Exploring Elicitors of the Beneficial Rhizobacterium Bacillus amyloliquefaciens SQR9 to Induce Plant Systemic Resistance and Their Interactions With Plant Signaling Pathways

Beneficial rhizobacteria have been reported to produce various elicitors that induce plant systemic resistance, but there is little knowledge concerning the relative contribution of multiple elicitors from a single beneficial rhizobacterium on the induced systemic resistance in plants and the intera...

Full description

Saved in:
Bibliographic Details
Published inMolecular plant-microbe interactions Vol. 31; no. 5; pp. 560 - 567
Main Authors Wu, Gengwei, Liu, Yunpeng, Xu, Yu, Zhang, Guishan, Shen, Qirong, Zhang, Ruifu
Format Journal Article
LanguageEnglish
Published United States 01.05.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Beneficial rhizobacteria have been reported to produce various elicitors that induce plant systemic resistance, but there is little knowledge concerning the relative contribution of multiple elicitors from a single beneficial rhizobacterium on the induced systemic resistance in plants and the interactions of these elicitors with plant signaling pathways. In this study, nine mutants of the plant growth–promoting rhizobacterium Bacillus amyloliquefaciens SQR9 deficient in producing the extracellular compounds, including fengycin, bacillomycin D, surfactin, bacillaene, macrolactin, difficidin, bacilysin, 2,3-butandiol, and exopolysaccharides, were tested for the induction of systemic resistance against Pseudomonas syringae pv. tomato DC3000 and Botrytis cinerea and the transcription of the salicylic acid, jasmonic acid, and ethylene signaling pathways in Arabidopsis. Deficiency in producing any of these compounds in SQR9 significantly weakened the induced plant resistance against these phytopathogens. These SQR9-produced elicitors induced different plant defense genes. For instance, the enhancement of 1,3-glucanase (PR2) by SQR9 was impaired by a deficiency of macrolactin but not surfactin. SQR9 mutants deficient in the lipopeptide and polyketide antibiotics remained only 20% functional for the induction of resistance-related gene transcription. Overall, these elicitors of SQR9 could act synergistically to induce plant systemic resistance against different phytopathogens through different signaling pathway genes, and the bacterial antibiotics are major contributors to the induction.
AbstractList Beneficial rhizobacteria have been reported to produce various elicitors that induce plant systemic resistance, but there is little knowledge concerning the relative contribution of multiple elicitors from a single beneficial rhizobacterium on the induced systemic resistance in plants and the interactions of these elicitors with plant signaling pathways. In this study, nine mutants of the plant growth–promoting rhizobacterium Bacillus amyloliquefaciens SQR9 deficient in producing the extracellular compounds, including fengycin, bacillomycin D, surfactin, bacillaene, macrolactin, difficidin, bacilysin, 2,3-butandiol, and exopolysaccharides, were tested for the induction of systemic resistance against Pseudomonas syringae pv. tomato DC3000 and Botrytis cinerea and the transcription of the salicylic acid, jasmonic acid, and ethylene signaling pathways in Arabidopsis. Deficiency in producing any of these compounds in SQR9 significantly weakened the induced plant resistance against these phytopathogens. These SQR9-produced elicitors induced different plant defense genes. For instance, the enhancement of 1,3-glucanase (PR2) by SQR9 was impaired by a deficiency of macrolactin but not surfactin. SQR9 mutants deficient in the lipopeptide and polyketide antibiotics remained only 20% functional for the induction of resistance-related gene transcription. Overall, these elicitors of SQR9 could act synergistically to induce plant systemic resistance against different phytopathogens through different signaling pathway genes, and the bacterial antibiotics are major contributors to the induction.
Beneficial rhizobacteria have been reported to produce various elicitors that induce plant systemic resistance, but there is little knowledge concerning the relative contribution of multiple elicitors from a single beneficial rhizobacterium on the induced systemic resistance in plants and the interactions of these elicitors with plant signaling pathways. In this study, nine mutants of the plant growth-promoting rhizobacterium Bacillus amyloliquefaciens SQR9 deficient in producing the extracellular compounds, including fengycin, bacillomycin D, surfactin, bacillaene, macrolactin, difficidin, bacilysin, 2,3-butandiol, and exopolysaccharides, were tested for the induction of systemic resistance against Pseudomonas syringae pv. tomato DC3000 and Botrytis cinerea and the transcription of the salicylic acid, jasmonic acid, and ethylene signaling pathways in Arabidopsis. Deficiency in producing any of these compounds in SQR9 significantly weakened the induced plant resistance against these phytopathogens. These SQR9-produced elicitors induced different plant defense genes. For instance, the enhancement of 1,3-glucanase (PR2) by SQR9 was impaired by a deficiency of macrolactin but not surfactin. SQR9 mutants deficient in the lipopeptide and polyketide antibiotics remained only 20% functional for the induction of resistance-related gene transcription. Overall, these elicitors of SQR9 could act synergistically to induce plant systemic resistance against different phytopathogens through different signaling pathway genes, and the bacterial antibiotics are major contributors to the induction.Beneficial rhizobacteria have been reported to produce various elicitors that induce plant systemic resistance, but there is little knowledge concerning the relative contribution of multiple elicitors from a single beneficial rhizobacterium on the induced systemic resistance in plants and the interactions of these elicitors with plant signaling pathways. In this study, nine mutants of the plant growth-promoting rhizobacterium Bacillus amyloliquefaciens SQR9 deficient in producing the extracellular compounds, including fengycin, bacillomycin D, surfactin, bacillaene, macrolactin, difficidin, bacilysin, 2,3-butandiol, and exopolysaccharides, were tested for the induction of systemic resistance against Pseudomonas syringae pv. tomato DC3000 and Botrytis cinerea and the transcription of the salicylic acid, jasmonic acid, and ethylene signaling pathways in Arabidopsis. Deficiency in producing any of these compounds in SQR9 significantly weakened the induced plant resistance against these phytopathogens. These SQR9-produced elicitors induced different plant defense genes. For instance, the enhancement of 1,3-glucanase (PR2) by SQR9 was impaired by a deficiency of macrolactin but not surfactin. SQR9 mutants deficient in the lipopeptide and polyketide antibiotics remained only 20% functional for the induction of resistance-related gene transcription. Overall, these elicitors of SQR9 could act synergistically to induce plant systemic resistance against different phytopathogens through different signaling pathway genes, and the bacterial antibiotics are major contributors to the induction.
Beneficial rhizobacteria have been reported to produce various elicitors that induce plant systemic resistance, but there is little knowledge concerning the relative contribution of multiple elicitors from a single beneficial rhizobacterium on the induced systemic resistance in plants and the interactions of these elicitors with plant signaling pathways. In this study, nine mutants of the plant growth-promoting rhizobacterium Bacillus amyloliquefaciens SQR9 deficient in producing the extracellular compounds, including fengycin, bacillomycin D, surfactin, bacillaene, macrolactin, difficidin, bacilysin, 2,3-butandiol, and exopolysaccharides, were tested for the induction of systemic resistance against Pseudomonas syringae pv. Tomato DC3000 and Botrytis cinerea and the transcription of the salicylic acid (SA), jasmonic acid (JA) and ethylene (ET) signaling pathways in Arabidopsis. Deficiency in producing any of these compounds in SQR9 significantly weakened the induced plant resistance against these phytopathogens. These SQR9-produced elicitors induced different plant defense genes. For instance, the enhancement of 1,3-glucanase (PR2) by SQR9 was impaired by a deficiency of macrolactin, but not surfactin. SQR9 mutants deficient in the lipopeptide and polyketide antibiotics remained only 20% functional for the induction of resistance-related gene transcription. Overall, these elicitors of SQR9 could act synergistically to induce plant systemic resistance against different phytopathogens through different signaling pathway genes, and the bacterial antibiotics are major contributors to the induction.
Author Zhang, Guishan
Xu, Yu
Liu, Yunpeng
Shen, Qirong
Zhang, Ruifu
Wu, Gengwei
Author_xml – sequence: 1
  givenname: Gengwei
  surname: Wu
  fullname: Wu, Gengwei
  organization: Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, P.R. China; and
– sequence: 2
  givenname: Yunpeng
  surname: Liu
  fullname: Liu, Yunpeng
  organization: Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
– sequence: 3
  givenname: Yu
  surname: Xu
  fullname: Xu, Yu
  organization: Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, P.R. China; and
– sequence: 4
  givenname: Guishan
  surname: Zhang
  fullname: Zhang, Guishan
  organization: Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
– sequence: 5
  givenname: Qirong
  surname: Shen
  fullname: Shen, Qirong
  organization: Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, P.R. China; and
– sequence: 6
  givenname: Ruifu
  surname: Zhang
  fullname: Zhang, Ruifu
  organization: Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, P.R. China; and, Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29309236$$D View this record in MEDLINE/PubMed
BookMark eNqFkUFvFCEcxYmpsdvqB_BiOHoZhQFmhqNtVt2kjet0E4-EYaGDYWAFJnX9Tn5HmbR7MTGeCP__7708eBfgzAevAXiN0TuMOH1_u73dVBhXuK1Q3ZKqfwZWmFNStS1qzsAKdZyWTVefg4uUviOEecPYC3Bec4J4TZoV-L3-eXAhWn8P184qm0NMMBiYRw2vtNemzKSD_Wh_hUGqrKOdJ3gllXVuTlBORxec_TFrU0baJ3j3tecwB7jx-1lpuHXSZ3h3TFlPVsFeJ5uy9GUj_R7uRm1jQYtt8bah6L_ZPJ5U9t5Lt0Tbyjw-yGN6CZ4b6ZJ-9XRegt3H9e76c3Xz5dPm-sNNpUjb5qobTM0xlwNntKZqL8kwIEQQY4Qbg8uFDIgTSThlmDHVUlRjwwYtFW0MJZfg7aPtIYbytJTFZJPSrqTSYU6ixow0hOKO_RfFvCshWM0X9M0TOg-T3otDtJOMR3EqowDtI6BiSClqI0ofcvmWHKV1AiOx1C6W2gXGArdiqV30RYn_Up7M_635AxC2sr4
CitedBy_id crossref_primary_10_1016_j_heliyon_2023_e16134
crossref_primary_10_1128_spectrum_03572_22
crossref_primary_10_1177_1753425920980512
crossref_primary_10_3390_ijms26072987
crossref_primary_10_1007_s10343_024_01064_x
crossref_primary_10_3389_fpls_2020_594530
crossref_primary_10_3390_microorganisms10112225
crossref_primary_10_1016_j_isci_2023_107925
crossref_primary_10_1111_nph_19086
crossref_primary_10_1007_s10343_023_00895_4
crossref_primary_10_3390_plants9081020
crossref_primary_10_3390_biology10111202
crossref_primary_10_1094_MPMI_08_22_0173_R
crossref_primary_10_1016_j_ijbiomac_2019_11_017
crossref_primary_10_1016_j_rhisph_2023_100752
crossref_primary_10_1128_spectrum_03072_22
crossref_primary_10_1016_j_biocontrol_2023_105294
crossref_primary_10_1093_aobpla_plz049
crossref_primary_10_3390_microorganisms12122450
crossref_primary_10_1016_j_apsoil_2021_104383
crossref_primary_10_1016_j_biocontrol_2019_104160
crossref_primary_10_3389_fmicb_2024_1361961
crossref_primary_10_1016_j_micpath_2024_106604
crossref_primary_10_1371_journal_pone_0221358
crossref_primary_10_3390_metabo11120833
crossref_primary_10_1002_jsfa_10632
crossref_primary_10_3390_microorganisms9122508
crossref_primary_10_1094_PDIS_12_22_2829_RE
crossref_primary_10_3390_microorganisms10020399
crossref_primary_10_1007_s41348_019_00222_y
crossref_primary_10_1016_j_stress_2023_100144
crossref_primary_10_3390_agronomy10111822
crossref_primary_10_3390_plants10081716
crossref_primary_10_1007_s00253_020_10713_w
crossref_primary_10_1016_j_biocontrol_2021_104834
crossref_primary_10_1016_j_stress_2023_100140
crossref_primary_10_3389_fmicb_2023_1180474
crossref_primary_10_1016_j_micres_2024_127745
crossref_primary_10_3390_plants9121731
