Charge localization control of electron-hole recombination in multilayer two-dimensional Dion-Jacobson hybrid perovskites
Two-dimensional (2D) Dion-Jacobson (DJ) organic-inorganic hybrid halide perovskites hold great potential for optoelectronics and solar cells. Interestingly, experimental excited-state lifetime is longer in (3AMP)(MA) n −1 Pb n I 3 n +1 than (4AMP)(MA) n −1 Pb n I 3 n +1 (3AMP = 3-(aminomethyl)piperi...
Saved in:
Published in | Journal of materials chemistry. A, Materials for energy and sustainability Vol. 8; no. 18; pp. 9168 - 9176 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
12.05.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 2050-7488 2050-7496 2050-7496 |
DOI | 10.1039/d0ta01944e |
Cover
Loading…
Abstract | Two-dimensional (2D) Dion-Jacobson (DJ) organic-inorganic hybrid halide perovskites hold great potential for optoelectronics and solar cells. Interestingly, experimental excited-state lifetime is longer in (3AMP)(MA)
n
−1
Pb
n
I
3
n
+1
than (4AMP)(MA)
n
−1
Pb
n
I
3
n
+1
(3AMP = 3-(aminomethyl)piperidinium, 4AMP = 4-(aminomethyl)piperidinium, MA = CH
3
NH
3
+
) regardless of the value of
n
despite 3AMP having a smaller bandgap. Using
ab initio
nonadiabatic (NA) molecular dynamics combined with time-domain density functional theory, we focus on the
n
= 2 perovskite and demonstrate that stronger hydrogen bonding interaction and larger octahedral tilting cause significant delocalization of the hole wave function in (4AMP)(MA)Pb
2
I
7
and accelerates the electron-hole recombination by a factor of 5 compared to (3AMP)(MA)Pb
2
I
7
due to an increased NA coupling. The inorganic component stretching mode and coupled inorganic and organic collective motions accelerate decoherence to sub-4 fs in the two materials. The simulations rationalize the experimentally observed puzzle of excited-state lifetime in the 2D DJ perovskite and suggest a rational way to optimize the performance of perovskite devices.
Significant charge delocalization in the Dion-Jacobson (4AMP)(MA)Pb
2
I
7
perovskite enhances non-adiabatic coupling and accelerates non-radiative electron-hole recombination. |
---|---|
AbstractList | Two-dimensional (2D) Dion–Jacobson (DJ) organic–inorganic hybrid halide perovskites hold great potential for optoelectronics and solar cells. Interestingly, experimental excited-state lifetime is longer in (3AMP)(MA)
n−1
Pb
n
I
3n+1
than (4AMP)(MA)
n−1
Pb
n
I
3n+1
(3AMP = 3-(aminomethyl)piperidinium, 4AMP = 4-(aminomethyl)piperidinium, MA = CH
3
NH
3
+
) regardless of the value of
n
despite 3AMP having a smaller bandgap. Using
ab initio
nonadiabatic (NA) molecular dynamics combined with time-domain density functional theory, we focus on the
n
= 2 perovskite and demonstrate that stronger hydrogen bonding interaction and larger octahedral tilting cause significant delocalization of the hole wave function in (4AMP)(MA)Pb
2
I
7
and accelerates the electron–hole recombination by a factor of 5 compared to (3AMP)(MA)Pb
2
I
7
due to an increased NA coupling. The inorganic component stretching mode and coupled inorganic and organic collective motions accelerate decoherence to sub-4 fs in the two materials. The simulations rationalize the experimentally observed puzzle of excited-state lifetime in the 2D DJ perovskite and suggest a rational way to optimize the performance of perovskite devices. Two-dimensional (2D) Dion–Jacobson (DJ) organic–inorganic hybrid halide perovskites hold great potential for optoelectronics and solar cells. Interestingly, experimental excited-state lifetime is longer in (3AMP)(MA)n−1PbnI3n+1 than (4AMP)(MA)n−1PbnI3n+1 (3AMP = 3-(aminomethyl)piperidinium, 4AMP = 4-(aminomethyl)piperidinium, MA = CH3NH3+) regardless of the value of n despite 3AMP having a smaller bandgap. Using ab initio nonadiabatic (NA) molecular dynamics combined with time-domain density functional theory, we focus on the n = 2 perovskite and demonstrate that stronger hydrogen bonding interaction and larger octahedral tilting cause significant delocalization of the hole wave function in (4AMP)(MA)Pb2I7 and accelerates the electron–hole recombination by a factor of 5 compared to (3AMP)(MA)Pb2I7 due to an increased NA coupling. The inorganic component stretching mode and coupled inorganic and organic collective motions accelerate decoherence to sub-4 fs in the two materials. The simulations rationalize the experimentally observed puzzle of excited-state lifetime in the 2D DJ perovskite and suggest a rational way to optimize the performance of perovskite devices. Two-dimensional (2D) Dion–Jacobson (DJ) organic–inorganic hybrid halide perovskites hold great potential for optoelectronics and solar cells. Interestingly, experimental excited-state lifetime is longer in (3AMP)(MA)ₙ₋₁PbₙI₃ₙ₊₁ than (4AMP)(MA)ₙ₋₁PbₙI₃ₙ₊₁ (3AMP = 3-(aminomethyl)piperidinium, 4AMP = 4-(aminomethyl)piperidinium, MA = CH₃NH₃⁺) regardless of the value of n despite 3AMP having a smaller bandgap. Using ab initio nonadiabatic (NA) molecular dynamics combined with time-domain density functional theory, we focus on the n = 2 perovskite and demonstrate that stronger hydrogen bonding interaction and larger octahedral tilting cause significant delocalization of the hole wave function in (4AMP)(MA)Pb₂I₇ and accelerates the electron–hole recombination by a factor of 5 compared to (3AMP)(MA)Pb₂I₇ due to an increased NA coupling. The inorganic component stretching mode and coupled inorganic and organic collective motions accelerate decoherence to sub-4 fs in the two materials. The simulations rationalize the experimentally observed puzzle of excited-state lifetime in the 2D DJ perovskite and suggest a rational way to optimize the performance of perovskite devices. Two-dimensional (2D) Dion-Jacobson (DJ) organic-inorganic hybrid halide perovskites hold great potential for optoelectronics and solar cells. Interestingly, experimental excited-state lifetime is longer in (3AMP)(MA) n −1 Pb n I 3 n +1 than (4AMP)(MA) n −1 Pb n I 3 n +1 (3AMP = 3-(aminomethyl)piperidinium, 4AMP = 4-(aminomethyl)piperidinium, MA = CH 3 NH 3 + ) regardless of the value of n despite 3AMP having a smaller bandgap. Using ab initio nonadiabatic (NA) molecular dynamics combined with time-domain density functional theory, we focus on the n = 2 perovskite and demonstrate that stronger hydrogen bonding interaction and larger octahedral tilting cause significant delocalization of the hole wave function in (4AMP)(MA)Pb 2 I 7 and accelerates the electron-hole recombination by a factor of 5 compared to (3AMP)(MA)Pb 2 I 7 due to an increased NA coupling. The inorganic component stretching mode and coupled inorganic and organic collective motions accelerate decoherence to sub-4 fs in the two materials. The simulations rationalize the experimentally observed puzzle of excited-state lifetime in the 2D DJ perovskite and suggest a rational way to optimize the performance of perovskite devices. Significant charge delocalization in the Dion-Jacobson (4AMP)(MA)Pb 2 I 7 perovskite enhances non-adiabatic coupling and accelerates non-radiative electron-hole recombination. |
Author | Zhang, Zhaosheng Fang, Wei-Hai Long, Run Shi, Ran |
AuthorAffiliation | College of Chemistry & Environmental Science Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education Beijing Normal University Hebei University College of Chemistry |
AuthorAffiliation_xml | – name: Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education – name: Beijing Normal University – name: Hebei University – name: College of Chemistry & Environmental Science – name: College of Chemistry |
Author_xml | – sequence: 1 givenname: Ran surname: Shi fullname: Shi, Ran – sequence: 2 givenname: Zhaosheng surname: Zhang fullname: Zhang, Zhaosheng – sequence: 3 givenname: Wei-Hai surname: Fang fullname: Fang, Wei-Hai – sequence: 4 givenname: Run surname: Long fullname: Long, Run |
BookMark | eNp9kUlrHDEQhUWwId4uuRtkfAmBdrR0S62jmXEWY8jFOTeSujojWy1NJI3D5NdH9gQbTEhdXsH7qqDqHaK9EAMg9I6SC0q4-jiSoglVbQtv0AEjHWlkq8Tec9_3b9FJznekVk-IUOoAbRcrnX4A9tFq737r4mLANoaSosdxwuDB1j40q-gBJ7BxNi7sMBfwvPHFeb2FhMuv2IxuhpCrpz1eVmmutY0mV3a1NcmNeA0pPuR7VyAfo_1J-wwnf_UIff90dbv40tx8-_x1cXnTWC5laZS2rTYcWMspnwShPTAhJRPGmFEII7qWq5FOHZO9Ur0iIJjshGBGMiUk50fo_W7vOsWfG8hlmF224L0OEDd5YF1HFe0ZUxU9f4XexU2qx1SqJUTJrhOP1IcdZVPMOcE0rJObddoOlAyPQQxLcnv5FMRVhckr2Lry9L6StPP_HjndjaRsn1e_ZFv9s__5w3qc-B_wSKKJ |
CitedBy_id | crossref_primary_10_1039_D0CP06579J crossref_primary_10_1021_acs_jpclett_3c02923 crossref_primary_10_1021_acs_jpclett_3c03357 crossref_primary_10_1021_acs_jpclett_3c01776 crossref_primary_10_1002_adfm_202300576 crossref_primary_10_1021_jacs_1c04442 crossref_primary_10_1021_acs_jpclett_4c02773 crossref_primary_10_1021_acs_jpclett_4c02436 crossref_primary_10_1021_acs_jpclett_0c02800 crossref_primary_10_1039_D3CP04573K crossref_primary_10_1021_jacs_2c00319 crossref_primary_10_1063_1674_0068_cjcp2111247 crossref_primary_10_1039_D3TA02198J crossref_primary_10_1002_smll_202501184 crossref_primary_10_1088_1674_1056_ac4036 crossref_primary_10_1021_acs_jpclett_2c01177 crossref_primary_10_1039_D1MH02055B crossref_primary_10_1021_jacs_2c12903 crossref_primary_10_1021_acs_jpclett_1c04038 crossref_primary_10_1021_acs_jpclett_2c00085 crossref_primary_10_1021_acs_jpclett_2c03072 crossref_primary_10_1021_acs_nanolett_4c00245 crossref_primary_10_1021_acsenergylett_0c02136 crossref_primary_10_1039_D1TA09549H crossref_primary_10_1016_j_physb_2024_416276 crossref_primary_10_1021_acsami_2c00564 crossref_primary_10_1016_j_cclet_2024_109621 crossref_primary_10_1021_jacsau_1c00192 crossref_primary_10_1021_acs_jpclett_0c01687 crossref_primary_10_1021_acs_jpclett_2c03649 crossref_primary_10_1021_jacs_2c08627 crossref_primary_10_1039_D3TA07838H crossref_primary_10_1088_1361_6641_ac02d9 crossref_primary_10_1016_j_cej_2024_152539 crossref_primary_10_1007_s12274_021_3840_y crossref_primary_10_1007_s12274_021_4054_z crossref_primary_10_1021_jacs_4c05191 |
Cites_doi | 10.1021/jacs.8b00542 10.1126/science.aav7911 10.1063/1.523304 10.1021/jacs.8b10851 10.1103/PhysRevLett.85.4413 10.1039/C7EE01145H 10.1063/1.3382344 10.1021/acs.nanolett.5b01471 10.1039/C9TA11923J 10.1021/acs.nanolett.6b01218 10.1039/C7TA05666D 10.1021/acs.nanolett.8b00035 10.1021/jacs.7b06401 10.1021/acsphotonics.6b00963 10.1021/jacs.8b13392 10.1002/anie.201914768 10.1021/ja2085806 10.1021/acs.jpclett.6b02122 10.1021/acsnano.5b03232 10.1021/ja5001592 10.1103/PhysRevLett.95.163001 10.1063/1.3526297 10.1103/PhysRevB.50.17953 10.1021/acs.nanolett.7b01475 10.1039/C9TA01569H 10.1103/PhysRevLett.100.197402 10.1021/acs.jpclett.6b01412 10.1002/adma.201804771 10.1002/jcc.21759 10.1080/00268977000100171 10.1016/j.rser.2019.04.022 10.1002/adfm.201903293 10.1021/acsenergylett.9b02063 10.1039/C7TA00366H 10.1021/acs.jpclett.9b03465 10.1103/PhysRevB.54.11169 10.1103/PhysRevLett.77.3865 10.1038/s41598-020-61768-8 10.1002/aenm.201803384 10.1103/PhysRev.140.A1133 10.1002/adma.201800258 10.1021/jacs.9b06046 10.1021/jz5013627 10.1063/1.4918805 10.1002/adma.201306281 10.1021/nl5012992 10.1039/c3tc30861h 10.1021/acsenergylett.9b00634 10.1021/ar040206v 10.1021/jacs.7b11157 10.1021/acs.chemrev.5b00715 10.1021/acs.jpclett.9b00750 10.1021/cm5032046 10.1103/PhysRevApplied.10.044004 10.1063/1.459170 10.1039/C7TA09943F 10.1021/acs.chemmater.6b00847 10.1039/C8EE03559H 10.1039/C7TA01203A 10.1039/C9TA11789J 10.1021/acs.jpcc.5b07432 10.1039/C7TA09122B 10.1103/PhysRevApplied.13.024038 10.1039/C7TC00366H 10.1021/acs.jpclett.9b00285 10.1038/ncomms15684 10.1021/ja809598r 10.1021/jacs.9b06398 10.1021/jacs.8b07712 10.1021/acs.nanolett.9b00387 10.1039/C7TC04160H 10.1126/science.aaa2725 10.1039/C4TA05033A 10.1039/C7EE02901B 10.1002/lpor.201800060 10.1021/jacs.6b00645 10.1021/acs.jpcc.6b12921 10.1021/ct400641n 10.1021/acs.jpclett.6b00001 10.1016/j.jpowsour.2020.227913 10.1103/PhysRevB.91.235302 10.1002/aenm.201602512 10.1063/1.471326 10.1126/sciadv.1700704 10.1016/j.joule.2018.11.026 10.1039/C7SC01590A 10.1021/acsomega.8b03291 10.1002/anie.201406466 10.1038/srep35973 10.1021/acs.jpclett.9b01330 10.1103/PhysRevB.13.5188 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2020 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2020 |
DBID | AAYXX CITATION 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI 7S9 L.6 |
DOI | 10.1039/d0ta01944e |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Environment Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Materials Research Database Advanced Technologies Database with Aerospace Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Environment Abstracts Advanced Technologies Database with Aerospace METADEX Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef Materials Research Database AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2050-7496 |
EndPage | 9176 |
ExternalDocumentID | 10_1039_D0TA01944E d0ta01944e |
GroupedDBID | 0-7 0R 705 AAEMU AAGNR AAIWI AANOJ ABDVN ABGFH ABRYZ ACGFS ACIWK ACLDK ADMRA ADSRN AENEX AFRAH AFVBQ AGSTE ALMA_UNASSIGNED_HOLDINGS ASKNT AUDPV BLAPV BSQNT C6K CKLOX EBS ECGLT EE0 EF- GNO HZ H~N J3I JG O-G O9- R7C RCNCU RNS RPMJG RRC RSCEA SKA SKF SLH UCJ 0R~ AAJAE AAWGC AAXHV AAYXX ABASK ABEMK ABJNI ABPDG ABXOH AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AGEGJ AGRSR AHGCF AKMSF ALUYA ANUXI APEMP CITATION GGIMP H13 HZ~ RAOCF 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c377t-9ac4ab3e24313f6018e267726bbbd66b65439d1f527899890e6275662b7296733 |
ISSN | 2050-7488 2050-7496 |
IngestDate | Fri Jul 11 04:54:22 EDT 2025 Mon Jun 30 12:05:50 EDT 2025 Tue Jul 01 01:12:52 EDT 2025 Thu Apr 24 23:05:55 EDT 2025 Sat Jan 08 03:56:27 EST 2022 Wed Nov 11 00:26:55 EST 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c377t-9ac4ab3e24313f6018e267726bbbd66b65439d1f527899890e6275662b7296733 |
Notes | 10.1039/d0ta01944e Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3912-8899 |
PQID | 2400975569 |
PQPubID | 2047523 |
PageCount | 9 |
ParticipantIDs | crossref_primary_10_1039_D0TA01944E rsc_primary_d0ta01944e crossref_citationtrail_10_1039_D0TA01944E proquest_miscellaneous_2551918229 proquest_journals_2400975569 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200512 |
PublicationDateYYYYMMDD | 2020-05-12 |
PublicationDate_xml | – month: 5 year: 2020 text: 20200512 day: 12 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Journal of materials chemistry. A, Materials for energy and sustainability |
PublicationYear | 2020 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Grancini (D0TA01944E-(cit21)/*[position()=1]) 2017; 8 Li (D0TA01944E-(cit89)/*[position()=1]) 2018; 140 Misra (D0TA01944E-(cit50)/*[position()=1]) 1977; 18 Han (D0TA01944E-(cit29)/*[position()=1]) 2018; 12 Qiao (D0TA01944E-(cit79)/*[position()=1]) 2013; 1 Zhang (D0TA01944E-(cit34)/*[position()=1]) 2019; 141 Gan (D0TA01944E-(cit15)/*[position()=1]) 2019; 4 Zhang (D0TA01944E-(cit52)/*[position()=1]) 2019; 10 Qiao (D0TA01944E-(cit77)/*[position()=1]) 2018; 6 Kojima (D0TA01944E-(cit2)/*[position()=1]) 2009; 131 Kohn (D0TA01944E-(cit41)/*[position()=1]) 1965; 140 Long (D0TA01944E-(cit66)/*[position()=1]) 2017; 121 Amat (D0TA01944E-(cit72)/*[position()=1]) 2014; 14 Long (D0TA01944E-(cit73)/*[position()=1]) 2016; 138 Schwartz (D0TA01944E-(cit43)/*[position()=1]) 1996; 104 Ahmad (D0TA01944E-(cit35)/*[position()=1]) 2019; 3 Saparov (D0TA01944E-(cit5)/*[position()=1]) 2016; 116 Yin (D0TA01944E-(cit4)/*[position()=1]) 2014; 26 Tong (D0TA01944E-(cit18)/*[position()=1]) 2019; 364 Englman (D0TA01944E-(cit84)/*[position()=1]) 1970; 18 Long (D0TA01944E-(cit54)/*[position()=1]) 2014; 5 Wang (D0TA01944E-(cit80)/*[position()=1]) 2020; 13 Zhang (D0TA01944E-(cit74)/*[position()=1]) 2017; 139 Neukirch (D0TA01944E-(cit94)/*[position()=1]) 2016; 16 Li (D0TA01944E-(cit19)/*[position()=1]) 2018; 30 Zhang (D0TA01944E-(cit30)/*[position()=1]) 2017; 10 Monkhorst (D0TA01944E-(cit61)/*[position()=1]) 1976; 13 Mukamel (D0TA01944E-(cit48)/*[position()=1]) 1995 Zhou (D0TA01944E-(cit13)/*[position()=1]) 2019; 12 Zhou (D0TA01944E-(cit27)/*[position()=1]) 2017; 140 Zarick (D0TA01944E-(cit6)/*[position()=1]) 2018; 6 Qiao (D0TA01944E-(cit53)/*[position()=1]) 2020; 59 Craig (D0TA01944E-(cit42)/*[position()=1]) 2005; 95 Fischer (D0TA01944E-(cit46)/*[position()=1]) 2011; 134 Long (D0TA01944E-(cit57)/*[position()=1]) 2016; 7 Frolova (D0TA01944E-(cit17)/*[position()=1]) 2016; 7 Qiao (D0TA01944E-(cit81)/*[position()=1]) 2015; 15 Smith (D0TA01944E-(cit26)/*[position()=1]) 2014; 53 Li (D0TA01944E-(cit39)/*[position()=1]) 2019; 141 Prezhdo (D0TA01944E-(cit49)/*[position()=1]) 2000; 85 Yang (D0TA01944E-(cit31)/*[position()=1]) 2018; 30 Jasper (D0TA01944E-(cit47)/*[position()=1]) 2006; 39 Kresse (D0TA01944E-(cit58)/*[position()=1]) 1996; 54 Wei (D0TA01944E-(cit56)/*[position()=1]) 2020; 11 Rabani (D0TA01944E-(cit68)/*[position()=1]) 2015; 91 Yang (D0TA01944E-(cit11)/*[position()=1]) 2017; 5 Pisanu (D0TA01944E-(cit93)/*[position()=1]) 2020; 8 Jung (D0TA01944E-(cit20)/*[position()=1]) 2019; 7 Zhang (D0TA01944E-(cit33)/*[position()=1]) 2018; 18 Zhang (D0TA01944E-(cit78)/*[position()=1]) 2018; 10 Ali (D0TA01944E-(cit25)/*[position()=1]) 2019; 109 Long (D0TA01944E-(cit67)/*[position()=1]) 2011; 133 Peng (D0TA01944E-(cit90)/*[position()=1]) 2017; 17 Li (D0TA01944E-(cit32)/*[position()=1]) 2019; 29 Shi (D0TA01944E-(cit8)/*[position()=1]) 2015; 347 Perdew (D0TA01944E-(cit59)/*[position()=1]) 1996; 77 Umadevi (D0TA01944E-(cit71)/*[position()=1]) 2019; 4 Yin (D0TA01944E-(cit9)/*[position()=1]) 2015; 3 Ke (D0TA01944E-(cit38)/*[position()=1]) 2019; 9 Perez-Osorio (D0TA01944E-(cit86)/*[position()=1]) 2015; 119 Long (D0TA01944E-(cit51)/*[position()=1]) 2016; 138 Cohen (D0TA01944E-(cit36)/*[position()=1]) 2019; 19 Grimme (D0TA01944E-(cit63)/*[position()=1]) 2011; 32 Habenicht (D0TA01944E-(cit44)/*[position()=1]) 2008; 100 National Renewable Energy Laboratory (NREL) (D0TA01944E-(cit1)/*[position()=1]) Mao (D0TA01944E-(cit23)/*[position()=1]) 2018; 140 He (D0TA01944E-(cit76)/*[position()=1]) 2019; 141 Wang (D0TA01944E-(cit14)/*[position()=1]) 2020; 454 Niu (D0TA01944E-(cit37)/*[position()=1]) 2019; 10 Chatterjee (D0TA01944E-(cit16)/*[position()=1]) 2018; 6 Zhai (D0TA01944E-(cit69)/*[position()=1]) 2017; 3 Mao (D0TA01944E-(cit24)/*[position()=1]) 2019; 141 Pham (D0TA01944E-(cit70)/*[position()=1]) 2020; 10 Quarti (D0TA01944E-(cit85)/*[position()=1]) 2014; 26 Huang (D0TA01944E-(cit40)/*[position()=1]) 2019; 4 Zhao (D0TA01944E-(cit10)/*[position()=1]) 2017; 5 Pistor (D0TA01944E-(cit87)/*[position()=1]) 2016; 6 Stoumpos (D0TA01944E-(cit22)/*[position()=1]) 2016; 28 Akimov (D0TA01944E-(cit88)/*[position()=1]) 2013; 9 Wang (D0TA01944E-(cit64)/*[position()=1]) 2019; 10 Calvo (D0TA01944E-(cit3)/*[position()=1]) 2017; 5 Grimme (D0TA01944E-(cit62)/*[position()=1]) 2010; 132 Congreve (D0TA01944E-(cit28)/*[position()=1]) 2017; 4 Tully (D0TA01944E-(cit45)/*[position()=1]) 1990; 93 He (D0TA01944E-(cit82)/*[position()=1]) 2015; 9 Cortecchia (D0TA01944E-(cit91)/*[position()=1]) 2017; 5 Biegalski (D0TA01944E-(cit83)/*[position()=1]) 2015; 106 Blöchl (D0TA01944E-(cit60)/*[position()=1]) 1994; 50 Long (D0TA01944E-(cit75)/*[position()=1]) 2016; 7 Long (D0TA01944E-(cit55)/*[position()=1]) 2014; 136 Smith (D0TA01944E-(cit92)/*[position()=1]) 2017; 8 Turren-Cruz (D0TA01944E-(cit7)/*[position()=1]) 2018; 11 He (D0TA01944E-(cit65)/*[position()=1]) 2020; 8 Lyu (D0TA01944E-(cit12)/*[position()=1]) 2017; 7 |
References_xml | – publication-title: Best Research-Cell Efficiency Chart doi: National Renewable Energy Laboratory (NREL) – issn: 1995 publication-title: Principles of Nonlinear Optical Spectroscopy doi: Mukamel – volume: 140 start-page: 3775 year: 2018 ident: D0TA01944E-(cit23)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b00542 – volume: 364 start-page: 475 year: 2019 ident: D0TA01944E-(cit18)/*[position()=1] publication-title: Science doi: 10.1126/science.aav7911 – volume: 18 start-page: 756 year: 1977 ident: D0TA01944E-(cit50)/*[position()=1] publication-title: J. Math. Phys. doi: 10.1063/1.523304 – volume: 141 start-page: 1171 year: 2019 ident: D0TA01944E-(cit24)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b10851 – volume: 85 start-page: 4413 year: 2000 ident: D0TA01944E-(cit49)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.85.4413 – volume: 10 start-page: 2095 year: 2017 ident: D0TA01944E-(cit30)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C7EE01145H – volume: 132 start-page: 154104 year: 2010 ident: D0TA01944E-(cit62)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.3382344 – volume: 15 start-page: 4677 year: 2015 ident: D0TA01944E-(cit81)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b01471 – volume: 8 start-page: 1875 year: 2020 ident: D0TA01944E-(cit93)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C9TA11923J – volume: 16 start-page: 3809 year: 2016 ident: D0TA01944E-(cit94)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b01218 – volume: 5 start-page: 20561 year: 2017 ident: D0TA01944E-(cit3)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C7TA05666D – volume: 18 start-page: 2459 year: 2018 ident: D0TA01944E-(cit33)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b00035 – volume: 139 start-page: 17327 year: 2017 ident: D0TA01944E-(cit74)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b06401 – volume: 4 start-page: 476 year: 2017 ident: D0TA01944E-(cit28)/*[position()=1] publication-title: ACS Photonics doi: 10.1021/acsphotonics.6b00963 – volume: 141 start-page: 5798 year: 2019 ident: D0TA01944E-(cit76)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b13392 – volume: 59 start-page: 2 year: 2020 ident: D0TA01944E-(cit53)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201914768 – volume: 133 start-page: 19240 year: 2011 ident: D0TA01944E-(cit67)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja2085806 – volume: 7 start-page: 4353 year: 2016 ident: D0TA01944E-(cit17)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.6b02122 – volume: 9 start-page: 8412 year: 2015 ident: D0TA01944E-(cit82)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.5b03232 – volume: 136 start-page: 4343 year: 2014 ident: D0TA01944E-(cit55)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja5001592 – volume: 95 start-page: 163001 year: 2005 ident: D0TA01944E-(cit42)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.95.163001 – volume: 134 start-page: 024102 year: 2011 ident: D0TA01944E-(cit46)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.3526297 – volume: 50 start-page: 17953 year: 1994 ident: D0TA01944E-(cit60)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.50.17953 – volume: 17 start-page: 4759 year: 2017 ident: D0TA01944E-(cit90)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b01475 – volume: 7 start-page: 14689 year: 2019 ident: D0TA01944E-(cit20)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C9TA01569H – volume: 100 start-page: 197402 year: 2008 ident: D0TA01944E-(cit44)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.197402 – volume: 7 start-page: 3215 year: 2016 ident: D0TA01944E-(cit75)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.6b01412 – volume: 30 start-page: 1804771 year: 2018 ident: D0TA01944E-(cit31)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201804771 – volume: 32 start-page: 1456 year: 2011 ident: D0TA01944E-(cit63)/*[position()=1] publication-title: J. Comput. Chem. doi: 10.1002/jcc.21759 – volume: 18 start-page: 145 year: 1970 ident: D0TA01944E-(cit84)/*[position()=1] publication-title: Mol. Phys. doi: 10.1080/00268977000100171 – volume: 109 start-page: 160 year: 2019 ident: D0TA01944E-(cit25)/*[position()=1] publication-title: Renewable Sustainable Energy Rev. doi: 10.1016/j.rser.2019.04.022 – volume: 29 start-page: 1903293 year: 2019 ident: D0TA01944E-(cit32)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201903293 – volume: 4 start-page: 2960 year: 2019 ident: D0TA01944E-(cit40)/*[position()=1] publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.9b02063 – volume: 5 start-page: 11462 year: 2017 ident: D0TA01944E-(cit11)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C7TA00366H – volume: 11 start-page: 478 year: 2020 ident: D0TA01944E-(cit56)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.9b03465 – volume: 54 start-page: 11169 year: 1996 ident: D0TA01944E-(cit58)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.54.11169 – volume: 77 start-page: 3865 year: 1996 ident: D0TA01944E-(cit59)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 10 start-page: 4964 year: 2020 ident: D0TA01944E-(cit70)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/s41598-020-61768-8 – volume: 9 start-page: 1803384 year: 2019 ident: D0TA01944E-(cit38)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201803384 – volume: 140 start-page: A1133 year: 1965 ident: D0TA01944E-(cit41)/*[position()=1] publication-title: Phys. Rev. doi: 10.1103/PhysRev.140.A1133 – volume: 30 start-page: 1800258 year: 2018 ident: D0TA01944E-(cit19)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201800258 – volume: 141 start-page: 15557 year: 2019 ident: D0TA01944E-(cit34)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b06046 – volume: 5 start-page: 2941 year: 2014 ident: D0TA01944E-(cit54)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz5013627 – volume: 106 start-page: 162904 year: 2015 ident: D0TA01944E-(cit83)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.4918805 – volume: 26 start-page: 4653 year: 2014 ident: D0TA01944E-(cit4)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201306281 – volume: 14 start-page: 3608 year: 2014 ident: D0TA01944E-(cit72)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl5012992 – volume: 1 start-page: 4628 year: 2013 ident: D0TA01944E-(cit79)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/c3tc30861h – volume: 4 start-page: 1308 year: 2019 ident: D0TA01944E-(cit15)/*[position()=1] publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.9b00634 – volume: 39 start-page: 101 year: 2006 ident: D0TA01944E-(cit47)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/ar040206v – volume: 140 start-page: 459 year: 2017 ident: D0TA01944E-(cit27)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b11157 – volume: 116 start-page: 4558 year: 2016 ident: D0TA01944E-(cit5)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00715 – volume: 10 start-page: 2349 year: 2019 ident: D0TA01944E-(cit37)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.9b00750 – volume: 26 start-page: 6557 year: 2014 ident: D0TA01944E-(cit85)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/cm5032046 – volume: 10 start-page: 044004 year: 2018 ident: D0TA01944E-(cit78)/*[position()=1] publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.10.044004 – volume: 93 start-page: 1061 year: 1990 ident: D0TA01944E-(cit45)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.459170 – volume: 6 start-page: 3793 year: 2018 ident: D0TA01944E-(cit16)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C7TA09943F – volume: 28 start-page: 2852 year: 2016 ident: D0TA01944E-(cit22)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b00847 – volume: 12 start-page: 1495 year: 2019 ident: D0TA01944E-(cit13)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C8EE03559H – volume: 5 start-page: 7905 year: 2017 ident: D0TA01944E-(cit10)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C7TA01203A – volume: 8 start-page: 607 year: 2020 ident: D0TA01944E-(cit65)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C9TA11789J – volume: 119 start-page: 25703 year: 2015 ident: D0TA01944E-(cit86)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b07432 – volume: 6 start-page: 5507 year: 2018 ident: D0TA01944E-(cit6)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C7TA09122B – volume: 13 start-page: 024038 year: 2020 ident: D0TA01944E-(cit80)/*[position()=1] publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.13.024038 – volume: 5 start-page: 2771 year: 2017 ident: D0TA01944E-(cit91)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/C7TC00366H – volume: 10 start-page: 1234 year: 2019 ident: D0TA01944E-(cit64)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.9b00285 – volume: 8 start-page: 15684 year: 2017 ident: D0TA01944E-(cit21)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms15684 – volume: 131 start-page: 6050 year: 2009 ident: D0TA01944E-(cit2)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja809598r – volume: 141 start-page: 12880 year: 2019 ident: D0TA01944E-(cit39)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b06398 – volume: 140 start-page: 12226 year: 2018 ident: D0TA01944E-(cit89)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b07712 – volume: 19 start-page: 2588 year: 2019 ident: D0TA01944E-(cit36)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b00387 – volume: 6 start-page: 1239 year: 2018 ident: D0TA01944E-(cit77)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/C7TC04160H – volume: 347 start-page: 519 year: 2015 ident: D0TA01944E-(cit8)/*[position()=1] publication-title: Science doi: 10.1126/science.aaa2725 – volume: 3 start-page: 8926 year: 2015 ident: D0TA01944E-(cit9)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C4TA05033A – volume: 11 start-page: 78 year: 2018 ident: D0TA01944E-(cit7)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C7EE02901B – volume: 12 start-page: 1800060 year: 2018 ident: D0TA01944E-(cit29)/*[position()=1] publication-title: Laser Photonics Rev. doi: 10.1002/lpor.201800060 – volume: 138 start-page: 3884 year: 2016 ident: D0TA01944E-(cit73)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b00645 – volume: 138 start-page: 3884 year: 2016 ident: D0TA01944E-(cit51)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b00645 – volume: 121 start-page: 3797 year: 2017 ident: D0TA01944E-(cit66)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.6b12921 – volume: 9 start-page: 4959 year: 2013 ident: D0TA01944E-(cit88)/*[position()=1] publication-title: J. Chem. Theory Comput. doi: 10.1021/ct400641n – volume-title: Principles of Nonlinear Optical Spectroscopy year: 1995 ident: D0TA01944E-(cit48)/*[position()=1] – volume: 7 start-page: 653 year: 2016 ident: D0TA01944E-(cit57)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.6b00001 – volume: 454 start-page: 227913 year: 2020 ident: D0TA01944E-(cit14)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2020.227913 – volume: 91 start-page: 235302 year: 2015 ident: D0TA01944E-(cit68)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.91.235302 – volume-title: Best Research-Cell Efficiency Chart ident: D0TA01944E-(cit1)/*[position()=1] – volume: 7 start-page: 1602512 year: 2017 ident: D0TA01944E-(cit12)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201602512 – volume: 104 start-page: 5942 year: 1996 ident: D0TA01944E-(cit43)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.471326 – volume: 3 start-page: e1700704 year: 2017 ident: D0TA01944E-(cit69)/*[position()=1] publication-title: Sci. Adv. doi: 10.1126/sciadv.1700704 – volume: 3 start-page: 794 year: 2019 ident: D0TA01944E-(cit35)/*[position()=1] publication-title: Joule doi: 10.1016/j.joule.2018.11.026 – volume: 8 start-page: 4497 year: 2017 ident: D0TA01944E-(cit92)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C7SC01590A – volume: 4 start-page: 5661 year: 2019 ident: D0TA01944E-(cit71)/*[position()=1] publication-title: ACS Omega doi: 10.1021/acsomega.8b03291 – volume: 53 start-page: 11232 year: 2014 ident: D0TA01944E-(cit26)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201406466 – volume: 6 start-page: 35973 year: 2016 ident: D0TA01944E-(cit87)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep35973 – volume: 10 start-page: 3433 year: 2019 ident: D0TA01944E-(cit52)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.9b01330 – volume: 13 start-page: 5188 year: 1976 ident: D0TA01944E-(cit61)/*[position()=1] publication-title: Phys. Rev. B: Solid State doi: 10.1103/PhysRevB.13.5188 |
SSID | ssj0000800699 |
Score | 2.4801586 |
Snippet | Two-dimensional (2D) Dion-Jacobson (DJ) organic-inorganic hybrid halide perovskites hold great potential for optoelectronics and solar cells. Interestingly,... Two-dimensional (2D) Dion–Jacobson (DJ) organic–inorganic hybrid halide perovskites hold great potential for optoelectronics and solar cells. Interestingly,... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 9168 |
SubjectTerms | Bonding strength Coupled modes Coupling (molecular) Density functional theory Excitation hydrogen Hydrogen bonding Localization Molecular dynamics Multilayers Optoelectronics Perovskites Photovoltaic cells Recombination Solar cells Wave functions |
Title | Charge localization control of electron-hole recombination in multilayer two-dimensional Dion-Jacobson hybrid perovskites |
URI | https://www.proquest.com/docview/2400975569 https://www.proquest.com/docview/2551918229 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELe67gUeEP8mOgYyghcUZbhx4sSPFbQqUxnSSKW-RXHiaJNGMq0p05CQ-A58QCQ-CWc7TjJUEPBiRU5iR75fznfn-4PQi6iQIosk_N-MR67vCeZykhdunqUpyT3qh5kKFH53zOZL_2gVrAaD7z2vpU0tDrPPW-NK_oeq0Ad0VVGy_0DZdlDogGugL7RAYWj_isbqrByUfr0fNfGUre85CIG2xI11aKCqFq6jVOCPoA-n1s1R-xSepyB7O_VV5eYq37_J1QEMsff2ETBPVW3cOb1WYV4q43H1aa2sv-vfiLggDZtlcDJbV-7QmZgQIXtHpxw3AYjahm8DupTPbmvu_6BLDzsnHZRbQzdcVOtT2WzA-ozpzJ2bItuztOteNL7HJ5uyb-nw9CH9uNOLjT3FOrNqZ5Xm0zue6ZGAqPSohqXLfp8pnGuZftTHdtTj4CAuRz1pALRZtnWnIVQlas1JnYKQ7Puy20-tD8Hx-2S2XCySeLqKd9CuB3oMGaLdyTR-u2jNgEpgZ7rKafvpNoku5a-64W-KTZ0utHNpC9VogSi-i-40ZMYTA8t7aCDL--h2L7_lA_TFABT3AYobgOKqwBagP75-U9DEN6CJz0rcQRP_Ak2soAnvWVBiA0rcA-VDtJxN49dzt6n34WY0DGuXp5mfCio9EGppwcg4kh6DVWNCiJwxocKgeT4uAhW9zSNOpC5ewDwBGiILKd1Dw7Iq5SOEWeTBCJJwUXi-IBmnKR1nITScggrDR-ilXc4ka5Lhq5os54l2yqA8eUPiiV766Qg9b5-9MClgtj51YKmSNCxinSgHbR4GAYMJn7W3AbTqVC4tZbWBZ0Bn4WNVd2GE9oCa7Rwd8Udof_uN5CIv9v888WN0q_uXDtCwvtzIJyBH1-Jpg8Wfc3fROQ |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Charge+localization+control+of+electron%E2%80%93hole+recombination+in+multilayer+two-dimensional+Dion%E2%80%93Jacobson+hybrid+perovskites&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Shi%2C+Ran&rft.au=Zhang%2C+Zhaosheng&rft.au=Wei-Hai%2C+Fang&rft.au=Long%2C+Run&rft.date=2020-05-12&rft.pub=Royal+Society+of+Chemistry&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=8&rft.issue=18&rft.spage=9168&rft.epage=9176&rft_id=info:doi/10.1039%2Fd0ta01944e&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon |