On-the-fly determination of active region centers in adaptive-partitioning QM/MM

Quantum mechanics/molecular mechanics (QM/MM) methods are widely used in molecular dynamics (MD) simulations of large systems. By partitioning the system into active and environmental regions and treating them with different levels of theory, QM/MM methods achieve accuracy and efficiency at the same...

Full description

Saved in:
Bibliographic Details
Published inPhysical chemistry chemical physics : PCCP Vol. 22; no. 34; pp. 1937 - 19317
Main Author Yang, Zeng-hui
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 08.09.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Quantum mechanics/molecular mechanics (QM/MM) methods are widely used in molecular dynamics (MD) simulations of large systems. By partitioning the system into active and environmental regions and treating them with different levels of theory, QM/MM methods achieve accuracy and efficiency at the same time. Adaptive-partitioning (AP) QM/MM allows the partition of the system to change during the MD simulation, making it possible to simulate processes in which the active and environmental regions exchange atoms or molecules, such as processes in solutions or solids. AP-QM/MM methods usually partition the system according to distances to centers of active regions. For energy-conserving AP-QM/MM methods, these centers are chosen beforehand and remain fixed during the MD simulation, making it difficult to simulate processes in which active regions may occur or vanish. In this paper, I develop an adaptive-center (AC) method that allows on-the-fly determination of the centers of active regions according to any geometrical criterion or any criterion dependent on the potential energy. The AC method is compatible with all existing energy-conserving AP-QM/MM methods, and the resulting potential energy surface is smooth. The application of the AC method is demonstrated with two examples in solid systems. The QM/MM partition is determined on-the-fly using any geometrical property as a criterion, while satisfying energy conservation.
AbstractList Quantum mechanics/molecular mechanics (QM/MM) methods are widely used in molecular dynamics (MD) simulations of large systems. By partitioning the system into active and environmental regions and treating them with different levels of theory, QM/MM methods achieve accuracy and efficiency at the same time. Adaptive-partitioning (AP) QM/MM allows the partition of the system to change during the MD simulation, making it possible to simulate processes in which the active and environmental regions exchange atoms or molecules, such as processes in solutions or solids. AP-QM/MM methods usually partition the system according to distances to centers of active regions. For energy-conserving AP-QM/MM methods, these centers are chosen beforehand and remain fixed during the MD simulation, making it difficult to simulate processes in which active regions may occur or vanish. In this paper, I develop an adaptive-center (AC) method that allows on-the-fly determination of the centers of active regions according to any geometrical criterion or any criterion dependent on the potential energy. The AC method is compatible with all existing energy-conserving AP-QM/MM methods, and the resulting potential energy surface is smooth. The application of the AC method is demonstrated with two examples in solid systems.Quantum mechanics/molecular mechanics (QM/MM) methods are widely used in molecular dynamics (MD) simulations of large systems. By partitioning the system into active and environmental regions and treating them with different levels of theory, QM/MM methods achieve accuracy and efficiency at the same time. Adaptive-partitioning (AP) QM/MM allows the partition of the system to change during the MD simulation, making it possible to simulate processes in which the active and environmental regions exchange atoms or molecules, such as processes in solutions or solids. AP-QM/MM methods usually partition the system according to distances to centers of active regions. For energy-conserving AP-QM/MM methods, these centers are chosen beforehand and remain fixed during the MD simulation, making it difficult to simulate processes in which active regions may occur or vanish. In this paper, I develop an adaptive-center (AC) method that allows on-the-fly determination of the centers of active regions according to any geometrical criterion or any criterion dependent on the potential energy. The AC method is compatible with all existing energy-conserving AP-QM/MM methods, and the resulting potential energy surface is smooth. The application of the AC method is demonstrated with two examples in solid systems.
Quantum mechanics/molecular mechanics (QM/MM) methods are widely used in molecular dynamics (MD) simulations of large systems. By partitioning the system into active and environmental regions and treating them with different levels of theory, QM/MM methods achieve accuracy and efficiency at the same time. Adaptive-partitioning (AP) QM/MM allows the partition of the system to change during the MD simulation, making it possible to simulate processes in which the active and environmental regions exchange atoms or molecules, such as processes in solutions or solids. AP-QM/MM methods usually partition the system according to distances to centers of active regions. For energy-conserving AP-QM/MM methods, these centers are chosen beforehand and remain fixed during the MD simulation, making it difficult to simulate processes in which active regions may occur or vanish. In this paper, I develop an adaptive-center (AC) method that allows on-the-fly determination of the centers of active regions according to any geometrical criterion or any criterion dependent on the potential energy. The AC method is compatible with all existing energy-conserving AP-QM/MM methods, and the resulting potential energy surface is smooth. The application of the AC method is demonstrated with two examples in solid systems.
Quantum mechanics/molecular mechanics (QM/MM) methods are widely used in molecular dynamics (MD) simulations of large systems. By partitioning the system into active and environmental regions and treating them with different levels of theory, QM/MM methods achieve accuracy and efficiency at the same time. Adaptive-partitioning (AP) QM/MM allows the partition of the system to change during the MD simulation, making it possible to simulate processes in which the active and environmental regions exchange atoms or molecules, such as processes in solutions or solids. AP-QM/MM methods usually partition the system according to distances to centers of active regions. For energy-conserving AP-QM/MM methods, these centers are chosen beforehand and remain fixed during the MD simulation, making it difficult to simulate processes in which active regions may occur or vanish. In this paper, I develop an adaptive-center (AC) method that allows on-the-fly determination of the centers of active regions according to any geometrical criterion or any criterion dependent on the potential energy. The AC method is compatible with all existing energy-conserving AP-QM/MM methods, and the resulting potential energy surface is smooth. The application of the AC method is demonstrated with two examples in solid systems. The QM/MM partition is determined on-the-fly using any geometrical property as a criterion, while satisfying energy conservation.
Author Yang, Zeng-hui
AuthorAffiliation Institute of Electronic Engineering
China Academy of Engineering Physics
Microsystem and Terahertz Research Center
AuthorAffiliation_xml – name: Microsystem and Terahertz Research Center
– name: Institute of Electronic Engineering
– name: China Academy of Engineering Physics
Author_xml – sequence: 1
  givenname: Zeng-hui
  surname: Yang
  fullname: Yang, Zeng-hui
BookMark eNp90c9LwzAUB_AgE9ymF-9CxYsIdUmTps1xzJ-wsQl6LmmazIwurUkm7L833WSCiKeEfD_v8XgZgJ5pjATgHMFbBDEbVVC0EENM-BHoI0JxzGBOeod7Rk_AwLkVhBClCPfBYm5i_y5jVW-jSnpp19pwrxsTNSriwutPGVm57B6ENCF3kTYRr3jbRXHLrdcd12YZvcxGs9kpOFa8dvLs-xyCt4f718lTPJ0_Pk_G01jgLPMxpzkTiNOyzBhhmKBKyDzNcQpVQnFGIS2VTDKakQQpxjNCS8GqlAQtGcMMD8H1vm9rm4-NdL5YaydkXXMjm40rEoJpYAx19OoXXTUba8J0QRHIECE5Dupmr4RtnLNSFa3Va263BYJFt9ziDk4Wu-WOA4a_sNB-tzdvua7_LrnYl1gnDq1__ivkl__lRVsp_AVBIZER
CitedBy_id crossref_primary_10_1021_acs_jctc_4c00164
crossref_primary_10_1016_j_cma_2024_117097
crossref_primary_10_1039_D0CP05149G
crossref_primary_10_1021_acs_jpca_3c05600
Cites_doi 10.1021/acs.jctc.9b00649
10.1016/0022-2836(76)90311-9
10.1007/978-3-642-00710-1
10.1021/jp9536514
10.1063/1.366821
10.1021/acs.jctc.8b01128
10.1007/s11837-011-0102-6
10.1021/jp0673617
10.1016/j.mspro.2014.07.032
10.1119/1.2034523
10.1021/ct300331f
10.1103/PhysRevB.58.11085
10.1016/j.physb.2005.12.233
10.1088/0031-8949/1994/T54/007
10.1016/0168-583X(93)96170-H
10.1016/j.commatsci.2020.109697
10.1002/cphc.200400585
10.1063/1.437577
10.1021/ol501663f
10.1109/TNS.2003.813197
10.1080/01418619508236218
10.1088/0034-4885/73/11/116501
10.1103/PhysRevB.51.12947
10.1103/PhysRevB.54.4741
10.1103/PhysRevB.37.6991
10.1103/PhysRevB.75.085311
10.25950/ac258694
10.1103/PhysRevB.58.7260
10.1002/cphc.201402105
10.1103/PhysRevB.57.7556
10.1016/j.cpc.2007.05.018
10.1007/s00214-006-0143-z
10.25950/962b4967
10.1063/1.365193
10.1002/jcc.540160911
10.1016/j.ijsolstr.2008.03.016
10.1021/j100161a070
10.1016/0301-0104(96)00152-8
10.1002/qua.25336
10.1119/1.13390
10.1021/ct5005593
10.1039/C1CP22600B
10.1002/anie.200802019
10.1021/acs.jctc.7b00099
10.3390/molecules23081882
10.1039/d0cp02855j
10.1002/(SICI)1521-3951(200001)217:1<41::AID-PSSB41>3.0.CO;2-V