crossref_primary_10_3389_fmicb_2018_02491
crossref_primary_10_3389_fmicb_2019_03099
crossref_primary_10_3390_microorganisms10051072
crossref_primary_10_1007_s00425_021_03695_0
crossref_primary_10_1016_j_micres_2021_126752
crossref_primary_10_1186_s42483_021_00103_z
crossref_primary_10_1016_j_biocontrol_2022_105067
crossref_primary_10_3389_fmicb_2019_01794
crossref_primary_10_3389_fpls_2020_589416
crossref_primary_10_1007_s11104_020_04435_1
crossref_primary_10_1007_s00203_020_02141_1
crossref_primary_10_2139_ssrn_3299437
crossref_primary_10_1007_s11676_021_01393_x
crossref_primary_10_3390_ijpb13030018
crossref_primary_10_3390_agriculture13050926
crossref_primary_10_1016_j_jddst_2024_105382
crossref_primary_10_1007_s00344_024_11310_1
crossref_primary_10_3390_microorganisms8101463
crossref_primary_10_1080_01490451_2024_2396016
crossref_primary_10_7717_peerj_14967
crossref_primary_10_1021_acs_jafc_4c03323
crossref_primary_10_1007_s00253_019_10265_8
crossref_primary_10_1111_1751_7915_14348
crossref_primary_10_1016_j_biocontrol_2020_104262
crossref_primary_10_1016_j_pmpp_2022_101920
crossref_primary_10_1094_PHYTO_01_21_0035_RVW
crossref_primary_10_3390_fermentation9070597
crossref_primary_10_1186_s41938_023_00740_w
crossref_primary_10_3389_fmicb_2024_1396044
crossref_primary_10_1094_PHYTO_10_20_0449_R
crossref_primary_10_1002_ps_7873
crossref_primary_10_1186_s42483_023_00204_x
crossref_primary_10_3390_ijms222312962
crossref_primary_10_3389_fmicb_2020_587667
crossref_primary_10_1021_acs_jafc_0c01169
crossref_primary_10_1002_jcp_30991
crossref_primary_10_3390_horticulturae9070764
crossref_primary_10_3390_microorganisms10040767
crossref_primary_10_1186_s40538_021_00213_y
crossref_primary_10_3389_fpls_2020_00291
crossref_primary_10_1016_j_pmpp_2021_101754
crossref_primary_10_3390_plants11091246
crossref_primary_10_1007_s10529_021_03114_0
crossref_primary_10_1111_pce_14068
crossref_primary_10_1094_PDIS_07_22_1585_A
crossref_primary_10_1016_j_biocontrol_2022_105001
crossref_primary_10_3390_microorganisms9040682
crossref_primary_10_1111_pce_14021
crossref_primary_10_3390_antibiotics11010088
crossref_primary_10_3390_microorganisms11010206
crossref_primary_10_1016_j_colsurfb_2024_113933
crossref_primary_10_1186_s12870_019_1985_6
crossref_primary_10_1007_s00344_022_10787_y
Cites_doi 10.1016/j.tplants.2012.05.011
10.1111/j.1462-2920.2006.01202.x
10.1046/j.1469-8137.2003.00883.x
10.1146/annurev-phyto-082712-102340
10.1094/PHYTO.1999.89.11.1088
10.1111/j.1364-3703.2005.00276.x
10.1111/1462-2920.13405
10.1111/mpp.12170
10.3389/fpls.2013.00030
10.1105/tpc.110.080788
10.1128/AEM.01156-08
10.1002/ps.3301
10.3389/fmicb.2014.00636
10.1007/s00374-014-0978-8
10.3389/fmicb.2016.00993
10.1007/s001220051615
10.1007/s10658-010-9687-9
10.1146/annurev.phyto.43.040204.135923
10.1128/AEM.02645-12
10.1094/MPMI-02-17-0027-R
10.1007/s00374-011-0556-2
10.1111/ppl.12441
10.1094/MPMI-07-16-0131-R
10.1094/MPMI.2003.16.10.851
10.1038/srep12975
10.1111/1574-6968.12406
10.1038/nchembio.164
10.1111/j.1365-3040.2005.01471.x
10.1104/pp.103.026583
10.3389/fpls.2013.00122
10.3389/fmicb.2016.00196
10.1038/nrmicro2415
10.1094/MPMI-10-15-0239-R
10.7150/ijbs.14333
10.1111/1751-7915.12238
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1094/MPMI-11-17-0273-R
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
CrossRef
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Biology
EISSN 1943-7706
EndPage 567
ExternalDocumentID 29309236
10_1094_MPMI_11_17_0273_R
Genre Journal Article
GroupedDBID ---
123
29M
2WC
53G
7X2
7X7
88E
8AO
8CJ
8FE
8FH
8FI
8FJ
8FW
8R4
8R5
AAHBH
AAYJJ
AAYXX
ABDNZ
ABRJW
ABUWG
ACGFO
ACPRK
ACYGS
ADBBV
AENEX
AEUYN
AFKRA
AFRAH
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BAWUL
BBNVY
BENPR
BES
BHPHI
BPHCQ
BVXVI
C1A
CCPQU
CITATION
CS3
D1J
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HYO
LK8
M0K
M1P
M7P
MVM
OK1
P2P
PHGZM
PHGZT
PQQKQ
PROAC
PSQYO
Q2X
RPS
S0X
TR2
UKHRP
~KM
NPM
YCJ
7X8
7S9
L.6
ID FETCH-LOGICAL-c377t-8bf2919ab95424cda3bb00305539ff1bb03b093a3945155c74021f5beac46f43
ISSN 0894-0282
IngestDate Thu Jul 10 18:17:11 EDT 2025
Thu Jul 10 19:16:03 EDT 2025
Thu Apr 03 06:58:57 EDT 2025
Tue Jul 01 00:38:50 EDT 2025
Thu Apr 24 23:10:59 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c377t-8bf2919ab95424cda3bb00305539ff1bb03b093a3945155c74021f5beac46f43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://apsjournals.apsnet.org/doi/pdf/10.1094/MPMI-11-17-0273-R
PMID 29309236
PQID 1989545295
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2153634185
proquest_miscellaneous_1989545295
pubmed_primary_29309236
crossref_citationtrail_10_1094_MPMI_11_17_0273_R
crossref_primary_10_1094_MPMI_11_17_0273_R
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-05-01
PublicationDateYYYYMMDD 2018-05-01
PublicationDate_xml – month: 05
  year: 2018
  text: 2018-05-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Molecular plant-microbe interactions
PublicationTitleAlternate Mol Plant Microbe Interact
PublicationYear 2018
References b10
b32
b31
b12
Park K. (b22) 2008; 18
b34
b11
b33
b14
b36
b35
b38
b16
b15
b37
b18
b17
b1
b2
b3
b4
b5
b6
b7
b8
b9
Kloepper J. W. (b13) 1993
b21
b20
b23
b25
b24
b27
b26
b29
b28
Mao J. L. (b19) 2016; 12
b30
References_xml – ident: b5
  doi: 10.1016/j.tplants.2012.05.011
– ident: b21
  doi: 10.1111/j.1462-2920.2006.01202.x
– ident: b26
  doi: 10.1046/j.1469-8137.2003.00883.x
– ident: b24
  doi: 10.1146/annurev-phyto-082712-102340
– ident: b18
  doi: 10.1094/PHYTO.1999.89.11.1088
– ident: b20
  doi: 10.1111/j.1364-3703.2005.00276.x
– ident: b1
  doi: 10.1111/1462-2920.13405
– ident: b6
  doi: 10.1111/mpp.12170
– ident: b28
  doi: 10.3389/fpls.2013.00030
– ident: b7
  doi: 10.1105/tpc.110.080788
– ident: b34
  doi: 10.1128/AEM.01156-08
– ident: b10
  doi: 10.1002/ps.3301
– ident: b14
  doi: 10.3389/fmicb.2014.00636
– ident: b29
  doi: 10.1007/s00374-014-0978-8
– ident: b36
  doi: 10.3389/fmicb.2016.00993
– ident: b12
  doi: 10.1007/s001220051615
– ident: b35
  doi: 10.1007/s10658-010-9687-9
– ident: b9
  doi: 10.1146/annurev.phyto.43.040204.135923
– ident: b33
  doi: 10.1128/AEM.02645-12
– ident: b4
  doi: 10.1094/MPMI-02-17-0027-R
– ident: b38
  doi: 10.1007/s00374-011-0556-2
– ident: b3
  doi: 10.1111/ppl.12441
– ident: b15
  doi: 10.1094/MPMI-07-16-0131-R
– ident: b11
  doi: 10.1094/MPMI.2003.16.10.851
– ident: b32
  doi: 10.1038/srep12975
– ident: b17
  doi: 10.1111/1574-6968.12406
– ident: b23
  doi: 10.1038/nchembio.164
– ident: b27
  doi: 10.1111/j.1365-3040.2005.01471.x
– ident: b25
  doi: 10.1104/pp.103.026583
– ident: b37
  doi: 10.3389/fpls.2013.00122
– ident: b30
  doi: 10.3389/fmicb.2016.00196
– ident: b8
  doi: 10.1038/nrmicro2415
– ident: b16
  doi: 10.1094/MPMI-10-15-0239-R
– volume: 12
  start-page: 1
  year: 2016
  ident: b19
  publication-title: PLoS Genet.
– ident: b31
  doi: 10.7150/ijbs.14333
– start-page: 255
  volume-title: Soil Microbial Ecology
  year: 1993
  ident: b13
– ident: b2
  doi: 10.1111/1751-7915.12238
– volume: 18
  start-page: 1095
  year: 2008
  ident: b22
  publication-title: J. Microbiol. Biotechnol.
SSID ssj0019655
Score 2.558046
Snippet Beneficial rhizobacteria have been reported to produce various elicitors that induce plant systemic resistance, but there is little knowledge concerning the...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 560
SubjectTerms antibiotics
Arabidopsis
Bacillus amyloliquefaciens
beta-glucanase
Botrytis cinerea
elicitors
ethylene
exopolysaccharides
genes
jasmonic acid
mutants
plant growth-promoting rhizobacteria
plant pathogens
polyketides
Pseudomonas syringae pv. tomato
Rhizobium
rhizosphere bacteria
salicylic acid
signal transduction
surfactin
systemic acquired resistance
transcription (genetics)
Title Exploring Elicitors of the Beneficial Rhizobacterium Bacillus amyloliquefaciens SQR9 to Induce Plant Systemic Resistance and Their Interactions With Plant Signaling Pathways
URI https://www.ncbi.nlm.nih.gov/pubmed/29309236
https://www.proquest.com/docview/1989545295
https://www.proquest.com/docview/2153634185
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bjtMwELXKIiR4QLDcyk1G4okq0NROUj8uCNgFFUEpUnmK7NSpIrVp1SZaLb_At_CPzMR2klKKgJeqdWyn0pzYZ-KZM4Q8ZX4Au2KkPDYMAnRQQk8IzT2p_f5M9mdhKDHfefQhPP3C302DaafzvRW1VBbqefLtt3kl_2NVaAO7YpbsP1i2nhQa4DvYFz7BwvD5VzZuAuj0IkuyqnCOPfNXsIZZcYgNhtUpo8pcLnsvZZItFuW2J5fgrC9QvzWV-IRve58_jQWSUfDTweJYYTovrNZzpfS8RbLpUgzMEQPKTWxMcoRNlLOjsjlSfEx1B455Li-2bRo8ckV5TW9viWGBSu_MVm8XpXl3n8_PdVbHD2VV69cyX2u790Lr1DbuvQ1_W2KR6bz9isMfNgGFbiVE_eKBqVK0t-aDgwqGGn0cnWGOIGy6KNHjjdt9wWzrZQUCYDd94LS_qG9X-7m7dIlcBvQa__zsfX0kJcKqhG79X9wRueAv9u6NEtN2tl2-c8CJqcjM5Aa5br0QemIgdZN0dH5Mrp3MN1aJRR-TK6ZK6cUt8qOGGa1hRlcpBQDQBmZ0F2bUwYzuwYwizGixogZmtIIAdTCjDcwowIxWMKNtYFCEmRvlYEYdzG6TyZvXk1ennq3y4SUsigpvqNKB8IVUIuADnswkU8azDZhIUx9-MNUXTDLBsRxREsGC4qeBAsbAw5SzO-QoX-X6HqFMcxggB6kC0grTSTlMfBElmgHN50PVJX1nijixCvhYiGURm0gMHqMhwSeO_ShGQ8bjLnlWD1kb-Zc_dX7i7BvDIo0nbzLXq3IbY2BigCEOweE-wL1ZyFBLqkvuGnDUt3Rgun_wygNytXlyHpKjYlPqR0CXC_W4gvFPIGXGrQ
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+elicitors+of+the+beneficial+rhizobacterium+Bacillus+amyloliquefaciens+SQR9+to+induce+plant+systemic+resistance+and+their+interactions+with+plant+signaling+pathways&rft.jtitle=Molecular+plant-microbe+interactions&rft.au=Wu%2C+Gengwei&rft.au=Liu%2C+Yunpeng&rft.au=Xu%2C+Yu&rft.au=Zhang%2C+Guishan&rft.date=2018-05-01&rft.issn=0894-0282&rft_id=info:doi/10.1094%2FMPMI-11-17-0273-R&rft_id=info%3Apmid%2F29309236&rft.externalDocID=29309236
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0894-0282&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0894-0282&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0894-0282&client=summon