Exploring Elicitors of the Beneficial Rhizobacterium Bacillus amyloliquefaciens SQR9 to Induce Plant Systemic Resistance and Their Interactions With Plant Signaling Pathways
Beneficial rhizobacteria have been reported to produce various elicitors that induce plant systemic resistance, but there is little knowledge concerning the relative contribution of multiple elicitors from a single beneficial rhizobacterium on the induced systemic resistance in plants and the intera...
Saved in:
Published in | Molecular plant-microbe interactions Vol. 31; no. 5; pp. 560 - 567 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.05.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Beneficial rhizobacteria have been reported to produce various elicitors that induce plant systemic resistance, but there is little knowledge concerning the relative contribution of multiple elicitors from a single beneficial rhizobacterium on the induced systemic resistance in plants and the interactions of these elicitors with plant signaling pathways. In this study, nine mutants of the plant growth–promoting rhizobacterium Bacillus amyloliquefaciens SQR9 deficient in producing the extracellular compounds, including fengycin, bacillomycin D, surfactin, bacillaene, macrolactin, difficidin, bacilysin, 2,3-butandiol, and exopolysaccharides, were tested for the induction of systemic resistance against Pseudomonas syringae pv. tomato DC3000 and Botrytis cinerea and the transcription of the salicylic acid, jasmonic acid, and ethylene signaling pathways in Arabidopsis. Deficiency in producing any of these compounds in SQR9 significantly weakened the induced plant resistance against these phytopathogens. These SQR9-produced elicitors induced different plant defense genes. For instance, the enhancement of 1,3-glucanase (PR2) by SQR9 was impaired by a deficiency of macrolactin but not surfactin. SQR9 mutants deficient in the lipopeptide and polyketide antibiotics remained only 20% functional for the induction of resistance-related gene transcription. Overall, these elicitors of SQR9 could act synergistically to induce plant systemic resistance against different phytopathogens through different signaling pathway genes, and the bacterial antibiotics are major contributors to the induction. |
---|---|
AbstractList | Beneficial rhizobacteria have been reported to produce various elicitors that induce plant systemic resistance, but there is little knowledge concerning the relative contribution of multiple elicitors from a single beneficial rhizobacterium on the induced systemic resistance in plants and the interactions of these elicitors with plant signaling pathways. In this study, nine mutants of the plant growth–promoting rhizobacterium Bacillus amyloliquefaciens SQR9 deficient in producing the extracellular compounds, including fengycin, bacillomycin D, surfactin, bacillaene, macrolactin, difficidin, bacilysin, 2,3-butandiol, and exopolysaccharides, were tested for the induction of systemic resistance against Pseudomonas syringae pv. tomato DC3000 and Botrytis cinerea and the transcription of the salicylic acid, jasmonic acid, and ethylene signaling pathways in Arabidopsis. Deficiency in producing any of these compounds in SQR9 significantly weakened the induced plant resistance against these phytopathogens. These SQR9-produced elicitors induced different plant defense genes. For instance, the enhancement of 1,3-glucanase (PR2) by SQR9 was impaired by a deficiency of macrolactin but not surfactin. SQR9 mutants deficient in the lipopeptide and polyketide antibiotics remained only 20% functional for the induction of resistance-related gene transcription. Overall, these elicitors of SQR9 could act synergistically to induce plant systemic resistance against different phytopathogens through different signaling pathway genes, and the bacterial antibiotics are major contributors to the induction. Beneficial rhizobacteria have been reported to produce various elicitors that induce plant systemic resistance, but there is little knowledge concerning the relative contribution of multiple elicitors from a single beneficial rhizobacterium on the induced systemic resistance in plants and the interactions of these elicitors with plant signaling pathways. In this study, nine mutants of the plant growth-promoting rhizobacterium Bacillus amyloliquefaciens SQR9 deficient in producing the extracellular compounds, including fengycin, bacillomycin D, surfactin, bacillaene, macrolactin, difficidin, bacilysin, 2,3-butandiol, and exopolysaccharides, were tested for the induction of systemic resistance against Pseudomonas syringae pv. tomato DC3000 and Botrytis cinerea and the transcription of the salicylic acid, jasmonic acid, and ethylene signaling pathways in Arabidopsis. Deficiency in producing any of these compounds in SQR9 significantly weakened the induced plant resistance against these phytopathogens. These SQR9-produced elicitors induced different plant defense genes. For instance, the enhancement of 1,3-glucanase (PR2) by SQR9 was impaired by a deficiency of macrolactin but not surfactin. SQR9 mutants deficient in the lipopeptide and polyketide antibiotics remained only 20% functional for the induction of resistance-related gene transcription. Overall, these elicitors of SQR9 could act synergistically to induce plant systemic resistance against different phytopathogens through different signaling pathway genes, and the bacterial antibiotics are major contributors to the induction.Beneficial rhizobacteria have been reported to produce various elicitors that induce plant systemic resistance, but there is little knowledge concerning the relative contribution of multiple elicitors from a single beneficial rhizobacterium on the induced systemic resistance in plants and the interactions of these elicitors with plant signaling pathways. In this study, nine mutants of the plant growth-promoting rhizobacterium Bacillus amyloliquefaciens SQR9 deficient in producing the extracellular compounds, including fengycin, bacillomycin D, surfactin, bacillaene, macrolactin, difficidin, bacilysin, 2,3-butandiol, and exopolysaccharides, were tested for the induction of systemic resistance against Pseudomonas syringae pv. tomato DC3000 and Botrytis cinerea and the transcription of the salicylic acid, jasmonic acid, and ethylene signaling pathways in Arabidopsis. Deficiency in producing any of these compounds in SQR9 significantly weakened the induced plant resistance against these phytopathogens. These SQR9-produced elicitors induced different plant defense genes. For instance, the enhancement of 1,3-glucanase (PR2) by SQR9 was impaired by a deficiency of macrolactin but not surfactin. SQR9 mutants deficient in the lipopeptide and polyketide antibiotics remained only 20% functional for the induction of resistance-related gene transcription. Overall, these elicitors of SQR9 could act synergistically to induce plant systemic resistance against different phytopathogens through different signaling pathway genes, and the bacterial antibiotics are major contributors to the induction. Beneficial rhizobacteria have been reported to produce various elicitors that induce plant systemic resistance, but there is little knowledge concerning the relative contribution of multiple elicitors from a single beneficial rhizobacterium on the induced systemic resistance in plants and the interactions of these elicitors with plant signaling pathways. In this study, nine mutants of the plant growth-promoting rhizobacterium Bacillus amyloliquefaciens SQR9 deficient in producing the extracellular compounds, including fengycin, bacillomycin D, surfactin, bacillaene, macrolactin, difficidin, bacilysin, 2,3-butandiol, and exopolysaccharides, were tested for the induction of systemic resistance against Pseudomonas syringae pv. Tomato DC3000 and Botrytis cinerea and the transcription of the salicylic acid (SA), jasmonic acid (JA) and ethylene (ET) signaling pathways in Arabidopsis. Deficiency in producing any of these compounds in SQR9 significantly weakened the induced plant resistance against these phytopathogens. These SQR9-produced elicitors induced different plant defense genes. For instance, the enhancement of 1,3-glucanase (PR2) by SQR9 was impaired by a deficiency of macrolactin, but not surfactin. SQR9 mutants deficient in the lipopeptide and polyketide antibiotics remained only 20% functional for the induction of resistance-related gene transcription. Overall, these elicitors of SQR9 could act synergistically to induce plant systemic resistance against different phytopathogens through different signaling pathway genes, and the bacterial antibiotics are major contributors to the induction. |
Author | Zhang, Guishan Xu, Yu Liu, Yunpeng Shen, Qirong Zhang, Ruifu Wu, Gengwei |
Author_xml | – sequence: 1 givenname: Gengwei surname: Wu fullname: Wu, Gengwei organization: Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, P.R. China; and – sequence: 2 givenname: Yunpeng surname: Liu fullname: Liu, Yunpeng organization: Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China – sequence: 3 givenname: Yu surname: Xu fullname: Xu, Yu organization: Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, P.R. China; and – sequence: 4 givenname: Guishan surname: Zhang fullname: Zhang, Guishan organization: Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China – sequence: 5 givenname: Qirong surname: Shen fullname: Shen, Qirong organization: Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, P.R. China; and – sequence: 6 givenname: Ruifu surname: Zhang fullname: Zhang, Ruifu organization: Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, P.R. China; and, Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29309236$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUFvFCEcxYmpsdvqB_BiOHoZhQFmhqNtVt2kjet0E4-EYaGDYWAFJnX9Tn5HmbR7MTGeCP__7708eBfgzAevAXiN0TuMOH1_u73dVBhXuK1Q3ZKqfwZWmFNStS1qzsAKdZyWTVefg4uUviOEecPYC3Bec4J4TZoV-L3-eXAhWn8P184qm0NMMBiYRw2vtNemzKSD_Wh_hUGqrKOdJ3gllXVuTlBORxec_TFrU0baJ3j3tecwB7jx-1lpuHXSZ3h3TFlPVsFeJ5uy9GUj_R7uRm1jQYtt8bah6L_ZPJ5U9t5Lt0Tbyjw-yGN6CZ4b6ZJ-9XRegt3H9e76c3Xz5dPm-sNNpUjb5qobTM0xlwNntKZqL8kwIEQQY4Qbg8uFDIgTSThlmDHVUlRjwwYtFW0MJZfg7aPtIYbytJTFZJPSrqTSYU6ixow0hOKO_RfFvCshWM0X9M0TOg-T3otDtJOMR3EqowDtI6BiSClqI0ofcvmWHKV1AiOx1C6W2gXGArdiqV30RYn_Up7M_635AxC2sr4 |
CitedBy_id | crossref_primary_10_1016_j_heliyon_2023_e16134 crossref_primary_10_1128_spectrum_03572_22 crossref_primary_10_1177_1753425920980512 crossref_primary_10_3390_ijms26072987 crossref_primary_10_1007_s10343_024_01064_x crossref_primary_10_3389_fpls_2020_594530 crossref_primary_10_3390_microorganisms10112225 crossref_primary_10_1016_j_isci_2023_107925 crossref_primary_10_1111_nph_19086 crossref_primary_10_1007_s10343_023_00895_4 crossref_primary_10_3390_plants9081020 crossref_primary_10_3390_biology10111202 crossref_primary_10_1094_MPMI_08_22_0173_R crossref_primary_10_1016_j_ijbiomac_2019_11_017 crossref_primary_10_1016_j_rhisph_2023_100752 crossref_primary_10_1128_spectrum_03072_22 crossref_primary_10_1016_j_biocontrol_2023_105294 crossref_primary_10_1093_aobpla_plz049 crossref_primary_10_3390_microorganisms12122450 crossref_primary_10_1016_j_apsoil_2021_104383 crossref_primary_10_1016_j_biocontrol_2019_104160 crossref_primary_10_3389_fmicb_2024_1361961 crossref_primary_10_1016_j_micpath_2024_106604 crossref_primary_10_1371_journal_pone_0221358 crossref_primary_10_3390_metabo11120833 crossref_primary_10_1002_jsfa_10632 crossref_primary_10_3390_microorganisms9122508 crossref_primary_10_1094_PDIS_12_22_2829_RE crossref_primary_10_3390_microorganisms10020399 crossref_primary_10_1007_s41348_019_00222_y crossref_primary_10_1016_j_stress_2023_100144 crossref_primary_10_3390_agronomy10111822 crossref_primary_10_3390_plants10081716 crossref_primary_10_1007_s00253_020_10713_w crossref_primary_10_1016_j_biocontrol_2021_104834 crossref_primary_10_1016_j_stress_2023_100140 crossref_primary_10_3389_fmicb_2023_1180474 crossref_primary_10_1016_j_micres_2024_127745 crossref_primary_10_3390_plants9121731 crossref_primary_10_3389_fmicb_2018_02491 crossref_primary_10_3389_fmicb_2019_03099 crossref_primary_10_3390_microorganisms10051072 crossref_primary_10_1007_s00425_021_03695_0 crossref_primary_10_1016_j_micres_2021_126752 crossref_primary_10_1186_s42483_021_00103_z crossref_primary_10_1016_j_biocontrol_2022_105067 crossref_primary_10_3389_fmicb_2019_01794 crossref_primary_10_3389_fpls_2020_589416 crossref_primary_10_1007_s11104_020_04435_1 crossref_primary_10_1007_s00203_020_02141_1 crossref_primary_10_2139_ssrn_3299437 crossref_primary_10_1007_s11676_021_01393_x crossref_primary_10_3390_ijpb13030018 crossref_primary_10_3390_agriculture13050926 crossref_primary_10_1016_j_jddst_2024_105382 crossref_primary_10_1007_s00344_024_11310_1 crossref_primary_10_3390_microorganisms8101463 crossref_primary_10_1080_01490451_2024_2396016 crossref_primary_10_7717_peerj_14967 crossref_primary_10_1021_acs_jafc_4c03323 crossref_primary_10_1007_s00253_019_10265_8 crossref_primary_10_1111_1751_7915_14348 crossref_primary_10_1016_j_biocontrol_2020_104262 crossref_primary_10_1016_j_pmpp_2022_101920 crossref_primary_10_1094_PHYTO_01_21_0035_RVW crossref_primary_10_3390_fermentation9070597 crossref_primary_10_1186_s41938_023_00740_w crossref_primary_10_3389_fmicb_2024_1396044 crossref_primary_10_1094_PHYTO_10_20_0449_R crossref_primary_10_1002_ps_7873 crossref_primary_10_1186_s42483_023_00204_x crossref_primary_10_3390_ijms222312962 crossref_primary_10_3389_fmicb_2020_587667 crossref_primary_10_1021_acs_jafc_0c01169 crossref_primary_10_1002_jcp_30991 crossref_primary_10_3390_horticulturae9070764 crossref_primary_10_3390_microorganisms10040767 crossref_primary_10_1186_s40538_021_00213_y crossref_primary_10_3389_fpls_2020_00291 crossref_primary_10_1016_j_pmpp_2021_101754 crossref_primary_10_3390_plants11091246 crossref_primary_10_1007_s10529_021_03114_0 crossref_primary_10_1111_pce_14068 crossref_primary_10_1094_PDIS_07_22_1585_A crossref_primary_10_1016_j_biocontrol_2022_105001 crossref_primary_10_3390_microorganisms9040682 crossref_primary_10_1111_pce_14021 crossref_primary_10_3390_antibiotics11010088 crossref_primary_10_3390_microorganisms11010206 crossref_primary_10_1016_j_colsurfb_2024_113933 crossref_primary_10_1186_s12870_019_1985_6 crossref_primary_10_1007_s00344_022_10787_y |
Cites_doi | 10.1016/j.tplants.2012.05.011 10.1111/j.1462-2920.2006.01202.x 10.1046/j.1469-8137.2003.00883.x 10.1146/annurev-phyto-082712-102340 10.1094/PHYTO.1999.89.11.1088 10.1111/j.1364-3703.2005.00276.x 10.1111/1462-2920.13405 10.1111/mpp.12170 10.3389/fpls.2013.00030 10.1105/tpc.110.080788 10.1128/AEM.01156-08 10.1002/ps.3301 10.3389/fmicb.2014.00636 10.1007/s00374-014-0978-8 10.3389/fmicb.2016.00993 10.1007/s001220051615 10.1007/s10658-010-9687-9 10.1146/annurev.phyto.43.040204.135923 10.1128/AEM.02645-12 10.1094/MPMI-02-17-0027-R 10.1007/s00374-011-0556-2 10.1111/ppl.12441 10.1094/MPMI-07-16-0131-R 10.1094/MPMI.2003.16.10.851 10.1038/srep12975 10.1111/1574-6968.12406 10.1038/nchembio.164 10.1111/j.1365-3040.2005.01471.x 10.1104/pp.103.026583 10.3389/fpls.2013.00122 10.3389/fmicb.2016.00196 10.1038/nrmicro2415 10.1094/MPMI-10-15-0239-R 10.7150/ijbs.14333 10.1111/1751-7915.12238 |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1094/MPMI-11-17-0273-R |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA CrossRef MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture Biology |
EISSN | 1943-7706 |
EndPage | 567 |
ExternalDocumentID | 29309236 10_1094_MPMI_11_17_0273_R |
Genre | Journal Article |
GroupedDBID | --- 123 29M 2WC 53G 7X2 7X7 88E 8AO 8CJ 8FE 8FH 8FI 8FJ 8FW 8R4 8R5 AAHBH AAYJJ AAYXX ABDNZ ABRJW ABUWG ACGFO ACPRK ACYGS ADBBV AENEX AEUYN AFKRA AFRAH ALIPV ALMA_UNASSIGNED_HOLDINGS ATCPS BAWUL BBNVY BENPR BES BHPHI BPHCQ BVXVI C1A CCPQU CITATION CS3 D1J DIK DU5 E3Z EBS EJD F5P FRP FYUFA GROUPED_DOAJ HCIFZ HMCUK HYO LK8 M0K M1P M7P MVM OK1 P2P PHGZM PHGZT PQQKQ PROAC PSQYO Q2X RPS S0X TR2 UKHRP ~KM NPM YCJ 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c377t-8bf2919ab95424cda3bb00305539ff1bb03b093a3945155c74021f5beac46f43 |
ISSN | 0894-0282 |
IngestDate | Thu Jul 10 18:17:11 EDT 2025 Thu Jul 10 19:16:03 EDT 2025 Thu Apr 03 06:58:57 EDT 2025 Tue Jul 01 00:38:50 EDT 2025 Thu Apr 24 23:10:59 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c377t-8bf2919ab95424cda3bb00305539ff1bb03b093a3945155c74021f5beac46f43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://apsjournals.apsnet.org/doi/pdf/10.1094/MPMI-11-17-0273-R |
PMID | 29309236 |
PQID | 1989545295 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2153634185 proquest_miscellaneous_1989545295 pubmed_primary_29309236 crossref_citationtrail_10_1094_MPMI_11_17_0273_R crossref_primary_10_1094_MPMI_11_17_0273_R |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-05-01 |
PublicationDateYYYYMMDD | 2018-05-01 |
PublicationDate_xml | – month: 05 year: 2018 text: 2018-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Molecular plant-microbe interactions |
PublicationTitleAlternate | Mol Plant Microbe Interact |
PublicationYear | 2018 |
References | b10 b32 b31 b12 Park K. (b22) 2008; 18 b34 b11 b33 b14 b36 b35 b38 b16 b15 b37 b18 b17 b1 b2 b3 b4 b5 b6 b7 b8 b9 Kloepper J. W. (b13) 1993 b21 b20 b23 b25 b24 b27 b26 b29 b28 Mao J. L. (b19) 2016; 12 b30 |
References_xml | – ident: b5 doi: 10.1016/j.tplants.2012.05.011 – ident: b21 doi: 10.1111/j.1462-2920.2006.01202.x – ident: b26 doi: 10.1046/j.1469-8137.2003.00883.x – ident: b24 doi: 10.1146/annurev-phyto-082712-102340 – ident: b18 doi: 10.1094/PHYTO.1999.89.11.1088 – ident: b20 doi: 10.1111/j.1364-3703.2005.00276.x – ident: b1 doi: 10.1111/1462-2920.13405 – ident: b6 doi: 10.1111/mpp.12170 – ident: b28 doi: 10.3389/fpls.2013.00030 – ident: b7 doi: 10.1105/tpc.110.080788 – ident: b34 doi: 10.1128/AEM.01156-08 – ident: b10 doi: 10.1002/ps.3301 – ident: b14 doi: 10.3389/fmicb.2014.00636 – ident: b29 doi: 10.1007/s00374-014-0978-8 – ident: b36 doi: 10.3389/fmicb.2016.00993 – ident: b12 doi: 10.1007/s001220051615 – ident: b35 doi: 10.1007/s10658-010-9687-9 – ident: b9 doi: 10.1146/annurev.phyto.43.040204.135923 – ident: b33 doi: 10.1128/AEM.02645-12 – ident: b4 doi: 10.1094/MPMI-02-17-0027-R – ident: b38 doi: 10.1007/s00374-011-0556-2 – ident: b3 doi: 10.1111/ppl.12441 – ident: b15 doi: 10.1094/MPMI-07-16-0131-R – ident: b11 doi: 10.1094/MPMI.2003.16.10.851 – ident: b32 doi: 10.1038/srep12975 – ident: b17 doi: 10.1111/1574-6968.12406 – ident: b23 doi: 10.1038/nchembio.164 – ident: b27 doi: 10.1111/j.1365-3040.2005.01471.x – ident: b25 doi: 10.1104/pp.103.026583 – ident: b37 doi: 10.3389/fpls.2013.00122 – ident: b30 doi: 10.3389/fmicb.2016.00196 – ident: b8 doi: 10.1038/nrmicro2415 – ident: b16 doi: 10.1094/MPMI-10-15-0239-R – volume: 12 start-page: 1 year: 2016 ident: b19 publication-title: PLoS Genet. – ident: b31 doi: 10.7150/ijbs.14333 – start-page: 255 volume-title: Soil Microbial Ecology year: 1993 ident: b13 – ident: b2 doi: 10.1111/1751-7915.12238 – volume: 18 start-page: 1095 year: 2008 ident: b22 publication-title: J. Microbiol. Biotechnol. |
SSID | ssj0019655 |
Score | 2.558046 |
Snippet | Beneficial rhizobacteria have been reported to produce various elicitors that induce plant systemic resistance, but there is little knowledge concerning the... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 560 |
SubjectTerms | antibiotics Arabidopsis Bacillus amyloliquefaciens beta-glucanase Botrytis cinerea elicitors ethylene exopolysaccharides genes jasmonic acid mutants plant growth-promoting rhizobacteria plant pathogens polyketides Pseudomonas syringae pv. tomato Rhizobium rhizosphere bacteria salicylic acid signal transduction surfactin systemic acquired resistance transcription (genetics) |
Title | Exploring Elicitors of the Beneficial Rhizobacterium Bacillus amyloliquefaciens SQR9 to Induce Plant Systemic Resistance and Their Interactions With Plant Signaling Pathways |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29309236 https://www.proquest.com/docview/1989545295 https://www.proquest.com/docview/2153634185 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bjtMwELXKIiR4QLDcyk1G4okq0NROUj8uCNgFFUEpUnmK7NSpIrVp1SZaLb_At_CPzMR2klKKgJeqdWyn0pzYZ-KZM4Q8ZX4Au2KkPDYMAnRQQk8IzT2p_f5M9mdhKDHfefQhPP3C302DaafzvRW1VBbqefLtt3kl_2NVaAO7YpbsP1i2nhQa4DvYFz7BwvD5VzZuAuj0IkuyqnCOPfNXsIZZcYgNhtUpo8pcLnsvZZItFuW2J5fgrC9QvzWV-IRve58_jQWSUfDTweJYYTovrNZzpfS8RbLpUgzMEQPKTWxMcoRNlLOjsjlSfEx1B455Li-2bRo8ckV5TW9viWGBSu_MVm8XpXl3n8_PdVbHD2VV69cyX2u790Lr1DbuvQ1_W2KR6bz9isMfNgGFbiVE_eKBqVK0t-aDgwqGGn0cnWGOIGy6KNHjjdt9wWzrZQUCYDd94LS_qG9X-7m7dIlcBvQa__zsfX0kJcKqhG79X9wRueAv9u6NEtN2tl2-c8CJqcjM5Aa5br0QemIgdZN0dH5Mrp3MN1aJRR-TK6ZK6cUt8qOGGa1hRlcpBQDQBmZ0F2bUwYzuwYwizGixogZmtIIAdTCjDcwowIxWMKNtYFCEmRvlYEYdzG6TyZvXk1ennq3y4SUsigpvqNKB8IVUIuADnswkU8azDZhIUx9-MNUXTDLBsRxREsGC4qeBAsbAw5SzO-QoX-X6HqFMcxggB6kC0grTSTlMfBElmgHN50PVJX1nijixCvhYiGURm0gMHqMhwSeO_ShGQ8bjLnlWD1kb-Zc_dX7i7BvDIo0nbzLXq3IbY2BigCEOweE-wL1ZyFBLqkvuGnDUt3Rgun_wygNytXlyHpKjYlPqR0CXC_W4gvFPIGXGrQ |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+elicitors+of+the+beneficial+rhizobacterium+Bacillus+amyloliquefaciens+SQR9+to+induce+plant+systemic+resistance+and+their+interactions+with+plant+signaling+pathways&rft.jtitle=Molecular+plant-microbe+interactions&rft.au=Wu%2C+Gengwei&rft.au=Liu%2C+Yunpeng&rft.au=Xu%2C+Yu&rft.au=Zhang%2C+Guishan&rft.date=2018-05-01&rft.issn=0894-0282&rft_id=info:doi/10.1094%2FMPMI-11-17-0273-R&rft_id=info%3Apmid%2F29309236&rft.externalDocID=29309236 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0894-0282&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0894-0282&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0894-0282&client=summon |