10.1088/0965-0393/18/1/015012
10.1007/s00214-005-0049-1
10.1007/s11431-014-5668-0
10.1103/PhysRevLett.112.115501
10.1021/acs.jctc.6b00205
10.1021/jp962071j
10.1063/1.3245303
10.1039/C7CP01708A
10.1006/jcph.1995.1039
10.1021/acs.jctc.7b01206
10.1021/ct500553x
10.1063/1.106972
10.1103/PhysRev.159.98
10.1039/c004111d
10.1016/S0009-2614(02)00210-5
10.1021/ct900148e
10.1016/0927-0256(94)90109-0
10.1103/PhysRevLett.93.175503
10.1088/0034-4885/72/2/026501
10.1021/ct4005596
10.1016/bs.mie.2016.05.019
10.1063/1.472065
10.25950/ff8f563a
10.1103/PhysRevLett.73.2336
10.1016/j.cma.2019.04.020
10.1016/j.cplett.2011.12.053
10.1103/PhysRevB.55.14279
10.1063/1.4907786
10.1063/1.2963697
10.1080/01418619508242956
10.1063/1.168349
10.1103/PhysRevB.81.125328
10.1080/02648725.1988.10647849
10.1039/C5CP07136D
10.1016/j.mser.2013.07.001
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2020
Copyright_xml – notice: Copyright Royal Society of Chemistry 2020
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1039/d0cp03034a
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1463-9084
EndPage 19317
ExternalDocumentID 10_1039_D0CP03034A
d0cp03034a
GroupedDBID -
0-7
0R
123
1TJ
29O
4.4
53G
70
705
70J
7~J
87K
AAEMU
AAGNR
AAIWI
AANOJ
ABDVN
ABFLS
ABGFH
ABRYZ
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AENEX
AFVBQ
AGKEF
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CKLOX
CS3
D0L
DU5
DZ
EBS
ECGLT
EE0
EF-
F5P
GNO
HZ
H~N
IDZ
J3G
J3I
JG
M4U
N9A
NHB
O9-
OK1
P2P
R7B
R7C
RCNCU
RIG
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SKF
SLH
TN5
TWZ
UCJ
UHB
VH6
WH7
X
YNT
---
-DZ
-~X
0R~
2WC
70~
AAJAE
AAMEH
AAWGC
AAXHV
AAXPP
AAYXX
ABASK
ABEMK
ABJNI
ABPDG
ABXOH
ACGFO
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AGEGJ
AGRSR
AHGCF
AKMSF
ALUYA
ANUXI
APEMP
CITATION
GGIMP
H13
HZ~
R56
RAOCF
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c377t-a689c1a6bb7949341dce858350f2637606bfe2767421f9a746bc9d54794e99393
ISSN 1463-9076
1463-9084
IngestDate Fri Jul 11 09:27:56 EDT 2025
Mon Jun 30 04:28:05 EDT 2025
Tue Jul 01 00:53:46 EDT 2025
Thu Apr 24 23:12:36 EDT 2025
Sat Jan 08 03:51:44 EST 2022
Wed Nov 11 00:25:29 EST 2020
IsPeerReviewed true
IsScholarly true
Issue 34
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c377t-a689c1a6bb7949341dce858350f2637606bfe2767421f9a746bc9d54794e99393
Notes 10.1039/d0cp03034a
eqn (4)
See DOI
Electronic supplementary information (ESI) available: Details of the implementation of the AC-AP method, and of the smoothing function in
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8486-740X
PQID 2440914483
PQPubID 2047499
PageCount 11
ParticipantIDs rsc_primary_d0cp03034a
crossref_primary_10_1039_D0CP03034A
proquest_miscellaneous_2436393919
proquest_journals_2440914483
crossref_citationtrail_10_1039_D0CP03034A
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200908
PublicationDateYYYYMMDD 2020-09-08
PublicationDate_xml – month: 9
  year: 2020
  text: 20200908
  day: 8
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Physical chemistry chemical physics : PCCP
PublicationYear 2020
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Moras (D0CP03034A-(cit35)/*[position()=1]) 2006; 376–377
Srour (D0CP03034A-(cit56)/*[position()=1]) 2003; 50
Field (D0CP03034A-(cit19)/*[position()=1]) 2017; 13
Chason (D0CP03034A-(cit53)/*[position()=1]) 1997; 81
Heyden (D0CP03034A-(cit15)/*[position()=1]) 2007; 111
Zhu (D0CP03034A-(cit90)/*[position()=1]) 1996; 54
Yu (D0CP03034A-(cit88)/*[position()=1]) 2010
Zheng (D0CP03034A-(cit6)/*[position()=1]) 2016; 6
Lin (D0CP03034A-(cit2)/*[position()=1]) 2007; 117
Chen (D0CP03034A-(cit21)/*[position()=1]) 2019; 354
Stukowski (D0CP03034A-(cit83)/*[position()=1]) 2010; 18
Frauenheim (D0CP03034A-(cit87)/*[position()=1]) 2000; 217
Gao (D0CP03034A-(cit68)/*[position()=1]) 1995; 71
Watanabe (D0CP03034A-(cit18)/*[position()=1]) 2014; 10
Humbel (D0CP03034A-(cit9)/*[position()=1]) 1996; 105
Myers (D0CP03034A-(cit57)/*[position()=1]) 2008; 104
Elliott (D0CP03034A-(cit77)/*[position()=1]) 2018
Duster (D0CP03034A-(cit7)/*[position()=1]) 2017; 7
Peguiron (D0CP03034A-(cit24)/*[position()=1]) 2015; 142
Elliott (D0CP03034A-(cit78)/*[position()=1]) 2018
Borland (D0CP03034A-(cit55)/*[position()=1]) 1993; 36
Boereboom (D0CP03034A-(cit27)/*[position()=1]) 2018; 14
Csányi (D0CP03034A-(cit34)/*[position()=1]) 2005; 17
Race (D0CP03034A-(cit51)/*[position()=1]) 2010; 73
Smith (D0CP03034A-(cit84)/*[position()=1]) 1989; 3
Yang (D0CP03034A-(cit47)/*[position()=1]) 2020
Faken (D0CP03034A-(cit48)/*[position()=1]) 1994; 2
Thompson (D0CP03034A-(cit66)/*[position()=1]) 2009; 131
Watanabe (D0CP03034A-(cit20)/*[position()=1]) 2018; 23
Donnelly (D0CP03034A-(cit62)/*[position()=1]) 2005; 73
Kelchner (D0CP03034A-(cit50)/*[position()=1]) 1998; 58
Bulo (D0CP03034A-(cit16)/*[position()=1]) 2009; 5
Maseras (D0CP03034A-(cit8)/*[position()=1]) 1995; 16
Duster (D0CP03034A-(cit29)/*[position()=1]) 2019; 15
Payne (D0CP03034A-(cit33)/*[position()=1]) 2005; 6
Yu (D0CP03034A-(cit73)/*[position()=1]) 2007; 75
Watanabe (D0CP03034A-(cit26)/*[position()=1]) 2017; 19
Bakowies (D0CP03034A-(cit11)/*[position()=1]) 1996; 100
Kerdcharoen (D0CP03034A-(cit12)/*[position()=1]) 1996; 211
Duster (D0CP03034A-(cit28)/*[position()=1]) 2016; 577
Rappé (D0CP03034A-(cit76)/*[position()=1]) 1991; 95
Warshel (D0CP03034A-(cit1)/*[position()=1]) 1976; 103
Rode (D0CP03034A-(cit31)/*[position()=1]) 2006; 115
Liang (D0CP03034A-(cit75)/*[position()=1]) 2013; 74
Glukhova (D0CP03034A-(cit44)/*[position()=1]) 2014; 6
Svensson (D0CP03034A-(cit10)/*[position()=1]) 1996; 100
Elliott (D0CP03034A-(cit80)/*[position()=1]) 2011
Plimpton (D0CP03034A-(cit81)/*[position()=1]) 1995; 117
Nordlund (D0CP03034A-(cit67)/*[position()=1]) 1994; T54
Pezeshki (D0CP03034A-(cit45)/*[position()=1]) 2014; 10
Nordlund (D0CP03034A-(cit70)/*[position()=1]) 1998; 83
Tersoff (D0CP03034A-(cit71)/*[position()=1]) 1988; 37
Duster (D0CP03034A-(cit30)/*[position()=1]) 2019; 15
Takenaka (D0CP03034A-(cit41)/*[position()=1]) 2012; 524
Boereboom (D0CP03034A-(cit46)/*[position()=1]) 2016; 12
Lan (D0CP03034A-(cit58)/*[position()=1]) 2020; 179
Waller (D0CP03034A-(cit42)/*[position()=1]) 2014; 15
D0CP03034A-(cit89)/*[position()=1]
Bulo (D0CP03034A-(cit5)/*[position()=1]) 2013; 9
Zheng (D0CP03034A-(cit43)/*[position()=1]) 2017; 117
Zhu (D0CP03034A-(cit69)/*[position()=1]) 1995; 71
Srour (D0CP03034A-(cit52)/*[position()=1])
Kerdcharoen (D0CP03034A-(cit13)/*[position()=1]) 2002; 355
Bernstein (D0CP03034A-(cit4)/*[position()=1]) 2009; 72
Csányi (D0CP03034A-(cit14)/*[position()=1]) 2004; 93
Bernstein (D0CP03034A-(cit32)/*[position()=1]) 2012; 14
Williams (D0CP03034A-(cit54)/*[position()=1]) 1993; 80-81
Thornton (D0CP03034A-(cit60)/*[position()=1]) 2004
Keinonen (D0CP03034A-(cit59)/*[position()=1]) 1992; 60
Tsai (D0CP03034A-(cit63)/*[position()=1]) 1979; 70
Li (D0CP03034A-(cit91)/*[position()=1]) 2014; 57
Swenson (D0CP03034A-(cit64)/*[position()=1]) 1983; 51
Kumar (D0CP03034A-(cit39)/*[position()=1]) 2014; 16
Tsuzuki (D0CP03034A-(cit49)/*[position()=1]) 2007; 177
Senn (D0CP03034A-(cit3)/*[position()=1]) 2009; 48
Watanabe (D0CP03034A-(cit25)/*[position()=1]) 2016; 18
Nordlund (D0CP03034A-(cit36)/*[position()=1]) 1998; 57
Shan (D0CP03034A-(cit74)/*[position()=1]) 2010; 81
Elstner (D0CP03034A-(cit86)/*[position()=1]) 1998; 58
Nakano (D0CP03034A-(cit38)/*[position()=1]) 1994; 73
Subramaniyan (D0CP03034A-(cit65)/*[position()=1]) 2008; 45
Chenault (D0CP03034A-(cit40)/*[position()=1]) 1988; 6
D0CP03034A-(cit82)/*[position()=1]
Nielsen (D0CP03034A-(cit17)/*[position()=1]) 2010; 12
Ziegler (D0CP03034A-(cit72)/*[position()=1]) 1985
Park (D0CP03034A-(cit22)/*[position()=1]) 2012; 8
Gleizer (D0CP03034A-(cit23)/*[position()=1]) 2014; 112
Tang (D0CP03034A-(cit37)/*[position()=1]) 1997; 55
Verlet (D0CP03034A-(cit61)/*[position()=1]) 1967; 159
Tadmor (D0CP03034A-(cit79)/*[position()=1]) 2011; 63
Porezag (D0CP03034A-(cit85)/*[position()=1]) 1995; 51
References_xml – issn: 2018
  publication-title: Efficient multi-species Lennard-Jones model with truncated or shifted cutoff v003
  doi: Elliott
– doi: Srour Palko
– issn: 2004
  publication-title: Classical dynamics of particles and systems
  doi: Thornton Marion
– issn: 2018
  publication-title: Efficient 'universal' shifted Lennard-Jones model for all KIM API supported species developed by Elliott and Akerson (2015) v003
  doi: Elliott
– issn: 2011
  publication-title: Knowledgebase of Interatomic Models (KIM) Application Programming Interface (API)
  doi: Elliott Tadmor
– issn: 2010
  publication-title: Fundamentals of Semiconductors: Physics and Materials Properties
  doi: Yu Cardona
– issn: 1985
  publication-title: The stopping and ranges of ions in solids
  doi: Ziegler Biersack Littmark
– volume: 15
  start-page: 5794
  year: 2019
  ident: D0CP03034A-(cit30)/*[position()=1]
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.9b00649
– volume: 103
  start-page: 227
  year: 1976
  ident: D0CP03034A-(cit1)/*[position()=1]
  publication-title: J. Mol. Biol.
  doi: 10.1016/0022-2836(76)90311-9
– volume-title: Fundamentals of Semiconductors: Physics and Materials Properties
  year: 2010
  ident: D0CP03034A-(cit88)/*[position()=1]
  doi: 10.1007/978-3-642-00710-1
– volume: 100
  start-page: 10580
  year: 1996
  ident: D0CP03034A-(cit11)/*[position()=1]
  publication-title: J. Phys. Chem.
  doi: 10.1021/jp9536514
– volume: 83
  start-page: 1238
  year: 1998
  ident: D0CP03034A-(cit70)/*[position()=1]
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.366821
– volume: 15
  start-page: 892
  year: 2019
  ident: D0CP03034A-(cit29)/*[position()=1]
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.8b01128
– volume: 63
  start-page: 17
  year: 2011
  ident: D0CP03034A-(cit79)/*[position()=1]
  publication-title: JOM
  doi: 10.1007/s11837-011-0102-6
– volume: 111
  start-page: 2231
  year: 2007
  ident: D0CP03034A-(cit15)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0673617
– volume: 6
  start-page: 256
  year: 2014
  ident: D0CP03034A-(cit44)/*[position()=1]
  publication-title: Procedia Mater. Sci.
  doi: 10.1016/j.mspro.2014.07.032
– volume-title: The stopping and ranges of ions in solids
  year: 1985
  ident: D0CP03034A-(cit72)/*[position()=1]
– volume: 73
  start-page: 938
  year: 2005
  ident: D0CP03034A-(cit62)/*[position()=1]
  publication-title: Am. J. Phys.
  doi: 10.1119/1.2034523
– volume: 8
  start-page: 2868
  year: 2012
  ident: D0CP03034A-(cit22)/*[position()=1]
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct300331f
– volume: 58
  start-page: 11085
  year: 1998
  ident: D0CP03034A-(cit50)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.58.11085
– volume: 376–377
  start-page: 936
  year: 2006
  ident: D0CP03034A-(cit35)/*[position()=1]
  publication-title: Phys. B
  doi: 10.1016/j.physb.2005.12.233
– volume: T54
  start-page: 34
  year: 1994
  ident: D0CP03034A-(cit67)/*[position()=1]
  publication-title: Phys. Scr.
  doi: 10.1088/0031-8949/1994/T54/007
– volume: 80-81
  start-page: 507
  year: 1993
  ident: D0CP03034A-(cit54)/*[position()=1]
  publication-title: Nucl. Instrum. Methods Phys. Res., Sect. B
  doi: 10.1016/0168-583X(93)96170-H
– volume: 179
  start-page: 109697
  year: 2020
  ident: D0CP03034A-(cit58)/*[position()=1]
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2020.109697
– volume: 6
  start-page: 1731
  year: 2005
  ident: D0CP03034A-(cit33)/*[position()=1]
  publication-title: ChemPhysChem
  doi: 10.1002/cphc.200400585
– volume: 70
  start-page: 1375
  year: 1979
  ident: D0CP03034A-(cit63)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.437577
– volume: 16
  start-page: 3452
  year: 2014
  ident: D0CP03034A-(cit39)/*[position()=1]
  publication-title: Org. Lett.
  doi: 10.1021/ol501663f
– volume: 50
  start-page: 653
  year: 2003
  ident: D0CP03034A-(cit56)/*[position()=1]
  publication-title: IEEE Trans. Nucl. Sci.
  doi: 10.1109/TNS.2003.813197
– volume: 71
  start-page: 735
  year: 1995
  ident: D0CP03034A-(cit69)/*[position()=1]
  publication-title: Philos. Mag. A
  doi: 10.1080/01418619508236218
– volume: 73
  start-page: 116501
  year: 2010
  ident: D0CP03034A-(cit51)/*[position()=1]
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/73/11/116501
– volume: 51
  start-page: 12947
  year: 1995
  ident: D0CP03034A-(cit85)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.51.12947
– volume: 54
  start-page: 4741
  year: 1996
  ident: D0CP03034A-(cit90)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.54.4741
– volume: 37
  start-page: 6991
  year: 1988
  ident: D0CP03034A-(cit71)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.37.6991
– volume: 75
  start-page: 085311
  year: 2007
  ident: D0CP03034A-(cit73)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.75.085311
– volume-title: Efficient multi-species Lennard-Jones model with truncated or shifted cutoff v003
  year: 2018
  ident: D0CP03034A-(cit78)/*[position()=1]
  doi: 10.25950/ac258694
– volume: 36
  start-page: 28
  year: 1993
  ident: D0CP03034A-(cit55)/*[position()=1]
  publication-title: Solid State Technol.
– volume: 58
  start-page: 7260
  year: 1998
  ident: D0CP03034A-(cit86)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.58.7260
– volume: 17
  start-page: R691
  year: 2005
  ident: D0CP03034A-(cit34)/*[position()=1]
  publication-title: J. Phys.: Condens. Matter
– volume: 15
  start-page: 3218
  year: 2014
  ident: D0CP03034A-(cit42)/*[position()=1]
  publication-title: ChemPhysChem
  doi: 10.1002/cphc.201402105
– volume: 57
  start-page: 7556
  year: 1998
  ident: D0CP03034A-(cit36)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.57.7556
– volume: 177
  start-page: 518
  year: 2007
  ident: D0CP03034A-(cit49)/*[position()=1]
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2007.05.018
– ident: D0CP03034A-(cit82)/*[position()=1]
– volume: 117
  start-page: 185
  year: 2007
  ident: D0CP03034A-(cit2)/*[position()=1]
  publication-title: Theor. Chem. Acc.
  doi: 10.1007/s00214-006-0143-z
– volume-title: Efficient ‘universal’ shifted Lennard-Jones model for all KIM API supported species developed by Elliott and Akerson (2015) v003
  year: 2018
  ident: D0CP03034A-(cit77)/*[position()=1]
  doi: 10.25950/962b4967
– volume: 81
  start-page: 6513
  year: 1997
  ident: D0CP03034A-(cit53)/*[position()=1]
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.365193
– volume: 16
  start-page: 1170
  year: 1995
  ident: D0CP03034A-(cit8)/*[position()=1]
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.540160911
– ident: D0CP03034A-(cit52)/*[position()=1]
– volume: 45
  start-page: 4340
  year: 2008
  ident: D0CP03034A-(cit65)/*[position()=1]
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2008.03.016
– volume: 95
  start-page: 3358
  year: 1991
  ident: D0CP03034A-(cit76)/*[position()=1]
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100161a070
– volume: 211
  start-page: 313
  year: 1996
  ident: D0CP03034A-(cit12)/*[position()=1]
  publication-title: Chem. Phys.
  doi: 10.1016/0301-0104(96)00152-8
– volume: 117
  start-page: 25336
  year: 2017
  ident: D0CP03034A-(cit43)/*[position()=1]
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/qua.25336
– volume: 51
  start-page: 940
  year: 1983
  ident: D0CP03034A-(cit64)/*[position()=1]
  publication-title: Am. J. Phys.
