Remote sensing variables improve species distribution models for alpine plant species

Species distribution models (SDMs) are cost-effective, transparent and flexible planning tools to support various areas in nature conservation. Variables taken from remote sensing (RS) are broadly applicable to biodiversity studies. In our study, we combined RS-variables (normalized differenced vege...

Full description

Saved in:
Bibliographic Details
Published inBasic and applied ecology Vol. 54; pp. 1 - 13
Main Authors Schwager, Patrick, Berg, Christian
Format Journal Article
LanguageEnglish
Published Elsevier GmbH 01.08.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Species distribution models (SDMs) are cost-effective, transparent and flexible planning tools to support various areas in nature conservation. Variables taken from remote sensing (RS) are broadly applicable to biodiversity studies. In our study, we combined RS-variables (normalized differenced vegetation index and land surface temperatures), with topographic and geological variables to produce detailed SDMs in the context of a seed collection campaign of the Alpine Seed Conservation and Research Project. To identify effective predictor variable combinations we compiled three different variable sets and compared the predictive model performance. The full model, that combines all types of variables, slightly outperforms (average values for TSS: 0.91, AUC: 0.98, Kappa: 0.7) models that use topo-climatic variables (average values for TSS: 0.91, AUC: 0.98, Kappa: 0.68) or NDVI (average values for TSS: 0.85, AUC: 0.96, Kappa: 0.54) alone. We also produced ensemble models that performed slightly better compared to the different model algorithms used in our approach. We identified the temperature of the coldest month, mean NDVI and bedrock as important variables that determine the distribution of alpine plant species. Our full models show high accordance with actual species distribution ranges and are highly relevant for efforts to identify special areas for either in-situ or ex-situ conservation.
AbstractList Species distribution models (SDMs) are cost-effective, transparent and flexible planning tools to support various areas in nature conservation. Variables taken from remote sensing (RS) are broadly applicable to biodiversity studies. In our study, we combined RS-variables (normalized differenced vegetation index and land surface temperatures), with topographic and geological variables to produce detailed SDMs in the context of a seed collection campaign of the Alpine Seed Conservation and Research Project. To identify effective predictor variable combinations we compiled three different variable sets and compared the predictive model performance. The full model, that combines all types of variables, slightly outperforms (average values for TSS: 0.91, AUC: 0.98, Kappa: 0.7) models that use topo-climatic variables (average values for TSS: 0.91, AUC: 0.98, Kappa: 0.68) or NDVI (average values for TSS: 0.85, AUC: 0.96, Kappa: 0.54) alone. We also produced ensemble models that performed slightly better compared to the different model algorithms used in our approach. We identified the temperature of the coldest month, mean NDVI and bedrock as important variables that determine the distribution of alpine plant species. Our full models show high accordance with actual species distribution ranges and are highly relevant for efforts to identify special areas for either in-situ or ex-situ conservation.
Species distribution models (SDMs) are cost-effective, transparent and flexible planning tools to support various areas in nature conservation. Variables taken from remote sensing (RS) are broadly applicable to biodiversity studies. In our study, we combined RS-variables (normalized differenced vegetation index and land surface temperatures), with topographic and geological variables to produce detailed SDMs in the context of a seed collection campaign of the Alpine Seed Conservation and Research Project. To identify effective predictor variable combinations we compiled three different variable sets and compared the predictive model performance.The full model, that combines all types of variables, slightly outperforms (average values for TSS: 0.91, AUC: 0.98, Kappa: 0.7) models that use topo-climatic variables (average values for TSS: 0.91, AUC: 0.98, Kappa: 0.68) or NDVI (average values for TSS: 0.85, AUC: 0.96, Kappa: 0.54) alone. We also produced ensemble models that performed slightly better compared to the different model algorithms used in our approach. We identified the temperature of the coldest month, mean NDVI and bedrock as important variables that determine the distribution of alpine plant species.Our full models show high accordance with actual species distribution ranges and are highly relevant for efforts to identify special areas for either in-situ or ex-situ conservation.
Author Schwager, Patrick
Berg, Christian
Author_xml – sequence: 1
  givenname: Patrick
  surname: Schwager
  fullname: Schwager, Patrick
  email: p.schwager@gmx.at
  organization: Engineering office – Patrick Schwager, Herdergasse 3, 8010 Graz, Austria
– sequence: 2
  givenname: Christian
  surname: Berg
  fullname: Berg, Christian
  email: christian.berg@uni-graz.at
  organization: Institute of Biology, Department of Plant Sciences, University of Graz, Holteigasse 6, 8010 Graz, Austria
BookMark eNp9kE1rwyAYgD10sLbbH9gpx12S-ZovA7uMsi8oDMZ6FjVvhiWJmdrC_v0M3S47FAQRn0denxVZjHZEQm6AZkChuttnSkrMGGWQ0SKjlC3IEoq8SaFu4JKsvN9TCgXN-ZLs3nGwAROPozfjZ3KUzkjVo0_MMDl7jDcTahPPrfHBGXUIxo7JYFvsfdJZl8h-MiMmUy_H8AdfkYtO9h6vf_c12T09fmxe0u3b8-vmYZvqvK5D2jRdnbecYYUlAIKSHEpVgNSl4ipnrSo5bSDvkFOOVDEe8RJ0FdmiZVW-Jrend-OoXwf0QQzGa-zjLGgPXrCSFSyupo4oP6HaWe8ddkKbIOfPBCdNL4CKuZ7Yi7memOsJWohYL6rsnzo5M0j3fV66P0mxEx4NOuFjmVFjaxzqIFprzuk_JImNrQ
CitedBy_id crossref_primary_10_1002_rse2_366
crossref_primary_10_1007_s13762_024_06020_w
crossref_primary_10_1109_MGRS_2021_3097280
crossref_primary_10_3390_rs16152855
crossref_primary_10_1002_eap_2624
crossref_primary_10_1007_s10531_023_02648_1
crossref_primary_10_1111_jbi_14847
crossref_primary_10_1016_j_sciaf_2023_e01947
crossref_primary_10_3897_jor_33_118937
crossref_primary_10_1016_j_ecoinf_2022_101872
crossref_primary_10_1007_s11258_024_01485_8
crossref_primary_10_1016_j_ecolmodel_2025_111056
crossref_primary_10_1016_j_ecoinf_2023_102433
crossref_primary_10_3390_rs14122898
crossref_primary_10_3897_jor_34_130377
crossref_primary_10_3390_land13121995
crossref_primary_10_1371_journal_pone_0289209
crossref_primary_10_1016_j_jenvman_2022_116428
crossref_primary_10_1016_j_biocon_2024_110963
crossref_primary_10_3390_rs16224271
Cites_doi 10.1111/j.1365-2664.2008.01516.x
10.1016/S0304-3800(03)00237-0
10.1038/sdata.2017.122
10.1007/s10113-016-1090-4
10.1016/j.tree.2005.05.011
10.1111/jvs.12444
10.1007/BF00031679
10.1111/2041-210X.13018
10.1007/s10530-016-1276-1
10.1098/rsbl.2014.0347
10.1007/s11258-020-01061-w
10.1007/s11629-016-4313-8
10.7809/b-e.00125
10.1111/2041-210X.13033
10.1023/A:1009841519580
10.1016/j.ecolmodel.2012.06.019
10.1016/j.ecolind.2017.10.011
10.1111/j.1365-2664.2006.01214.x
10.1111/ele.12189
10.1126/science.aai9214
10.1111/j.1472-4642.2010.00641.x
10.1098/rstb.2013.0190
10.1109/JSTARS.2010.2075916
10.3389/fevo.2019.00009
10.1111/j.1472-4642.2009.00567.x
10.1016/j.ecolmodel.2009.08.013
10.1111/j.0906-7590.2006.04700.x
10.1038/nclimate1514
10.2307/3647447
10.1890/11-0114.1
10.1111/1365-2664.12261
10.1016/j.biocon.2011.04.024
10.1023/A:1010632015572
10.1002/joc.1276
10.1111/j.1365-2486.2009.02122.x
10.1038/sdata.2018.40
10.3354/cr00936
10.1111/jbi.12199
10.1016/j.envsoft.2010.03.014
10.1111/j.1365-2699.2010.02407.x
10.1016/j.rsase.2015.08.001
10.1371/journal.pone.0185591
10.1016/j.rse.2019.111626
10.1002/rse2.7
10.1007/s10531-013-0509-1
10.1007/s10113-019-01554-z
10.1080/01431160117096
10.3390/rs6053822
10.1002/joc.1322
10.1111/j.1365-2486.2005.001018.x
10.3390/rs4072057
10.1111/2041-210X.13057
10.1017/S0376892997000088
10.1177/001316446002000104
10.1111/geb.12426
10.1046/j.0305-0270.2003.00991.x
10.1016/j.biocon.2016.04.023
10.1111/j.1365-2664.2007.01348.x
10.1016/S0304-3800(00)00354-9
ContentType Journal Article
Copyright 2021 The Authors
Copyright_xml – notice: 2021 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.baae.2021.04.002
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
Environmental Sciences
EndPage 13
ExternalDocumentID 10_1016_j_baae_2021_04_002
S1439179121000694
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
6I.
7-5
71M
8P~
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABFYP
ABGRD
ABLST
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CAG
CBWCG
COF
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GROUPED_DOAJ
HZ~
IHE
J1W
KCYFY
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SSA
SSJ
SSZ
T5K
Y6R
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
BNPGV
CITATION
SSH
7S9
L.6
ID FETCH-LOGICAL-c377t-99f73d82e6e511e1ba815b41ac5b8b32db580913fe808e0b2873d51c61e14d263
IEDL.DBID .~1
ISSN 1439-1791
IngestDate Fri Jul 11 04:44:55 EDT 2025
Tue Jul 01 01:53:57 EDT 2025
Thu Apr 24 23:00:45 EDT 2025
Fri Feb 23 02:44:47 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Ex-situ conservation
Land surface and Surface Temperature
Species Distribution Models
Remote Sensing
Styrian Alps
NDVI
Alpine species
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c377t-99f73d82e6e511e1ba815b41ac5b8b32db580913fe808e0b2873d51c61e14d263
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1439179121000694
PQID 2524224297
PQPubID 24069
PageCount 13
ParticipantIDs proquest_miscellaneous_2524224297
crossref_citationtrail_10_1016_j_baae_2021_04_002
crossref_primary_10_1016_j_baae_2021_04_002
elsevier_sciencedirect_doi_10_1016_j_baae_2021_04_002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2021
2021-08-00
20210801
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: August 2021
PublicationDecade 2020
PublicationTitle Basic and applied ecology
PublicationYear 2021
Publisher Elsevier GmbH
Publisher_xml – name: Elsevier GmbH
References Thuiller, Georges, Engler, Breiner (bib0069) 2020
Pasetto, Arenas-Castro, Bustamante, Casagrandi, Chrysoulakis, Cord, Ziv (bib0048) 2018; 9
Bolliger, Schmatz, Pazúr, Ostapowicz, Psomas (bib0005) 2017; 17
Evans, J.S. (.2019). spatialEco. R package version 1.2-0. Available from
Bradley, Olsson, Wang, Dickson, Pelech, Sesnie, Zachmann (bib0006) 2012; 244
Feilhauer, He, Rocchini (bib0018) 2012; 4
Nagendra (bib0043) 2001; 22
Hofmann, Everaars, Schweiger, Frenzel, Bannehr, Cord (bib0032) 2017; 12
Körner (bib0035) 2003
Gasser, Gusterhuber, Krische, Puhr, Scheucher, Wagner, Stüwe (bib0022) 2009; 139
Schwager, Berg (bib0064) 2019; 19
Zimmermann, Edwards, Moisen, Frescino, Blackard (bib0079) 2007; 44
Deblauwe, Droissart, Bose, Sonké, Blach-Overgaard, Svenning, Couvreur (bib0013) 2016; 25
Scherrer, Körner (bib0063) 2011; 38
Alleaume, Dusseux, Thierion, Commagnac, Laventure, Lang, Luque (bib0001) 2018; 9
Tan, Morisette, Wolfe, Gao, Ederer, Nightingale, Pedelty (bib0066) 2011; 4
Cohen (bib0009) 1960; 20
Cord, Meentemeyer, Leitão, Václavík (bib0010) 2013; 40
Pettorelli, Vik, Mysterud, Gaillard, Tucker, Stenseth (bib0053) 2005; 20
Goedecke, Bergmeier (bib0023) 2018; 16
Wen, Saintilan, Yang, Hunter, Mawer (bib0076) 2015; 1
Daly (bib0012) 2006; 26
Leitão, Santos, Morgan (bib0036) 2019; 7
Thuiller, Richardson, Pyssek, Midgley, Hughes, Rouget (bib0070) 2005; 11
Scherrer, Körner (bib0062) 2010; 16
Karger, Conrad, Böhner, Kawohl, Kreft, Soria-Auza, Kessler (bib0034) 2017; 4
Pettorelli, Safi, Turner (bib0052) 2014; 369
Guisan, Zimmermann (bib0027) 2000; 135
Nagy, Grabherr, Körner, Thompson (bib0044) 2003
Franklin (bib0021) 2010; 16
Hijmans, Cameron, Parra, Jones, Jarvis (bib0031) 2005; 25
Maurer (bib0039) 1998
Randin, Ashcroft, Bolliger, Cavender-Bares, Coops, Dullinger, Payne (bib0060) 2020; 239
.
Václavík, Meentemeyer (bib0073) 2009; 220
Pettorelli, Ryan, Mueller, Bunnefeld, Jędrzejewska, Lima, Kausrud (bib0051) 2011; 46
Brenning, A., Bangs, D., & Becker, M. (2018).
Cord, Rödder (bib0011) 2011; 21
Mod, Scherrer, Luoto, Guisan, Scheiner (bib0041) 2016; 27
Hijmans, A.R.J., Phillips, S., Leathwick, J., Elith, J., & Hijmans, M.R.J. (2017). dismo: Species Distribution Modeling. R package version 1.1-4. Available from
Skowronek, Ewald, Isermann, Van De Kerchove, Lenoir, Aerts, Feilhauer (bib0065) 2017; 19
Guisan, Weiss, Weiss (bib0026) 1999; 143
Veit (bib0075) 2002
Carvalho, Brito, Crespo, Watts, Possingham (bib0008) 2011; 144
Pottier, Malenovský, Psomas, Homolová, Schaepman, Choler, Zimmermann (bib0056) 2014; 10
Franklin (bib0020) 2010
Pettorelli, Laurance, O'Brien, Wegmann, Nagendra, Turner (bib0050) 2014; 51
Didan, K., Munoz, A.B., .Solano, R., & Huete, A. (2015). MODIS Vegetation Index User ’s Guide (Collection 6), 2015 (May), 31.
Parviainen, Luoto, Heikkinen (bib0046) 2010; 15
Williams, Seo, Thorne, Nelson, Erwin, O’Brien, Schwartz (bib0077) 2009; 15
Willner, Berg, Heiselmayer (bib0078) 2012; 4
Metz, Rocchini, Neteler (bib0040) 2014; 6
Allouche, Tsoar, Kadmon (bib0002) 2006; 43
Tulloch, Sutcliffe, Naujokaitis-Lewis, Tingley, Brotons, Ferraz, Rhodes (bib0072) 2016; 199
Dittrich, Roilo, Sonnenschein, Cerrato, Ewald, Viterbi, Cord (bib0015) 2020; 12
Jelaska, Antonić, Nikolić, Hršak, Plazibat, Križan (bib0033) 2003; 170
Amatulli, Domisch, Tuanmu, Parmentier, Ranipeta, Malczyk, Jetz (bib0003) 2018; 5
Thuiller, Araújo, Lavorel (bib0068) 2004; 31
Raduła, Szymura, Szymura (bib0059) 2018; 85
Guisan, Tingley, Baumgartner, Naujokaitis-Lewis, Sutcliffe, Tulloch, Buckley (bib0025) 2013; 16
Fielding, Bell (bib0019) 1997; 24
Rouse, Hass, Schell, Deering (bib0061) 1974; 3
Luque, Pettorelli, Vihervaara, Wegmann (bib0037) 2018; 9
Vaze, Teng, Spencer (bib0074) 2010; 25
Dullinger, Gattringer, Thuiller, Moser, Zimmermann, Guisan, Hülber (bib0016) 2012; 2
He, Bradley, Cord, Rocchini, Tuanmu, Schmidtlein, Pettorelli (bib0028) 2015; 1
Guisan, Thuiller, Zimmermann (bib0024) 2017
Hernandez, Graham, Master, Albert (bib0029) 2006; 29
(bib0058) 2019
Parviainen, Zimmermann, Heikkinen, Luoto (bib0047) 2013; 22
Theurillat, Guisan (bib0067) 2001; 50
(bib0057) 2020
Tribsch, Schönswetter (bib0071) 2003; 52
Pilger, Podesser, Prettenthaler (bib0054) 2010
Pinto-Ledezma, Cavender-Bares (bib0055) 2020; 231
Parolo, Rossi, Ferrarini (bib0045) 2008; 45
Margreiter, Pagitz, Berg, Schwager, Erschbamer (bib0038) 2020; 221
Müller, Berg, Détraz-Méroz, Erschbamer, Fort, Lambelet-Haueter, Breman (bib0042) 2017; 14
Pecl, Araújo, Bell, Blanchard, Bonebrake, Chen, Williams (bib0049) 2017; 355
Austin, Smith (bib0004) 1989; 83
Guisan (10.1016/j.baae.2021.04.002_bib0025) 2013; 16
Guisan (10.1016/j.baae.2021.04.002_bib0027) 2000; 135
Hijmans (10.1016/j.baae.2021.04.002_bib0031) 2005; 25
Pettorelli (10.1016/j.baae.2021.04.002_bib0052) 2014; 369
Pinto-Ledezma (10.1016/j.baae.2021.04.002_bib0055) 2020; 231
Guisan (10.1016/j.baae.2021.04.002_bib0024) 2017
Pecl (10.1016/j.baae.2021.04.002_bib0049) 2017; 355
Cord (10.1016/j.baae.2021.04.002_bib0011) 2011; 21
(10.1016/j.baae.2021.04.002_bib0058) 2019
Parolo (10.1016/j.baae.2021.04.002_bib0045) 2008; 45
Tulloch (10.1016/j.baae.2021.04.002_bib0072) 2016; 199
Jelaska (10.1016/j.baae.2021.04.002_bib0033) 2003; 170
Mod (10.1016/j.baae.2021.04.002_bib0041) 2016; 27
Hofmann (10.1016/j.baae.2021.04.002_bib0032) 2017; 12
Margreiter (10.1016/j.baae.2021.04.002_bib0038) 2020; 221
Nagy (10.1016/j.baae.2021.04.002_bib0044) 2003
Austin (10.1016/j.baae.2021.04.002_bib0004) 1989; 83
Daly (10.1016/j.baae.2021.04.002_bib0012) 2006; 26
Fielding (10.1016/j.baae.2021.04.002_bib0019) 1997; 24
Hernandez (10.1016/j.baae.2021.04.002_bib0029) 2006; 29
Pettorelli (10.1016/j.baae.2021.04.002_bib0050) 2014; 51
Raduła (10.1016/j.baae.2021.04.002_bib0059) 2018; 85
Franklin (10.1016/j.baae.2021.04.002_bib0021) 2010; 16
Zimmermann (10.1016/j.baae.2021.04.002_bib0079) 2007; 44
Guisan (10.1016/j.baae.2021.04.002_bib0026) 1999; 143
Dittrich (10.1016/j.baae.2021.04.002_bib0015) 2020; 12
Thuiller (10.1016/j.baae.2021.04.002_bib0068) 2004; 31
Feilhauer (10.1016/j.baae.2021.04.002_bib0018) 2012; 4
10.1016/j.baae.2021.04.002_bib0017
Randin (10.1016/j.baae.2021.04.002_bib0060) 2020; 239
Pottier (10.1016/j.baae.2021.04.002_bib0056) 2014; 10
Nagendra (10.1016/j.baae.2021.04.002_bib0043) 2001; 22
Scherrer (10.1016/j.baae.2021.04.002_bib0062) 2010; 16
Tribsch (10.1016/j.baae.2021.04.002_bib0071) 2003; 52
Thuiller (10.1016/j.baae.2021.04.002_bib0070) 2005; 11
Willner (10.1016/j.baae.2021.04.002_bib0078) 2012; 4
Amatulli (10.1016/j.baae.2021.04.002_bib0003) 2018; 5
Allouche (10.1016/j.baae.2021.04.002_bib0002) 2006; 43
Gasser (10.1016/j.baae.2021.04.002_bib0022) 2009; 139
Williams (10.1016/j.baae.2021.04.002_bib0077) 2009; 15
Parviainen (10.1016/j.baae.2021.04.002_bib0047) 2013; 22
Luque (10.1016/j.baae.2021.04.002_bib0037) 2018; 9
Skowronek (10.1016/j.baae.2021.04.002_bib0065) 2017; 19
Tan (10.1016/j.baae.2021.04.002_bib0066) 2011; 4
Goedecke (10.1016/j.baae.2021.04.002_bib0023) 2018; 16
Leitão (10.1016/j.baae.2021.04.002_bib0036) 2019; 7
Parviainen (10.1016/j.baae.2021.04.002_bib0046) 2010; 15
Theurillat (10.1016/j.baae.2021.04.002_bib0067) 2001; 50
Vaze (10.1016/j.baae.2021.04.002_bib0074) 2010; 25
Körner (10.1016/j.baae.2021.04.002_bib0035) 2003
Veit (10.1016/j.baae.2021.04.002_bib0075) 2002
10.1016/j.baae.2021.04.002_bib0014
Cohen (10.1016/j.baae.2021.04.002_bib0009) 1960; 20
Wen (10.1016/j.baae.2021.04.002_bib0076) 2015; 1
Cord (10.1016/j.baae.2021.04.002_bib0010) 2013; 40
10.1016/j.baae.2021.04.002_bib0007
He (10.1016/j.baae.2021.04.002_bib0028) 2015; 1
(10.1016/j.baae.2021.04.002_bib0057) 2020
Thuiller (10.1016/j.baae.2021.04.002_bib0069) 2020
Alleaume (10.1016/j.baae.2021.04.002_bib0001) 2018; 9
Schwager (10.1016/j.baae.2021.04.002_bib0064) 2019; 19
Franklin (10.1016/j.baae.2021.04.002_bib0020) 2010
Pettorelli (10.1016/j.baae.2021.04.002_bib0053) 2005; 20
Pasetto (10.1016/j.baae.2021.04.002_bib0048) 2018; 9
Scherrer (10.1016/j.baae.2021.04.002_bib0063) 2011; 38
Karger (10.1016/j.baae.2021.04.002_bib0034) 2017; 4
Pettorelli (10.1016/j.baae.2021.04.002_bib0051) 2011; 46
Maurer (10.1016/j.baae.2021.04.002_bib0039) 1998
Müller (10.1016/j.baae.2021.04.002_bib0042) 2017; 14
Rouse (10.1016/j.baae.2021.04.002_bib0061) 1974; 3
Václavík (10.1016/j.baae.2021.04.002_bib0073) 2009; 220
Bradley (10.1016/j.baae.2021.04.002_bib0006) 2012; 244
Carvalho (10.1016/j.baae.2021.04.002_bib0008) 2011; 144
Pilger (10.1016/j.baae.2021.04.002_bib0054) 2010
Bolliger (10.1016/j.baae.2021.04.002_bib0005) 2017; 17
10.1016/j.baae.2021.04.002_bib0030
Dullinger (10.1016/j.baae.2021.04.002_bib0016) 2012; 2
Deblauwe (10.1016/j.baae.2021.04.002_bib0013) 2016; 25
Metz (10.1016/j.baae.2021.04.002_bib0040) 2014; 6
References_xml – volume: 83
  start-page: 35
  year: 1989
  end-page: 47
  ident: bib0004
  article-title: A new model for the continuum concept
  publication-title: Vegetatio
– volume: 7
  start-page: 1
  year: 2019
  end-page: 7
  ident: bib0036
  article-title: Improving models of species ecological niches : a remote sensing overview
  publication-title: Frontiers in Ecology and Evolution
– year: 2010
  ident: bib0054
  article-title: Klimaatlas Steiermark
– volume: 25
  start-page: 443
  year: 2016
  end-page: 454
  ident: bib0013
  article-title: Remotely sensed temperature and precipitation data improve species distribution modelling in the tropics
  publication-title: Global Ecology and Biogeography
– volume: 16
  start-page: 1424
  year: 2013
  end-page: 1435
  ident: bib0025
  article-title: Predicting species distributions for conservation decisions
  publication-title: Ecology Letters
– volume: 51
  start-page: 839
  year: 2014
  end-page: 848
  ident: bib0050
  article-title: Satellite remote sensing for applied ecologists: opportunities and challenges
  publication-title: Journal of Applied Ecology
– reference: Evans, J.S. (.2019). spatialEco. R package version 1.2-0. Available from:
– volume: 19
  start-page: 2411
  year: 2019
  end-page: 2421
  ident: bib0064
  article-title: Global warming threatens conservation status of alpine EU habitat types in the European Eastern Alps
  publication-title: Regional Environmental Change
– volume: 221
  start-page: 1045
  year: 2020
  end-page: 1067
  ident: bib0038
  article-title: Pros and cons of using a standard protocol to test germination of Alpine species
  publication-title: Plant Ecology
– volume: 15
  start-page: 301
  year: 2010
  end-page: 318
  ident: bib0046
  article-title: NDVI-based productivity and heterogeneity as indicators of plant-species richness in boreal landscapes
  publication-title: Boreal Environment Research
– volume: 24
  start-page: 38
  year: 1997
  end-page: 49
  ident: bib0019
  article-title: A review of methods for the assessment of prediction errors in conservation presence/absence models
  publication-title: Environmental Conservation
– volume: 9
  start-page: 1784
  year: 2018
  end-page: 1786
  ident: bib0037
  article-title: Improving biodiversity monitoring using satellite remote sensing to provide solutions towards the 2020 conservation targets
  publication-title: Methods in Ecology and Evolution
– volume: 355
  start-page: 1
  year: 2017
  end-page: 9
  ident: bib0049
  article-title: Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being
  publication-title: Science (New York, N.Y.)
– volume: 29
  start-page: 773
  year: 2006
  end-page: 785
  ident: bib0029
  article-title: The effect of sample size and species characteristics on performance of different species distribution modeling methods
  publication-title: Ecography
– reference: Brenning, A., Bangs, D., & Becker, M. (2018).
– volume: 14
  start-page: 806
  year: 2017
  end-page: 810
  ident: bib0042
  article-title: The Alpine Seed Conservation and Research Network - a new initiative to conserve valuable plant species in the European Alps
  publication-title: Journal of Mountain Science
– volume: 220
  start-page: 3248
  year: 2009
  end-page: 3258
  ident: bib0073
  article-title: Invasive species distribution modeling (iSDM): Are absence data and dispersal constraints needed to predict actual distributions?
  publication-title: Ecological Modelling
– volume: 85
  start-page: 172
  year: 2018
  end-page: 179
  ident: bib0059
  article-title: Topographic wetness index explains soil moisture better than bioindication with Ellenberg's indicator values
  publication-title: Ecological Indicators
– volume: 244
  start-page: 57
  year: 2012
  end-page: 64
  ident: bib0006
  article-title: Species detection vs. habitat suitability: are we biasing habitat suitability models with remotely sensed data?
  publication-title: Ecological Modelling
– volume: 27
  start-page: 1308
  year: 2016
  end-page: 1322
  ident: bib0041
  article-title: What we use is not what we know: Environmental predictors in plant distribution models
  publication-title: Journal of Vegetation Science
– volume: 1
  start-page: 85
  year: 2015
  end-page: 97
  ident: bib0076
  article-title: MODIS NDVI based metrics improve habitat suitability modelling in fragmented patchy floodplains
  publication-title: Remote Sensing Applications: Society and Environment
– volume: 9
  start-page: 1810
  year: 2018
  end-page: 1821
  ident: bib0048
  article-title: Integration of satellite remote sensing data in ecosystem modelling at local scales: Practices and trends
  publication-title: Methods in Ecology and Evolution
– year: 2003
  ident: bib0044
  article-title: Alpine Biodiversity in Europe
– volume: 170
  start-page: 333
  year: 2003
  end-page: 343
  ident: bib0033
  article-title: Estimating plant species occurrence in MTB/64 quadrants as a function of DEM-based variables - A case study for Medvednica Nature Park, Croatia
  publication-title: Ecological Modelling
– volume: 20
  start-page: 503
  year: 2005
  end-page: 510
  ident: bib0053
  article-title: Using the satellite-derived NDVI to assess ecological responses to environmental change
  publication-title: Trends in Ecology and Evolution
– year: 2020
  ident: bib0069
  article-title: BIOMOD2: Ensemble Platform for Species Distribution Modeling
– volume: 40
  start-page: 2226
  year: 2013
  end-page: 2227
  ident: bib0010
  article-title: Modelling species distributions with remote sensing data: Bridging disciplinary perspectives
  publication-title: Journal of Biogeography
– start-page: 239
  year: 1998
  ident: bib0039
  article-title: Flora der steiermark. Band II/1. Verwachsenkronblättrige Blütenpflanzen (Sympetale)
– volume: 16
  start-page: 321
  year: 2010
  end-page: 330
  ident: bib0021
  article-title: Moving beyond static species distribution models in support of conservation biogeography
  publication-title: Diversity and Distributions
– volume: 231
  start-page: 199
  year: 2020
  end-page: 223
  ident: bib0055
  article-title: Using Remote Sensing for Modeling and Monitoring Species Distributions. In: Wang,R., & Gamon,J. A. (2020). remote sensing of terrestrial plant biodiversity
  publication-title: Remote Sensing of Environment
– volume: 2
  start-page: 619
  year: 2012
  end-page: 622
  ident: bib0016
  article-title: Extinction debt of high-mountain plants under twenty-first-century climate change
  publication-title: Nature Climate Change
– volume: 15
  start-page: 565
  year: 2009
  end-page: 576
  ident: bib0077
  article-title: Using species distribution models to predict new occurrences for rare plants
  publication-title: Diversity and Distributions
– volume: 135
  start-page: 147
  year: 2000
  end-page: 186
  ident: bib0027
  article-title: Predictive habitat distribution models in ecology
  publication-title: Ecological Modelling
– year: 2002
  ident: bib0075
  article-title: Die alpen
– reference: Didan, K., Munoz, A.B., .Solano, R., & Huete, A. (2015). MODIS Vegetation Index User ’s Guide (Collection 6), 2015 (May), 31.
– year: 2017
  ident: bib0024
  article-title: Habitat Suitability and Distribution Models: With Applications in R. Ecology
– volume: 22
  start-page: 1731
  year: 2013
  end-page: 1754
  ident: bib0047
  article-title: Using unclassified continuous remote sensing data to improve distribution models of red-listed plant species
  publication-title: Biodiversity and Conservation
– volume: 19
  start-page: 239
  year: 2017
  end-page: 254
  ident: bib0065
  article-title: Mapping an invasive bryophyte species using hyperspectral remote sensing data
  publication-title: Biological Invasions
– volume: 369
  start-page: 1
  year: 2014
  end-page: 5
  ident: bib0052
  article-title: Satellite remote sensing, biodiversity research and conservation of the future
  publication-title: Philosophical Transactions of the Royal Society B
– year: 2019
  ident: bib0058
  article-title: R: A Language and Environment for Statistical Computing
– volume: 52
  start-page: 477
  year: 2003
  end-page: 497
  ident: bib0071
  article-title: Patterns of endemism and comparative phylogeography confirm palaeoenvironmental evidence for Pleistocene refugia in the Eastern Alps
  publication-title: Taxon
– volume: 4
  start-page: 1
  year: 2017
  end-page: 20
  ident: bib0034
  article-title: Data Descriptor : Climatologies at high resolution for the earth’ s land surface areas
  publication-title: Scientific Data
– volume: 143
  start-page: 107
  year: 1999
  end-page: 122
  ident: bib0026
  article-title: GLM versus CCA spatial modeling of plant species distribution
  publication-title: Plant Ecology
– volume: 199
  start-page: 157
  year: 2016
  end-page: 171
  ident: bib0072
  article-title: Conservation planners tend to ignore improved accuracy of modelled species distributions to focus on multiple threats and ecological processes
  publication-title: Biological Conservation
– volume: 20
  start-page: 37
  year: 1960
  end-page: 46
  ident: bib0009
  article-title: A coefficient of agreement for nominal scales
  publication-title: Educational and Psychological Measurement
– volume: 144
  start-page: 2020
  year: 2011
  end-page: 2030
  ident: bib0008
  article-title: Conservation planning under climate change: toward accounting for uncertainty in predicted species distributions to increase confidence in conservation investments in space and time
  publication-title: Biological Conservation
– volume: 4
  start-page: 361
  year: 2011
  end-page: 371
  ident: bib0066
  article-title: An Enhanced TIMESAT Algorithm for Estimating Vegetation Phenology Metrics from MODIS Data
  publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
– volume: 43
  start-page: 1223
  year: 2006
  end-page: 1232
  ident: bib0002
  article-title: Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS)
  publication-title: Journal of Applied Ecology
– volume: 1
  start-page: 4
  year: 2015
  end-page: 18
  ident: bib0028
  article-title: Will remote sensing shape the next generation of species distribution models?
  publication-title: Remote Sensing in Ecology and Conservation
– volume: 6
  start-page: 3822
  year: 2014
  end-page: 3840
  ident: bib0040
  article-title: Surface temperatures at the continental scale: Tracking changes with remote sensing at unprecedented detail
  publication-title: Remote Sensing
– volume: 16
  start-page: 15
  year: 2018
  end-page: 26
  ident: bib0023
  article-title: Ecology and potential distribution of the Cretan endemic tree species Zelkova abelicea
  publication-title: Journal of Mediterranean Ecology
– volume: 38
  start-page: 406
  year: 2011
  end-page: 416
  ident: bib0063
  article-title: Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming
  publication-title: Journal of Biogeography
– volume: 31
  start-page: 353
  year: 2004
  end-page: 361
  ident: bib0068
  article-title: Do we need land-cover data to model species distributions in Europe?
  publication-title: Journal of Biogeography
– year: 2003
  ident: bib0035
  article-title: Alpine Plant Life. functional Plant Ecology of High Mountain Ecosystems
– volume: 16
  start-page: 2602
  year: 2010
  end-page: 2613
  ident: bib0062
  article-title: Infra-red thermometry of alpine landscapes challenges climatic warming projections
  publication-title: Global Change Biology
– year: 2010
  ident: bib0020
  article-title: Mapping Species Distributions. Spatial Inference and Prediction
– volume: 12
  start-page: 1
  year: 2020
  end-page: 24
  ident: bib0015
  article-title: Modelling distributions of rove beetles in mountainous areas using remote sensing data
  publication-title: Remote Sensing
– reference: .
– volume: 17
  start-page: 2265
  year: 2017
  end-page: 2277
  ident: bib0005
  article-title: Reconstructing forest-cover change in the Swiss Alps between 1880 and 2010 using ensemble modelling
  publication-title: Regional Environmental Change
– volume: 3
  start-page: 301
  year: 1974
  end-page: 317
  ident: bib0061
  article-title: Monitoring vegetation systems in the great plains with ERTS
  publication-title: Third Earth Resources Technology Satellite (ERTS) symposium
– volume: 50
  start-page: 77
  year: 2001
  end-page: 109
  ident: bib0067
  article-title: Potential impact of Climate Change on vegetation in the European Alps : A review
  publication-title: Climatic Change
– volume: 12
  start-page: 1
  year: 2017
  end-page: 17
  ident: bib0032
  article-title: Modelling patterns of pollinator species richness and diversity using satellite image texture
  publication-title: PloS one
– volume: 44
  start-page: 1057
  year: 2007
  end-page: 1067
  ident: bib0079
  article-title: Remote sensing-based predictors improve distribution models of rare, early successional and broadleaf tree species in Utah
  publication-title: Journal of Applied Ecology
– reference: Hijmans, A.R.J., Phillips, S., Leathwick, J., Elith, J., & Hijmans, M.R.J. (2017). dismo: Species Distribution Modeling. R package version 1.1-4. Available from:
– year: 2020
  ident: bib0057
  article-title: QGIS Geographic Information System
– volume: 5
  start-page: 1
  year: 2018
  end-page: 15
  ident: bib0003
  article-title: Data Descriptor: A suite of global, cross-scale topographic variables for environmental and biodiversity modeling
  publication-title: Scientific Data
– volume: 4
  start-page: 2057
  year: 2012
  end-page: 2075
  ident: bib0018
  article-title: Modeling species distribution using niche-based proxies derived from composite bioclimatic variables and MODIS NDVI
  publication-title: Remote Sensing
– volume: 45
  start-page: 1410
  year: 2008
  end-page: 1418
  ident: bib0045
  article-title: Toward improved species niche modelling: Arnica montana in the Alps as a case study
  publication-title: Journal of Applied Ecology
– volume: 11
  start-page: 2234
  year: 2005
  end-page: 2250
  ident: bib0070
  article-title: Niche-based modelling as a tool for predicting the risk of alien plant invasions at a global scale
  publication-title: Global Change Biology
– volume: 9
  start-page: 1822
  year: 2018
  end-page: 1836
  ident: bib0001
  article-title: A generic remote sensing approach to derive operational essential biodiversity variables (EBVs) for conservation planning
  publication-title: Methods in Ecology and Evolution
– volume: 22
  start-page: 2377
  year: 2001
  end-page: 2400
  ident: bib0043
  article-title: Using remote sensing to assess biodiversity
  publication-title: International Journal of Remote Sensing
– volume: 10
  start-page: 1
  year: 2014
  end-page: 4
  ident: bib0056
  article-title: Modelling plant species distribution in alpine grasslands using airborne imaging spectroscopy
  publication-title: Biology Letters
– volume: 239
  start-page: 1
  year: 2020
  end-page: 18
  ident: bib0060
  article-title: Monitoring biodiversity in the Anthropocene using remote sensing in species distribution models
  publication-title: Remote Sensing of Environment
– volume: 26
  start-page: 707
  year: 2006
  end-page: 721
  ident: bib0012
  article-title: Guidelines for assessing the suitability of spatial climate data sets
  publication-title: International Journal of Climatology
– volume: 139
  start-page: 5
  year: 2009
  end-page: 36
  ident: bib0022
  article-title: Geology of Styria: An overview
  publication-title: Mitteilungen Des Naturwissenschaftlichen Vereines Für Steiermark
– volume: 25
  start-page: 1965
  year: 2005
  end-page: 1978
  ident: bib0031
  article-title: Very high resolution interpolated climate surfaces for global land areas
  publication-title: International Journal of Climatology
– volume: 4
  start-page: 333
  year: 2012
  ident: bib0078
  article-title: Austrian vegetation database
  publication-title: Biodiversity & Ecology
– volume: 21
  start-page: 3285
  year: 2011
  end-page: 3298
  ident: bib0011
  article-title: Inclusion of habitat availability in species distribution models through multi-temporal remote sensing data? towards multifunctional agricultural landscapes in Europe: Assessing and governing synergies between food production, biodiversity, and ecosystem
  publication-title: Ecological Applications
– volume: 46
  start-page: 15
  year: 2011
  end-page: 27
  ident: bib0051
  article-title: The Normalized Difference Vegetation Index (NDVI): unforeseen successes in animal ecology
  publication-title: Climate Research
– volume: 25
  start-page: 1086
  year: 2010
  end-page: 1098
  ident: bib0074
  article-title: Impact of DEM accuracy and resolution on topographic indices
  publication-title: Environmental Modelling and Software
– volume: 45
  start-page: 1410
  year: 2008
  ident: 10.1016/j.baae.2021.04.002_bib0045
  article-title: Toward improved species niche modelling: Arnica montana in the Alps as a case study
  publication-title: Journal of Applied Ecology
  doi: 10.1111/j.1365-2664.2008.01516.x
– volume: 170
  start-page: 333
  year: 2003
  ident: 10.1016/j.baae.2021.04.002_bib0033
  article-title: Estimating plant species occurrence in MTB/64 quadrants as a function of DEM-based variables - A case study for Medvednica Nature Park, Croatia
  publication-title: Ecological Modelling
  doi: 10.1016/S0304-3800(03)00237-0
– volume: 4
  start-page: 1
  year: 2017
  ident: 10.1016/j.baae.2021.04.002_bib0034
  article-title: Data Descriptor : Climatologies at high resolution for the earth’ s land surface areas
  publication-title: Scientific Data
  doi: 10.1038/sdata.2017.122
– volume: 17
  start-page: 2265
  year: 2017
  ident: 10.1016/j.baae.2021.04.002_bib0005
  article-title: Reconstructing forest-cover change in the Swiss Alps between 1880 and 2010 using ensemble modelling
  publication-title: Regional Environmental Change
  doi: 10.1007/s10113-016-1090-4
– volume: 20
  start-page: 503
  year: 2005
  ident: 10.1016/j.baae.2021.04.002_bib0053
  article-title: Using the satellite-derived NDVI to assess ecological responses to environmental change
  publication-title: Trends in Ecology and Evolution
  doi: 10.1016/j.tree.2005.05.011
– volume: 27
  start-page: 1308
  year: 2016
  ident: 10.1016/j.baae.2021.04.002_bib0041
  article-title: What we use is not what we know: Environmental predictors in plant distribution models
  publication-title: Journal of Vegetation Science
  doi: 10.1111/jvs.12444
– volume: 83
  start-page: 35
  year: 1989
  ident: 10.1016/j.baae.2021.04.002_bib0004
  article-title: A new model for the continuum concept
  publication-title: Vegetatio
  doi: 10.1007/BF00031679
– volume: 9
  start-page: 1810
  year: 2018
  ident: 10.1016/j.baae.2021.04.002_bib0048
  article-title: Integration of satellite remote sensing data in ecosystem modelling at local scales: Practices and trends
  publication-title: Methods in Ecology and Evolution
  doi: 10.1111/2041-210X.13018
– volume: 19
  start-page: 239
  year: 2017
  ident: 10.1016/j.baae.2021.04.002_bib0065
  article-title: Mapping an invasive bryophyte species using hyperspectral remote sensing data
  publication-title: Biological Invasions
  doi: 10.1007/s10530-016-1276-1
– volume: 10
  start-page: 1
  year: 2014
  ident: 10.1016/j.baae.2021.04.002_bib0056
  article-title: Modelling plant species distribution in alpine grasslands using airborne imaging spectroscopy
  publication-title: Biology Letters
  doi: 10.1098/rsbl.2014.0347
– volume: 221
  start-page: 1045
  year: 2020
  ident: 10.1016/j.baae.2021.04.002_bib0038
  article-title: Pros and cons of using a standard protocol to test germination of Alpine species
  publication-title: Plant Ecology
  doi: 10.1007/s11258-020-01061-w
– volume: 14
  start-page: 806
  year: 2017
  ident: 10.1016/j.baae.2021.04.002_bib0042
  article-title: The Alpine Seed Conservation and Research Network - a new initiative to conserve valuable plant species in the European Alps
  publication-title: Journal of Mountain Science
  doi: 10.1007/s11629-016-4313-8
– volume: 15
  start-page: 301
  year: 2010
  ident: 10.1016/j.baae.2021.04.002_bib0046
  article-title: NDVI-based productivity and heterogeneity as indicators of plant-species richness in boreal landscapes
  publication-title: Boreal Environment Research
– year: 2019
  ident: 10.1016/j.baae.2021.04.002_bib0058
– volume: 4
  start-page: 333
  year: 2012
  ident: 10.1016/j.baae.2021.04.002_bib0078
  article-title: Austrian vegetation database
  publication-title: Biodiversity & Ecology
  doi: 10.7809/b-e.00125
– volume: 9
  start-page: 1822
  year: 2018
  ident: 10.1016/j.baae.2021.04.002_bib0001
  article-title: A generic remote sensing approach to derive operational essential biodiversity variables (EBVs) for conservation planning
  publication-title: Methods in Ecology and Evolution
  doi: 10.1111/2041-210X.13033
– volume: 143
  start-page: 107
  year: 1999
  ident: 10.1016/j.baae.2021.04.002_bib0026
  article-title: GLM versus CCA spatial modeling of plant species distribution
  publication-title: Plant Ecology
  doi: 10.1023/A:1009841519580
– year: 2020
  ident: 10.1016/j.baae.2021.04.002_bib0057
– volume: 244
  start-page: 57
  year: 2012
  ident: 10.1016/j.baae.2021.04.002_bib0006
  article-title: Species detection vs. habitat suitability: are we biasing habitat suitability models with remotely sensed data?
  publication-title: Ecological Modelling
  doi: 10.1016/j.ecolmodel.2012.06.019
– volume: 85
  start-page: 172
  year: 2018
  ident: 10.1016/j.baae.2021.04.002_bib0059
  article-title: Topographic wetness index explains soil moisture better than bioindication with Ellenberg's indicator values
  publication-title: Ecological Indicators
  doi: 10.1016/j.ecolind.2017.10.011
– volume: 231
  start-page: 199
  year: 2020
  ident: 10.1016/j.baae.2021.04.002_bib0055
  article-title: Using Remote Sensing for Modeling and Monitoring Species Distributions. In: Wang,R., & Gamon,J. A. (2020). remote sensing of terrestrial plant biodiversity
  publication-title: Remote Sensing of Environment
– volume: 43
  start-page: 1223
  year: 2006
  ident: 10.1016/j.baae.2021.04.002_bib0002
  article-title: Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS)
  publication-title: Journal of Applied Ecology
  doi: 10.1111/j.1365-2664.2006.01214.x
– volume: 16
  start-page: 1424
  year: 2013
  ident: 10.1016/j.baae.2021.04.002_bib0025
  article-title: Predicting species distributions for conservation decisions
  publication-title: Ecology Letters
  doi: 10.1111/ele.12189
– volume: 355
  start-page: 1
  year: 2017
  ident: 10.1016/j.baae.2021.04.002_bib0049
  article-title: Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being
  publication-title: Science (New York, N.Y.)
  doi: 10.1126/science.aai9214
– ident: 10.1016/j.baae.2021.04.002_bib0007
– year: 2010
  ident: 10.1016/j.baae.2021.04.002_bib0054
– volume: 16
  start-page: 321
  year: 2010
  ident: 10.1016/j.baae.2021.04.002_bib0021
  article-title: Moving beyond static species distribution models in support of conservation biogeography
  publication-title: Diversity and Distributions
  doi: 10.1111/j.1472-4642.2010.00641.x
– volume: 369
  start-page: 1
  year: 2014
  ident: 10.1016/j.baae.2021.04.002_bib0052
  article-title: Satellite remote sensing, biodiversity research and conservation of the future
  publication-title: Philosophical Transactions of the Royal Society B
  doi: 10.1098/rstb.2013.0190
– volume: 4
  start-page: 361
  year: 2011
  ident: 10.1016/j.baae.2021.04.002_bib0066
  article-title: An Enhanced TIMESAT Algorithm for Estimating Vegetation Phenology Metrics from MODIS Data
  publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
  doi: 10.1109/JSTARS.2010.2075916
– volume: 12
  start-page: 1
  year: 2020
  ident: 10.1016/j.baae.2021.04.002_bib0015
  article-title: Modelling distributions of rove beetles in mountainous areas using remote sensing data
  publication-title: Remote Sensing
– volume: 7
  start-page: 1
  year: 2019
  ident: 10.1016/j.baae.2021.04.002_bib0036
  article-title: Improving models of species ecological niches : a remote sensing overview
  publication-title: Frontiers in Ecology and Evolution
  doi: 10.3389/fevo.2019.00009
– volume: 15
  start-page: 565
  year: 2009
  ident: 10.1016/j.baae.2021.04.002_bib0077
  article-title: Using species distribution models to predict new occurrences for rare plants
  publication-title: Diversity and Distributions
  doi: 10.1111/j.1472-4642.2009.00567.x
– year: 2020
  ident: 10.1016/j.baae.2021.04.002_bib0069
– volume: 220
  start-page: 3248
  year: 2009
  ident: 10.1016/j.baae.2021.04.002_bib0073
  article-title: Invasive species distribution modeling (iSDM): Are absence data and dispersal constraints needed to predict actual distributions?
  publication-title: Ecological Modelling
  doi: 10.1016/j.ecolmodel.2009.08.013
– volume: 29
  start-page: 773
  year: 2006
  ident: 10.1016/j.baae.2021.04.002_bib0029
  article-title: The effect of sample size and species characteristics on performance of different species distribution modeling methods
  publication-title: Ecography
  doi: 10.1111/j.0906-7590.2006.04700.x
– volume: 2
  start-page: 619
  year: 2012
  ident: 10.1016/j.baae.2021.04.002_bib0016
  article-title: Extinction debt of high-mountain plants under twenty-first-century climate change
  publication-title: Nature Climate Change
  doi: 10.1038/nclimate1514
– ident: 10.1016/j.baae.2021.04.002_bib0014
– volume: 52
  start-page: 477
  year: 2003
  ident: 10.1016/j.baae.2021.04.002_bib0071
  article-title: Patterns of endemism and comparative phylogeography confirm palaeoenvironmental evidence for Pleistocene refugia in the Eastern Alps
  publication-title: Taxon
  doi: 10.2307/3647447
– volume: 21
  start-page: 3285
  year: 2011
  ident: 10.1016/j.baae.2021.04.002_bib0011
  article-title: Inclusion of habitat availability in species distribution models through multi-temporal remote sensing data? towards multifunctional agricultural landscapes in Europe: Assessing and governing synergies between food production, biodiversity, and ecosystem
  publication-title: Ecological Applications
  doi: 10.1890/11-0114.1
– year: 2003
  ident: 10.1016/j.baae.2021.04.002_bib0035
– volume: 51
  start-page: 839
  year: 2014
  ident: 10.1016/j.baae.2021.04.002_bib0050
  article-title: Satellite remote sensing for applied ecologists: opportunities and challenges
  publication-title: Journal of Applied Ecology
  doi: 10.1111/1365-2664.12261
– volume: 139
  start-page: 5
  year: 2009
  ident: 10.1016/j.baae.2021.04.002_bib0022
  article-title: Geology of Styria: An overview
  publication-title: Mitteilungen Des Naturwissenschaftlichen Vereines Für Steiermark
– year: 2017
  ident: 10.1016/j.baae.2021.04.002_bib0024
– volume: 144
  start-page: 2020
  year: 2011
  ident: 10.1016/j.baae.2021.04.002_bib0008
  article-title: Conservation planning under climate change: toward accounting for uncertainty in predicted species distributions to increase confidence in conservation investments in space and time
  publication-title: Biological Conservation
  doi: 10.1016/j.biocon.2011.04.024
– volume: 3
  start-page: 301
  year: 1974
  ident: 10.1016/j.baae.2021.04.002_bib0061
  article-title: Monitoring vegetation systems in the great plains with ERTS
  publication-title: Third Earth Resources Technology Satellite (ERTS) symposium
– volume: 50
  start-page: 77
  year: 2001
  ident: 10.1016/j.baae.2021.04.002_bib0067
  article-title: Potential impact of Climate Change on vegetation in the European Alps : A review
  publication-title: Climatic Change
  doi: 10.1023/A:1010632015572
– volume: 25
  start-page: 1965
  year: 2005
  ident: 10.1016/j.baae.2021.04.002_bib0031
  article-title: Very high resolution interpolated climate surfaces for global land areas
  publication-title: International Journal of Climatology
  doi: 10.1002/joc.1276
– year: 2010
  ident: 10.1016/j.baae.2021.04.002_bib0020
– volume: 16
  start-page: 2602
  year: 2010
  ident: 10.1016/j.baae.2021.04.002_bib0062
  article-title: Infra-red thermometry of alpine landscapes challenges climatic warming projections
  publication-title: Global Change Biology
  doi: 10.1111/j.1365-2486.2009.02122.x
– volume: 5
  start-page: 1
  year: 2018
  ident: 10.1016/j.baae.2021.04.002_bib0003
  article-title: Data Descriptor: A suite of global, cross-scale topographic variables for environmental and biodiversity modeling
  publication-title: Scientific Data
  doi: 10.1038/sdata.2018.40
– year: 2002
  ident: 10.1016/j.baae.2021.04.002_bib0075
– volume: 46
  start-page: 15
  year: 2011
  ident: 10.1016/j.baae.2021.04.002_bib0051
  article-title: The Normalized Difference Vegetation Index (NDVI): unforeseen successes in animal ecology
  publication-title: Climate Research
  doi: 10.3354/cr00936
– volume: 40
  start-page: 2226
  year: 2013
  ident: 10.1016/j.baae.2021.04.002_bib0010
  article-title: Modelling species distributions with remote sensing data: Bridging disciplinary perspectives
  publication-title: Journal of Biogeography
  doi: 10.1111/jbi.12199
– start-page: 239
  year: 1998
  ident: 10.1016/j.baae.2021.04.002_bib0039
– volume: 25
  start-page: 1086
  year: 2010
  ident: 10.1016/j.baae.2021.04.002_bib0074
  article-title: Impact of DEM accuracy and resolution on topographic indices
  publication-title: Environmental Modelling and Software
  doi: 10.1016/j.envsoft.2010.03.014
– volume: 38
  start-page: 406
  year: 2011
  ident: 10.1016/j.baae.2021.04.002_bib0063
  article-title: Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming
  publication-title: Journal of Biogeography
  doi: 10.1111/j.1365-2699.2010.02407.x
– volume: 1
  start-page: 85
  year: 2015
  ident: 10.1016/j.baae.2021.04.002_bib0076
  article-title: MODIS NDVI based metrics improve habitat suitability modelling in fragmented patchy floodplains
  publication-title: Remote Sensing Applications: Society and Environment
  doi: 10.1016/j.rsase.2015.08.001
– ident: 10.1016/j.baae.2021.04.002_bib0017
– ident: 10.1016/j.baae.2021.04.002_bib0030
– volume: 12
  start-page: 1
  year: 2017
  ident: 10.1016/j.baae.2021.04.002_bib0032
  article-title: Modelling patterns of pollinator species richness and diversity using satellite image texture
  publication-title: PloS one
  doi: 10.1371/journal.pone.0185591
– volume: 239
  start-page: 1
  year: 2020
  ident: 10.1016/j.baae.2021.04.002_bib0060
  article-title: Monitoring biodiversity in the Anthropocene using remote sensing in species distribution models
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2019.111626
– volume: 1
  start-page: 4
  year: 2015
  ident: 10.1016/j.baae.2021.04.002_bib0028
  article-title: Will remote sensing shape the next generation of species distribution models?
  publication-title: Remote Sensing in Ecology and Conservation
  doi: 10.1002/rse2.7
– year: 2003
  ident: 10.1016/j.baae.2021.04.002_bib0044
– volume: 22
  start-page: 1731
  year: 2013
  ident: 10.1016/j.baae.2021.04.002_bib0047
  article-title: Using unclassified continuous remote sensing data to improve distribution models of red-listed plant species
  publication-title: Biodiversity and Conservation
  doi: 10.1007/s10531-013-0509-1
– volume: 19
  start-page: 2411
  year: 2019
  ident: 10.1016/j.baae.2021.04.002_bib0064
  article-title: Global warming threatens conservation status of alpine EU habitat types in the European Eastern Alps
  publication-title: Regional Environmental Change
  doi: 10.1007/s10113-019-01554-z
– volume: 22
  start-page: 2377
  year: 2001
  ident: 10.1016/j.baae.2021.04.002_bib0043
  article-title: Using remote sensing to assess biodiversity
  publication-title: International Journal of Remote Sensing
  doi: 10.1080/01431160117096
– volume: 6
  start-page: 3822
  year: 2014
  ident: 10.1016/j.baae.2021.04.002_bib0040
  article-title: Surface temperatures at the continental scale: Tracking changes with remote sensing at unprecedented detail
  publication-title: Remote Sensing
  doi: 10.3390/rs6053822
– volume: 26
  start-page: 707
  year: 2006
  ident: 10.1016/j.baae.2021.04.002_bib0012
  article-title: Guidelines for assessing the suitability of spatial climate data sets
  publication-title: International Journal of Climatology
  doi: 10.1002/joc.1322
– volume: 16
  start-page: 15
  year: 2018
  ident: 10.1016/j.baae.2021.04.002_bib0023
  article-title: Ecology and potential distribution of the Cretan endemic tree species Zelkova abelicea
  publication-title: Journal of Mediterranean Ecology
– volume: 11
  start-page: 2234
  year: 2005
  ident: 10.1016/j.baae.2021.04.002_bib0070
  article-title: Niche-based modelling as a tool for predicting the risk of alien plant invasions at a global scale
  publication-title: Global Change Biology
  doi: 10.1111/j.1365-2486.2005.001018.x
– volume: 4
  start-page: 2057
  year: 2012
  ident: 10.1016/j.baae.2021.04.002_bib0018
  article-title: Modeling species distribution using niche-based proxies derived from composite bioclimatic variables and MODIS NDVI
  publication-title: Remote Sensing
  doi: 10.3390/rs4072057
– volume: 9
  start-page: 1784
  year: 2018
  ident: 10.1016/j.baae.2021.04.002_bib0037
  article-title: Improving biodiversity monitoring using satellite remote sensing to provide solutions towards the 2020 conservation targets
  publication-title: Methods in Ecology and Evolution
  doi: 10.1111/2041-210X.13057
– volume: 24
  start-page: 38
  year: 1997
  ident: 10.1016/j.baae.2021.04.002_bib0019
  article-title: A review of methods for the assessment of prediction errors in conservation presence/absence models
  publication-title: Environmental Conservation
  doi: 10.1017/S0376892997000088
– volume: 20
  start-page: 37
  year: 1960
  ident: 10.1016/j.baae.2021.04.002_bib0009
  article-title: A coefficient of agreement for nominal scales
  publication-title: Educational and Psychological Measurement
  doi: 10.1177/001316446002000104
– volume: 25
  start-page: 443
  year: 2016
  ident: 10.1016/j.baae.2021.04.002_bib0013
  article-title: Remotely sensed temperature and precipitation data improve species distribution modelling in the tropics
  publication-title: Global Ecology and Biogeography
  doi: 10.1111/geb.12426
– volume: 31
  start-page: 353
  year: 2004
  ident: 10.1016/j.baae.2021.04.002_bib0068
  article-title: Do we need land-cover data to model species distributions in Europe?
  publication-title: Journal of Biogeography
  doi: 10.1046/j.0305-0270.2003.00991.x
– volume: 199
  start-page: 157
  year: 2016
  ident: 10.1016/j.baae.2021.04.002_bib0072
  article-title: Conservation planners tend to ignore improved accuracy of modelled species distributions to focus on multiple threats and ecological processes
  publication-title: Biological Conservation
  doi: 10.1016/j.biocon.2016.04.023
– volume: 44
  start-page: 1057
  year: 2007
  ident: 10.1016/j.baae.2021.04.002_bib0079
  article-title: Remote sensing-based predictors improve distribution models of rare, early successional and broadleaf tree species in Utah
  publication-title: Journal of Applied Ecology
  doi: 10.1111/j.1365-2664.2007.01348.x
– volume: 135
  start-page: 147
  year: 2000
  ident: 10.1016/j.baae.2021.04.002_bib0027
  article-title: Predictive habitat distribution models in ecology
  publication-title: Ecological Modelling
  doi: 10.1016/S0304-3800(00)00354-9
SSID ssj0014038
Score 2.4140952
Snippet Species distribution models (SDMs) are cost-effective, transparent and flexible planning tools to support various areas in nature conservation. Variables taken...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms alpine plants
Alpine species
applied ecology
bedrock
biodiversity
cost effectiveness
Ex-situ conservation
geographical distribution
Land surface and Surface Temperature
NDVI
Remote Sensing
research projects
seed collecting
Species Distribution Models
Styrian Alps
topography
Title Remote sensing variables improve species distribution models for alpine plant species
URI https://dx.doi.org/10.1016/j.baae.2021.04.002
https://www.proquest.com/docview/2524224297
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9jIvgifg3nFxF8k7p-pWkfx9iYintQB3sLSZrKZHTDboIv_u3etelEkT0IfUjbSyh3yd0lvfsdIVdZ5qYGdlYOc3XkhIkMHAl2xNE6MTzwJXjoeKD_MIqG4_BuwiYN0qtzYTCs0ur-SqeX2to-6VhudhbTaefJw6RRniACFuLtIiZoGHKc5Tef6zAPhKMr0-GAuITitIkzVYyXkhKhMn2vhDu1Ryt_GKdfarq0PYM9smudRtqtvmufNEx-QLarMpIf0Opr22r1v_PWoINduMUhGT8akImhBcar5y_0HbbImDRV0Gl5qgBvsBA93KeIpGuLYNGyTk5BwbGlcrYAh5QuZiCKmviIjAf9597QsRUVHB1wvnSSJONBGvsmMuBoGU-BXJgKPamZilXgp4rFCBSamdiNjatgOxWkzNMR0IapHwUt0sznuTkmNOU6MjKMFIMBmMmUzwLXzeKEJWnGOW8Tr2al0BZuHKtezEQdV_YqkP0C2S_cUAD72-R63WdRgW1spGa1hMSPKSPAGmzsd1mLU8Bawh8kMjfzVSF8Bg4LXAk_-efYp2QH76oIwTPSXL6tzDl4LUt1UU7LC7LVvb0fjr4AmUDrdA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50RfQiPvFtBG9Stq807VFkZX3tQV3wFpI0lZWlu9hV8N8706aKIh6EHtJmEspMMpkkM98AnBSFn1vcWXncN4kXZyryFK4jnjGZFVGo0EKnA_3bQdIfxleP_HEOzttYGHKrdLq_0em1tnZfuo6b3elo1L0PKGhUZISARXi78TwsEDoV78DC2eV1f_B5mRD7dUJroq_ROF3sTOPmpZUitMwwqBFP3enKL-vTD01dLz8Xq7Di7EZ21vzaGszZch0Wm0yS71jqGVfa6n2FrmEDN3erDRjeWRSLZRW5rJdP7A13yRQ3VbFRfbCANZSLHt9zAtN1ebBYnSqnYmjbMjWeok3KpmOURku8CcOL3sN533NJFTwTCTHzsqwQUZ6GNrFoa9lAo2i4jgNluE51FOaap4QVWtjUT62vcUcV5TwwCdLGeZhEW9ApJ6XdBpYLk1gVJ5pjB9wWOuSR7xdpxrO8EELsQNCyUhqHOE6JL8aydS17lsR-SeyXfiyR_Ttw-tlm2uBt_EnNWwnJb6NG4oLwZ7vjVpwSpxPdkajSTl4rGXK0WfDJxO4_-z6Cpf7D7Y28uRxc78Ey1TQOg_vQmb282gM0Ymb60A3SD7A77iU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Remote+sensing+variables+improve+species+distribution+models+for+alpine+plant+species&rft.jtitle=Basic+and+applied+ecology&rft.au=Schwager%2C+Patrick&rft.au=Berg%2C+Christian&rft.date=2021-08-01&rft.issn=1439-1791&rft.volume=54+p.1-13&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1016%2Fj.baae.2021.04.002&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1439-1791&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1439-1791&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1439-1791&client=summon