Bayesian Policy Optimization for Waste Crane With Garbage Inhomogeneity
The objective of this study is to develop a framework that can optimize control policies of a waste crane at a waste incineration plant through an autonomous trial and error manner. Since a waste crane is a massive mechanical system that moves slowly and takes several minutes to execute a task, obta...
Saved in:
Published in | IEEE robotics and automation letters Vol. 5; no. 3; pp. 4533 - 4540 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.07.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The objective of this study is to develop a framework that can optimize control policies of a waste crane at a waste incineration plant through an autonomous trial and error manner. Since a waste crane is a massive mechanical system that moves slowly and takes several minutes to execute a task, obtaining data samples by executing tasks is very costly. Moreover, no sensors are available that can observe the state of the grasped flammable waste composed of various materials with different degrees of hardness and wetness. Therefore, the inhomogeneity of waste causes unpredictable fluctuation in the crane's task performance. To cope with these problems, we propose a framework for optimizing the policy parameters of a parameterized control policy with Multi-Task Robust Bayesian Optimization (MTRBO). Our framework features the following two characteristics: (1) outlier robustness against garbage inhomogeneity and (2) sample reuse from previously solved tasks to enhance its sample efficiency. To investigate the effectiveness of our framework, we conducted experiments on garbage-scattering tasks with (i) a robot waste crane with pseudo-garbage and (ii) an actual waste crane at a waste incineration plant. Experimental results demonstrate that our framework robustly optimized the control policies of the garbage cranes, even with a much reduced amount of data under the influence of garbage inhomogeneity. |
---|---|
AbstractList | The objective of this study is to develop a framework that can optimize control policies of a waste crane at a waste incineration plant through an autonomous trial and error manner. Since a waste crane is a massive mechanical system that moves slowly and takes several minutes to execute a task, obtaining data samples by executing tasks is very costly. Moreover, no sensors are available that can observe the state of the grasped flammable waste composed of various materials with different degrees of hardness and wetness. Therefore, the inhomogeneity of waste causes unpredictable fluctuation in the crane's task performance. To cope with these problems, we propose a framework for optimizing the policy parameters of a parameterized control policy with Multi-Task Robust Bayesian Optimization (MTRBO). Our framework features the following two characteristics: (1) outlier robustness against garbage inhomogeneity and (2) sample reuse from previously solved tasks to enhance its sample efficiency. To investigate the effectiveness of our framework, we conducted experiments on garbage-scattering tasks with (i) a robot waste crane with pseudo-garbage and (ii) an actual waste crane at a waste incineration plant. Experimental results demonstrate that our framework robustly optimized the control policies of the garbage cranes, even with a much reduced amount of data under the influence of garbage inhomogeneity. |
Author | Sasaki, Hikaru Hirabayashi, Terushi Onuki, Yukio Kawabata, Kaoru Matsubara, Takamitsu |
Author_xml | – sequence: 1 givenname: Hikaru orcidid: 0000-0001-6974-0726 surname: Sasaki fullname: Sasaki, Hikaru email: sasaki.hikaru.rw3@is.naist.jp organization: Graduate School of Science and Technology, Division of Information Science, Nara Institute of Science and Technolog, Nara, Japan – sequence: 2 givenname: Terushi orcidid: 0000-0003-1040-3455 surname: Hirabayashi fullname: Hirabayashi, Terushi email: hirabayashi@hitachizosen.co.jp organization: Hitachi Zosen Corporation, Osaka, Japan – sequence: 3 givenname: Kaoru orcidid: 0000-0001-6281-7276 surname: Kawabata fullname: Kawabata, Kaoru email: kawabata_k@hitachizosen.co.jp organization: Hitachi Zosen Corporation, Osaka, Japan – sequence: 4 givenname: Yukio orcidid: 0000-0003-4667-9269 surname: Onuki fullname: Onuki, Yukio email: onuki@hitachizosen.co.jp organization: Hitachi Zosen Corporation, Osaka, Japan – sequence: 5 givenname: Takamitsu orcidid: 0000-0003-3545-4814 surname: Matsubara fullname: Matsubara, Takamitsu email: takam-m@is.naist.jp organization: Graduate School of Science and Technology, Division of Information Science, Nara Institute of Science and Technolog, Nara, Japan |
BookMark | eNpNkM1PAjEQxRuDiYjcTbw08bzYj92WHpEokpBgjIZj092dQgm02C6H9a93CcR4mjm8N_Pe7xb1fPCA0D0lI0qJelp8TEaMMDLihDBG8ivUZ1zKjEshev_2GzRMaUsIoQWTXBV9NHs2LSRnPH4PO1e1eHlo3N79mMYFj22IeGVSA3gajQe8cs0Gz0wszRrw3G_CPqzBg2vaO3RtzS7B8DIH6Ov15XP6li2Ws_l0ssiqLkOTGS4EzStb5bZgdTGmdCy4rbmSVklZKjIupWQ1ocYYaruIZVUWgkJlGNSqGPMBejzfPcTwfYTU6G04Rt-91CynMmfi1GyAyFlVxZBSBKsP0e1NbDUl-kRMd8T0iZi-EOssD2eLA4A_uaJUKJXzXyaZZ7Y |
CODEN | IRALC6 |
CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3392258 crossref_primary_10_1109_TEM_2022_3201434 crossref_primary_10_1016_j_ifacol_2023_10_1280 crossref_primary_10_1109_ACCESS_2023_3331373 crossref_primary_10_1007_s10163_023_01760_2 crossref_primary_10_7210_jrsj_40_873 crossref_primary_10_1109_ACCESS_2022_3140758 |
Cites_doi | 10.1109/LRA.2017.2721551 10.1016/j.ymssp.2017.04.034 10.1109/LRA.2020.2969944 10.1007/s10472-015-9463-9 10.1080/10473220127411 10.1023/A:1008306431147 10.1016/j.neucom.2019.01.087 10.1016/j.autcon.2018.10.013 10.1109/IROS.2016.7759657 10.1016/j.procs.2018.10.301 10.1016/j.asoc.2017.03.019 10.1016/j.ymssp.2017.03.015 10.1016/j.automatica.2017.04.003 10.1109/Humanoids43949.2019.9034991 10.1109/SCIS-ISIS.2018.00116 10.1177/1475090212445546 10.1177/0734242X04044352 10.1109/BIOROB.2016.7523692 10.7551/mitpress/3206.001.0001 10.1007/978-3-658-21300-8_1 10.1109/ICRA.2018.8462923 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/LRA.2020.3002204 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library Online CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2377-3766 |
EndPage | 4540 |
ExternalDocumentID | 10_1109_LRA_2020_3002204 9116994 |
Genre | orig-research |
GroupedDBID | 0R~ 97E AAJGR AASAJ ABQJQ ABVLG ACGFS AKJIK ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL IFIPE IPLJI JAVBF KQ8 M43 M~E O9- OCL RIA RIE RIG AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c377t-a36614cfc4f52d5811863fd397f977b908b772d01aaa1f739bcb561eca2ed9583 |
IEDL.DBID | RIE |
ISSN | 2377-3766 |
IngestDate | Thu Oct 10 20:47:44 EDT 2024 Fri Aug 23 00:41:27 EDT 2024 Wed Jun 26 19:28:57 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c377t-a36614cfc4f52d5811863fd397f977b908b772d01aaa1f739bcb561eca2ed9583 |
ORCID | 0000-0003-3545-4814 0000-0001-6974-0726 0000-0003-1040-3455 0000-0001-6281-7276 0000-0003-4667-9269 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9116994 |
PQID | 2417426527 |
PQPubID | 4437225 |
PageCount | 8 |
ParticipantIDs | ieee_primary_9116994 proquest_journals_2417426527 crossref_primary_10_1109_LRA_2020_3002204 |
PublicationCentury | 2000 |
PublicationDate | 2020-07-01 |
PublicationDateYYYYMMDD | 2020-07-01 |
PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE robotics and automation letters |
PublicationTitleAbbrev | LRA |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref11 ref10 bishop (ref27) 2006 ref2 ref1 ref17 bonilla (ref25) 0 ref16 ref18 kaneko (ref4) 0 ref23 ref20 ref22 ref21 jylänki (ref24) 2011; 12 snoek (ref19) 0 ref8 ref7 ref9 swersky (ref26) 0 ref3 ref6 ref5 |
References_xml | – ident: ref10 doi: 10.1109/LRA.2017.2721551 – year: 2006 ident: ref27 publication-title: Pattern Recognition and Machine Learning contributor: fullname: bishop – ident: ref7 doi: 10.1016/j.ymssp.2017.04.034 – start-page: 873 year: 0 ident: ref4 article-title: Learning deep dynamical models of a waste incineration plant from in-furnace images and process data publication-title: Proc Int Conf Autom Sci Eng contributor: fullname: kaneko – ident: ref11 doi: 10.1109/LRA.2020.2969944 – ident: ref20 doi: 10.1007/s10472-015-9463-9 – ident: ref1 doi: 10.1080/10473220127411 – ident: ref22 doi: 10.1023/A:1008306431147 – start-page: 2951 year: 0 ident: ref19 article-title: Practical Bayesian optimization of machine learning algorithms publication-title: Adv Neural Inf Process Syst contributor: fullname: snoek – ident: ref13 doi: 10.1016/j.neucom.2019.01.087 – volume: 12 start-page: 3227 year: 2011 ident: ref24 article-title: Robust Gaussian process regression with a student-t likelihood publication-title: J Mach Learn Res contributor: fullname: jylänki – ident: ref14 doi: 10.1016/j.autcon.2018.10.013 – ident: ref15 doi: 10.1109/IROS.2016.7759657 – ident: ref17 doi: 10.1016/j.procs.2018.10.301 – ident: ref18 doi: 10.1016/j.asoc.2017.03.019 – ident: ref5 doi: 10.1016/j.ymssp.2017.03.015 – start-page: 153 year: 0 ident: ref25 article-title: Multi-task Gaussian Process Prediction publication-title: Proc Adv Neural Inf Process Syst contributor: fullname: bonilla – ident: ref9 doi: 10.1016/j.automatica.2017.04.003 – ident: ref16 doi: 10.1109/Humanoids43949.2019.9034991 – start-page: 2004 year: 0 ident: ref26 article-title: Multi-task Bayesian optimization publication-title: Proc Adv Neural Inf Process Syst contributor: fullname: swersky – ident: ref3 doi: 10.1109/SCIS-ISIS.2018.00116 – ident: ref8 doi: 10.1177/1475090212445546 – ident: ref2 doi: 10.1177/0734242X04044352 – ident: ref21 doi: 10.1109/BIOROB.2016.7523692 – ident: ref23 doi: 10.7551/mitpress/3206.001.0001 – ident: ref6 doi: 10.1007/978-3-658-21300-8_1 – ident: ref12 doi: 10.1109/ICRA.2018.8462923 |
SSID | ssj0001527395 |
Score | 2.2107635 |
Snippet | The objective of this study is to develop a framework that can optimize control policies of a waste crane at a waste incineration plant through an autonomous... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Publisher |
StartPage | 4533 |
SubjectTerms | AI-Based methods automation technologies for smart cities Bayes methods Bayesian analysis Combustion Cranes Flammability Gaussian processes Incineration industrial robots Inhomogeneity Kernel Mechanical systems Nonhomogeneous media Optimization Outliers (statistics) Policies Robust control Task analysis Waste disposal |
Title | Bayesian Policy Optimization for Waste Crane With Garbage Inhomogeneity |
URI | https://ieeexplore.ieee.org/document/9116994 https://www.proquest.com/docview/2417426527 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JLwRBFH6ZmRMH2xDDkDq4SPTorbq6jog1hkQIt04trxExI_QcOPjtXvWC4ODWh-5O5S31vrcDbJhYEEzg2guESrzY5rGnUtIrnmDg5zoRsoxDDs-So6v45IbftGDrsxcGEcviMxy4xzKXb8dm4kJl26SYiZRxG9pCyqpX6yue4iaJSd5kIn25fXqxQ_5fSG6pM1T1JrbG8pSrVH7dv6VROZiFYXOcqpbkYTAp9MC8_ZjU-N_zzsFMjS7ZTiUO89DC0QJMf5s52IXDXfWKrnOSVSOB2TldGo91NyYjCMuuFXGe7ZERQ3Z9X9yxQ5eTuEV2PLobP45J4pCg-yJcHexf7h159TYFz0RCFJ6KnCk2uYlzHlqekmeRRLklPJITBtTSTzUhbesHSqkgJ1pqowlcoVEhWsnTaAk6o_EIl4GFQiDX6Ad5JGIMreI29K2KI2N8i6ntwWZD6eypGpqRlc6GLzPiSua4ktVc6UHXEe7zvZpmPeg3rMlqrXrJCG2QJ58Qp1f-_moVpty_q3LaPnSK5wmuEWgo9Dq0h-_766XMfAB4W8Cf |
link.rule.ids | 315,783,787,799,27936,27937,55086 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JLwRBFH6xHHCwDTHWOrhI9KheqpcjYgxmRiIj3Dq1vEbEjNBz4Nd71QuCg1sfutOVt9T73g6wq4OIYIJQjhvJ0AlMFjgyJr0SIbo8U2GUFHHIXj_sXAfnt-J2AvY_e2EQsSg-w5Z9LHL5ZqTHNlR2QIoZJkkwCdOEq-Ow7Nb6iqjYWWKJqHORPDnoXh2SB-iRY2pNVbWLrbY9xTKVXzdwYVbaC9CrD1RWkzy2xrlq6fcfsxr_e-JFmK_wJTssBWIJJnC4DHPfpg424PRIvqHtnWTlUGB2SdfGU9WPyQjEshtJvGfHZMaQ3Tzk9-zUZiXukJ0N70dPI5I5JPC-Atftk8Fxx6n2KTjaj6Lckb41xjrTQSY8I2LyLUI_M4RIMkKBKuGxIqxtuCuldDOipdKK4BVq6aFJROyvwtRwNMQ1YF4UoVDI3cyPAvSMFMbjRga-1txgbJqwV1M6fS7HZqSFu8GTlLiSWq6kFVea0LCE-3yvolkTNmvWpJVevaaEN8iXD4nT639_tQMznUGvm3bP-hcbMGv_UxbXbsJU_jLGLYIQudouJOcDJUjCuQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+Policy+Optimization+for+Waste+Crane+With+Garbage+Inhomogeneity&rft.jtitle=IEEE+robotics+and+automation+letters&rft.au=Sasaki%2C+Hikaru&rft.au=Hirabayashi%2C+Terushi&rft.au=Kawabata%2C+Kaoru&rft.au=Onuki%2C+Yukio&rft.date=2020-07-01&rft.pub=IEEE&rft.eissn=2377-3766&rft.volume=5&rft.issue=3&rft.spage=4533&rft.epage=4540&rft_id=info:doi/10.1109%2FLRA.2020.3002204&rft.externalDocID=9116994 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2377-3766&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2377-3766&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2377-3766&client=summon |