  doi: 10.1119/1.13390
– volume: 10
  start-page: 4242
  year: 2014
  ident: D0CP03034A-(cit18)/*[position()=1]
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct5005593
– volume: 14
  start-page: 646
  year: 2012
  ident: D0CP03034A-(cit32)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C1CP22600B
– volume: 48
  start-page: 1198
  year: 2009
  ident: D0CP03034A-(cit3)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200802019
– volume: 13
  start-page: 2342
  year: 2017
  ident: D0CP03034A-(cit19)/*[position()=1]
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.7b00099
– volume: 23
  start-page: 1882
  year: 2018
  ident: D0CP03034A-(cit20)/*[position()=1]
  publication-title: Molecules
  doi: 10.3390/molecules23081882
– year: 2020
  ident: D0CP03034A-(cit47)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/d0cp02855j
– volume: 217
  start-page: 41
  year: 2000
  ident: D0CP03034A-(cit87)/*[position()=1]
  publication-title: Phys. Status Solidi B
  doi: 10.1002/(SICI)1521-3951(200001)217:1<41::AID-PSSB41>3.0.CO;2-V
– volume: 18
  start-page: 015012
  year: 2010
  ident: D0CP03034A-(cit83)/*[position()=1]
  publication-title: Modell. Simul. Mater. Sci. Eng.
  doi: 10.1088/0965-0393/18/1/015012
– volume: 115
  start-page: 77
  year: 2006
  ident: D0CP03034A-(cit31)/*[position()=1]
  publication-title: Theor. Chem. Acc.
  doi: 10.1007/s00214-005-0049-1
– volume: 57
  start-page: 2177
  year: 2014
  ident: D0CP03034A-(cit91)/*[position()=1]
  publication-title: Sci. China: Phys., Mech. Astron.
  doi: 10.1007/s11431-014-5668-0
– volume: 112
  start-page: 115501
  year: 2014
  ident: D0CP03034A-(cit23)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.112.115501
– volume: 12
  start-page: 3441
  year: 2016
  ident: D0CP03034A-(cit46)/*[position()=1]
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.6b00205
– volume: 100
  start-page: 19357
  year: 1996
  ident: D0CP03034A-(cit10)/*[position()=1]
  publication-title: J. Phys. Chem.
  doi: 10.1021/jp962071j
– volume: 131
  start-page: 154107
  year: 2009
  ident: D0CP03034A-(cit66)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3245303
– volume: 19
  start-page: 17985
  year: 2017
  ident: D0CP03034A-(cit26)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C7CP01708A
– volume: 117
  start-page: 1
  year: 1995
  ident: D0CP03034A-(cit81)/*[position()=1]
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1995.1039
– volume: 14
  start-page: 1841
  year: 2018
  ident: D0CP03034A-(cit27)/*[position()=1]
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.7b01206
– volume: 10
  start-page: 4765
  year: 2014
  ident: D0CP03034A-(cit45)/*[position()=1]
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct500553x
– volume: 60
  start-page: 628
  year: 1992
  ident: D0CP03034A-(cit59)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.106972
– volume-title: Classical dynamics of particles and systems
  year: 2004
  ident: D0CP03034A-(cit60)/*[position()=1]
– volume: 159
  start-page: 98
  year: 1967
  ident: D0CP03034A-(cit61)/*[position()=1]
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.159.98
– volume: 12
  start-page: 12401
  year: 2010
  ident: D0CP03034A-(cit17)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c004111d
– volume: 355
  start-page: 257
  year: 2002
  ident: D0CP03034A-(cit13)/*[position()=1]
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(02)00210-5
– volume: 5
  start-page: 2212
  year: 2009
  ident: D0CP03034A-(cit16)/*[position()=1]
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct900148e
– volume: 2
  start-page: 279
  year: 1994
  ident: D0CP03034A-(cit48)/*[position()=1]
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/0927-0256(94)90109-0
– volume: 6
  start-page: 369
  year: 2016
  ident: D0CP03034A-(cit6)/*[position()=1]
  publication-title: Wiley Interdiscip. Rev.: Comput. Mol. Sci.
– volume: 93
  start-page: 175503
  year: 2004
  ident: D0CP03034A-(cit14)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.93.175503
– volume: 72
  start-page: 026501
  year: 2009
  ident: D0CP03034A-(cit4)/*[position()=1]
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/72/2/026501
– volume: 9
  start-page: 5567
  year: 2013
  ident: D0CP03034A-(cit5)/*[position()=1]
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct4005596
– volume: 577
  start-page: 341
  year: 2016
  ident: D0CP03034A-(cit28)/*[position()=1]
  publication-title: Methods Enzymol.
  doi: 10.1016/bs.mie.2016.05.019
– volume: 105
  start-page: 1959
  year: 1996
  ident: D0CP03034A-(cit9)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.472065
– volume-title: Knowledgebase of Interatomic Models (KIM) Application Programming Interface (API)
  year: 2011
  ident: D0CP03034A-(cit80)/*[position()=1]
  doi: 10.25950/ff8f563a
– ident: D0CP03034A-(cit89)/*[position()=1]
– volume: 73
  start-page: 2336
  year: 1994
  ident: D0CP03034A-(cit38)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.73.2336
– volume: 354
  start-page: 351
  year: 2019
  ident: D0CP03034A-(cit21)/*[position()=1]
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2019.04.020
– volume: 524
  start-page: 56
  year: 2012
  ident: D0CP03034A-(cit41)/*[position()=1]
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2011.12.053
– volume: 7
  start-page: e1310
  year: 2017
  ident: D0CP03034A-(cit7)/*[position()=1]
  publication-title: Wiley Interdiscip. Rev.: Comput. Mol. Sci.
– volume: 55
  start-page: 14279
  year: 1997
  ident: D0CP03034A-(cit37)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.55.14279
– volume: 142
  start-page: 064116
  year: 2015
  ident: D0CP03034A-(cit24)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4907786
– volume: 104
  start-page: 044507
  year: 2008
  ident: D0CP03034A-(cit57)/*[position()=1]
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2963697
– volume: 71
  start-page: 65
  year: 1995
  ident: D0CP03034A-(cit68)/*[position()=1]
  publication-title: Philos. Mag. A
  doi: 10.1080/01418619508242956
– volume: 3
  start-page: 68
  year: 1989
  ident: D0CP03034A-(cit84)/*[position()=1]
  publication-title: Comput. Phys.
  doi: 10.1063/1.168349
– volume: 81
  start-page: 125328
  year: 2010
  ident: D0CP03034A-(cit74)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.81.125328
– volume: 6
  start-page: 221
  year: 1988
  ident: D0CP03034A-(cit40)/*[position()=1]
  publication-title: Biotechnol. Genet. Eng. Rev.
  doi: 10.1080/02648725.1988.10647849
– volume: 18
  start-page: 7318
  year: 2016
  ident: D0CP03034A-(cit25)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C5CP07136D
– volume: 74
  start-page: 255
  year: 2013
  ident: D0CP03034A-(cit75)/*[position()=1]
  publication-title: Mater. Sci. Eng., R
  doi: 10.1016/j.mser.2013.07.001
SSID ssj0001513
Score 2.3653476
Snippet Quantum mechanics/molecular mechanics (QM/MM) methods are widely used in molecular dynamics (MD) simulations of large systems. By partitioning the system into...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1937
SubjectTerms Adaptive systems
Criteria
Methods
Molecular dynamics
Partitioning
Potential energy
Quantum mechanics
Simulation
Title On-the-fly determination of active region centers in adaptive-partitioning QM/MM
URI https://www.proquest.com/docview/2440914483
https://www.proquest.com/docview/2436393919
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfYdoAL4msiYyAjuKDKLLHz5WNVOg3UbJ2USoVLZDvJmDSl0dYe4K_nObaTTlQIuESJbdmR3_Pzz8_vA6H3VNIkiBJGapYIEsogAjlIBYkBPCcVTUXItL9zdh6fLcIvy2g5pLfqvEvW8qP6udOv5H-oCmVAV-0l-w-U7TuFAngH-sITKAzPv6LxRUMAv5H65seodGYtDgGKTpCNdOIFKNA2mNpV97oZiVK0uoq0ukenj73M4Dfslb7FqnNHQuWSwpk3XWQUInedQmE-mfROYt-q5op833QmAl-F3RWtUgFOkPqKJO3ZwKgunN1oZxdiB9oSlWHMCBytbSDr7TKT9M3JV0q3-MhqLo20BPBoUt7arRe-jSPnb3LdZzosaumrFoQSC7d2L3djf35RnC5msyKfLvM9dEDh1ABi72A8zT_P-q0Z4A0z7mbm1128WsZPhr7vI5Th2LF363LCdNgjf4Ie20MDHhsOeIoeVM0z9LCfredoPnACvscJeFVjwwnYcAK2nICvG7yTE_BldpJlL9DidJpPzojNlUEUS5I1EXHKVSBiKUHAcoAmpc5HC_Dar2msDZ9iWVdUR26iQc1FEsZS8TLS-QUqgKicHaL9ZtVULxGOZCAiQVPFFQtTX0qAjKz2RaX0ymWJhz64-SmUDSSv85ncFJ1BA-PFJ38y7-Zy7KF3fdvWhE_Z2erYTXNhl9ddAbgTsGwYpsxDb_tqmFd9oyWaarXRbRggbMYD7qFDIE8_xkBNDx3trijasj7688Cv0KNhcRyj_fXtpnoNGHQt31jO-gVaJoYE
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On-the-fly+determination+of+active+region+centers+in+adaptive-partitioning+QM%2FMM&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Zeng-hui%2C+Yang&rft.date=2020-09-08&rft.pub=Royal+Society+of+Chemistry&rft.issn=1463-9076&rft.eissn=1463-9084&rft.volume=22&rft.issue=34&rft.spage=19307&rft.epage=19317&rft_id=info:doi/10.1039%2Fd0cp03034a&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon