Extending scaled-interaction adaptive-partitioning QM/MM to covalently bonded systems
Quantum mechanics/molecular mechanics (QM/MM) is the method of choice for atomistic simulations of large systems that can be partitioned into active and environmental regions. Adaptive-partitioning (AP) methods extend the applicability of QM/MM, allowing active regions to change during the simulatio...
Saved in:
Published in | Physical chemistry chemical physics : PCCP Vol. 22; no. 32; pp. 17987 - 17998 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
24.08.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Quantum mechanics/molecular mechanics (QM/MM) is the method of choice for atomistic simulations of large systems that can be partitioned into active and environmental regions. Adaptive-partitioning (AP) methods extend the applicability of QM/MM, allowing active regions to change during the simulation. AP methods achieve continuous potential energy surface (PES) by introducing buffer regions in which atoms have both QM and MM characters. Most of the existing AP-QM/MM methods require multiple QM calculations per time step, which can be expensive for systems with many atoms in buffer regions. Although one can lower the computational cost by grouping atoms into fragments, this may not be possible for all systems, especially for applications in covalent solids. The SISPA method [Field
, J. Chem. Theory Comput.
, 2017,
13
, 2342] differs from other AP-QM/MM methods by only requiring one QM calculation per time step, but it has the flaw that the QM charge density and wavefunction near the buffer/MM boundary tend to those of isolated atoms/fragments. Besides, regular QM/MM methods for treating covalent bonds cut by the QM/MM boundary are incompatible with SISPA. Due to these flaws, SISPA in its original form cannot treat covalently bonded systems properly. In this work, I show that a simple modification to the SISPA method improves the treatment of covalently bonded systems. I also study the effect of correcting the charge density in SISPA by developing a density-corrected pre-scaled algorithm. I demonstrate the methods with simple molecules and bulk solids.
An adaptive-partitioning QM/MM method for covalently interacting systems with only one QM calculation per time step. |
---|---|
AbstractList | Quantum mechanics/molecular mechanics (QM/MM) is the method of choice for atomistic simulations of large systems that can be partitioned into active and environmental regions. Adaptive-partitioning (AP) methods extend the applicability of QM/MM, allowing active regions to change during the simulation. AP methods achieve continuous potential energy surface (PES) by introducing buffer regions in which atoms have both QM and MM characters. Most of the existing AP-QM/MM methods require multiple QM calculations per time step, which can be expensive for systems with many atoms in buffer regions. Although one can lower the computational cost by grouping atoms into fragments, this may not be possible for all systems, especially for applications in covalent solids. The SISPA method [Field
, J. Chem. Theory Comput.
, 2017,
13
, 2342] differs from other AP-QM/MM methods by only requiring one QM calculation per time step, but it has the flaw that the QM charge density and wavefunction near the buffer/MM boundary tend to those of isolated atoms/fragments. Besides, regular QM/MM methods for treating covalent bonds cut by the QM/MM boundary are incompatible with SISPA. Due to these flaws, SISPA in its original form cannot treat covalently bonded systems properly. In this work, I show that a simple modification to the SISPA method improves the treatment of covalently bonded systems. I also study the effect of correcting the charge density in SISPA by developing a density-corrected pre-scaled algorithm. I demonstrate the methods with simple molecules and bulk solids. Quantum mechanics/molecular mechanics (QM/MM) is the method of choice for atomistic simulations of large systems that can be partitioned into active and environmental regions. Adaptive-partitioning (AP) methods extend the applicability of QM/MM, allowing active regions to change during the simulation. AP methods achieve continuous potential energy surface (PES) by introducing buffer regions in which atoms have both QM and MM characters. Most of the existing AP-QM/MM methods require multiple QM calculations per time step, which can be expensive for systems with many atoms in buffer regions. Although one can lower the computational cost by grouping atoms into fragments, this may not be possible for all systems, especially for applications in covalent solids. The SISPA method [Field, J. Chem. Theory Comput., 2017, 13, 2342] differs from other AP-QM/MM methods by only requiring one QM calculation per time step, but it has the flaw that the QM charge density and wavefunction near the buffer/MM boundary tend to those of isolated atoms/fragments. Besides, regular QM/MM methods for treating covalent bonds cut by the QM/MM boundary are incompatible with SISPA. Due to these flaws, SISPA in its original form cannot treat covalently bonded systems properly. In this work, I show that a simple modification to the SISPA method improves the treatment of covalently bonded systems. I also study the effect of correcting the charge density in SISPA by developing a density-corrected pre-scaled algorithm. I demonstrate the methods with simple molecules and bulk solids. Quantum mechanics/molecular mechanics (QM/MM) is the method of choice for atomistic simulations of large systems that can be partitioned into active and environmental regions. Adaptive-partitioning (AP) methods extend the applicability of QM/MM, allowing active regions to change during the simulation. AP methods achieve continuous potential energy surface (PES) by introducing buffer regions in which atoms have both QM and MM characters. Most of the existing AP-QM/MM methods require multiple QM calculations per time step, which can be expensive for systems with many atoms in buffer regions. Although one can lower the computational cost by grouping atoms into fragments, this may not be possible for all systems, especially for applications in covalent solids. The SISPA method [Field , J. Chem. Theory Comput. , 2017, 13 , 2342] differs from other AP-QM/MM methods by only requiring one QM calculation per time step, but it has the flaw that the QM charge density and wavefunction near the buffer/MM boundary tend to those of isolated atoms/fragments. Besides, regular QM/MM methods for treating covalent bonds cut by the QM/MM boundary are incompatible with SISPA. Due to these flaws, SISPA in its original form cannot treat covalently bonded systems properly. In this work, I show that a simple modification to the SISPA method improves the treatment of covalently bonded systems. I also study the effect of correcting the charge density in SISPA by developing a density-corrected pre-scaled algorithm. I demonstrate the methods with simple molecules and bulk solids. An adaptive-partitioning QM/MM method for covalently interacting systems with only one QM calculation per time step. Quantum mechanics/molecular mechanics (QM/MM) is the method of choice for atomistic simulations of large systems that can be partitioned into active and environmental regions. Adaptive-partitioning (AP) methods extend the applicability of QM/MM, allowing active regions to change during the simulation. AP methods achieve continuous potential energy surface (PES) by introducing buffer regions in which atoms have both QM and MM characters. Most of the existing AP-QM/MM methods require multiple QM calculations per time step, which can be expensive for systems with many atoms in buffer regions. Although one can lower the computational cost by grouping atoms into fragments, this may not be possible for all systems, especially for applications in covalent solids. The SISPA method [Field, J. Chem. Theory Comput., 2017, 13, 2342] differs from other AP-QM/MM methods by only requiring one QM calculation per time step, but it has the flaw that the QM charge density and wavefunction near the buffer/MM boundary tend to those of isolated atoms/fragments. Besides, regular QM/MM methods for treating covalent bonds cut by the QM/MM boundary are incompatible with SISPA. Due to these flaws, SISPA in its original form cannot treat covalently bonded systems properly. In this work, I show that a simple modification to the SISPA method improves the treatment of covalently bonded systems. I also study the effect of correcting the charge density in SISPA by developing a density-corrected pre-scaled algorithm. I demonstrate the methods with simple molecules and bulk solids.Quantum mechanics/molecular mechanics (QM/MM) is the method of choice for atomistic simulations of large systems that can be partitioned into active and environmental regions. Adaptive-partitioning (AP) methods extend the applicability of QM/MM, allowing active regions to change during the simulation. AP methods achieve continuous potential energy surface (PES) by introducing buffer regions in which atoms have both QM and MM characters. Most of the existing AP-QM/MM methods require multiple QM calculations per time step, which can be expensive for systems with many atoms in buffer regions. Although one can lower the computational cost by grouping atoms into fragments, this may not be possible for all systems, especially for applications in covalent solids. The SISPA method [Field, J. Chem. Theory Comput., 2017, 13, 2342] differs from other AP-QM/MM methods by only requiring one QM calculation per time step, but it has the flaw that the QM charge density and wavefunction near the buffer/MM boundary tend to those of isolated atoms/fragments. Besides, regular QM/MM methods for treating covalent bonds cut by the QM/MM boundary are incompatible with SISPA. Due to these flaws, SISPA in its original form cannot treat covalently bonded systems properly. In this work, I show that a simple modification to the SISPA method improves the treatment of covalently bonded systems. I also study the effect of correcting the charge density in SISPA by developing a density-corrected pre-scaled algorithm. I demonstrate the methods with simple molecules and bulk solids. |
Author | Yang, Zeng-hui |
AuthorAffiliation | Institute of Electronic Engineering China Academy of Engineering Physics Microsystem and Terahertz Research Center |
AuthorAffiliation_xml | – name: Microsystem and Terahertz Research Center – name: Institute of Electronic Engineering – name: China Academy of Engineering Physics |
Author_xml | – sequence: 1 givenname: Zeng-hui surname: Yang fullname: Yang, Zeng-hui |
BookMark | eNp9kU1LxDAQhoMo-HnxLlS8iFBNOm2aHmX9xkUF91xiMpUs3aQmWXH_va0rK4h4mmHmeWeGd7bJunUWCdln9JRRqM40VR3NRFFM18gWyzmkFRX5-iov-SbZDmFKKWUFgy0yufyIaLWxr0lQskWdGhvRSxWNs4nUsovmHdNO-miG0gA-jc_G4yS6RLn3XmJju0henNWok7AIEWdhl2w0sg249x13yOTq8nl0k94_XN-Ozu9TBWUZ0xIzUA0InjfIEDlVkKPQspIl47LMKqw4vAgtEHieC9BSFyVgSTUDnkEDO-R4Obfz7m2OIdYzExS2rbTo5qHOcqD9Ji5Ejx79Qqdu7m1_3UDxnBYCBupkSSnvQvDY1J03M-kXNaP14HB9QUePXw7f9TD9BSsT5eBS9NK0f0sOlhIf1Gr0z9P6_uF__brTDXwCFC-VAA |
CitedBy_id | crossref_primary_10_1039_D2CP04537K crossref_primary_10_1021_acs_jctc_4c00164 crossref_primary_10_1021_acs_jpclett_3c03158 crossref_primary_10_1039_D0CP05149G crossref_primary_10_1021_acs_jpca_3c05600 |
Cites_doi | 10.1021/acs.jctc.9b00649 10.1088/0034-4885/73/11/116501 10.1021/acs.jctc.9b00274 10.1063/1.4869189 10.1021/ct5005593 10.1103/PhysRev.136.B864 10.1016/j.mspro.2014.07.032 10.1002/jcc.23067 10.1039/C7CP01708A 10.1016/j.cma.2019.04.020 10.1021/jp9536514 10.1103/PhysRevLett.93.175503 10.3390/molecules23081882 10.1021/ct4005596 10.1021/acs.jctc.7b01206 10.1002/jcc.540160911 10.1103/PhysRevB.57.7556 10.1002/cphc.201402105 10.1103/PhysRevB.58.7260 10.1021/jp973084f 10.1039/C5CP07136D 10.1002/qua.25336 10.1021/ja00051a040 10.1007/s00214-006-0143-z 10.1103/PhysRevB.51.12947 10.1016/0022-2836(76)90311-9 10.1021/jp0673617 10.1002/jcc.21367 10.1002/anie.200802019 10.1039/c004111d 10.1103/PhysRevB.75.085311 10.1021/jp070186p 10.1016/0301-0104(96)00152-8 10.1016/bs.mie.2016.05.019 10.1002/jcc.540110605 10.1021/ct900366m 10.1002/wcs.1216 10.1103/PhysRevLett.111.073003 10.1063/1.365193 10.1016/j.cplett.2011.12.053 10.1021/acs.jctc.7b00099 10.1002/jcc.540130706 10.1021/acs.jctc.6b00205 10.1002/(SICI)1521-3951(200001)217:1<41::AID-PSSB41>3.0.CO;2-V 10.1063/1.1520134 10.1063/1.1670299 10.1103/PhysRevB.81.125328 10.1016/S0009-2614(96)01165-7 10.1088/0034-4885/72/2/026501 10.1016/j.mser.2013.07.001 10.1016/S0009-2614(02)00210-5 10.1021/ct2005209 10.1103/PhysRev.140.A1133 10.1016/j.commatsci.2020.109697 10.1063/1.106972 10.1021/j100161a070 10.1021/jp962071j 10.1002/(SICI)1096-987X(199703)18:4<463::AID-JCC2>3.0.CO;2-R 10.1016/0168-583X(93)96170-H 10.1063/1.447489 10.1016/j.theochem.2004.05.003 10.1021/ct500553x 10.1021/acs.jctc.8b01128 10.1021/jp002747h 10.1021/ct900148e 10.1063/1.1839857 10.1002/jcc.540150303 10.1021/cr200148b 10.1006/jcph.1995.1039 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2020 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2020 |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1039/d0cp02855j |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef Materials Research Database MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1463-9084 |
EndPage | 17998 |
ExternalDocumentID | 10_1039_D0CP02855J d0cp02855j |
GroupedDBID | - 0-7 0R 123 1TJ 29O 4.4 53G 70 705 70J 7~J 87K AAEMU AAGNR AAIWI AANOJ ABDVN ABFLS ABGFH ABRYZ ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AENEX AFVBQ AGKEF AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ASKNT AUDPV AZFZN BLAPV BSQNT C6K CKLOX CS3 D0L DU5 DZ EBS ECGLT EE0 EF- F5P GNO HZ H~N IDZ J3G J3I JG M4U N9A NHB O9- OK1 P2P R7B R7C RCNCU RIG RNS RPMJG RRA RRC RSCEA SKA SKF SLH TN5 TWZ UCJ UHB VH6 WH7 X YNT --- -DZ -~X 0R~ 2WC 70~ AAJAE AAMEH AAWGC AAXHV AAXPP AAYXX ABASK ABEMK ABJNI ABPDG ABXOH ACGFO AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AGEGJ AGRSR AHGCF AKMSF ALUYA ANUXI APEMP CITATION GGIMP H13 HZ~ R56 RAOCF 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c377t-7e23cf3864fe1ee60c34e8da9a716a729e963b8d8e364483dad573e70d13623f3 |
ISSN | 1463-9076 1463-9084 |
IngestDate | Fri Jul 11 08:17:43 EDT 2025 Mon Jun 30 02:28:45 EDT 2025 Tue Jul 01 00:53:45 EDT 2025 Thu Apr 24 22:53:37 EDT 2025 Wed Nov 11 00:25:30 EST 2020 Sat Jan 08 03:51:50 EST 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 32 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c377t-7e23cf3864fe1ee60c34e8da9a716a729e963b8d8e364483dad573e70d13623f3 |
Notes | z 10.1039/d0cp02855j vector method in the density-corrected pre-scaled algorithm. See DOI Electronic supplementary information (ESI) available: Details on the scaling of interactions in the DFTB method, the COMB potential and the CHARMM force field, and the derivation of the ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8486-740X |
PQID | 2436405838 |
PQPubID | 2047499 |
PageCount | 12 |
ParticipantIDs | crossref_primary_10_1039_D0CP02855J proquest_miscellaneous_2430377688 proquest_journals_2436405838 crossref_citationtrail_10_1039_D0CP02855J rsc_primary_d0cp02855j |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200824 |
PublicationDateYYYYMMDD | 2020-08-24 |
PublicationDate_xml | – month: 8 year: 2020 text: 20200824 day: 24 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Physical chemistry chemical physics : PCCP |
PublicationYear | 2020 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Elstner (D0CP02855J-(cit29)/*[position()=1]) 1998; 58 Senn (D0CP02855J-(cit3)/*[position()=1]) 2009; 48 Zheng (D0CP02855J-(cit6)/*[position()=1]) 2016; 6 Kaduk (D0CP02855J-(cit72)/*[position()=1]) 2012; 112 Kohn (D0CP02855J-(cit50)/*[position()=1]) 1965; 140 Rappé (D0CP02855J-(cit73)/*[position()=1]) 1992; 114 Boereboom (D0CP02855J-(cit10)/*[position()=1]) 2018; 14 Plimpton (D0CP02855J-(cit65)/*[position()=1]) 1995; 117 Duster (D0CP02855J-(cit11)/*[position()=1]) 2016; 577 Kerdcharoen (D0CP02855J-(cit15)/*[position()=1]) 2002; 355 Assfeld (D0CP02855J-(cit48)/*[position()=1]) 1996; 263 Aradi (D0CP02855J-(cit67)/*[position()=1]) 2007; 111 Waller (D0CP02855J-(cit25)/*[position()=1]) 2014; 15 Csányi (D0CP02855J-(cit16)/*[position()=1]) 2004; 93 Yu (D0CP02855J-(cit31)/*[position()=1]) 2007; 75 MacKerell, Jr. (D0CP02855J-(cit34)/*[position()=1]) 1998; 102 Chason (D0CP02855J-(cit57)/*[position()=1]) 1997; 81 Keinonen (D0CP02855J-(cit63)/*[position()=1]) 1992; 60 Maseras (D0CP02855J-(cit38)/*[position()=1]) 1995; 16 Duster (D0CP02855J-(cit12)/*[position()=1]) 2019; 15 Bulo (D0CP02855J-(cit5)/*[position()=1]) 2013; 9 Bulo (D0CP02855J-(cit18)/*[position()=1]) 2009; 5 Lin (D0CP02855J-(cit2)/*[position()=1]) 2007; 117 Zheng (D0CP02855J-(cit26)/*[position()=1]) 2017; 117 Yu (D0CP02855J-(cit75)/*[position()=1]) 2012; 33 Liang (D0CP02855J-(cit33)/*[position()=1]) 2013; 74 Bernstein (D0CP02855J-(cit4)/*[position()=1]) 2009; 72 Race (D0CP02855J-(cit61)/*[position()=1]) 2010; 73 Heyden (D0CP02855J-(cit17)/*[position()=1]) 2007; 111 Wu (D0CP02855J-(cit43)/*[position()=1]) 2019; 15 Pezeshki (D0CP02855J-(cit35)/*[position()=1]) 2011; 7 Das (D0CP02855J-(cit40)/*[position()=1]) 2002; 117 Dumont (D0CP02855J-(cit41)/*[position()=1]) 2004; 680 Chen (D0CP02855J-(cit23)/*[position()=1]) 2019; 354 Watanabe (D0CP02855J-(cit8)/*[position()=1]) 2016; 18 Gordon (D0CP02855J-(cit45)/*[position()=1]) 2001; 105 Kim (D0CP02855J-(cit53)/*[position()=1]) 2014; 140 Borland (D0CP02855J-(cit59)/*[position()=1]) 1993; 36 Watanabe (D0CP02855J-(cit9)/*[position()=1]) 2017; 19 Field (D0CP02855J-(cit37)/*[position()=1]) 1990; 11 Bakowies (D0CP02855J-(cit36)/*[position()=1]) 1996; 100 Boereboom (D0CP02855J-(cit71)/*[position()=1]) 2016; 12 Porezag (D0CP02855J-(cit28)/*[position()=1]) 1995; 51 Pulay (D0CP02855J-(cit56)/*[position()=1]) 2013; 4 Ferenczy (D0CP02855J-(cit46)/*[position()=1]) 1992; 13 Takenaka (D0CP02855J-(cit24)/*[position()=1]) 2012; 524 Shan (D0CP02855J-(cit32)/*[position()=1]) 2010; 81 Watanabe (D0CP02855J-(cit20)/*[position()=1]) 2014; 10 (D0CP02855J-(cit51)/*[position()=1]) 2003 Kim (D0CP02855J-(cit52)/*[position()=1]) 2013; 111 Williams (D0CP02855J-(cit58)/*[position()=1]) 1993; 80–81 Watanabe (D0CP02855J-(cit22)/*[position()=1]) 2018; 23 Duster (D0CP02855J-(cit13)/*[position()=1]) 2019; 15 Pezeshki (D0CP02855J-(cit70)/*[position()=1]) 2014; 10 Frauenheim (D0CP02855J-(cit30)/*[position()=1]) 2000; 217 Lan (D0CP02855J-(cit64)/*[position()=1]) 2020; 179 Svensson (D0CP02855J-(cit39)/*[position()=1]) 1996; 100 Théry (D0CP02855J-(cit47)/*[position()=1]) 1994; 15 Kerdcharoen (D0CP02855J-(cit14)/*[position()=1]) 1996; 211 Field (D0CP02855J-(cit21)/*[position()=1]) 2017; 13 DiLabio (D0CP02855J-(cit44)/*[position()=1]) 2005; 122 Warshel (D0CP02855J-(cit1)/*[position()=1]) 1976; 103 D0CP02855J-(cit66)/*[position()=1] Handy (D0CP02855J-(cit55)/*[position()=1]) 1984; 81 Nielsen (D0CP02855J-(cit19)/*[position()=1]) 2010; 12 Vanommeslaeghe (D0CP02855J-(cit74)/*[position()=1]) 2010; 31 Duster (D0CP02855J-(cit7)/*[position()=1]) 2017; 7 Wang (D0CP02855J-(cit42)/*[position()=1]) 2010; 6 Glukhova (D0CP02855J-(cit27)/*[position()=1]) 2014; 6 Hohenberg (D0CP02855J-(cit49)/*[position()=1]) 1964; 136 Gerratt (D0CP02855J-(cit54)/*[position()=1]) 1967; 49 Rappé (D0CP02855J-(cit68)/*[position()=1]) 1991; 95 Nordlund (D0CP02855J-(cit60)/*[position()=1]) 1998; 57 Srour (D0CP02855J-(cit62)/*[position()=1]) Eichler (D0CP02855J-(cit69)/*[position()=1]) 1996; 18 |
References_xml | – doi: Srour Palko – issn: 2003 publication-title: A primer in density functional theory – volume: 15 start-page: 5794 year: 2019 ident: D0CP02855J-(cit13)/*[position()=1] publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.9b00649 – volume: 73 start-page: 116501 year: 2010 ident: D0CP02855J-(cit61)/*[position()=1] publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/73/11/116501 – volume: 15 start-page: 4208 year: 2019 ident: D0CP02855J-(cit43)/*[position()=1] publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.9b00274 – volume: 140 start-page: 18A528 year: 2014 ident: D0CP02855J-(cit53)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.4869189 – volume: 10 start-page: 4242 year: 2014 ident: D0CP02855J-(cit20)/*[position()=1] publication-title: J. Chem. Theory Comput. doi: 10.1021/ct5005593 – volume: 136 start-page: B864 year: 1964 ident: D0CP02855J-(cit49)/*[position()=1] publication-title: Phys. Rev. doi: 10.1103/PhysRev.136.B864 – volume: 6 start-page: 256 year: 2014 ident: D0CP02855J-(cit27)/*[position()=1] publication-title: Procedia Mater. Sci. doi: 10.1016/j.mspro.2014.07.032 – volume: 33 start-page: 2451 year: 2012 ident: D0CP02855J-(cit75)/*[position()=1] publication-title: J. Comput. Chem. doi: 10.1002/jcc.23067 – volume: 19 start-page: 17985 year: 2017 ident: D0CP02855J-(cit9)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C7CP01708A – volume: 354 start-page: 351 year: 2019 ident: D0CP02855J-(cit23)/*[position()=1] publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2019.04.020 – volume: 100 start-page: 10580 year: 1996 ident: D0CP02855J-(cit36)/*[position()=1] publication-title: J. Phys. Chem. doi: 10.1021/jp9536514 – volume: 93 start-page: 175503 year: 2004 ident: D0CP02855J-(cit16)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.93.175503 – volume: 23 start-page: 1882 year: 2018 ident: D0CP02855J-(cit22)/*[position()=1] publication-title: Molecules doi: 10.3390/molecules23081882 – volume: 9 start-page: 5567 year: 2013 ident: D0CP02855J-(cit5)/*[position()=1] publication-title: J. Chem. Theory Comput. doi: 10.1021/ct4005596 – volume: 14 start-page: 1841 year: 2018 ident: D0CP02855J-(cit10)/*[position()=1] publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.7b01206 – volume: 16 start-page: 1170 year: 1995 ident: D0CP02855J-(cit38)/*[position()=1] publication-title: J. Comput. Chem. doi: 10.1002/jcc.540160911 – volume: 57 start-page: 7556 year: 1998 ident: D0CP02855J-(cit60)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.57.7556 – volume: 15 start-page: 3218 year: 2014 ident: D0CP02855J-(cit25)/*[position()=1] publication-title: ChemPhysChem doi: 10.1002/cphc.201402105 – volume: 58 start-page: 7260 year: 1998 ident: D0CP02855J-(cit29)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.58.7260 – volume: 102 start-page: 3586 year: 1998 ident: D0CP02855J-(cit34)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp973084f – volume: 18 start-page: 7318 year: 2016 ident: D0CP02855J-(cit8)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C5CP07136D – ident: D0CP02855J-(cit62)/*[position()=1] – ident: D0CP02855J-(cit66)/*[position()=1] – volume: 117 start-page: 25336 year: 2017 ident: D0CP02855J-(cit26)/*[position()=1] publication-title: Int. J. Quantum Chem. doi: 10.1002/qua.25336 – volume: 114 start-page: 10024 year: 1992 ident: D0CP02855J-(cit73)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00051a040 – volume: 117 start-page: 185 year: 2007 ident: D0CP02855J-(cit2)/*[position()=1] publication-title: Theor. Chem. Acc. doi: 10.1007/s00214-006-0143-z – volume: 51 start-page: 12947 year: 1995 ident: D0CP02855J-(cit28)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.51.12947 – volume: 103 start-page: 227 year: 1976 ident: D0CP02855J-(cit1)/*[position()=1] publication-title: J. Mol. Biol. doi: 10.1016/0022-2836(76)90311-9 – volume: 111 start-page: 2231 year: 2007 ident: D0CP02855J-(cit17)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp0673617 – volume: 31 start-page: 671 year: 2010 ident: D0CP02855J-(cit74)/*[position()=1] publication-title: J. Comput. Chem. doi: 10.1002/jcc.21367 – volume: 48 start-page: 1198 year: 2009 ident: D0CP02855J-(cit3)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200802019 – volume: 12 start-page: 12401 year: 2010 ident: D0CP02855J-(cit19)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c004111d – volume: 75 start-page: 085311 year: 2007 ident: D0CP02855J-(cit31)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.75.085311 – volume: 111 start-page: 5678 year: 2007 ident: D0CP02855J-(cit67)/*[position()=1] publication-title: J. Phys. Chem. A doi: 10.1021/jp070186p – volume: 211 start-page: 313 year: 1996 ident: D0CP02855J-(cit14)/*[position()=1] publication-title: Chem. Phys. doi: 10.1016/0301-0104(96)00152-8 – volume: 577 start-page: 341 year: 2016 ident: D0CP02855J-(cit11)/*[position()=1] publication-title: Methods Enzymol. doi: 10.1016/bs.mie.2016.05.019 – volume: 11 start-page: 700 year: 1990 ident: D0CP02855J-(cit37)/*[position()=1] publication-title: J. Comput. Chem. doi: 10.1002/jcc.540110605 – volume: 6 start-page: 359 year: 2010 ident: D0CP02855J-(cit42)/*[position()=1] publication-title: J. Chem. Theory Comput. doi: 10.1021/ct900366m – volume: 4 start-page: 169 year: 2013 ident: D0CP02855J-(cit56)/*[position()=1] publication-title: Wiley Interdiscip. Rev.: Comput. Mol. Sci. doi: 10.1002/wcs.1216 – volume: 111 start-page: 073003 year: 2013 ident: D0CP02855J-(cit52)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.073003 – volume: 81 start-page: 6513 year: 1997 ident: D0CP02855J-(cit57)/*[position()=1] publication-title: J. Appl. Phys. doi: 10.1063/1.365193 – volume: 524 start-page: 56 year: 2012 ident: D0CP02855J-(cit24)/*[position()=1] publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2011.12.053 – volume: 13 start-page: 2342 year: 2017 ident: D0CP02855J-(cit21)/*[position()=1] publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.7b00099 – volume: 13 start-page: 830 year: 1992 ident: D0CP02855J-(cit46)/*[position()=1] publication-title: J. Comput. Chem. doi: 10.1002/jcc.540130706 – volume: 12 start-page: 3441 year: 2016 ident: D0CP02855J-(cit71)/*[position()=1] publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.6b00205 – volume: 36 start-page: 28 year: 1993 ident: D0CP02855J-(cit59)/*[position()=1] publication-title: Solid State Technol. – volume: 217 start-page: 41 year: 2000 ident: D0CP02855J-(cit30)/*[position()=1] publication-title: Phys. Status Solidi B doi: 10.1002/(SICI)1521-3951(200001)217:1<41::AID-PSSB41>3.0.CO;2-V – volume: 117 start-page: 10534 year: 2002 ident: D0CP02855J-(cit40)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.1520134 – volume: 49 start-page: 1719 year: 1967 ident: D0CP02855J-(cit54)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.1670299 – volume: 81 start-page: 125328 year: 2010 ident: D0CP02855J-(cit32)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.81.125328 – volume: 263 start-page: 100 year: 1996 ident: D0CP02855J-(cit48)/*[position()=1] publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(96)01165-7 – volume: 72 start-page: 026501 year: 2009 ident: D0CP02855J-(cit4)/*[position()=1] publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/72/2/026501 – volume: 74 start-page: 255 year: 2013 ident: D0CP02855J-(cit33)/*[position()=1] publication-title: Mater. Sci. Eng., R doi: 10.1016/j.mser.2013.07.001 – volume: 355 start-page: 257 year: 2002 ident: D0CP02855J-(cit15)/*[position()=1] publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(02)00210-5 – volume: 7 start-page: 3625 year: 2011 ident: D0CP02855J-(cit35)/*[position()=1] publication-title: J. Chem. Theory Comput. doi: 10.1021/ct2005209 – volume: 140 start-page: A1133 year: 1965 ident: D0CP02855J-(cit50)/*[position()=1] publication-title: Phys. Rev. doi: 10.1103/PhysRev.140.A1133 – volume: 6 start-page: 369 year: 2016 ident: D0CP02855J-(cit6)/*[position()=1] publication-title: Wiley Interdiscip. Rev.: Comput. Mol. Sci. – volume: 179 start-page: 109697 year: 2020 ident: D0CP02855J-(cit64)/*[position()=1] publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2020.109697 – volume: 60 start-page: 628 year: 1992 ident: D0CP02855J-(cit63)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.106972 – volume: 95 start-page: 3358 year: 1991 ident: D0CP02855J-(cit68)/*[position()=1] publication-title: J. Phys. Chem. doi: 10.1021/j100161a070 – volume: 100 start-page: 19357 year: 1996 ident: D0CP02855J-(cit39)/*[position()=1] publication-title: J. Phys. Chem. doi: 10.1021/jp962071j – volume: 18 start-page: 463 year: 1996 ident: D0CP02855J-(cit69)/*[position()=1] publication-title: J. Comput. Chem. doi: 10.1002/(SICI)1096-987X(199703)18:4<463::AID-JCC2>3.0.CO;2-R – volume: 80–81 start-page: 507 year: 1993 ident: D0CP02855J-(cit58)/*[position()=1] publication-title: Nucl. Instrum. Methods Phys. Res., Sect. B doi: 10.1016/0168-583X(93)96170-H – volume: 81 start-page: 5031 year: 1984 ident: D0CP02855J-(cit55)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.447489 – volume: 680 start-page: 99 year: 2004 ident: D0CP02855J-(cit41)/*[position()=1] publication-title: THEOCHEM doi: 10.1016/j.theochem.2004.05.003 – volume-title: A primer in density functional theory year: 2003 ident: D0CP02855J-(cit51)/*[position()=1] – volume: 10 start-page: 4765 year: 2014 ident: D0CP02855J-(cit70)/*[position()=1] publication-title: J. Chem. Theory Comput. doi: 10.1021/ct500553x – volume: 15 start-page: 892 year: 2019 ident: D0CP02855J-(cit12)/*[position()=1] publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.8b01128 – volume: 105 start-page: 293 year: 2001 ident: D0CP02855J-(cit45)/*[position()=1] publication-title: J. Phys. Chem. A doi: 10.1021/jp002747h – volume: 7 start-page: e1310 year: 2017 ident: D0CP02855J-(cit7)/*[position()=1] publication-title: Wiley Interdiscip. Rev.: Comput. Mol. Sci. – volume: 5 start-page: 2212 year: 2009 ident: D0CP02855J-(cit18)/*[position()=1] publication-title: J. Chem. Theory Comput. doi: 10.1021/ct900148e – volume: 122 start-page: 044708 year: 2005 ident: D0CP02855J-(cit44)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.1839857 – volume: 15 start-page: 269 year: 1994 ident: D0CP02855J-(cit47)/*[position()=1] publication-title: J. Comput. Chem. doi: 10.1002/jcc.540150303 – volume: 112 start-page: 321 year: 2012 ident: D0CP02855J-(cit72)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr200148b – volume: 117 start-page: 1 year: 1995 ident: D0CP02855J-(cit65)/*[position()=1] publication-title: J. Comput. Phys. doi: 10.1006/jcph.1995.1039 |
SSID | ssj0001513 |
Score | 2.3805878 |
Snippet | Quantum mechanics/molecular mechanics (QM/MM) is the method of choice for atomistic simulations of large systems that can be partitioned into active and... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 17987 |
SubjectTerms | Adaptive systems Algorithms Buffers Charge density Computer simulation Covalence Covalent bonds Fragments Mathematical analysis Methods Partitioning Potential energy Quantum mechanics Wave functions |
Title | Extending scaled-interaction adaptive-partitioning QM/MM to covalently bonded systems |
URI | https://www.proquest.com/docview/2436405838 https://www.proquest.com/docview/2430377688 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbo9gAXxKti24KC4IKQaRI7r2MVFpWKoK20KxUukWM7BVQl0W72UH4949hOAs2hcIkiP2LH32Q8M87MIPTGA82EJx7HAQtVCrMkwAUNA8ypW9ASOrmB8kbOvoRna3p-GVwO6a0675K2eM9_TfqV_A-qUAa4Ki_Zf0C2fygUwD3gC1dAGK53wnjRWbA7iwAstRRYBX_Y2OzfgjWKl-FG9bR214sMhssyJXLyGuYCe871zbuiVoZwE9Z5OxZYlxZHbjPD6TtVpK0i286qsEzT3lPsq7FBf5PVFf6--zG2LPjdf23aodkwQxoSDMqzCVU9LtNp3SwH9f0RpRhzpeaHKhxaNNpcVfy5eJJzu0QFPv3gpkuQeILgfNif7Jn8X9tW_zNhd4xOknzou4f2fdAa_BnaP12sPn3ut2YQb4h2N9MvZuPVkuRk6P2nhDKoHXsbmxOmkz1Wj9BDozQ4p5oCHqN7snqC7qcWkado3VOCc5sSnElKcC6ykyxz2toZ6MDRdOAYOniG1h8Xq_QMm4QZmJMoanEkfcJLEoe0lJ6UocsJlbFgCQOtmIEaJYHdFrGIJVFqORFMBBGRkSs8kGNISQ7QrKor-Rw51JcgLEYeBU5Do8RjiUuELxhnUJEE8Ry9tYuUcxNNXiU1uc5vwzFHr_u2jY6hMtnq2K51br6xbe5TmKmrjvbn6FVfDYurjrVYJetd18aF1w9jaHMAGPVjCJc33bN_ztHhdEXeiPLwTtM7Qg-Gb-QYzdrNTr4AebQtXhoq-w3EtYmV |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extending+scaled-interaction+adaptive-partitioning+QM%2FMM+to+covalently+bonded+systems&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Yang%2C+Zeng-hui&rft.date=2020-08-24&rft.issn=1463-9076&rft.eissn=1463-9084&rft.volume=22&rft.issue=32&rft.spage=17987&rft.epage=17998&rft_id=info:doi/10.1039%2FD0CP02855J&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D0CP02855J |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon |