or any criterion dependent on the potential energy. The AC method is compatible with all existing energy-conserving AP-QM/MM methods, and the resulting potential energy surface is smooth. The application of the AC method is demonstrated with two examples in solid systems. Quantum mechanics/molecular mechanics (QM/MM) methods are widely used in molecular dynamics (MD) simulations of large systems. By partitioning the system into active and environmental regions and treating them with different levels of theory, QM/MM methods achieve accuracy and efficiency at the same time. Adaptive-partitioning (AP) QM/MM allows the partition of the system to change during the MD simulation, making it possible to simulate processes in which the active and environmental regions exchange atoms or molecules, such as processes in solutions or solids. AP-QM/MM methods usually partition the system according to distances to centers of active regions. For energy-conserving AP-QM/MM methods, these centers are chosen beforehand and remain fixed during the MD simulation, making it difficult to simulate processes in which active regions may occur or vanish. In this paper, I develop an adaptive-center (AC) method that allows on-the-fly determination of the centers of active regions according to any geometrical criterion or any criterion dependent on the potential energy. The AC method is compatible with all existing energy-conserving AP-QM/MM methods, and the resulting potential energy surface is smooth. The application of the AC method is demonstrated with two examples in solid systems. The QM/MM partition is determined on-the-fly using any geometrical property as a criterion, while satisfying energy conservation. |
Author | Yang, Zeng-hui |
AuthorAffiliation | Institute of Electronic Engineering China Academy of Engineering Physics Microsystem and Terahertz Research Center |
AuthorAffiliation_xml | – name: Microsystem and Terahertz Research Center – name: Institute of Electronic Engineering – name: China Academy of Engineering Physics |
Author_xml | – sequence: 1 givenname: Zeng-hui surname: Yang fullname: Yang, Zeng-hui |
BookMark | eNp90c9LwzAUB_AgE9ymF-9CxYsIdUmTps1xzJ-wsQl6LmmazIwurUkm7L833WSCiKeEfD_v8XgZgJ5pjATgHMFbBDEbVVC0EENM-BHoI0JxzGBOeod7Rk_AwLkVhBClCPfBYm5i_y5jVW-jSnpp19pwrxsTNSriwutPGVm57B6ENCF3kTYRr3jbRXHLrdcd12YZvcxGs9kpOFa8dvLs-xyCt4f718lTPJ0_Pk_G01jgLPMxpzkTiNOyzBhhmKBKyDzNcQpVQnFGIS2VTDKakQQpxjNCS8GqlAQtGcMMD8H1vm9rm4-NdL5YaydkXXMjm40rEoJpYAx19OoXXTUba8J0QRHIECE5Dupmr4RtnLNSFa3Va263BYJFt9ziDk4Wu-WOA4a_sNB-tzdvua7_LrnYl1gnDq1__ivkl__lRVsp_AVBIZER |
CitedBy_id | crossref_primary_10_1021_acs_jctc_4c00164 crossref_primary_10_1016_j_cma_2024_117097 crossref_primary_10_1039_D0CP05149G crossref_primary_10_1021_acs_jpca_3c05600 |
Cites_doi | 10.1021/acs.jctc.9b00649 10.1016/0022-2836(76)90311-9 10.1007/978-3-642-00710-1 10.1021/jp9536514 10.1063/1.366821 10.1021/acs.jctc.8b01128 10.1007/s11837-011-0102-6 10.1021/jp0673617 10.1016/j.mspro.2014.07.032 10.1119/1.2034523 10.1021/ct300331f 10.1103/PhysRevB.58.11085 10.1016/j.physb.2005.12.233 10.1088/0031-8949/1994/T54/007 10.1016/0168-583X(93)96170-H 10.1016/j.commatsci.2020.109697 10.1002/cphc.200400585 10.1063/1.437577 10.1021/ol501663f 10.1109/TNS.2003.813197 10.1080/01418619508236218 10.1088/0034-4885/73/11/116501 10.1103/PhysRevB.51.12947 10.1103/PhysRevB.54.4741 10.1103/PhysRevB.37.6991 10.1103/PhysRevB.75.085311 10.25950/ac258694 10.1103/PhysRevB.58.7260 10.1002/cphc.201402105 10.1103/PhysRevB.57.7556 10.1016/j.cpc.2007.05.018 10.1007/s00214-006-0143-z 10.25950/962b4967 10.1063/1.365193 10.1002/jcc.540160911 10.1016/j.ijsolstr.2008.03.016 10.1021/j100161a070 10.1016/0301-0104(96)00152-8 10.1002/qua.25336 10.1119/1.13390 10.1021/ct5005593 10.1039/C1CP22600B 10.1002/anie.200802019 10.1021/acs.jctc.7b00099 10.3390/molecules23081882 10.1039/d0cp02855j 10.1002/(SICI)1521-3951(200001)217:1<41::AID-PSSB41>3.0.CO;2-V 10.1088/0965-0393/18/1/015012 10.1007/s00214-005-0049-1 10.1007/s11431-014-5668-0 10.1103/PhysRevLett.112.115501 10.1021/acs.jctc.6b00205 10.1021/jp962071j 10.1063/1.3245303 10.1039/C7CP01708A 10.1006/jcph.1995.1039 10.1021/acs.jctc.7b01206 10.1021/ct500553x 10.1063/1.106972 10.1103/PhysRev.159.98 10.1039/c004111d 10.1016/S0009-2614(02)00210-5 10.1021/ct900148e 10.1016/0927-0256(94)90109-0 10.1103/PhysRevLett.93.175503 10.1088/0034-4885/72/2/026501 10.1021/ct4005596 10.1016/bs.mie.2016.05.019 10.1063/1.472065 10.25950/ff8f563a 10.1103/PhysRevLett.73.2336 10.1016/j.cma.2019.04.020 10.1016/j.cplett.2011.12.053 10.1103/PhysRevB.55.14279 10.1063/1.4907786 10.1063/1.2963697 10.1080/01418619508242956 10.1063/1.168349 10.1103/PhysRevB.81.125328 10.1080/02648725.1988.10647849 10.1039/C5CP07136D 10.1016/j.mser.2013.07.001 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2020 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2020 |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1039/d0cp03034a |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1463-9084 |
EndPage | 19317 |
ExternalDocumentID | 10_1039_D0CP03034A d0cp03034a |
GroupedDBID | - 0-7 0R 123 1TJ 29O 4.4 53G 70 705 70J 7~J 87K AAEMU AAGNR AAIWI AANOJ ABDVN ABFLS ABGFH ABRYZ ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AENEX AFVBQ AGKEF AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ASKNT AUDPV AZFZN BLAPV BSQNT C6K CKLOX CS3 D0L DU5 DZ EBS ECGLT EE0 EF- F5P GNO HZ H~N IDZ J3G J3I JG M4U N9A NHB O9- OK1 P2P R7B R7C RCNCU RIG RNS RPMJG RRA RRC RSCEA SKA SKF SLH TN5 TWZ UCJ UHB VH6 WH7 X YNT --- -DZ -~X 0R~ 2WC 70~ AAJAE AAMEH AAWGC AAXHV AAXPP AAYXX ABASK ABEMK ABJNI ABPDG ABXOH ACGFO AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AGEGJ AGRSR AHGCF AKMSF ALUYA ANUXI APEMP CITATION GGIMP H13 HZ~ R56 RAOCF 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c377t-a689c1a6bb7949341dce858350f2637606bfe2767421f9a746bc9d54794e99393 |
ISSN | 1463-9076 1463-9084 |
IngestDate | Fri Jul 11 09:27:56 EDT 2025 Mon Jun 30 04:28:05 EDT 2025 Tue Jul 01 00:53:46 EDT 2025 Thu Apr 24 23:12:36 EDT 2025 Sat Jan 08 03:51:44 EST 2022 Wed Nov 11 00:25:29 EST 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 34 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c377t-a689c1a6bb7949341dce858350f2637606bfe2767421f9a746bc9d54794e99393 |
Notes | 10.1039/d0cp03034a eqn (4) See DOI Electronic supplementary information (ESI) available: Details of the implementation of the AC-AP method, and of the smoothing function in ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8486-740X |
PQID | 2440914483 |
PQPubID | 2047499 |
PageCount | 11 |
ParticipantIDs | rsc_primary_d0cp03034a crossref_primary_10_1039_D0CP03034A proquest_miscellaneous_2436393919 proquest_journals_2440914483 crossref_citationtrail_10_1039_D0CP03034A |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200908 |
PublicationDateYYYYMMDD | 2020-09-08 |
PublicationDate_xml | – month: 9 year: 2020 text: 20200908 day: 8 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Physical chemistry chemical physics : PCCP |
PublicationYear | 2020 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Moras (D0CP03034A-(cit35)/*[position()=1]) 2006; 376–377 Srour (D0CP03034A-(cit56)/*[position()=1]) 2003; 50 Field (D0CP03034A-(cit19)/*[position()=1]) 2017; 13 Chason (D0CP03034A-(cit53)/*[position()=1]) 1997; 81 Heyden (D0CP03034A-(cit15)/*[position()=1]) 2007; 111 Zhu (D0CP03034A-(cit90)/*[position()=1]) 1996; 54 Yu (D0CP03034A-(cit88)/*[position()=1]) 2010 Zheng (D0CP03034A-(cit6)/*[position()=1]) 2016; 6 Lin (D0CP03034A-(cit2)/*[position()=1]) 2007; 117 Chen (D0CP03034A-(cit21)/*[position()=1]) 2019; 354 Stukowski (D0CP03034A-(cit83)/*[position()=1]) 2010; 18 Frauenheim (D0CP03034A-(cit87)/*[position()=1]) 2000; 217 Gao (D0CP03034A-(cit68)/*[position()=1]) 1995; 71 Watanabe (D0CP03034A-(cit18)/*[position()=1]) 2014; 10 Humbel (D0CP03034A-(cit9)/*[position()=1]) 1996; 105 Myers (D0CP03034A-(cit57)/*[position()=1]) 2008; 104 Elliott (D0CP03034A-(cit77)/*[position()=1]) 2018 Duster (D0CP03034A-(cit7)/*[position()=1]) 2017; 7 Peguiron (D0CP03034A-(cit24)/*[position()=1]) 2015; 142 Elliott (D0CP03034A-(cit78)/*[position()=1]) 2018 Borland (D0CP03034A-(cit55)/*[position()=1]) 1993; 36 Boereboom (D0CP03034A-(cit27)/*[position()=1]) 2018; 14 Csányi (D0CP03034A-(cit34)/*[position()=1]) 2005; 17 Race (D0CP03034A-(cit51)/*[position()=1]) 2010; 73 Smith (D0CP03034A-(cit84)/*[position()=1]) 1989; 3 Yang (D0CP03034A-(cit47)/*[position()=1]) 2020 Faken (D0CP03034A-(cit48)/*[position()=1]) 1994; 2 Thompson (D0CP03034A-(cit66)/*[position()=1]) 2009; 131 Watanabe (D0CP03034A-(cit20)/*[position()=1]) 2018; 23 Donnelly (D0CP03034A-(cit62)/*[position()=1]) 2005; 73 Kelchner (D0CP03034A-(cit50)/*[position()=1]) 1998; 58 Bulo (D0CP03034A-(cit16)/*[position()=1]) 2009; 5 Maseras (D0CP03034A-(cit8)/*[position()=1]) 1995; 16 Duster (D0CP03034A-(cit29)/*[position()=1]) 2019; 15 Payne (D0CP03034A-(cit33)/*[position()=1]) 2005; 6 Yu (D0CP03034A-(cit73)/*[position()=1]) 2007; 75 Watanabe (D0CP03034A-(cit26)/*[position()=1]) 2017; 19 Bakowies (D0CP03034A-(cit11)/*[position()=1]) 1996; 100 Kerdcharoen (D0CP03034A-(cit12)/*[position()=1]) 1996; 211 Duster (D0CP03034A-(cit28)/*[position()=1]) 2016; 577 Rappé (D0CP03034A-(cit76)/*[position()=1]) 1991; 95 Warshel (D0CP03034A-(cit1)/*[position()=1]) 1976; 103 Rode (D0CP03034A-(cit31)/*[position()=1]) 2006; 115 Liang (D0CP03034A-(cit75)/*[position()=1]) 2013; 74 Glukhova (D0CP03034A-(cit44)/*[position()=1]) 2014; 6 Svensson (D0CP03034A-(cit10)/*[position()=1]) 1996; 100 Elliott (D0CP03034A-(cit80)/*[position()=1]) 2011 Plimpton (D0CP03034A-(cit81)/*[position()=1]) 1995; 117 Nordlund (D0CP03034A-(cit67)/*[position()=1]) 1994; T54 Pezeshki (D0CP03034A-(cit45)/*[position()=1]) 2014; 10 Nordlund (D0CP03034A-(cit70)/*[position()=1]) 1998; 83 Tersoff (D0CP03034A-(cit71)/*[position()=1]) 1988; 37 Duster (D0CP03034A-(cit30)/*[position()=1]) 2019; 15 Takenaka (D0CP03034A-(cit41)/*[position()=1]) 2012; 524 Boereboom (D0CP03034A-(cit46)/*[position()=1]) 2016; 12 Lan (D0CP03034A-(cit58)/*[position()=1]) 2020; 179 Waller (D0CP03034A-(cit42)/*[position()=1]) 2014; 15 D0CP03034A-(cit89)/*[position()=1] Bulo (D0CP03034A-(cit5)/*[position()=1]) 2013; 9 Zheng (D0CP03034A-(cit43)/*[position()=1]) 2017; 117 Zhu (D0CP03034A-(cit69)/*[position()=1]) 1995; 71 Srour (D0CP03034A-(cit52)/*[position()=1]) Kerdcharoen (D0CP03034A-(cit13)/*[position()=1]) 2002; 355 Bernstein (D0CP03034A-(cit4)/*[position()=1]) 2009; 72 Csányi (D0CP03034A-(cit14)/*[position()=1]) 2004; 93 Bernstein (D0CP03034A-(cit32)/*[position()=1]) 2012; 14 Williams (D0CP03034A-(cit54)/*[position()=1]) 1993; 80-81 Thornton (D0CP03034A-(cit60)/*[position()=1]) 2004 Keinonen (D0CP03034A-(cit59)/*[position()=1]) 1992; 60 Tsai (D0CP03034A-(cit63)/*[position()=1]) 1979; 70 Li (D0CP03034A-(cit91)/*[position()=1]) 2014; 57 Swenson (D0CP03034A-(cit64)/*[position()=1]) 1983; 51 Kumar (D0CP03034A-(cit39)/*[position()=1]) 2014; 16 Tsuzuki (D0CP03034A-(cit49)/*[position()=1]) 2007; 177 Senn (D0CP03034A-(cit3)/*[position()=1]) 2009; 48 Watanabe (D0CP03034A-(cit25)/*[position()=1]) 2016; 18 Nordlund (D0CP03034A-(cit36)/*[position()=1]) 1998; 57 Shan (D0CP03034A-(cit74)/*[position()=1]) 2010; 81 Elstner (D0CP03034A-(cit86)/*[position()=1]) 1998; 58 Nakano (D0CP03034A-(cit38)/*[position()=1]) 1994; 73 Subramaniyan (D0CP03034A-(cit65)/*[position()=1]) 2008; 45 Chenault (D0CP03034A-(cit40)/*[position()=1]) 1988; 6 D0CP03034A-(cit82)/*[position()=1] Nielsen (D0CP03034A-(cit17)/*[position()=1]) 2010; 12 Ziegler (D0CP03034A-(cit72)/*[position()=1]) 1985 Park (D0CP03034A-(cit22)/*[position()=1]) 2012; 8 Gleizer (D0CP03034A-(cit23)/*[position()=1]) 2014; 112 Tang (D0CP03034A-(cit37)/*[position()=1]) 1997; 55 Verlet (D0CP03034A-(cit61)/*[position()=1]) 1967; 159 Tadmor (D0CP03034A-(cit79)/*[position()=1]) 2011; 63 Porezag (D0CP03034A-(cit85)/*[position()=1]) 1995; 51 |
References_xml | – issn: 2018 publication-title: Efficient multi-species Lennard-Jones model with truncated or shifted cutoff v003 doi: Elliott – doi: Srour Palko – issn: 2004 publication-title: Classical dynamics of particles and systems doi: Thornton Marion – issn: 2018 publication-title: Efficient 'universal' shifted Lennard-Jones model for all KIM API supported species developed by Elliott and Akerson (2015) v003 doi: Elliott – issn: 2011 publication-title: Knowledgebase of Interatomic Models (KIM) Application Programming Interface (API) doi: Elliott Tadmor – issn: 2010 publication-title: Fundamentals of Semiconductors: Physics and Materials Properties doi: Yu Cardona – issn: 1985 publication-title: The stopping and ranges of ions in solids doi: Ziegler Biersack Littmark – volume: 15 start-page: 5794 year: 2019 ident: D0CP03034A-(cit30)/*[position()=1] publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.9b00649 – volume: 103 start-page: 227 year: 1976 ident: D0CP03034A-(cit1)/*[position()=1] publication-title: J. Mol. Biol. doi: 10.1016/0022-2836(76)90311-9 – volume-title: Fundamentals of Semiconductors: Physics and Materials Properties year: 2010 ident: D0CP03034A-(cit88)/*[position()=1] doi: 10.1007/978-3-642-00710-1 – volume: 100 start-page: 10580 year: 1996 ident: D0CP03034A-(cit11)/*[position()=1] publication-title: J. Phys. Chem. doi: 10.1021/jp9536514 – volume: 83 start-page: 1238 year: 1998 ident: D0CP03034A-(cit70)/*[position()=1] publication-title: J. Appl. Phys. doi: 10.1063/1.366821 – volume: 15 start-page: 892 year: 2019 ident: D0CP03034A-(cit29)/*[position()=1] publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.8b01128 – volume: 63 start-page: 17 year: 2011 ident: D0CP03034A-(cit79)/*[position()=1] publication-title: JOM doi: 10.1007/s11837-011-0102-6 – volume: 111 start-page: 2231 year: 2007 ident: D0CP03034A-(cit15)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp0673617 – volume: 6 start-page: 256 year: 2014 ident: D0CP03034A-(cit44)/*[position()=1] publication-title: Procedia Mater. Sci. doi: 10.1016/j.mspro.2014.07.032 – volume-title: The stopping and ranges of ions in solids year: 1985 ident: D0CP03034A-(cit72)/*[position()=1] – volume: 73 start-page: 938 year: 2005 ident: D0CP03034A-(cit62)/*[position()=1] publication-title: Am. J. Phys. doi: 10.1119/1.2034523 – volume: 8 start-page: 2868 year: 2012 ident: D0CP03034A-(cit22)/*[position()=1] publication-title: J. Chem. Theory Comput. doi: 10.1021/ct300331f – volume: 58 start-page: 11085 year: 1998 ident: D0CP03034A-(cit50)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.58.11085 – volume: 376–377 start-page: 936 year: 2006 ident: D0CP03034A-(cit35)/*[position()=1] publication-title: Phys. B doi: 10.1016/j.physb.2005.12.233 – volume: T54 start-page: 34 year: 1994 ident: D0CP03034A-(cit67)/*[position()=1] publication-title: Phys. Scr. doi: 10.1088/0031-8949/1994/T54/007 – volume: 80-81 start-page: 507 year: 1993 ident: D0CP03034A-(cit54)/*[position()=1] publication-title: Nucl. Instrum. Methods Phys. Res., Sect. B doi: 10.1016/0168-583X(93)96170-H – volume: 179 start-page: 109697 year: 2020 ident: D0CP03034A-(cit58)/*[position()=1] publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2020.109697 – volume: 6 start-page: 1731 year: 2005 ident: D0CP03034A-(cit33)/*[position()=1] publication-title: ChemPhysChem doi: 10.1002/cphc.200400585 – volume: 70 start-page: 1375 year: 1979 ident: D0CP03034A-(cit63)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.437577 – volume: 16 start-page: 3452 year: 2014 ident: D0CP03034A-(cit39)/*[position()=1] publication-title: Org. Lett. doi: 10.1021/ol501663f – volume: 50 start-page: 653 year: 2003 ident: D0CP03034A-(cit56)/*[position()=1] publication-title: IEEE Trans. Nucl. Sci. doi: 10.1109/TNS.2003.813197 – volume: 71 start-page: 735 year: 1995 ident: D0CP03034A-(cit69)/*[position()=1] publication-title: Philos. Mag. A doi: 10.1080/01418619508236218 – volume: 73 start-page: 116501 year: 2010 ident: D0CP03034A-(cit51)/*[position()=1] publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/73/11/116501 – volume: 51 start-page: 12947 year: 1995 ident: D0CP03034A-(cit85)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.51.12947 – volume: 54 start-page: 4741 year: 1996 ident: D0CP03034A-(cit90)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.54.4741 – volume: 37 start-page: 6991 year: 1988 ident: D0CP03034A-(cit71)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.37.6991 – volume: 75 start-page: 085311 year: 2007 ident: D0CP03034A-(cit73)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.75.085311 – volume-title: Efficient multi-species Lennard-Jones model with truncated or shifted cutoff v003 year: 2018 ident: D0CP03034A-(cit78)/*[position()=1] doi: 10.25950/ac258694 – volume: 36 start-page: 28 year: 1993 ident: D0CP03034A-(cit55)/*[position()=1] publication-title: Solid State Technol. – volume: 58 start-page: 7260 year: 1998 ident: D0CP03034A-(cit86)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.58.7260 – volume: 17 start-page: R691 year: 2005 ident: D0CP03034A-(cit34)/*[position()=1] publication-title: J. Phys.: Condens. Matter – volume: 15 start-page: 3218 year: 2014 ident: D0CP03034A-(cit42)/*[position()=1] publication-title: ChemPhysChem doi: 10.1002/cphc.201402105 – volume: 57 start-page: 7556 year: 1998 ident: D0CP03034A-(cit36)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.57.7556 – volume: 177 start-page: 518 year: 2007 ident: D0CP03034A-(cit49)/*[position()=1] publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2007.05.018 – ident: D0CP03034A-(cit82)/*[position()=1] – volume: 117 start-page: 185 year: 2007 ident: D0CP03034A-(cit2)/*[position()=1] publication-title: Theor. Chem. Acc. doi: 10.1007/s00214-006-0143-z – volume-title: Efficient ‘universal’ shifted Lennard-Jones model for all KIM API supported species developed by Elliott and Akerson (2015) v003 year: 2018 ident: D0CP03034A-(cit77)/*[position()=1] doi: 10.25950/962b4967 – volume: 81 start-page: 6513 year: 1997 ident: D0CP03034A-(cit53)/*[position()=1] publication-title: J. Appl. Phys. doi: 10.1063/1.365193 – volume: 16 start-page: 1170 year: 1995 ident: D0CP03034A-(cit8)/*[position()=1] publication-title: J. Comput. Chem. doi: 10.1002/jcc.540160911 – ident: D0CP03034A-(cit52)/*[position()=1] – volume: 45 start-page: 4340 year: 2008 ident: D0CP03034A-(cit65)/*[position()=1] publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2008.03.016 – volume: 95 start-page: 3358 year: 1991 ident: D0CP03034A-(cit76)/*[position()=1] publication-title: J. Phys. Chem. doi: 10.1021/j100161a070 – volume: 211 start-page: 313 year: 1996 ident: D0CP03034A-(cit12)/*[position()=1] publication-title: Chem. Phys. doi: 10.1016/0301-0104(96)00152-8 – volume: 117 start-page: 25336 year: 2017 ident: D0CP03034A-(cit43)/*[position()=1] publication-title: Int. J. Quantum Chem. doi: 10.1002/qua.25336 – volume: 51 start-page: 940 year: 1983 ident: D0CP03034A-(cit64)/*[position()=1] publication-title: Am. J. Phys. doi: 10.1119/1.13390 – volume: 10 start-page: 4242 year: 2014 ident: D0CP03034A-(cit18)/*[position()=1] publication-title: J. Chem. Theory Comput. doi: 10.1021/ct5005593 – volume: 14 start-page: 646 year: 2012 ident: D0CP03034A-(cit32)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C1CP22600B – volume: 48 start-page: 1198 year: 2009 ident: D0CP03034A-(cit3)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200802019 – volume: 13 start-page: 2342 year: 2017 ident: D0CP03034A-(cit19)/*[position()=1] publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.7b00099 – volume: 23 start-page: 1882 year: 2018 ident: D0CP03034A-(cit20)/*[position()=1] publication-title: Molecules doi: 10.3390/molecules23081882 – year: 2020 ident: D0CP03034A-(cit47)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/d0cp02855j – volume: 217 start-page: 41 year: 2000 ident: D0CP03034A-(cit87)/*[position()=1] publication-title: Phys. Status Solidi B doi: 10.1002/(SICI)1521-3951(200001)217:1<41::AID-PSSB41>3.0.CO;2-V – volume: 18 start-page: 015012 year: 2010 ident: D0CP03034A-(cit83)/*[position()=1] publication-title: Modell. Simul. Mater. Sci. Eng. doi: 10.1088/0965-0393/18/1/015012 – volume: 115 start-page: 77 year: 2006 ident: D0CP03034A-(cit31)/*[position()=1] publication-title: Theor. Chem. Acc. doi: 10.1007/s00214-005-0049-1 – volume: 57 start-page: 2177 year: 2014 ident: D0CP03034A-(cit91)/*[position()=1] publication-title: Sci. China: Phys., Mech. Astron. doi: 10.1007/s11431-014-5668-0 – volume: 112 start-page: 115501 year: 2014 ident: D0CP03034A-(cit23)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.112.115501 – volume: 12 start-page: 3441 year: 2016 ident: D0CP03034A-(cit46)/*[position()=1] publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.6b00205 – volume: 100 start-page: 19357 year: 1996 ident: D0CP03034A-(cit10)/*[position()=1] publication-title: J. Phys. Chem. doi: 10.1021/jp962071j – volume: 131 start-page: 154107 year: 2009 ident: D0CP03034A-(cit66)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.3245303 – volume: 19 start-page: 17985 year: 2017 ident: D0CP03034A-(cit26)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C7CP01708A – volume: 117 start-page: 1 year: 1995 ident: D0CP03034A-(cit81)/*[position()=1] publication-title: J. Comput. Phys. doi: 10.1006/jcph.1995.1039 – volume: 14 start-page: 1841 year: 2018 ident: D0CP03034A-(cit27)/*[position()=1] publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.7b01206 – volume: 10 start-page: 4765 year: 2014 ident: D0CP03034A-(cit45)/*[position()=1] publication-title: J. Chem. Theory Comput. doi: 10.1021/ct500553x – volume: 60 start-page: 628 year: 1992 ident: D0CP03034A-(cit59)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.106972 – volume-title: Classical dynamics of particles and systems year: 2004 ident: D0CP03034A-(cit60)/*[position()=1] – volume: 159 start-page: 98 year: 1967 ident: D0CP03034A-(cit61)/*[position()=1] publication-title: Phys. Rev. doi: 10.1103/PhysRev.159.98 – volume: 12 start-page: 12401 year: 2010 ident: D0CP03034A-(cit17)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c004111d – volume: 355 start-page: 257 year: 2002 ident: D0CP03034A-(cit13)/*[position()=1] publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(02)00210-5 – volume: 5 start-page: 2212 year: 2009 ident: D0CP03034A-(cit16)/*[position()=1] publication-title: J. Chem. Theory Comput. doi: 10.1021/ct900148e – volume: 2 start-page: 279 year: 1994 ident: D0CP03034A-(cit48)/*[position()=1] publication-title: Comput. Mater. Sci. doi: 10.1016/0927-0256(94)90109-0 – volume: 6 start-page: 369 year: 2016 ident: D0CP03034A-(cit6)/*[position()=1] publication-title: Wiley Interdiscip. Rev.: Comput. Mol. Sci. – volume: 93 start-page: 175503 year: 2004 ident: D0CP03034A-(cit14)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.93.175503 – volume: 72 start-page: 026501 year: 2009 ident: D0CP03034A-(cit4)/*[position()=1] publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/72/2/026501 – volume: 9 start-page: 5567 year: 2013 ident: D0CP03034A-(cit5)/*[position()=1] publication-title: J. Chem. Theory Comput. doi: 10.1021/ct4005596 – volume: 577 start-page: 341 year: 2016 ident: D0CP03034A-(cit28)/*[position()=1] publication-title: Methods Enzymol. doi: 10.1016/bs.mie.2016.05.019 – volume: 105 start-page: 1959 year: 1996 ident: D0CP03034A-(cit9)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.472065 – volume-title: Knowledgebase of Interatomic Models (KIM) Application Programming Interface (API) year: 2011 ident: D0CP03034A-(cit80)/*[position()=1] doi: 10.25950/ff8f563a – ident: D0CP03034A-(cit89)/*[position()=1] – volume: 73 start-page: 2336 year: 1994 ident: D0CP03034A-(cit38)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.73.2336 – volume: 354 start-page: 351 year: 2019 ident: D0CP03034A-(cit21)/*[position()=1] publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2019.04.020 – volume: 524 start-page: 56 year: 2012 ident: D0CP03034A-(cit41)/*[position()=1] publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2011.12.053 – volume: 7 start-page: e1310 year: 2017 ident: D0CP03034A-(cit7)/*[position()=1] publication-title: Wiley Interdiscip. Rev.: Comput. Mol. Sci. – volume: 55 start-page: 14279 year: 1997 ident: D0CP03034A-(cit37)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.55.14279 – volume: 142 start-page: 064116 year: 2015 ident: D0CP03034A-(cit24)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.4907786 – volume: 104 start-page: 044507 year: 2008 ident: D0CP03034A-(cit57)/*[position()=1] publication-title: J. Appl. Phys. doi: 10.1063/1.2963697 – volume: 71 start-page: 65 year: 1995 ident: D0CP03034A-(cit68)/*[position()=1] publication-title: Philos. Mag. A doi: 10.1080/01418619508242956 – volume: 3 start-page: 68 year: 1989 ident: D0CP03034A-(cit84)/*[position()=1] publication-title: Comput. Phys. doi: 10.1063/1.168349 – volume: 81 start-page: 125328 year: 2010 ident: D0CP03034A-(cit74)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.81.125328 – volume: 6 start-page: 221 year: 1988 ident: D0CP03034A-(cit40)/*[position()=1] publication-title: Biotechnol. Genet. Eng. Rev. doi: 10.1080/02648725.1988.10647849 – volume: 18 start-page: 7318 year: 2016 ident: D0CP03034A-(cit25)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C5CP07136D – volume: 74 start-page: 255 year: 2013 ident: D0CP03034A-(cit75)/*[position()=1] publication-title: Mater. Sci. Eng., R doi: 10.1016/j.mser.2013.07.001 |
SSID | ssj0001513 |
Score | 2.3653476 |
Snippet | Quantum mechanics/molecular mechanics (QM/MM) methods are widely used in molecular dynamics (MD) simulations of large systems. By partitioning the system into... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1937 |
SubjectTerms | Adaptive systems Criteria Methods Molecular dynamics Partitioning Potential energy Quantum mechanics Simulation |
Title | On-the-fly determination of active region centers in adaptive-partitioning QM/MM |
URI | https://www.proquest.com/docview/2440914483 https://www.proquest.com/docview/2436393919 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfYdoAL4msiYyAjuKDKLLHz5WNVOg3UbJ2USoVLZDvJmDSl0dYe4K_nObaTTlQIuESJbdmR3_Pzz8_vA6H3VNIkiBJGapYIEsogAjlIBYkBPCcVTUXItL9zdh6fLcIvy2g5pLfqvEvW8qP6udOv5H-oCmVAV-0l-w-U7TuFAngH-sITKAzPv6LxRUMAv5H65seodGYtDgGKTpCNdOIFKNA2mNpV97oZiVK0uoq0ukenj73M4Dfslb7FqnNHQuWSwpk3XWQUInedQmE-mfROYt-q5op833QmAl-F3RWtUgFOkPqKJO3ZwKgunN1oZxdiB9oSlWHMCBytbSDr7TKT9M3JV0q3-MhqLo20BPBoUt7arRe-jSPnb3LdZzosaumrFoQSC7d2L3djf35RnC5msyKfLvM9dEDh1ABi72A8zT_P-q0Z4A0z7mbm1128WsZPhr7vI5Th2LF363LCdNgjf4Ie20MDHhsOeIoeVM0z9LCfredoPnACvscJeFVjwwnYcAK2nICvG7yTE_BldpJlL9DidJpPzojNlUEUS5I1EXHKVSBiKUHAcoAmpc5HC_Dar2msDZ9iWVdUR26iQc1FEsZS8TLS-QUqgKicHaL9ZtVULxGOZCAiQVPFFQtTX0qAjKz2RaX0ymWJhz64-SmUDSSv85ncFJ1BA-PFJ38y7-Zy7KF3fdvWhE_Z2erYTXNhl9ddAbgTsGwYpsxDb_tqmFd9oyWaarXRbRggbMYD7qFDIE8_xkBNDx3trijasj7688Cv0KNhcRyj_fXtpnoNGHQt31jO-gVaJoYE |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On-the-fly+determination+of+active+region+centers+in+adaptive-partitioning+QM%2FMM&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Zeng-hui%2C+Yang&rft.date=2020-09-08&rft.pub=Royal+Society+of+Chemistry&rft.issn=1463-9076&rft.eissn=1463-9084&rft.volume=22&rft.issue=34&rft.spage=19307&rft.epage=19317&rft_id=info:doi/10.1039%2Fd0cp03034a&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon |