Bayesian Policy Optimization for Waste Crane With Garbage Inhomogeneity

The objective of this study is to develop a framework that can optimize control policies of a waste crane at a waste incineration plant through an autonomous trial and error manner. Since a waste crane is a massive mechanical system that moves slowly and takes several minutes to execute a task, obta...

Full description

Saved in:
Bibliographic Details
Published inIEEE robotics and automation letters Vol. 5; no. 3; pp. 4533 - 4540
Main Authors Sasaki, Hikaru, Hirabayashi, Terushi, Kawabata, Kaoru, Onuki, Yukio, Matsubara, Takamitsu
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.07.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The objective of this study is to develop a framework that can optimize control policies of a waste crane at a waste incineration plant through an autonomous trial and error manner. Since a waste crane is a massive mechanical system that moves slowly and takes several minutes to execute a task, obtaining data samples by executing tasks is very costly. Moreover, no sensors are available that can observe the state of the grasped flammable waste composed of various materials with different degrees of hardness and wetness. Therefore, the inhomogeneity of waste causes unpredictable fluctuation in the crane's task performance. To cope with these problems, we propose a framework for optimizing the policy parameters of a parameterized control policy with Multi-Task Robust Bayesian Optimization (MTRBO). Our framework features the following two characteristics: (1) outlier robustness against garbage inhomogeneity and (2) sample reuse from previously solved tasks to enhance its sample efficiency. To investigate the effectiveness of our framework, we conducted experiments on garbage-scattering tasks with (i) a robot waste crane with pseudo-garbage and (ii) an actual waste crane at a waste incineration plant. Experimental results demonstrate that our framework robustly optimized the control policies of the garbage cranes, even with a much reduced amount of data under the influence of garbage inhomogeneity.
AbstractList The objective of this study is to develop a framework that can optimize control policies of a waste crane at a waste incineration plant through an autonomous trial and error manner. Since a waste crane is a massive mechanical system that moves slowly and takes several minutes to execute a task, obtaining data samples by executing tasks is very costly. Moreover, no sensors are available that can observe the state of the grasped flammable waste composed of various materials with different degrees of hardness and wetness. Therefore, the inhomogeneity of waste causes unpredictable fluctuation in the crane's task performance. To cope with these problems, we propose a framework for optimizing the policy parameters of a parameterized control policy with Multi-Task Robust Bayesian Optimization (MTRBO). Our framework features the following two characteristics: (1) outlier robustness against garbage inhomogeneity and (2) sample reuse from previously solved tasks to enhance its sample efficiency. To investigate the effectiveness of our framework, we conducted experiments on garbage-scattering tasks with (i) a robot waste crane with pseudo-garbage and (ii) an actual waste crane at a waste incineration plant. Experimental results demonstrate that our framework robustly optimized the control policies of the garbage cranes, even with a much reduced amount of data under the influence of garbage inhomogeneity.
Author Sasaki, Hikaru
Hirabayashi, Terushi
Onuki, Yukio
Kawabata, Kaoru
Matsubara, Takamitsu
Author_xml – sequence: 1
  givenname: Hikaru
  orcidid: 0000-0001-6974-0726
  surname: Sasaki
  fullname: Sasaki, Hikaru
  email: sasaki.hikaru.rw3@is.naist.jp
  organization: Graduate School of Science and Technology, Division of Information Science, Nara Institute of Science and Technolog, Nara, Japan
– sequence: 2
  givenname: Terushi
  orcidid: 0000-0003-1040-3455
  surname: Hirabayashi
  fullname: Hirabayashi, Terushi
  email: hirabayashi@hitachizosen.co.jp
  organization: Hitachi Zosen Corporation, Osaka, Japan
– sequence: 3
  givenname: Kaoru
  orcidid: 0000-0001-6281-7276
  surname: Kawabata
  fullname: Kawabata, Kaoru
  email: kawabata_k@hitachizosen.co.jp
  organization: Hitachi Zosen Corporation, Osaka, Japan
– sequence: 4
  givenname: Yukio
  orcidid: 0000-0003-4667-9269
  surname: Onuki
  fullname: Onuki, Yukio
  email: onuki@hitachizosen.co.jp
  organization: Hitachi Zosen Corporation, Osaka, Japan
– sequence: 5
  givenname: Takamitsu
  orcidid: 0000-0003-3545-4814
  surname: Matsubara
  fullname: Matsubara, Takamitsu
  email: takam-m@is.naist.jp
  organization: Graduate School of Science and Technology, Division of Information Science, Nara Institute of Science and Technolog, Nara, Japan
BookMark eNpNkM1PAjEQxRuDiYjcTbw08bzYj92WHpEokpBgjIZj092dQgm02C6H9a93CcR4mjm8N_Pe7xb1fPCA0D0lI0qJelp8TEaMMDLihDBG8ivUZ1zKjEshev_2GzRMaUsIoQWTXBV9NHs2LSRnPH4PO1e1eHlo3N79mMYFj22IeGVSA3gajQe8cs0Gz0wszRrw3G_CPqzBg2vaO3RtzS7B8DIH6Ov15XP6li2Ws_l0ssiqLkOTGS4EzStb5bZgdTGmdCy4rbmSVklZKjIupWQ1ocYYaruIZVUWgkJlGNSqGPMBejzfPcTwfYTU6G04Rt-91CynMmfi1GyAyFlVxZBSBKsP0e1NbDUl-kRMd8T0iZi-EOssD2eLA4A_uaJUKJXzXyaZZ7Y
CODEN IRALC6
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3392258
crossref_primary_10_1109_TEM_2022_3201434
crossref_primary_10_1016_j_ifacol_2023_10_1280
crossref_primary_10_1109_ACCESS_2023_3331373
crossref_primary_10_1007_s10163_023_01760_2
crossref_primary_10_7210_jrsj_40_873
crossref_primary_10_1109_ACCESS_2022_3140758
Cites_doi 10.1109/LRA.2017.2721551
10.1016/j.ymssp.2017.04.034
10.1109/LRA.2020.2969944
10.1007/s10472-015-9463-9
10.1080/10473220127411
10.1023/A:1008306431147
10.1016/j.neucom.2019.01.087
10.1016/j.autcon.2018.10.013
10.1109/IROS.2016.7759657
10.1016/j.procs.2018.10.301
10.1016/j.asoc.2017.03.019
10.1016/j.ymssp.2017.03.015
10.1016/j.automatica.2017.04.003
10.1109/Humanoids43949.2019.9034991
10.1109/SCIS-ISIS.2018.00116
10.1177/1475090212445546
10.1177/0734242X04044352
10.1109/BIOROB.2016.7523692
10.7551/mitpress/3206.001.0001
10.1007/978-3-658-21300-8_1
10.1109/ICRA.2018.8462923
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/LRA.2020.3002204
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library Online
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2377-3766
EndPage 4540
ExternalDocumentID 10_1109_LRA_2020_3002204
9116994
Genre orig-research
GroupedDBID 0R~
97E
AAJGR
AASAJ
ABQJQ
ABVLG
ACGFS
AKJIK
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
IFIPE
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
RIA
RIE
RIG
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c377t-a36614cfc4f52d5811863fd397f977b908b772d01aaa1f739bcb561eca2ed9583
IEDL.DBID RIE
ISSN 2377-3766
IngestDate Thu Oct 10 20:47:44 EDT 2024
Fri Aug 23 00:41:27 EDT 2024
Wed Jun 26 19:28:57 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c377t-a36614cfc4f52d5811863fd397f977b908b772d01aaa1f739bcb561eca2ed9583
ORCID 0000-0003-3545-4814
0000-0001-6974-0726
0000-0003-1040-3455
0000-0001-6281-7276
0000-0003-4667-9269
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9116994
PQID 2417426527
PQPubID 4437225
PageCount 8
ParticipantIDs ieee_primary_9116994
proquest_journals_2417426527
crossref_primary_10_1109_LRA_2020_3002204
PublicationCentury 2000
PublicationDate 2020-07-01
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE robotics and automation letters
PublicationTitleAbbrev LRA
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
bishop (ref27) 2006
ref2
ref1
ref17
bonilla (ref25) 0
ref16
ref18
kaneko (ref4) 0
ref23
ref20
ref22
ref21
jylänki (ref24) 2011; 12
snoek (ref19) 0
ref8
ref7
ref9
swersky (ref26) 0
ref3
ref6
ref5
References_xml – ident: ref10
  doi: 10.1109/LRA.2017.2721551
– year: 2006
  ident: ref27
  publication-title: Pattern Recognition and Machine Learning
  contributor:
    fullname: bishop
– ident: ref7
  doi: 10.1016/j.ymssp.2017.04.034
– start-page: 873
  year: 0
  ident: ref4
  article-title: Learning deep dynamical models of a waste incineration plant from in-furnace images and process data
  publication-title: Proc Int Conf Autom Sci Eng
  contributor:
    fullname: kaneko
– ident: ref11
  doi: 10.1109/LRA.2020.2969944
– ident: ref20
  doi: 10.1007/s10472-015-9463-9
– ident: ref1
  doi: 10.1080/10473220127411
– ident: ref22
  doi: 10.1023/A:1008306431147
– start-page: 2951
  year: 0
  ident: ref19
  article-title: Practical Bayesian optimization of machine learning algorithms
  publication-title: Adv Neural Inf Process Syst
  contributor:
    fullname: snoek
– ident: ref13
  doi: 10.1016/j.neucom.2019.01.087
– volume: 12
  start-page: 3227
  year: 2011
  ident: ref24
  article-title: Robust Gaussian process regression with a student-t likelihood
  publication-title: J Mach Learn Res
  contributor:
    fullname: jylänki
– ident: ref14
  doi: 10.1016/j.autcon.2018.10.013
– ident: ref15
  doi: 10.1109/IROS.2016.7759657
– ident: ref17
  doi: 10.1016/j.procs.2018.10.301
– ident: ref18
  doi: 10.1016/j.asoc.2017.03.019
– ident: ref5
  doi: 10.1016/j.ymssp.2017.03.015
– start-page: 153
  year: 0
  ident: ref25
  article-title: Multi-task Gaussian Process Prediction
  publication-title: Proc Adv Neural Inf Process Syst
  contributor:
    fullname: bonilla
– ident: ref9
  doi: 10.1016/j.automatica.2017.04.003
– ident: ref16
  doi: 10.1109/Humanoids43949.2019.9034991
– start-page: 2004
  year: 0
  ident: ref26
  article-title: Multi-task Bayesian optimization
  publication-title: Proc Adv Neural Inf Process Syst
  contributor:
    fullname: swersky
– ident: ref3
  doi: 10.1109/SCIS-ISIS.2018.00116
– ident: ref8
  doi: 10.1177/1475090212445546
– ident: ref2
  doi: 10.1177/0734242X04044352
– ident: ref21
  doi: 10.1109/BIOROB.2016.7523692
– ident: ref23
  doi: 10.7551/mitpress/3206.001.0001
– ident: ref6
  doi: 10.1007/978-3-658-21300-8_1
– ident: ref12
  doi: 10.1109/ICRA.2018.8462923
SSID ssj0001527395
Score 2.2107635
Snippet The objective of this study is to develop a framework that can optimize control policies of a waste crane at a waste incineration plant through an autonomous...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Publisher
StartPage 4533
SubjectTerms AI-Based methods
automation technologies for smart cities
Bayes methods
Bayesian analysis
Combustion
Cranes
Flammability
Gaussian processes
Incineration
industrial robots
Inhomogeneity
Kernel
Mechanical systems
Nonhomogeneous media
Optimization
Outliers (statistics)
Policies
Robust control
Task analysis
Waste disposal
Title Bayesian Policy Optimization for Waste Crane With Garbage Inhomogeneity
URI https://ieeexplore.ieee.org/document/9116994
https://www.proquest.com/docview/2417426527
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JLwRBFH6ZmRMH2xDDkDq4SPTorbq6jog1hkQIt04trxExI_QcOPjtXvWC4ODWh-5O5S31vrcDbJhYEEzg2guESrzY5rGnUtIrnmDg5zoRsoxDDs-So6v45IbftGDrsxcGEcviMxy4xzKXb8dm4kJl26SYiZRxG9pCyqpX6yue4iaJSd5kIn25fXqxQ_5fSG6pM1T1JrbG8pSrVH7dv6VROZiFYXOcqpbkYTAp9MC8_ZjU-N_zzsFMjS7ZTiUO89DC0QJMf5s52IXDXfWKrnOSVSOB2TldGo91NyYjCMuuFXGe7ZERQ3Z9X9yxQ5eTuEV2PLobP45J4pCg-yJcHexf7h159TYFz0RCFJ6KnCk2uYlzHlqekmeRRLklPJITBtTSTzUhbesHSqkgJ1pqowlcoVEhWsnTaAk6o_EIl4GFQiDX6Ad5JGIMreI29K2KI2N8i6ntwWZD6eypGpqRlc6GLzPiSua4ktVc6UHXEe7zvZpmPeg3rMlqrXrJCG2QJ58Qp1f-_moVpty_q3LaPnSK5wmuEWgo9Dq0h-_766XMfAB4W8Cf
link.rule.ids 315,783,787,799,27936,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JLwRBFH6xHHCwDTHWOrhI9KheqpcjYgxmRiIj3Dq1vEbEjNBz4Nd71QuCg1sfutOVt9T73g6wq4OIYIJQjhvJ0AlMFjgyJr0SIbo8U2GUFHHIXj_sXAfnt-J2AvY_e2EQsSg-w5Z9LHL5ZqTHNlR2QIoZJkkwCdOEq-Ow7Nb6iqjYWWKJqHORPDnoXh2SB-iRY2pNVbWLrbY9xTKVXzdwYVbaC9CrD1RWkzy2xrlq6fcfsxr_e-JFmK_wJTssBWIJJnC4DHPfpg424PRIvqHtnWTlUGB2SdfGU9WPyQjEshtJvGfHZMaQ3Tzk9-zUZiXukJ0N70dPI5I5JPC-Atftk8Fxx6n2KTjaj6Lckb41xjrTQSY8I2LyLUI_M4RIMkKBKuGxIqxtuCuldDOipdKK4BVq6aFJROyvwtRwNMQ1YF4UoVDI3cyPAvSMFMbjRga-1txgbJqwV1M6fS7HZqSFu8GTlLiSWq6kFVea0LCE-3yvolkTNmvWpJVevaaEN8iXD4nT639_tQMznUGvm3bP-hcbMGv_UxbXbsJU_jLGLYIQudouJOcDJUjCuQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+Policy+Optimization+for+Waste+Crane+With+Garbage+Inhomogeneity&rft.jtitle=IEEE+robotics+and+automation+letters&rft.au=Sasaki%2C+Hikaru&rft.au=Hirabayashi%2C+Terushi&rft.au=Kawabata%2C+Kaoru&rft.au=Onuki%2C+Yukio&rft.date=2020-07-01&rft.pub=IEEE&rft.eissn=2377-3766&rft.volume=5&rft.issue=3&rft.spage=4533&rft.epage=4540&rft_id=info:doi/10.1109%2FLRA.2020.3002204&rft.externalDocID=9116994
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2377-3766&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2377-3766&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2377-3766&client=summon