Swift XRT Observations of the Afterglow of XRF 050416A

Swift discovered XRF 050416A with the Burst Alert Telescope and began observing it with its narrow-field instruments only 64.5 s after the burst onset. Its very soft spectrum classifies this event as an X-ray flash. The afterglow X-ray emission was monitored up to 74 days after the burst. The X-ray...

Full description

Saved in:
Bibliographic Details
Published inThe Astrophysical journal Vol. 654; no. 1; pp. 403 - 412
Main Authors Mangano, Vanessa, La Parola, Valentina, Cusumano, Giancarlo, Mineo, Teresa, Malesani, Daniele, Dyks, Jaroslaw, Campana, Sergio, Capalbi, Milvia, Chincarini, Guido, Giommi, Paolo, Moretti, Alberto, Perri, Matteo, Romano, Patrizia, Tagliaferri, Gianpiero, Burrows, David N, Gehrels, Neil, Godet, Olivier, Holland, Stephen T, Kennea, Jamie A, Page, Kim L, Racusin, Judith L, Roming, Peter W. A, Zhang, Bing
Format Journal Article
LanguageEnglish
Published Chicago, IL IOP Publishing 01.01.2007
University of Chicago Press
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Swift discovered XRF 050416A with the Burst Alert Telescope and began observing it with its narrow-field instruments only 64.5 s after the burst onset. Its very soft spectrum classifies this event as an X-ray flash. The afterglow X-ray emission was monitored up to 74 days after the burst. The X-ray light curve initially decays very fast (decay slope a 6 2.4), subsequently flattens (a 6 0.44), and eventually steepens again (a 6 0.88), similar to many X-ray afterglows. The first and second phases end 6172 and 61450 s after the burst onset, respectively. We find evidence of spectral evolution from a softer emission with photon index 6 3.0 during the initial steep decay, to a harder emission with 6 2.0 during the following evolutionary phases. The spectra show intrinsic absorption in the host galaxy with column density of 66.8 x 10 super(21) cm super(-2). The consistency of the initial photon index with the high-energy BAT photon index suggests that the initial fast decaying phase of the X-ray light curve may be the low-energy tail of the prompt emission. The lack of jet break signatures in the X-ray afterglow light curve is not consistent with empirical relations between the source rest-frame peak energy and the collimation-corrected energy of the burst. The standard uniform jet model can give a possible description of the XRF 050416A X-ray afterglow for an opening angle larger than a few tens of degrees, although numerical simulations show that the late-time decay is slightly flatter than expected from on-axis viewing of a uniform jet. A structured Gaussian-type jet model with uniform Lorentz factor distribution and viewing angle outside the Gaussian core is another possibility, although a full agreement with data is not achieved with the numerical models explored.
AbstractList Swift discovered XRF 050416A with the Burst Alert Telescope and began observing it with its narrow-field instruments only 64.5 s after the burst onset. Its very soft spectrum classifies this event as an X-ray flash. The afterglow X-ray emission was monitored up to 74 days after the burst. The X-ray light curve initially decays very fast (decay slope a 6 2.4), subsequently flattens (a 6 0.44), and eventually steepens again (a 6 0.88), similar to many X-ray afterglows. The first and second phases end 6172 and 61450 s after the burst onset, respectively. We find evidence of spectral evolution from a softer emission with photon index 6 3.0 during the initial steep decay, to a harder emission with 6 2.0 during the following evolutionary phases. The spectra show intrinsic absorption in the host galaxy with column density of 66.8 x 10 super(21) cm super(-2). The consistency of the initial photon index with the high-energy BAT photon index suggests that the initial fast decaying phase of the X-ray light curve may be the low-energy tail of the prompt emission. The lack of jet break signatures in the X-ray afterglow light curve is not consistent with empirical relations between the source rest-frame peak energy and the collimation-corrected energy of the burst. The standard uniform jet model can give a possible description of the XRF 050416A X-ray afterglow for an opening angle larger than a few tens of degrees, although numerical simulations show that the late-time decay is slightly flatter than expected from on-axis viewing of a uniform jet. A structured Gaussian-type jet model with uniform Lorentz factor distribution and viewing angle outside the Gaussian core is another possibility, although a full agreement with data is not achieved with the numerical models explored.
Swift discovered XRF 050416A with the Burst Alert Telescope and began observing it with its narrow-field instruments only 64.5 s after the burst onset. Its very soft spectrum classifies this event as an X-ray flash. The afterglow X-ray emission was monitored up to 74 days after the burst. The X-ray light curve initially decays very fast (decay slope a 6 2.4), subsequently flattens (a 6 0.44), and eventually steepens again (a 6 0.88), similar to many X-ray afterglows. The first and second phases end 6172 and 61450 s after the burst onset, respectively. We find evidence of spectral evolution from a softer emission with photon index G 6 3.0 during the initial steep decay, to a harder emission with G 6 2.0 during the following evolutionary phases. The spectra show intrinsic absorption in the host galaxy with column density of 66.8 x 10(21) cm(-2). The consistency of the initial photon index with the high-energy BAT photon index suggests that the initial fast decaying phase of the X-ray light curve may be the low-energy tail of the prompt emission. The lack of jet break signatures in the X-ray afterglow light curve is not consistent with empirical relations between the source rest-frame peak energy and the collimation-corrected energy of the burst. The standard uniform jet model can give a possible description of the XRF 050416A X-ray afterglow for an opening angle larger than a few tens of degrees, although numerical simulations show that the late-time decay is slightly flatter than expected from on-axis viewing of a uniform jet. A structured Gaussian-type jet model with uniform Lorentz factor distribution and viewing angle outside the Gaussian core is another possibility, although a full agreement with data is not achieved with the numerical models explored.
Author Cusumano, Giancarlo
Gehrels, Neil
La Parola, Valentina
Moretti, Alberto
Holland, Stephen T
Mineo, Teresa
Zhang, Bing
Campana, Sergio
Capalbi, Milvia
Mangano, Vanessa
Malesani, Daniele
Burrows, David N
Kennea, Jamie A
Roming, Peter W. A
Giommi, Paolo
Page, Kim L
Perri, Matteo
Godet, Olivier
Tagliaferri, Gianpiero
Racusin, Judith L
Dyks, Jaroslaw
Chincarini, Guido
Romano, Patrizia
Author_xml – sequence: 1
  fullname: Mangano, Vanessa
– sequence: 2
  fullname: La Parola, Valentina
– sequence: 3
  fullname: Cusumano, Giancarlo
– sequence: 4
  fullname: Mineo, Teresa
– sequence: 5
  fullname: Malesani, Daniele
– sequence: 6
  fullname: Dyks, Jaroslaw
– sequence: 7
  fullname: Campana, Sergio
– sequence: 8
  fullname: Capalbi, Milvia
– sequence: 9
  fullname: Chincarini, Guido
– sequence: 10
  fullname: Giommi, Paolo
– sequence: 11
  fullname: Moretti, Alberto
– sequence: 12
  fullname: Perri, Matteo
– sequence: 13
  fullname: Romano, Patrizia
– sequence: 14
  fullname: Tagliaferri, Gianpiero
– sequence: 15
  fullname: Burrows, David N
– sequence: 16
  fullname: Gehrels, Neil
– sequence: 17
  fullname: Godet, Olivier
– sequence: 18
  fullname: Holland, Stephen T
– sequence: 19
  fullname: Kennea, Jamie A
– sequence: 20
  fullname: Page, Kim L
– sequence: 21
  fullname: Racusin, Judith L
– sequence: 22
  fullname: Roming, Peter W. A
– sequence: 23
  fullname: Zhang, Bing
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18442459$$DView record in Pascal Francis
BookMark eNp90N9LwzAQB_AgE9ym_g31QQWheml-NY9jOBUGgzlhbyFNE610zWw6h_-9LRsOFHwKl_twx30HqFf5yiJ0juEWQ8rvGEgMcIT6mJE0poSJHuoDAI05EcsTNAjhvSsTKfuIP28L10TL-SKaZcHWn7opfBUi76LmzUYj19j6tfTb7mM5n0TAgGI-OkXHTpfBnu3fIXqZ3C_Gj_F09vA0Hk1jQ4RoYg2AdZZoalzChEysFi6jkknKGNeSGeack7mmGU9tnlFhspQJ7nLZnpBDSoboejd3XfuPjQ2NWhXB2LLUlfWboAQlIBgQ0cqrf2UCpD2Y0wM0tQ-htk6t62Kl6y-FQXUBql2ALbzcT9TB6NLVujJFOOiU0oQy2bqbnSv8-qfbBay6vBVnVGFFgah17lp88Rf_WvwNnkSEwg
CODEN ASJOAB
CitedBy_id crossref_primary_10_1088_0004_6256_138_6_1690
crossref_primary_10_1086_510610
crossref_primary_10_1086_509630
crossref_primary_10_1016_j_physrep_2014_09_008
crossref_primary_10_1086_587869
crossref_primary_10_1111_j_1365_2966_2007_12607_x
crossref_primary_10_1086_510110
crossref_primary_10_1051_0004_6361_200911719
crossref_primary_10_1088_1009_9271_7_1_01
crossref_primary_10_1051_0004_6361_20077232
crossref_primary_10_1051_0004_6361_200810340
crossref_primary_10_1051_0004_6361_20077266
crossref_primary_10_1086_519450
crossref_primary_10_1086_515562
crossref_primary_10_1051_0004_6361_20066984
crossref_primary_10_1088_1009_9271_7_6_05
crossref_primary_10_1111_j_1365_2966_2009_15788_x
crossref_primary_10_1111_j_1745_3933_2009_00747_x
crossref_primary_10_1111_j_1365_2966_2008_14214_x
crossref_primary_10_1007_s11214_016_0305_9
crossref_primary_10_1086_517989
crossref_primary_10_1016_j_crhy_2011_04_002
Cites_doi 10.1086/317076
10.1086/311244
10.1051/0004-6361:20041115
10.1086/312689
10.1086/426099
10.1086/504518
10.1086/175174
10.1051/0004-6361:200600007
10.1086/338247
10.1086/499353
10.1038/nature03934
10.1086/505457
10.1146/annurev.aa.28.090190.001243
10.1086/431235
10.1086/499292
10.1086/312905
10.1111/j.1365-2966.2006.10188.x
10.1086/500261
10.1086/375580
10.1086/426532
10.1086/308914
10.1086/320255
10.1086/172995
10.1086/313289
10.1086/426938
10.1117/12.505728
10.1086/308257
10.1051/0004-6361:20054172
10.1086/386300
10.1086/499432
10.1086/379310
10.1126/science.1116168
10.1086/305995
10.1086/382132
10.1086/506018
10.1086/422091
10.1086/500655
10.1086/431477
10.1086/427746
10.1086/186969
10.1086/308537
10.1086/498425
10.1051/0004-6361:20065071
10.1086/306386
10.1051/0004-6361:20021038
10.1086/312109
10.1086/500724
10.1086/500723
10.1051/0004-6361:200500173
10.1086/187446
10.1086/383019
10.1086/376677
10.1086/311269
ContentType Journal Article
Copyright 2007 INIST-CNRS
Copyright_xml – notice: 2007 INIST-CNRS
DBID IQODW
AAYXX
CITATION
7TG
KL.
8FD
H8D
L7M
DOI 10.1086/509100
DatabaseName Pascal-Francis
CrossRef
Meteorological & Geoastrophysical Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Meteorological & Geoastrophysical Abstracts - Academic
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Meteorological & Geoastrophysical Abstracts - Academic
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
EISSN 1538-4357
EndPage 412
ExternalDocumentID 10_1086_509100
18442459
GroupedDBID 123
1JI
23N
2WC
4.4
85S
8RP
AAGCD
AAJIO
AALHV
ABFLS
ABPTK
ACGFS
ACNCT
AEFHF
AENEX
AFDAS
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
CJUJL
CS3
DZ
EBS
EJD
F5P
G8K
IOP
KOT
MVM
N5L
O3W
O43
OHT
OK1
RIN
RNS
RPA
SJN
SY9
T37
TN5
WH7
X
ZY4
-DZ
-~X
08R
2FS
41~
6J9
6TJ
6TS
9M8
AAFWJ
ABTAH
ACBEA
ACHIP
ADACN
ADIYS
AETEA
AFPKN
AI.
CRLBU
FA8
FRP
GROUPED_DOAJ
IJHAN
IQODW
M~E
PJBAE
RNP
ROL
TR2
VH1
VOH
WHG
XFK
XOL
XSW
YYP
ZCG
ZKB
AAYXX
ABHWH
AKPSB
CITATION
7TG
KL.
8FD
H8D
L7M
ID FETCH-LOGICAL-c377t-a001ab2a4cf25792ea7fb49594556a95c5fff9da4b68edb47cb8576fd9910d083
IEDL.DBID IOP
ISSN 0004-637X
IngestDate Fri Aug 16 11:57:12 EDT 2024
Fri Aug 16 01:30:17 EDT 2024
Fri Aug 23 03:41:43 EDT 2024
Sun Oct 29 17:09:34 EDT 2023
Mon May 13 16:01:38 EDT 2019
Tue Nov 10 14:16:40 EST 2020
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Afterglow
Gamma ray burst
Cosmic gamma sources
X-rays: individual (XRF 050416A)
gamma rays: bursts
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c377t-a001ab2a4cf25792ea7fb49594556a95c5fff9da4b68edb47cb8576fd9910d083
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PQID 20329964
PQPubID 23462
PageCount 10
ParticipantIDs iop_primary_10_1086_509100
proquest_miscellaneous_743075037
crossref_primary_10_1086_509100
proquest_miscellaneous_20329964
pascalfrancis_primary_18442459
PublicationCentury 2000
PublicationDate 20070101
2007
2007-01-00
PublicationDateYYYYMMDD 2007-01-01
PublicationDate_xml – month: 01
  year: 2007
  text: 20070101
  day: 01
PublicationDecade 2000
PublicationPlace Chicago, IL
PublicationPlace_xml – name: Chicago, IL
PublicationTitle The Astrophysical journal
PublicationYear 2007
Publisher IOP Publishing
University of Chicago Press
Publisher_xml – name: IOP Publishing
– name: University of Chicago Press
References rf28_1842
rf50_1864
rf11_1825
rf67_1881
rf2_1816
rf18_1832
rf31_1845
rf47_1861
rf21_1835
rf57_1871
rf65_1879
Dai Z. G. (rf17_1831) 1998; 333
rf19_1833
rf29_1843
rf20_1834
rf58_1872
rf38_1852
rf40_1854
rf30_1844
rf48_1862
rf77_1891
rf75_1889
rf35_1849
rf61_1875
rf32_1846
rf68_1882
rf52_1866
rf55_1869
rf36_1850
rf39_1853
rf15_1829
Burrows D. N. (rf7_1821) 2005; 120
rf41_1855
rf12_1826
rf73_1887
rf79_1893
rf9_1823
rf76_1890
rf44_1858
rf70_1884
rf56_1870
rf64_1878
rf6_1820
rf59_1873
rf27_1841
rf53_1867
rf24_1838
rf14_1828
rf5_1819
rf34_1848
rf63_1877
rf16_1830
rf62_1876
Roming P. W. A. (rf60_1874) 2005; 120
rf23_1837
Barthelmy S. D. (rf3_1817) 2005; 120
rf72_1886
rf43_1857
rf8_1822
rf74_1888
rf49_1863
rf4_1818
rf71_1885
rf78_1892
rf46_1860
rf10_1824
rf26_1840
rf42_1856
rf45_1859
rf13_1827
rf37_1851
rf66_1880
rf22_1836
Hill J. E. (rf33_1847) 2005; 5898
rf54_1868
rf1_1815
rf69_1883
rf25_1839
rf51_1865
References_xml – ident: rf14_1828
– ident: rf35_1849
  doi: 10.1086/317076
– ident: rf57_1871
  doi: 10.1086/311244
– ident: rf23_1837
  doi: 10.1051/0004-6361:20041115
– volume: 5898
  start-page: 325
  year: 2005
  ident: rf33_1847
  publication-title: Proc. SPIE
  contributor:
    fullname: Hill J. E.
– ident: rf66_1880
  doi: 10.1086/312689
– ident: rf21_1835
– ident: rf43_1857
  doi: 10.1086/426099
– ident: rf52_1866
  doi: 10.1086/504518
– ident: rf24_1838
  doi: 10.1086/175174
– ident: rf48_1862
  doi: 10.1051/0004-6361:200600007
– ident: rf78_1892
  doi: 10.1086/338247
– ident: rf40_1854
– ident: rf73_1887
  doi: 10.1086/499353
– ident: rf72_1886
  doi: 10.1038/nature03934
– ident: rf51_1865
  doi: 10.1086/505457
– ident: rf20_1834
  doi: 10.1146/annurev.aa.28.090190.001243
– ident: rf13_1827
– ident: rf63_1877
  doi: 10.1086/431235
– ident: rf15_1829
  doi: 10.1086/499292
– ident: rf25_1839
– ident: rf41_1855
  doi: 10.1086/312905
– ident: rf71_1885
– ident: rf36_1850
  doi: 10.1111/j.1365-2966.2006.10188.x
– ident: rf64_1878
  doi: 10.1086/500261
– ident: rf27_1841
– ident: rf65_1879
  doi: 10.1086/375580
– ident: rf19_1833
  doi: 10.1086/426532
– ident: rf37_1851
– ident: rf12_1826
  doi: 10.1086/308914
– ident: rf77_1891
  doi: 10.1086/320255
– ident: rf2_1816
  doi: 10.1086/172995
– ident: rf55_1869
  doi: 10.1086/313289
– ident: rf44_1858
  doi: 10.1086/426938
– ident: rf70_1884
– volume: 120
  start-page: 165
  year: 2005
  ident: rf7_1821
  publication-title: Rev.
  contributor:
    fullname: Burrows D. N.
– ident: rf32_1846
  doi: 10.1117/12.505728
– ident: rf47_1861
  doi: 10.1086/308257
– ident: rf58_1872
  doi: 10.1051/0004-6361:20054172
– volume: 120
  start-page: 143
  year: 2005
  ident: rf3_1817
  publication-title: Rev.
  contributor:
    fullname: Barthelmy S. D.
– ident: rf79_1893
  doi: 10.1086/386300
– ident: rf31_1845
– ident: rf4_1818
  doi: 10.1086/499432
– ident: rf26_1840
– ident: rf5_1819
  doi: 10.1086/379310
– ident: rf8_1822
  doi: 10.1126/science.1116168
– ident: rf53_1867
  doi: 10.1086/305995
– ident: rf75_1889
  doi: 10.1086/382132
– ident: rf38_1852
– ident: rf45_1859
  doi: 10.1086/506018
– ident: rf28_1842
  doi: 10.1086/422091
– ident: rf62_1876
– ident: rf11_1825
– ident: rf22_1836
  doi: 10.1086/500655
– ident: rf30_1844
  doi: 10.1086/431477
– ident: rf9_1823
  doi: 10.1086/427746
– ident: rf39_1853
  doi: 10.1086/186969
– ident: rf18_1832
– ident: rf42_1856
  doi: 10.1086/308537
– ident: rf6_1820
  doi: 10.1086/498425
– ident: rf69_1883
– ident: rf59_1873
  doi: 10.1051/0004-6361:20065071
– ident: rf49_1863
  doi: 10.1086/306386
– ident: rf29_1843
  doi: 10.1051/0004-6361:20021038
– ident: rf67_1881
  doi: 10.1086/312109
– ident: rf61_1875
– ident: rf50_1864
  doi: 10.1086/500724
– ident: rf76_1890
  doi: 10.1086/500723
– ident: rf54_1868
  doi: 10.1051/0004-6361:200500173
– volume: 120
  start-page: 95
  year: 2005
  ident: rf60_1874
  publication-title: Rev.
  contributor:
    fullname: Roming P. W. A.
– ident: rf10_1824
– ident: rf56_1870
  doi: 10.1086/187446
– ident: rf34_1848
– ident: rf46_1860
– ident: rf16_1830
  doi: 10.1086/383019
– volume: 333
  start-page: L87
  year: 1998
  ident: rf17_1831
  publication-title: A&A
  contributor:
    fullname: Dai Z. G.
– ident: rf74_1888
  doi: 10.1086/376677
– ident: rf1_1815
– ident: rf68_1882
  doi: 10.1086/311269
SSID ssj0004299
Score 2.0387719
Snippet Swift discovered XRF 050416A with the Burst Alert Telescope and began observing it with its narrow-field instruments only 64.5 s after the burst onset. Its...
SourceID proquest
crossref
pascalfrancis
iop
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 403
SubjectTerms Astronomy
Earth, ocean, space
Exact sciences and technology
Title Swift XRT Observations of the Afterglow of XRF 050416A
URI http://iopscience.iop.org/0004-637X/654/1/403
https://search.proquest.com/docview/20329964
https://search.proquest.com/docview/743075037
Volume 654
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS9xAEB-qUPBFra14fi609C13udxmPx4P8RChnlileVv2IyuivRxNDmn_emezd55WLH0JSzKEZWZ35zczOzMAXyh3nEkuE6cpS6inLhF4VCaur9PM0VCiLiQKfztnp9f0rMiLZbL6bTWdn_xdHLaR_IA6EjbgRY_ltNfv0ba2Z6hxEtL1xhfLLMhMzsFupH_WSajViukL1bOC_w8XIXWNvPCxicWr87hVMqMNOF-k6sS7JXfdWWO69s_ryo3_N_9NWJ_DTTKM6-MDvCsnW7AzrIMDvPr5m3wl7Tj6N-oteH8RRx-BfX-49Q0pLq_I2Dy5bmtSeYKYkQxDb_Gb--ohvCguRyTNU0Rdw09wPTq5Oj5N5k0WEjvgvEk06iltMk2tx90rs1Jzb9BqkjTPmZa5zb33EiVpmCidodwagTaKdwgsU4cAbhtWJ9Wk3AEiMiO9cF5YtBltmmkb0FU58FZoqgXrwNGC_2oaa2moNgYumIoS6sBnZNvTx8A6FVinkHWqr5B1aup8B3afU_39i8MXMl2SCRqivBJnsRCywq0U4iN6UlazWoVm8mj-0Q6QNygQbrWBX777rynswVr0AAdHzT6sNr9m5QFCl8YctisWn-PBj0cIaORl
link.rule.ids 315,786,790,1564,4043,27661,27956,27957,27958,53941,53967
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED91QyBe0CigdrDVEoi3sDTx52PFVpWvtSqtyJvlxDFC2pqKdJr23-8ct13HNN6sxElOv4t9v7uzfQAfqLCCK6EiayiPqKM2kjhVRrZv4sRSf0Sd3yj845yP5vRrxrIWsO1emGq5nvo_YTMcFBwgPNmUBWpMXHyytG4PnrBUce9zjdNfd9shE7VmvTTiqch2SgqFZ-_ZoD38jl8RaWoExYVqFg8m5sbaDA_gxZomkkEQ6iW0ykUbOoPaB66ryxvykTTtEJeo2_B0ElqvgP-8_uNWJJvOyDjfhlxrUjmCXI8MfE3w3xfVtb-QTYckZjGypcFrmA_PZp9H0bo4QlSkQqwig_bF5ImhhcNRp5LSCJejt6MoY9woVjDnnEIN5FyWNqeiyCX6Fs4iIYwtEq83sL-oFmUHiExy5aR1skBfr4gTU3hWVKaukIYaybvQ28Cll-EMDN3kriXXAdAuvEcUtzc98tojrzmjuq9pnGpUVxcOd3v9-4rjeyq46yapz84qlGKjE41DwOc1zKKsrmrti8Cj20a7QB7pgTSpSdiKw_-J0INnk9Oh_v7l_NtbeB6CuD7W8g72V3-vyiNkH6v8uPnXbgFPcM_f
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Swift+XRT+observations+of+the+afterglow+of+XRF+050416A&rft.jtitle=The+Astrophysical+journal&rft.au=MANGANO%2C+Vanessa&rft.au=LA+PAROLA%2C+Valentina&rft.au=MORETTI%2C+Alberto&rft.au=PERRI%2C+Matteo&rft.date=2007&rft.pub=University+of+Chicago+Press&rft.issn=0004-637X&rft.eissn=1538-4357&rft.volume=654&rft.issue=1&rft.spage=403&rft.epage=412&rft_id=info:doi/10.1086%2F509100&rft.externalDBID=n%2Fa&rft.externalDocID=18442459
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon