Charge localization control of electron-hole recombination in multilayer two-dimensional Dion-Jacobson hybrid perovskites

Two-dimensional (2D) Dion-Jacobson (DJ) organic-inorganic hybrid halide perovskites hold great potential for optoelectronics and solar cells. Interestingly, experimental excited-state lifetime is longer in (3AMP)(MA) n −1 Pb n I 3 n +1 than (4AMP)(MA) n −1 Pb n I 3 n +1 (3AMP = 3-(aminomethyl)piperi...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. A, Materials for energy and sustainability Vol. 8; no. 18; pp. 9168 - 9176
Main Authors Shi, Ran, Zhang, Zhaosheng, Fang, Wei-Hai, Long, Run
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 12.05.2020
Subjects
Online AccessGet full text
ISSN2050-7488
2050-7496
2050-7496
DOI10.1039/d0ta01944e

Cover

Loading…
Abstract Two-dimensional (2D) Dion-Jacobson (DJ) organic-inorganic hybrid halide perovskites hold great potential for optoelectronics and solar cells. Interestingly, experimental excited-state lifetime is longer in (3AMP)(MA) n −1 Pb n I 3 n +1 than (4AMP)(MA) n −1 Pb n I 3 n +1 (3AMP = 3-(aminomethyl)piperidinium, 4AMP = 4-(aminomethyl)piperidinium, MA = CH 3 NH 3 + ) regardless of the value of n despite 3AMP having a smaller bandgap. Using ab initio nonadiabatic (NA) molecular dynamics combined with time-domain density functional theory, we focus on the n = 2 perovskite and demonstrate that stronger hydrogen bonding interaction and larger octahedral tilting cause significant delocalization of the hole wave function in (4AMP)(MA)Pb 2 I 7 and accelerates the electron-hole recombination by a factor of 5 compared to (3AMP)(MA)Pb 2 I 7 due to an increased NA coupling. The inorganic component stretching mode and coupled inorganic and organic collective motions accelerate decoherence to sub-4 fs in the two materials. The simulations rationalize the experimentally observed puzzle of excited-state lifetime in the 2D DJ perovskite and suggest a rational way to optimize the performance of perovskite devices. Significant charge delocalization in the Dion-Jacobson (4AMP)(MA)Pb 2 I 7 perovskite enhances non-adiabatic coupling and accelerates non-radiative electron-hole recombination.
AbstractList Two-dimensional (2D) Dion–Jacobson (DJ) organic–inorganic hybrid halide perovskites hold great potential for optoelectronics and solar cells. Interestingly, experimental excited-state lifetime is longer in (3AMP)(MA) n−1 Pb n I 3n+1 than (4AMP)(MA) n−1 Pb n I 3n+1 (3AMP = 3-(aminomethyl)piperidinium, 4AMP = 4-(aminomethyl)piperidinium, MA = CH 3 NH 3 + ) regardless of the value of n despite 3AMP having a smaller bandgap. Using ab initio nonadiabatic (NA) molecular dynamics combined with time-domain density functional theory, we focus on the n = 2 perovskite and demonstrate that stronger hydrogen bonding interaction and larger octahedral tilting cause significant delocalization of the hole wave function in (4AMP)(MA)Pb 2 I 7 and accelerates the electron–hole recombination by a factor of 5 compared to (3AMP)(MA)Pb 2 I 7 due to an increased NA coupling. The inorganic component stretching mode and coupled inorganic and organic collective motions accelerate decoherence to sub-4 fs in the two materials. The simulations rationalize the experimentally observed puzzle of excited-state lifetime in the 2D DJ perovskite and suggest a rational way to optimize the performance of perovskite devices.
Two-dimensional (2D) Dion–Jacobson (DJ) organic–inorganic hybrid halide perovskites hold great potential for optoelectronics and solar cells. Interestingly, experimental excited-state lifetime is longer in (3AMP)(MA)n−1PbnI3n+1 than (4AMP)(MA)n−1PbnI3n+1 (3AMP = 3-(aminomethyl)piperidinium, 4AMP = 4-(aminomethyl)piperidinium, MA = CH3NH3+) regardless of the value of n despite 3AMP having a smaller bandgap. Using ab initio nonadiabatic (NA) molecular dynamics combined with time-domain density functional theory, we focus on the n = 2 perovskite and demonstrate that stronger hydrogen bonding interaction and larger octahedral tilting cause significant delocalization of the hole wave function in (4AMP)(MA)Pb2I7 and accelerates the electron–hole recombination by a factor of 5 compared to (3AMP)(MA)Pb2I7 due to an increased NA coupling. The inorganic component stretching mode and coupled inorganic and organic collective motions accelerate decoherence to sub-4 fs in the two materials. The simulations rationalize the experimentally observed puzzle of excited-state lifetime in the 2D DJ perovskite and suggest a rational way to optimize the performance of perovskite devices.
Two-dimensional (2D) Dion–Jacobson (DJ) organic–inorganic hybrid halide perovskites hold great potential for optoelectronics and solar cells. Interestingly, experimental excited-state lifetime is longer in (3AMP)(MA)ₙ₋₁PbₙI₃ₙ₊₁ than (4AMP)(MA)ₙ₋₁PbₙI₃ₙ₊₁ (3AMP = 3-(aminomethyl)piperidinium, 4AMP = 4-(aminomethyl)piperidinium, MA = CH₃NH₃⁺) regardless of the value of n despite 3AMP having a smaller bandgap. Using ab initio nonadiabatic (NA) molecular dynamics combined with time-domain density functional theory, we focus on the n = 2 perovskite and demonstrate that stronger hydrogen bonding interaction and larger octahedral tilting cause significant delocalization of the hole wave function in (4AMP)(MA)Pb₂I₇ and accelerates the electron–hole recombination by a factor of 5 compared to (3AMP)(MA)Pb₂I₇ due to an increased NA coupling. The inorganic component stretching mode and coupled inorganic and organic collective motions accelerate decoherence to sub-4 fs in the two materials. The simulations rationalize the experimentally observed puzzle of excited-state lifetime in the 2D DJ perovskite and suggest a rational way to optimize the performance of perovskite devices.
Two-dimensional (2D) Dion-Jacobson (DJ) organic-inorganic hybrid halide perovskites hold great potential for optoelectronics and solar cells. Interestingly, experimental excited-state lifetime is longer in (3AMP)(MA) n −1 Pb n I 3 n +1 than (4AMP)(MA) n −1 Pb n I 3 n +1 (3AMP = 3-(aminomethyl)piperidinium, 4AMP = 4-(aminomethyl)piperidinium, MA = CH 3 NH 3 + ) regardless of the value of n despite 3AMP having a smaller bandgap. Using ab initio nonadiabatic (NA) molecular dynamics combined with time-domain density functional theory, we focus on the n = 2 perovskite and demonstrate that stronger hydrogen bonding interaction and larger octahedral tilting cause significant delocalization of the hole wave function in (4AMP)(MA)Pb 2 I 7 and accelerates the electron-hole recombination by a factor of 5 compared to (3AMP)(MA)Pb 2 I 7 due to an increased NA coupling. The inorganic component stretching mode and coupled inorganic and organic collective motions accelerate decoherence to sub-4 fs in the two materials. The simulations rationalize the experimentally observed puzzle of excited-state lifetime in the 2D DJ perovskite and suggest a rational way to optimize the performance of perovskite devices. Significant charge delocalization in the Dion-Jacobson (4AMP)(MA)Pb 2 I 7 perovskite enhances non-adiabatic coupling and accelerates non-radiative electron-hole recombination.
Author Zhang, Zhaosheng
Fang, Wei-Hai
Long, Run
Shi, Ran
AuthorAffiliation College of Chemistry & Environmental Science
Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education
Beijing Normal University
Hebei University
College of Chemistry
AuthorAffiliation_xml – name: Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education
– name: Beijing Normal University
– name: Hebei University
– name: College of Chemistry & Environmental Science
– name: College of Chemistry
Author_xml – sequence: 1
  givenname: Ran
  surname: Shi
  fullname: Shi, Ran
– sequence: 2
  givenname: Zhaosheng
  surname: Zhang
  fullname: Zhang, Zhaosheng
– sequence: 3
  givenname: Wei-Hai
  surname: Fang
  fullname: Fang, Wei-Hai
– sequence: 4
  givenname: Run
  surname: Long
  fullname: Long, Run
BookMark eNp9kUlrHDEQhUWwId4uuRtkfAmBdrR0S62jmXEWY8jFOTeSujojWy1NJI3D5NdH9gQbTEhdXsH7qqDqHaK9EAMg9I6SC0q4-jiSoglVbQtv0AEjHWlkq8Tec9_3b9FJznekVk-IUOoAbRcrnX4A9tFq737r4mLANoaSosdxwuDB1j40q-gBJ7BxNi7sMBfwvPHFeb2FhMuv2IxuhpCrpz1eVmmutY0mV3a1NcmNeA0pPuR7VyAfo_1J-wwnf_UIff90dbv40tx8-_x1cXnTWC5laZS2rTYcWMspnwShPTAhJRPGmFEII7qWq5FOHZO9Ur0iIJjshGBGMiUk50fo_W7vOsWfG8hlmF224L0OEDd5YF1HFe0ZUxU9f4XexU2qx1SqJUTJrhOP1IcdZVPMOcE0rJObddoOlAyPQQxLcnv5FMRVhckr2Lry9L6StPP_HjndjaRsn1e_ZFv9s__5w3qc-B_wSKKJ
CitedBy_id crossref_primary_10_1039_D0CP06579J
crossref_primary_10_1021_acs_jpclett_3c02923
crossref_primary_10_1021_acs_jpclett_3c03357
crossref_primary_10_1021_acs_jpclett_3c01776
crossref_primary_10_1002_adfm_202300576
crossref_primary_10_1021_jacs_1c04442
crossref_primary_10_1021_acs_jpclett_4c02773
crossref_primary_10_1021_acs_jpclett_4c02436
crossref_primary_10_1021_acs_jpclett_0c02800
crossref_primary_10_1039_D3CP04573K
crossref_primary_10_1021_jacs_2c00319
crossref_primary_10_1063_1674_0068_cjcp2111247
crossref_primary_10_1039_D3TA02198J
crossref_primary_10_1002_smll_202501184
crossref_primary_10_1088_1674_1056_ac4036
crossref_primary_10_1021_acs_jpclett_2c01177
crossref_primary_10_1039_D1MH02055B
crossref_primary_10_1021_jacs_2c12903
crossref_primary_10_1021_acs_jpclett_1c04038
crossref_primary_10_1021_acs_jpclett_2c00085
crossref_primary_10_1021_acs_jpclett_2c03072
crossref_primary_10_1021_acs_nanolett_4c00245
crossref_primary_10_1021_acsenergylett_0c02136
crossref_primary_10_1039_D1TA09549H
crossref_primary_10_1016_j_physb_2024_416276
crossref_primary_10_1021_acsami_2c00564
crossref_primary_10_1016_j_cclet_2024_109621
crossref_primary_10_1021_jacsau_1c00192
crossref_primary_10_1021_acs_jpclett_0c01687
crossref_primary_10_1021_acs_jpclett_2c03649
crossref_primary_10_1021_jacs_2c08627
crossref_primary_10_1039_D3TA07838H
crossref_primary_10_1088_1361_6641_ac02d9
crossref_primary_10_1016_j_cej_2024_152539
crossref_primary_10_1007_s12274_021_3840_y
crossref_primary_10_1007_s12274_021_4054_z
crossref_primary_10_1021_jacs_4c05191
Cites_doi 10.1021/jacs.8b00542
10.1126/science.aav7911
10.1063/1.523304
10.1021/jacs.8b10851
10.1103/PhysRevLett.85.4413
10.1039/C7EE01145H
10.1063/1.3382344
10.1021/acs.nanolett.5b01471
10.1039/C9TA11923J
10.1021/acs.nanolett.6b01218
10.1039/C7TA05666D
10.1021/acs.nanolett.8b00035
10.1021/jacs.7b06401
10.1021/acsphotonics.6b00963
10.1021/jacs.8b13392
10.1002/anie.201914768
10.1021/ja2085806
10.1021/acs.jpclett.6b02122
10.1021/acsnano.5b03232
10.1021/ja5001592
10.1103/PhysRevLett.95.163001
10.1063/1.3526297
10.1103/PhysRevB.50.17953
10.1021/acs.nanolett.7b01475
10.1039/C9TA01569H
10.1103/PhysRevLett.100.197402
10.1021/acs.jpclett.6b01412
10.1002/adma.201804771
10.1002/jcc.21759
10.1080/00268977000100171
10.1016/j.rser.2019.04.022
10.1002/adfm.201903293
10.1021/acsenergylett.9b02063
10.1039/C7TA00366H
10.1021/acs.jpclett.9b03465
10.1103/PhysRevB.54.11169
10.1103/PhysRevLett.77.3865
10.1038/s41598-020-61768-8
10.1002/aenm.201803384
10.1103/PhysRev.140.A1133
10.1002/adma.201800258
10.1021/jacs.9b06046
10.1021/jz5013627
10.1063/1.4918805
10.1002/adma.201306281
10.1021/nl5012992
10.1039/c3tc30861h
10.1021/acsenergylett.9b00634
10.1021/ar040206v
10.1021/jacs.7b11157
10.1021/acs.chemrev.5b00715
10.1021/acs.jpclett.9b00750
10.1021/cm5032046
10.1103/PhysRevApplied.10.044004
10.1063/1.459170
10.1039/C7TA09943F
10.1021/acs.chemmater.6b00847
10.1039/C8EE03559H
10.1039/C7TA01203A
10.1039/C9TA11789J
10.1021/acs.jpcc.5b07432
10.1039/C7TA09122B
10.1103/PhysRevApplied.13.024038
10.1039/C7TC00366H
10.1021/acs.jpclett.9b00285
10.1038/ncomms15684
10.1021/ja809598r
10.1021/jacs.9b06398
10.1021/jacs.8b07712
10.1021/acs.nanolett.9b00387
10.1039/C7TC04160H
10.1126/science.aaa2725
10.1039/C4TA05033A
10.1039/C7EE02901B
10.1002/lpor.201800060
10.1021/jacs.6b00645
10.1021/acs.jpcc.6b12921
10.1021/ct400641n
10.1021/acs.jpclett.6b00001
10.1016/j.jpowsour.2020.227913
10.1103/PhysRevB.91.235302
10.1002/aenm.201602512
10.1063/1.471326
10.1126/sciadv.1700704
10.1016/j.joule.2018.11.026
10.1039/C7SC01590A
10.1021/acsomega.8b03291
10.1002/anie.201406466
10.1038/srep35973
10.1021/acs.jpclett.9b01330
10.1103/PhysRevB.13.5188
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2020
Copyright_xml – notice: Copyright Royal Society of Chemistry 2020
DBID AAYXX
CITATION
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
7S9
L.6
DOI 10.1039/d0ta01944e
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Environment Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Materials Research Database
Advanced Technologies Database with Aerospace
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Environment Abstracts
Advanced Technologies Database with Aerospace
METADEX
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
Materials Research Database
AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2050-7496
EndPage 9176
ExternalDocumentID 10_1039_D0TA01944E
d0ta01944e
GroupedDBID 0-7
0R
705
AAEMU
AAGNR
AAIWI
AANOJ
ABDVN
ABGFH
ABRYZ
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AENEX
AFRAH
AFVBQ
AGSTE
ALMA_UNASSIGNED_HOLDINGS
ASKNT
AUDPV
BLAPV
BSQNT
C6K
CKLOX
EBS
ECGLT
EE0
EF-
GNO
HZ
H~N
J3I
JG
O-G
O9-
R7C
RCNCU
RNS
RPMJG
RRC
RSCEA
SKA
SKF
SLH
UCJ
0R~
AAJAE
AAWGC
AAXHV
AAYXX
ABASK
ABEMK
ABJNI
ABPDG
ABXOH
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AGEGJ
AGRSR
AHGCF
AKMSF
ALUYA
ANUXI
APEMP
CITATION
GGIMP
H13
HZ~
RAOCF
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
7S9
L.6
ID FETCH-LOGICAL-c377t-9ac4ab3e24313f6018e267726bbbd66b65439d1f527899890e6275662b7296733
ISSN 2050-7488
2050-7496
IngestDate Fri Jul 11 04:54:22 EDT 2025
Mon Jun 30 12:05:50 EDT 2025
Tue Jul 01 01:12:52 EDT 2025
Thu Apr 24 23:05:55 EDT 2025
Sat Jan 08 03:56:27 EST 2022
Wed Nov 11 00:26:55 EST 2020
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c377t-9ac4ab3e24313f6018e267726bbbd66b65439d1f527899890e6275662b7296733
Notes 10.1039/d0ta01944e
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3912-8899
PQID 2400975569
PQPubID 2047523
PageCount 9
ParticipantIDs crossref_primary_10_1039_D0TA01944E
rsc_primary_d0ta01944e
crossref_citationtrail_10_1039_D0TA01944E
proquest_miscellaneous_2551918229
proquest_journals_2400975569
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200512
PublicationDateYYYYMMDD 2020-05-12
PublicationDate_xml – month: 5
  year: 2020
  text: 20200512
  day: 12
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of materials chemistry. A, Materials for energy and sustainability
PublicationYear 2020
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Grancini (D0TA01944E-(cit21)/*[position()=1]) 2017; 8
Li (D0TA01944E-(cit89)/*[position()=1]) 2018; 140
Misra (D0TA01944E-(cit50)/*[position()=1]) 1977; 18
Han (D0TA01944E-(cit29)/*[position()=1]) 2018; 12
Qiao (D0TA01944E-(cit79)/*[position()=1]) 2013; 1
Zhang (D0TA01944E-(cit34)/*[position()=1]) 2019; 141
Gan (D0TA01944E-(cit15)/*[position()=1]) 2019; 4
Zhang (D0TA01944E-(cit52)/*[position()=1]) 2019; 10
Qiao (D0TA01944E-(cit77)/*[position()=1]) 2018; 6
Kojima (D0TA01944E-(cit2)/*[position()=1]) 2009; 131
Kohn (D0TA01944E-(cit41)/*[position()=1]) 1965; 140
Long (D0TA01944E-(cit66)/*[position()=1]) 2017; 121
Amat (D0TA01944E-(cit72)/*[position()=1]) 2014; 14
Long (D0TA01944E-(cit73)/*[position()=1]) 2016; 138
Schwartz (D0TA01944E-(cit43)/*[position()=1]) 1996; 104
Ahmad (D0TA01944E-(cit35)/*[position()=1]) 2019; 3
Saparov (D0TA01944E-(cit5)/*[position()=1]) 2016; 116
Yin (D0TA01944E-(cit4)/*[position()=1]) 2014; 26
Tong (D0TA01944E-(cit18)/*[position()=1]) 2019; 364
Englman (D0TA01944E-(cit84)/*[position()=1]) 1970; 18
Long (D0TA01944E-(cit54)/*[position()=1]) 2014; 5
Wang (D0TA01944E-(cit80)/*[position()=1]) 2020; 13
Zhang (D0TA01944E-(cit74)/*[position()=1]) 2017; 139
Neukirch (D0TA01944E-(cit94)/*[position()=1]) 2016; 16
Li (D0TA01944E-(cit19)/*[position()=1]) 2018; 30
Zhang (D0TA01944E-(cit30)/*[position()=1]) 2017; 10
Monkhorst (D0TA01944E-(cit61)/*[position()=1]) 1976; 13
Mukamel (D0TA01944E-(cit48)/*[position()=1]) 1995
Zhou (D0TA01944E-(cit13)/*[position()=1]) 2019; 12
Zhou (D0TA01944E-(cit27)/*[position()=1]) 2017; 140
Zarick (D0TA01944E-(cit6)/*[position()=1]) 2018; 6
Qiao (D0TA01944E-(cit53)/*[position()=1]) 2020; 59
Craig (D0TA01944E-(cit42)/*[position()=1]) 2005; 95
Fischer (D0TA01944E-(cit46)/*[position()=1]) 2011; 134
Long (D0TA01944E-(cit57)/*[position()=1]) 2016; 7
Frolova (D0TA01944E-(cit17)/*[position()=1]) 2016; 7
Qiao (D0TA01944E-(cit81)/*[position()=1]) 2015; 15
Smith (D0TA01944E-(cit26)/*[position()=1]) 2014; 53
Li (D0TA01944E-(cit39)/*[position()=1]) 2019; 141
Prezhdo (D0TA01944E-(cit49)/*[position()=1]) 2000; 85
Yang (D0TA01944E-(cit31)/*[position()=1]) 2018; 30
Jasper (D0TA01944E-(cit47)/*[position()=1]) 2006; 39
Kresse (D0TA01944E-(cit58)/*[position()=1]) 1996; 54
Wei (D0TA01944E-(cit56)/*[position()=1]) 2020; 11
Rabani (D0TA01944E-(cit68)/*[position()=1]) 2015; 91
Yang (D0TA01944E-(cit11)/*[position()=1]) 2017; 5
Pisanu (D0TA01944E-(cit93)/*[position()=1]) 2020; 8
Jung (D0TA01944E-(cit20)/*[position()=1]) 2019; 7
Zhang (D0TA01944E-(cit33)/*[position()=1]) 2018; 18
Zhang (D0TA01944E-(cit78)/*[position()=1]) 2018; 10
Ali (D0TA01944E-(cit25)/*[position()=1]) 2019; 109
Long (D0TA01944E-(cit67)/*[position()=1]) 2011; 133
Peng (D0TA01944E-(cit90)/*[position()=1]) 2017; 17
Li (D0TA01944E-(cit32)/*[position()=1]) 2019; 29
Shi (D0TA01944E-(cit8)/*[position()=1]) 2015; 347
Perdew (D0TA01944E-(cit59)/*[position()=1]) 1996; 77
Umadevi (D0TA01944E-(cit71)/*[position()=1]) 2019; 4
Yin (D0TA01944E-(cit9)/*[position()=1]) 2015; 3
Ke (D0TA01944E-(cit38)/*[position()=1]) 2019; 9
Perez-Osorio (D0TA01944E-(cit86)/*[position()=1]) 2015; 119
Long (D0TA01944E-(cit51)/*[position()=1]) 2016; 138
Cohen (D0TA01944E-(cit36)/*[position()=1]) 2019; 19
Grimme (D0TA01944E-(cit63)/*[position()=1]) 2011; 32
Habenicht (D0TA01944E-(cit44)/*[position()=1]) 2008; 100
National Renewable Energy Laboratory (NREL) (D0TA01944E-(cit1)/*[position()=1])
Mao (D0TA01944E-(cit23)/*[position()=1]) 2018; 140
He (D0TA01944E-(cit76)/*[position()=1]) 2019; 141
Wang (D0TA01944E-(cit14)/*[position()=1]) 2020; 454
Niu (D0TA01944E-(cit37)/*[position()=1]) 2019; 10
Chatterjee (D0TA01944E-(cit16)/*[position()=1]) 2018; 6
Zhai (D0TA01944E-(cit69)/*[position()=1]) 2017; 3
Mao (D0TA01944E-(cit24)/*[position()=1]) 2019; 141
Pham (D0TA01944E-(cit70)/*[position()=1]) 2020; 10
Quarti (D0TA01944E-(cit85)/*[position()=1]) 2014; 26
Huang (D0TA01944E-(cit40)/*[position()=1]) 2019; 4
Zhao (D0TA01944E-(cit10)/*[position()=1]) 2017; 5
Pistor (D0TA01944E-(cit87)/*[position()=1]) 2016; 6
Stoumpos (D0TA01944E-(cit22)/*[position()=1]) 2016; 28
Akimov (D0TA01944E-(cit88)/*[position()=1]) 2013; 9
Wang (D0TA01944E-(cit64)/*[position()=1]) 2019; 10
Calvo (D0TA01944E-(cit3)/*[position()=1]) 2017; 5
Grimme (D0TA01944E-(cit62)/*[position()=1]) 2010; 132
Congreve (D0TA01944E-(cit28)/*[position()=1]) 2017; 4
Tully (D0TA01944E-(cit45)/*[position()=1]) 1990; 93
He (D0TA01944E-(cit82)/*[position()=1]) 2015; 9
Cortecchia (D0TA01944E-(cit91)/*[position()=1]) 2017; 5
Biegalski (D0TA01944E-(cit83)/*[position()=1]) 2015; 106
Blöchl (D0TA01944E-(cit60)/*[position()=1]) 1994; 50
Long (D0TA01944E-(cit75)/*[position()=1]) 2016; 7
Long (D0TA01944E-(cit55)/*[position()=1]) 2014; 136
Smith (D0TA01944E-(cit92)/*[position()=1]) 2017; 8
Turren-Cruz (D0TA01944E-(cit7)/*[position()=1]) 2018; 11
He (D0TA01944E-(cit65)/*[position()=1]) 2020; 8
Lyu (D0TA01944E-(cit12)/*[position()=1]) 2017; 7
References_xml – publication-title: Best Research-Cell Efficiency Chart
  doi: National Renewable Energy Laboratory (NREL)
– issn: 1995
  publication-title: Principles of Nonlinear Optical Spectroscopy
  doi: Mukamel
– volume: 140
  start-page: 3775
  year: 2018
  ident: D0TA01944E-(cit23)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b00542
– volume: 364
  start-page: 475
  year: 2019
  ident: D0TA01944E-(cit18)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aav7911
– volume: 18
  start-page: 756
  year: 1977
  ident: D0TA01944E-(cit50)/*[position()=1]
  publication-title: J. Math. Phys.
  doi: 10.1063/1.523304
– volume: 141
  start-page: 1171
  year: 2019
  ident: D0TA01944E-(cit24)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b10851
– volume: 85
  start-page: 4413
  year: 2000
  ident: D0TA01944E-(cit49)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.85.4413
– volume: 10
  start-page: 2095
  year: 2017
  ident: D0TA01944E-(cit30)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE01145H
– volume: 132
  start-page: 154104
  year: 2010
  ident: D0TA01944E-(cit62)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3382344
– volume: 15
  start-page: 4677
  year: 2015
  ident: D0TA01944E-(cit81)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b01471
– volume: 8
  start-page: 1875
  year: 2020
  ident: D0TA01944E-(cit93)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA11923J
– volume: 16
  start-page: 3809
  year: 2016
  ident: D0TA01944E-(cit94)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b01218
– volume: 5
  start-page: 20561
  year: 2017
  ident: D0TA01944E-(cit3)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA05666D
– volume: 18
  start-page: 2459
  year: 2018
  ident: D0TA01944E-(cit33)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b00035
– volume: 139
  start-page: 17327
  year: 2017
  ident: D0TA01944E-(cit74)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b06401
– volume: 4
  start-page: 476
  year: 2017
  ident: D0TA01944E-(cit28)/*[position()=1]
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.6b00963
– volume: 141
  start-page: 5798
  year: 2019
  ident: D0TA01944E-(cit76)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b13392
– volume: 59
  start-page: 2
  year: 2020
  ident: D0TA01944E-(cit53)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201914768
– volume: 133
  start-page: 19240
  year: 2011
  ident: D0TA01944E-(cit67)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja2085806
– volume: 7
  start-page: 4353
  year: 2016
  ident: D0TA01944E-(cit17)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.6b02122
– volume: 9
  start-page: 8412
  year: 2015
  ident: D0TA01944E-(cit82)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b03232
– volume: 136
  start-page: 4343
  year: 2014
  ident: D0TA01944E-(cit55)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja5001592
– volume: 95
  start-page: 163001
  year: 2005
  ident: D0TA01944E-(cit42)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.95.163001
– volume: 134
  start-page: 024102
  year: 2011
  ident: D0TA01944E-(cit46)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3526297
– volume: 50
  start-page: 17953
  year: 1994
  ident: D0TA01944E-(cit60)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.50.17953
– volume: 17
  start-page: 4759
  year: 2017
  ident: D0TA01944E-(cit90)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b01475
– volume: 7
  start-page: 14689
  year: 2019
  ident: D0TA01944E-(cit20)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA01569H
– volume: 100
  start-page: 197402
  year: 2008
  ident: D0TA01944E-(cit44)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.197402
– volume: 7
  start-page: 3215
  year: 2016
  ident: D0TA01944E-(cit75)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.6b01412
– volume: 30
  start-page: 1804771
  year: 2018
  ident: D0TA01944E-(cit31)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201804771
– volume: 32
  start-page: 1456
  year: 2011
  ident: D0TA01944E-(cit63)/*[position()=1]
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.21759
– volume: 18
  start-page: 145
  year: 1970
  ident: D0TA01944E-(cit84)/*[position()=1]
  publication-title: Mol. Phys.
  doi: 10.1080/00268977000100171
– volume: 109
  start-page: 160
  year: 2019
  ident: D0TA01944E-(cit25)/*[position()=1]
  publication-title: Renewable Sustainable Energy Rev.
  doi: 10.1016/j.rser.2019.04.022
– volume: 29
  start-page: 1903293
  year: 2019
  ident: D0TA01944E-(cit32)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201903293
– volume: 4
  start-page: 2960
  year: 2019
  ident: D0TA01944E-(cit40)/*[position()=1]
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.9b02063
– volume: 5
  start-page: 11462
  year: 2017
  ident: D0TA01944E-(cit11)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA00366H
– volume: 11
  start-page: 478
  year: 2020
  ident: D0TA01944E-(cit56)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.9b03465
– volume: 54
  start-page: 11169
  year: 1996
  ident: D0TA01944E-(cit58)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.54.11169
– volume: 77
  start-page: 3865
  year: 1996
  ident: D0TA01944E-(cit59)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 10
  start-page: 4964
  year: 2020
  ident: D0TA01944E-(cit70)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-61768-8
– volume: 9
  start-page: 1803384
  year: 2019
  ident: D0TA01944E-(cit38)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201803384
– volume: 140
  start-page: A1133
  year: 1965
  ident: D0TA01944E-(cit41)/*[position()=1]
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.140.A1133
– volume: 30
  start-page: 1800258
  year: 2018
  ident: D0TA01944E-(cit19)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201800258
– volume: 141
  start-page: 15557
  year: 2019
  ident: D0TA01944E-(cit34)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b06046
– volume: 5
  start-page: 2941
  year: 2014
  ident: D0TA01944E-(cit54)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz5013627
– volume: 106
  start-page: 162904
  year: 2015
  ident: D0TA01944E-(cit83)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4918805
– volume: 26
  start-page: 4653
  year: 2014
  ident: D0TA01944E-(cit4)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201306281
– volume: 14
  start-page: 3608
  year: 2014
  ident: D0TA01944E-(cit72)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl5012992
– volume: 1
  start-page: 4628
  year: 2013
  ident: D0TA01944E-(cit79)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/c3tc30861h
– volume: 4
  start-page: 1308
  year: 2019
  ident: D0TA01944E-(cit15)/*[position()=1]
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.9b00634
– volume: 39
  start-page: 101
  year: 2006
  ident: D0TA01944E-(cit47)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar040206v
– volume: 140
  start-page: 459
  year: 2017
  ident: D0TA01944E-(cit27)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b11157
– volume: 116
  start-page: 4558
  year: 2016
  ident: D0TA01944E-(cit5)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00715
– volume: 10
  start-page: 2349
  year: 2019
  ident: D0TA01944E-(cit37)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.9b00750
– volume: 26
  start-page: 6557
  year: 2014
  ident: D0TA01944E-(cit85)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm5032046
– volume: 10
  start-page: 044004
  year: 2018
  ident: D0TA01944E-(cit78)/*[position()=1]
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.10.044004
– volume: 93
  start-page: 1061
  year: 1990
  ident: D0TA01944E-(cit45)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.459170
– volume: 6
  start-page: 3793
  year: 2018
  ident: D0TA01944E-(cit16)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA09943F
– volume: 28
  start-page: 2852
  year: 2016
  ident: D0TA01944E-(cit22)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b00847
– volume: 12
  start-page: 1495
  year: 2019
  ident: D0TA01944E-(cit13)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE03559H
– volume: 5
  start-page: 7905
  year: 2017
  ident: D0TA01944E-(cit10)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA01203A
– volume: 8
  start-page: 607
  year: 2020
  ident: D0TA01944E-(cit65)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA11789J
– volume: 119
  start-page: 25703
  year: 2015
  ident: D0TA01944E-(cit86)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b07432
– volume: 6
  start-page: 5507
  year: 2018
  ident: D0TA01944E-(cit6)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA09122B
– volume: 13
  start-page: 024038
  year: 2020
  ident: D0TA01944E-(cit80)/*[position()=1]
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.13.024038
– volume: 5
  start-page: 2771
  year: 2017
  ident: D0TA01944E-(cit91)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C7TC00366H
– volume: 10
  start-page: 1234
  year: 2019
  ident: D0TA01944E-(cit64)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.9b00285
– volume: 8
  start-page: 15684
  year: 2017
  ident: D0TA01944E-(cit21)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15684
– volume: 131
  start-page: 6050
  year: 2009
  ident: D0TA01944E-(cit2)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja809598r
– volume: 141
  start-page: 12880
  year: 2019
  ident: D0TA01944E-(cit39)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b06398
– volume: 140
  start-page: 12226
  year: 2018
  ident: D0TA01944E-(cit89)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b07712
– volume: 19
  start-page: 2588
  year: 2019
  ident: D0TA01944E-(cit36)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.9b00387
– volume: 6
  start-page: 1239
  year: 2018
  ident: D0TA01944E-(cit77)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C7TC04160H
– volume: 347
  start-page: 519
  year: 2015
  ident: D0TA01944E-(cit8)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aaa2725
– volume: 3
  start-page: 8926
  year: 2015
  ident: D0TA01944E-(cit9)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA05033A
– volume: 11
  start-page: 78
  year: 2018
  ident: D0TA01944E-(cit7)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE02901B
– volume: 12
  start-page: 1800060
  year: 2018
  ident: D0TA01944E-(cit29)/*[position()=1]
  publication-title: Laser Photonics Rev.
  doi: 10.1002/lpor.201800060
– volume: 138
  start-page: 3884
  year: 2016
  ident: D0TA01944E-(cit73)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b00645
– volume: 138
  start-page: 3884
  year: 2016
  ident: D0TA01944E-(cit51)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b00645
– volume: 121
  start-page: 3797
  year: 2017
  ident: D0TA01944E-(cit66)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.6b12921
– volume: 9
  start-page: 4959
  year: 2013
  ident: D0TA01944E-(cit88)/*[position()=1]
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct400641n
– volume-title: Principles of Nonlinear Optical Spectroscopy
  year: 1995
  ident: D0TA01944E-(cit48)/*[position()=1]
– volume: 7
  start-page: 653
  year: 2016
  ident: D0TA01944E-(cit57)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.6b00001
– volume: 454
  start-page: 227913
  year: 2020
  ident: D0TA01944E-(cit14)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2020.227913
– volume: 91
  start-page: 235302
  year: 2015
  ident: D0TA01944E-(cit68)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.91.235302
– volume-title: Best Research-Cell Efficiency Chart
  ident: D0TA01944E-(cit1)/*[position()=1]
– volume: 7
  start-page: 1602512
  year: 2017
  ident: D0TA01944E-(cit12)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201602512
– volume: 104
  start-page: 5942
  year: 1996
  ident: D0TA01944E-(cit43)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.471326
– volume: 3
  start-page: e1700704
  year: 2017
  ident: D0TA01944E-(cit69)/*[position()=1]
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1700704
– volume: 3
  start-page: 794
  year: 2019
  ident: D0TA01944E-(cit35)/*[position()=1]
  publication-title: Joule
  doi: 10.1016/j.joule.2018.11.026
– volume: 8
  start-page: 4497
  year: 2017
  ident: D0TA01944E-(cit92)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C7SC01590A
– volume: 4
  start-page: 5661
  year: 2019
  ident: D0TA01944E-(cit71)/*[position()=1]
  publication-title: ACS Omega
  doi: 10.1021/acsomega.8b03291
– volume: 53
  start-page: 11232
  year: 2014
  ident: D0TA01944E-(cit26)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201406466
– volume: 6
  start-page: 35973
  year: 2016
  ident: D0TA01944E-(cit87)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep35973
– volume: 10
  start-page: 3433
  year: 2019
  ident: D0TA01944E-(cit52)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.9b01330
– volume: 13
  start-page: 5188
  year: 1976
  ident: D0TA01944E-(cit61)/*[position()=1]
  publication-title: Phys. Rev. B: Solid State
  doi: 10.1103/PhysRevB.13.5188
SSID ssj0000800699
Score 2.4801586
Snippet Two-dimensional (2D) Dion-Jacobson (DJ) organic-inorganic hybrid halide perovskites hold great potential for optoelectronics and solar cells. Interestingly,...
Two-dimensional (2D) Dion–Jacobson (DJ) organic–inorganic hybrid halide perovskites hold great potential for optoelectronics and solar cells. Interestingly,...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 9168
SubjectTerms Bonding strength
Coupled modes
Coupling (molecular)
Density functional theory
Excitation
hydrogen
Hydrogen bonding
Localization
Molecular dynamics
Multilayers
Optoelectronics
Perovskites
Photovoltaic cells
Recombination
Solar cells
Wave functions
Title Charge localization control of electron-hole recombination in multilayer two-dimensional Dion-Jacobson hybrid perovskites
URI https://www.proquest.com/docview/2400975569
https://www.proquest.com/docview/2551918229
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELe67gUeEP8mOgYyghcUZbhx4sSPFbQqUxnSSKW-RXHiaJNGMq0p05CQ-A58QCQ-CWc7TjJUEPBiRU5iR75fznfn-4PQi6iQIosk_N-MR67vCeZykhdunqUpyT3qh5kKFH53zOZL_2gVrAaD7z2vpU0tDrPPW-NK_oeq0Ad0VVGy_0DZdlDogGugL7RAYWj_isbqrByUfr0fNfGUre85CIG2xI11aKCqFq6jVOCPoA-n1s1R-xSepyB7O_VV5eYq37_J1QEMsff2ETBPVW3cOb1WYV4q43H1aa2sv-vfiLggDZtlcDJbV-7QmZgQIXtHpxw3AYjahm8DupTPbmvu_6BLDzsnHZRbQzdcVOtT2WzA-ozpzJ2bItuztOteNL7HJ5uyb-nw9CH9uNOLjT3FOrNqZ5Xm0zue6ZGAqPSohqXLfp8pnGuZftTHdtTj4CAuRz1pALRZtnWnIVQlas1JnYKQ7Puy20-tD8Hx-2S2XCySeLqKd9CuB3oMGaLdyTR-u2jNgEpgZ7rKafvpNoku5a-64W-KTZ0utHNpC9VogSi-i-40ZMYTA8t7aCDL--h2L7_lA_TFABT3AYobgOKqwBagP75-U9DEN6CJz0rcQRP_Ak2soAnvWVBiA0rcA-VDtJxN49dzt6n34WY0DGuXp5mfCio9EGppwcg4kh6DVWNCiJwxocKgeT4uAhW9zSNOpC5ewDwBGiILKd1Dw7Iq5SOEWeTBCJJwUXi-IBmnKR1nITScggrDR-ilXc4ka5Lhq5os54l2yqA8eUPiiV766Qg9b5-9MClgtj51YKmSNCxinSgHbR4GAYMJn7W3AbTqVC4tZbWBZ0Bn4WNVd2GE9oCa7Rwd8Udof_uN5CIv9v888WN0q_uXDtCwvtzIJyBH1-Jpg8Wfc3fROQ
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Charge+localization+control+of+electron%E2%80%93hole+recombination+in+multilayer+two-dimensional+Dion%E2%80%93Jacobson+hybrid+perovskites&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Shi%2C+Ran&rft.au=Zhang%2C+Zhaosheng&rft.au=Wei-Hai%2C+Fang&rft.au=Long%2C+Run&rft.date=2020-05-12&rft.pub=Royal+Society+of+Chemistry&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=8&rft.issue=18&rft.spage=9168&rft.epage=9176&rft_id=info:doi/10.1039%2Fd0ta01944e&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon