Extending scaled-interaction adaptive-partitioning QM/MM to covalently bonded systems

Quantum mechanics/molecular mechanics (QM/MM) is the method of choice for atomistic simulations of large systems that can be partitioned into active and environmental regions. Adaptive-partitioning (AP) methods extend the applicability of QM/MM, allowing active regions to change during the simulatio...

Full description

Saved in:
Bibliographic Details
Published inPhysical chemistry chemical physics : PCCP Vol. 22; no. 32; pp. 17987 - 17998
Main Author Yang, Zeng-hui
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 24.08.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Quantum mechanics/molecular mechanics (QM/MM) is the method of choice for atomistic simulations of large systems that can be partitioned into active and environmental regions. Adaptive-partitioning (AP) methods extend the applicability of QM/MM, allowing active regions to change during the simulation. AP methods achieve continuous potential energy surface (PES) by introducing buffer regions in which atoms have both QM and MM characters. Most of the existing AP-QM/MM methods require multiple QM calculations per time step, which can be expensive for systems with many atoms in buffer regions. Although one can lower the computational cost by grouping atoms into fragments, this may not be possible for all systems, especially for applications in covalent solids. The SISPA method [Field , J. Chem. Theory Comput. , 2017, 13 , 2342] differs from other AP-QM/MM methods by only requiring one QM calculation per time step, but it has the flaw that the QM charge density and wavefunction near the buffer/MM boundary tend to those of isolated atoms/fragments. Besides, regular QM/MM methods for treating covalent bonds cut by the QM/MM boundary are incompatible with SISPA. Due to these flaws, SISPA in its original form cannot treat covalently bonded systems properly. In this work, I show that a simple modification to the SISPA method improves the treatment of covalently bonded systems. I also study the effect of correcting the charge density in SISPA by developing a density-corrected pre-scaled algorithm. I demonstrate the methods with simple molecules and bulk solids. An adaptive-partitioning QM/MM method for covalently interacting systems with only one QM calculation per time step.
AbstractList Quantum mechanics/molecular mechanics (QM/MM) is the method of choice for atomistic simulations of large systems that can be partitioned into active and environmental regions. Adaptive-partitioning (AP) methods extend the applicability of QM/MM, allowing active regions to change during the simulation. AP methods achieve continuous potential energy surface (PES) by introducing buffer regions in which atoms have both QM and MM characters. Most of the existing AP-QM/MM methods require multiple QM calculations per time step, which can be expensive for systems with many atoms in buffer regions. Although one can lower the computational cost by grouping atoms into fragments, this may not be possible for all systems, especially for applications in covalent solids. The SISPA method [Field , J. Chem. Theory Comput. , 2017, 13 , 2342] differs from other AP-QM/MM methods by only requiring one QM calculation per time step, but it has the flaw that the QM charge density and wavefunction near the buffer/MM boundary tend to those of isolated atoms/fragments. Besides, regular QM/MM methods for treating covalent bonds cut by the QM/MM boundary are incompatible with SISPA. Due to these flaws, SISPA in its original form cannot treat covalently bonded systems properly. In this work, I show that a simple modification to the SISPA method improves the treatment of covalently bonded systems. I also study the effect of correcting the charge density in SISPA by developing a density-corrected pre-scaled algorithm. I demonstrate the methods with simple molecules and bulk solids.
Quantum mechanics/molecular mechanics (QM/MM) is the method of choice for atomistic simulations of large systems that can be partitioned into active and environmental regions. Adaptive-partitioning (AP) methods extend the applicability of QM/MM, allowing active regions to change during the simulation. AP methods achieve continuous potential energy surface (PES) by introducing buffer regions in which atoms have both QM and MM characters. Most of the existing AP-QM/MM methods require multiple QM calculations per time step, which can be expensive for systems with many atoms in buffer regions. Although one can lower the computational cost by grouping atoms into fragments, this may not be possible for all systems, especially for applications in covalent solids. The SISPA method [Field, J. Chem. Theory Comput., 2017, 13, 2342] differs from other AP-QM/MM methods by only requiring one QM calculation per time step, but it has the flaw that the QM charge density and wavefunction near the buffer/MM boundary tend to those of isolated atoms/fragments. Besides, regular QM/MM methods for treating covalent bonds cut by the QM/MM boundary are incompatible with SISPA. Due to these flaws, SISPA in its original form cannot treat covalently bonded systems properly. In this work, I show that a simple modification to the SISPA method improves the treatment of covalently bonded systems. I also study the effect of correcting the charge density in SISPA by developing a density-corrected pre-scaled algorithm. I demonstrate the methods with simple molecules and bulk solids.
Quantum mechanics/molecular mechanics (QM/MM) is the method of choice for atomistic simulations of large systems that can be partitioned into active and environmental regions. Adaptive-partitioning (AP) methods extend the applicability of QM/MM, allowing active regions to change during the simulation. AP methods achieve continuous potential energy surface (PES) by introducing buffer regions in which atoms have both QM and MM characters. Most of the existing AP-QM/MM methods require multiple QM calculations per time step, which can be expensive for systems with many atoms in buffer regions. Although one can lower the computational cost by grouping atoms into fragments, this may not be possible for all systems, especially for applications in covalent solids. The SISPA method [Field , J. Chem. Theory Comput. , 2017, 13 , 2342] differs from other AP-QM/MM methods by only requiring one QM calculation per time step, but it has the flaw that the QM charge density and wavefunction near the buffer/MM boundary tend to those of isolated atoms/fragments. Besides, regular QM/MM methods for treating covalent bonds cut by the QM/MM boundary are incompatible with SISPA. Due to these flaws, SISPA in its original form cannot treat covalently bonded systems properly. In this work, I show that a simple modification to the SISPA method improves the treatment of covalently bonded systems. I also study the effect of correcting the charge density in SISPA by developing a density-corrected pre-scaled algorithm. I demonstrate the methods with simple molecules and bulk solids. An adaptive-partitioning QM/MM method for covalently interacting systems with only one QM calculation per time step.
Quantum mechanics/molecular mechanics (QM/MM) is the method of choice for atomistic simulations of large systems that can be partitioned into active and environmental regions. Adaptive-partitioning (AP) methods extend the applicability of QM/MM, allowing active regions to change during the simulation. AP methods achieve continuous potential energy surface (PES) by introducing buffer regions in which atoms have both QM and MM characters. Most of the existing AP-QM/MM methods require multiple QM calculations per time step, which can be expensive for systems with many atoms in buffer regions. Although one can lower the computational cost by grouping atoms into fragments, this may not be possible for all systems, especially for applications in covalent solids. The SISPA method [Field, J. Chem. Theory Comput., 2017, 13, 2342] differs from other AP-QM/MM methods by only requiring one QM calculation per time step, but it has the flaw that the QM charge density and wavefunction near the buffer/MM boundary tend to those of isolated atoms/fragments. Besides, regular QM/MM methods for treating covalent bonds cut by the QM/MM boundary are incompatible with SISPA. Due to these flaws, SISPA in its original form cannot treat covalently bonded systems properly. In this work, I show that a simple modification to the SISPA method improves the treatment of covalently bonded systems. I also study the effect of correcting the charge density in SISPA by developing a density-corrected pre-scaled algorithm. I demonstrate the methods with simple molecules and bulk solids.Quantum mechanics/molecular mechanics (QM/MM) is the method of choice for atomistic simulations of large systems that can be partitioned into active and environmental regions. Adaptive-partitioning (AP) methods extend the applicability of QM/MM, allowing active regions to change during the simulation. AP methods achieve continuous potential energy surface (PES) by introducing buffer regions in which atoms have both QM and MM characters. Most of the existing AP-QM/MM methods require multiple QM calculations per time step, which can be expensive for systems with many atoms in buffer regions. Although one can lower the computational cost by grouping atoms into fragments, this may not be possible for all systems, especially for applications in covalent solids. The SISPA method [Field, J. Chem. Theory Comput., 2017, 13, 2342] differs from other AP-QM/MM methods by only requiring one QM calculation per time step, but it has the flaw that the QM charge density and wavefunction near the buffer/MM boundary tend to those of isolated atoms/fragments. Besides, regular QM/MM methods for treating covalent bonds cut by the QM/MM boundary are incompatible with SISPA. Due to these flaws, SISPA in its original form cannot treat covalently bonded systems properly. In this work, I show that a simple modification to the SISPA method improves the treatment of covalently bonded systems. I also study the effect of correcting the charge density in SISPA by developing a density-corrected pre-scaled algorithm. I demonstrate the methods with simple molecules and bulk solids.
Author Yang, Zeng-hui
AuthorAffiliation Institute of Electronic Engineering
China Academy of Engineering Physics
Microsystem and Terahertz Research Center
AuthorAffiliation_xml – name: Microsystem and Terahertz Research Center
– name: Institute of Electronic Engineering
– name: China Academy of Engineering Physics
Author_xml – sequence: 1
  givenname: Zeng-hui
  surname: Yang
  fullname: Yang, Zeng-hui
BookMark eNp9kU1LxDAQhoMo-HnxLlS8iFBNOm2aHmX9xkUF91xiMpUs3aQmWXH_va0rK4h4mmHmeWeGd7bJunUWCdln9JRRqM40VR3NRFFM18gWyzmkFRX5-iov-SbZDmFKKWUFgy0yufyIaLWxr0lQskWdGhvRSxWNs4nUsovmHdNO-miG0gA-jc_G4yS6RLn3XmJju0henNWok7AIEWdhl2w0sg249x13yOTq8nl0k94_XN-Ozu9TBWUZ0xIzUA0InjfIEDlVkKPQspIl47LMKqw4vAgtEHieC9BSFyVgSTUDnkEDO-R4Obfz7m2OIdYzExS2rbTo5qHOcqD9Ji5Ejx79Qqdu7m1_3UDxnBYCBupkSSnvQvDY1J03M-kXNaP14HB9QUePXw7f9TD9BSsT5eBS9NK0f0sOlhIf1Gr0z9P6_uF__brTDXwCFC-VAA
CitedBy_id crossref_primary_10_1039_D2CP04537K
crossref_primary_10_1021_acs_jctc_4c00164
crossref_primary_10_1021_acs_jpclett_3c03158
crossref_primary_10_1039_D0CP05149G
crossref_primary_10_1021_acs_jpca_3c05600
Cites_doi 10.1021/acs.jctc.9b00649
10.1088/0034-4885/73/11/116501
10.1021/acs.jctc.9b00274
10.1063/1.4869189
10.1021/ct5005593
10.1103/PhysRev.136.B864
10.1016/j.mspro.2014.07.032
10.1002/jcc.23067
10.1039/C7CP01708A
10.1016/j.cma.2019.04.020
10.1021/jp9536514
10.1103/PhysRevLett.93.175503
10.3390/molecules23081882
10.1021/ct4005596
10.1021/acs.jctc.7b01206
10.1002/jcc.540160911
10.1103/PhysRevB.57.7556
10.1002/cphc.201402105
10.1103/PhysRevB.58.7260
10.1021/jp973084f
10.1039/C5CP07136D
10.1002/qua.25336
10.1021/ja00051a040
10.1007/s00214-006-0143-z
10.1103/PhysRevB.51.12947
10.1016/0022-2836(76)90311-9
10.1021/jp0673617
10.1002/jcc.21367
10.1002/anie.200802019
10.1039/c004111d
10.1103/PhysRevB.75.085311
10.1021/jp070186p
10.1016/0301-0104(96)00152-8
10.1016/bs.mie.2016.05.019
10.1002/jcc.540110605
10.1021/ct900366m
10.1002/wcs.1216
10.1103/PhysRevLett.111.073003
10.1063/1.365193
10.1016/j.cplett.2011.12.053
10.1021/acs.jctc.7b00099
10.1002/jcc.540130706
10.1021/acs.jctc.6b00205
10.1002/(SICI)1521-3951(200001)217:1<41::AID-PSSB41>3.0.CO;2-V
10.1063/1.1520134
10.1063/1.1670299
10.1103/PhysRevB.81.125328
10.1016/S0009-2614(96)01165-7
10.1088/0034-4885/72/2/026501
10.1016/j.mser.2013.07.001
10.1016/S0009-2614(02)00210-5
10.1021/ct2005209
10.1103/PhysRev.140.A1133
10.1016/j.commatsci.2020.109697
10.1063/1.106972
10.1021/j100161a070
10.1021/jp962071j
10.1002/(SICI)1096-987X(199703)18:4<463::AID-JCC2>3.0.CO;2-R
10.1016/0168-583X(93)96170-H
10.1063/1.447489
10.1016/j.theochem.2004.05.003
10.1021/ct500553x
10.1021/acs.jctc.8b01128
10.1021/jp002747h
10.1021/ct900148e
10.1063/1.1839857
10.1002/jcc.540150303
10.1021/cr200148b
10.1006/jcph.1995.1039
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2020
Copyright_xml – notice: Copyright Royal Society of Chemistry 2020
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1039/d0cp02855j
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef
Materials Research Database

MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1463-9084
EndPage 17998
ExternalDocumentID 10_1039_D0CP02855J
d0cp02855j
GroupedDBID -
0-7
0R
123
1TJ
29O
4.4
53G
70
705
70J
7~J
87K
AAEMU
AAGNR
AAIWI
AANOJ
ABDVN
ABFLS
ABGFH
ABRYZ
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AENEX
AFVBQ
AGKEF
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CKLOX
CS3
D0L
DU5
DZ
EBS
ECGLT
EE0
EF-
F5P
GNO
HZ
H~N
IDZ
J3G
J3I
JG
M4U
N9A
NHB
O9-
OK1
P2P
R7B
R7C
RCNCU
RIG
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SKF
SLH
TN5
TWZ
UCJ
UHB
VH6
WH7
X
YNT
---
-DZ
-~X
0R~
2WC
70~
AAJAE
AAMEH
AAWGC
AAXHV
AAXPP
AAYXX
ABASK
ABEMK
ABJNI
ABPDG
ABXOH
ACGFO
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AGEGJ
AGRSR
AHGCF
AKMSF
ALUYA
ANUXI
APEMP
CITATION
GGIMP
H13
HZ~
R56
RAOCF
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c377t-7e23cf3864fe1ee60c34e8da9a716a729e963b8d8e364483dad573e70d13623f3
ISSN 1463-9076
1463-9084
IngestDate Fri Jul 11 08:17:43 EDT 2025
Mon Jun 30 02:28:45 EDT 2025
Tue Jul 01 00:53:45 EDT 2025
Thu Apr 24 22:53:37 EDT 2025
Wed Nov 11 00:25:30 EST 2020
Sat Jan 08 03:51:50 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 32
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c377t-7e23cf3864fe1ee60c34e8da9a716a729e963b8d8e364483dad573e70d13623f3
Notes z
10.1039/d0cp02855j
vector method in the density-corrected pre-scaled algorithm. See DOI
Electronic supplementary information (ESI) available: Details on the scaling of interactions in the DFTB method, the COMB potential and the CHARMM force field, and the derivation of the
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8486-740X
PQID 2436405838
PQPubID 2047499
PageCount 12
ParticipantIDs crossref_primary_10_1039_D0CP02855J
proquest_miscellaneous_2430377688
proquest_journals_2436405838
crossref_citationtrail_10_1039_D0CP02855J
rsc_primary_d0cp02855j
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200824
PublicationDateYYYYMMDD 2020-08-24
PublicationDate_xml – month: 8
  year: 2020
  text: 20200824
  day: 24
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Physical chemistry chemical physics : PCCP
PublicationYear 2020
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Elstner (D0CP02855J-(cit29)/*[position()=1]) 1998; 58
Senn (D0CP02855J-(cit3)/*[position()=1]) 2009; 48
Zheng (D0CP02855J-(cit6)/*[position()=1]) 2016; 6
Kaduk (D0CP02855J-(cit72)/*[position()=1]) 2012; 112
Kohn (D0CP02855J-(cit50)/*[position()=1]) 1965; 140
Rappé (D0CP02855J-(cit73)/*[position()=1]) 1992; 114
Boereboom (D0CP02855J-(cit10)/*[position()=1]) 2018; 14
Plimpton (D0CP02855J-(cit65)/*[position()=1]) 1995; 117
Duster (D0CP02855J-(cit11)/*[position()=1]) 2016; 577
Kerdcharoen (D0CP02855J-(cit15)/*[position()=1]) 2002; 355
Assfeld (D0CP02855J-(cit48)/*[position()=1]) 1996; 263
Aradi (D0CP02855J-(cit67)/*[position()=1]) 2007; 111
Waller (D0CP02855J-(cit25)/*[position()=1]) 2014; 15
Csányi (D0CP02855J-(cit16)/*[position()=1]) 2004; 93
Yu (D0CP02855J-(cit31)/*[position()=1]) 2007; 75
MacKerell, Jr. (D0CP02855J-(cit34)/*[position()=1]) 1998; 102
Chason (D0CP02855J-(cit57)/*[position()=1]) 1997; 81
Keinonen (D0CP02855J-(cit63)/*[position()=1]) 1992; 60
Maseras (D0CP02855J-(cit38)/*[position()=1]) 1995; 16
Duster (D0CP02855J-(cit12)/*[position()=1]) 2019; 15
Bulo (D0CP02855J-(cit5)/*[position()=1]) 2013; 9
Bulo (D0CP02855J-(cit18)/*[position()=1]) 2009; 5
Lin (D0CP02855J-(cit2)/*[position()=1]) 2007; 117
Zheng (D0CP02855J-(cit26)/*[position()=1]) 2017; 117
Yu (D0CP02855J-(cit75)/*[position()=1]) 2012; 33
Liang (D0CP02855J-(cit33)/*[position()=1]) 2013; 74
Bernstein (D0CP02855J-(cit4)/*[position()=1]) 2009; 72
Race (D0CP02855J-(cit61)/*[position()=1]) 2010; 73
Heyden (D0CP02855J-(cit17)/*[position()=1]) 2007; 111
Wu (D0CP02855J-(cit43)/*[position()=1]) 2019; 15
Pezeshki (D0CP02855J-(cit35)/*[position()=1]) 2011; 7
Das (D0CP02855J-(cit40)/*[position()=1]) 2002; 117
Dumont (D0CP02855J-(cit41)/*[position()=1]) 2004; 680
Chen (D0CP02855J-(cit23)/*[position()=1]) 2019; 354
Watanabe (D0CP02855J-(cit8)/*[position()=1]) 2016; 18
Gordon (D0CP02855J-(cit45)/*[position()=1]) 2001; 105
Kim (D0CP02855J-(cit53)/*[position()=1]) 2014; 140
Borland (D0CP02855J-(cit59)/*[position()=1]) 1993; 36
Watanabe (D0CP02855J-(cit9)/*[position()=1]) 2017; 19
Field (D0CP02855J-(cit37)/*[position()=1]) 1990; 11
Bakowies (D0CP02855J-(cit36)/*[position()=1]) 1996; 100
Boereboom (D0CP02855J-(cit71)/*[position()=1]) 2016; 12
Porezag (D0CP02855J-(cit28)/*[position()=1]) 1995; 51
Pulay (D0CP02855J-(cit56)/*[position()=1]) 2013; 4
Ferenczy (D0CP02855J-(cit46)/*[position()=1]) 1992; 13
Takenaka (D0CP02855J-(cit24)/*[position()=1]) 2012; 524
Shan (D0CP02855J-(cit32)/*[position()=1]) 2010; 81
Watanabe (D0CP02855J-(cit20)/*[position()=1]) 2014; 10
(D0CP02855J-(cit51)/*[position()=1]) 2003
Kim (D0CP02855J-(cit52)/*[position()=1]) 2013; 111
Williams (D0CP02855J-(cit58)/*[position()=1]) 1993; 80–81
Watanabe (D0CP02855J-(cit22)/*[position()=1]) 2018; 23
Duster (D0CP02855J-(cit13)/*[position()=1]) 2019; 15
Pezeshki (D0CP02855J-(cit70)/*[position()=1]) 2014; 10
Frauenheim (D0CP02855J-(cit30)/*[position()=1]) 2000; 217
Lan (D0CP02855J-(cit64)/*[position()=1]) 2020; 179
Svensson (D0CP02855J-(cit39)/*[position()=1]) 1996; 100
Théry (D0CP02855J-(cit47)/*[position()=1]) 1994; 15
Kerdcharoen (D0CP02855J-(cit14)/*[position()=1]) 1996; 211
Field (D0CP02855J-(cit21)/*[position()=1]) 2017; 13
DiLabio (D0CP02855J-(cit44)/*[position()=1]) 2005; 122
Warshel (D0CP02855J-(cit1)/*[position()=1]) 1976; 103
D0CP02855J-(cit66)/*[position()=1]
Handy (D0CP02855J-(cit55)/*[position()=1]) 1984; 81
Nielsen (D0CP02855J-(cit19)/*[position()=1]) 2010; 12
Vanommeslaeghe (D0CP02855J-(cit74)/*[position()=1]) 2010; 31
Duster (D0CP02855J-(cit7)/*[position()=1]) 2017; 7
Wang (D0CP02855J-(cit42)/*[position()=1]) 2010; 6
Glukhova (D0CP02855J-(cit27)/*[position()=1]) 2014; 6
Hohenberg (D0CP02855J-(cit49)/*[position()=1]) 1964; 136
Gerratt (D0CP02855J-(cit54)/*[position()=1]) 1967; 49
Rappé (D0CP02855J-(cit68)/*[position()=1]) 1991; 95
Nordlund (D0CP02855J-(cit60)/*[position()=1]) 1998; 57
Srour (D0CP02855J-(cit62)/*[position()=1])
Eichler (D0CP02855J-(cit69)/*[position()=1]) 1996; 18
References_xml – doi: Srour Palko
– issn: 2003
  publication-title: A primer in density functional theory
– volume: 15
  start-page: 5794
  year: 2019
  ident: D0CP02855J-(cit13)/*[position()=1]
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.9b00649
– volume: 73
  start-page: 116501
  year: 2010
  ident: D0CP02855J-(cit61)/*[position()=1]
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/73/11/116501
– volume: 15
  start-page: 4208
  year: 2019
  ident: D0CP02855J-(cit43)/*[position()=1]
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.9b00274
– volume: 140
  start-page: 18A528
  year: 2014
  ident: D0CP02855J-(cit53)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4869189
– volume: 10
  start-page: 4242
  year: 2014
  ident: D0CP02855J-(cit20)/*[position()=1]
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct5005593
– volume: 136
  start-page: B864
  year: 1964
  ident: D0CP02855J-(cit49)/*[position()=1]
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.136.B864
– volume: 6
  start-page: 256
  year: 2014
  ident: D0CP02855J-(cit27)/*[position()=1]
  publication-title: Procedia Mater. Sci.
  doi: 10.1016/j.mspro.2014.07.032
– volume: 33
  start-page: 2451
  year: 2012
  ident: D0CP02855J-(cit75)/*[position()=1]
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.23067
– volume: 19
  start-page: 17985
  year: 2017
  ident: D0CP02855J-(cit9)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C7CP01708A
– volume: 354
  start-page: 351
  year: 2019
  ident: D0CP02855J-(cit23)/*[position()=1]
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2019.04.020
– volume: 100
  start-page: 10580
  year: 1996
  ident: D0CP02855J-(cit36)/*[position()=1]
  publication-title: J. Phys. Chem.
  doi: 10.1021/jp9536514
– volume: 93
  start-page: 175503
  year: 2004
  ident: D0CP02855J-(cit16)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.93.175503
– volume: 23
  start-page: 1882
  year: 2018
  ident: D0CP02855J-(cit22)/*[position()=1]
  publication-title: Molecules
  doi: 10.3390/molecules23081882
– volume: 9
  start-page: 5567
  year: 2013
  ident: D0CP02855J-(cit5)/*[position()=1]
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct4005596
– volume: 14
  start-page: 1841
  year: 2018
  ident: D0CP02855J-(cit10)/*[position()=1]
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.7b01206
– volume: 16
  start-page: 1170
  year: 1995
  ident: D0CP02855J-(cit38)/*[position()=1]
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.540160911
– volume: 57
  start-page: 7556
  year: 1998
  ident: D0CP02855J-(cit60)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.57.7556
– volume: 15
  start-page: 3218
  year: 2014
  ident: D0CP02855J-(cit25)/*[position()=1]
  publication-title: ChemPhysChem
  doi: 10.1002/cphc.201402105
– volume: 58
  start-page: 7260
  year: 1998
  ident: D0CP02855J-(cit29)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.58.7260
– volume: 102
  start-page: 3586
  year: 1998
  ident: D0CP02855J-(cit34)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp973084f
– volume: 18
  start-page: 7318
  year: 2016
  ident: D0CP02855J-(cit8)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C5CP07136D
– ident: D0CP02855J-(cit62)/*[position()=1]
– ident: D0CP02855J-(cit66)/*[position()=1]
– volume: 117
  start-page: 25336
  year: 2017
  ident: D0CP02855J-(cit26)/*[position()=1]
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/qua.25336
– volume: 114
  start-page: 10024
  year: 1992
  ident: D0CP02855J-(cit73)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00051a040
– volume: 117
  start-page: 185
  year: 2007
  ident: D0CP02855J-(cit2)/*[position()=1]
  publication-title: Theor. Chem. Acc.
  doi: 10.1007/s00214-006-0143-z
– volume: 51
  start-page: 12947
  year: 1995
  ident: D0CP02855J-(cit28)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.51.12947
– volume: 103
  start-page: 227
  year: 1976
  ident: D0CP02855J-(cit1)/*[position()=1]
  publication-title: J. Mol. Biol.
  doi: 10.1016/0022-2836(76)90311-9
– volume: 111
  start-page: 2231
  year: 2007
  ident: D0CP02855J-(cit17)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0673617
– volume: 31
  start-page: 671
  year: 2010
  ident: D0CP02855J-(cit74)/*[position()=1]
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.21367
– volume: 48
  start-page: 1198
  year: 2009
  ident: D0CP02855J-(cit3)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200802019
– volume: 12
  start-page: 12401
  year: 2010
  ident: D0CP02855J-(cit19)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c004111d
– volume: 75
  start-page: 085311
  year: 2007
  ident: D0CP02855J-(cit31)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.75.085311
– volume: 111
  start-page: 5678
  year: 2007
  ident: D0CP02855J-(cit67)/*[position()=1]
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp070186p
– volume: 211
  start-page: 313
  year: 1996
  ident: D0CP02855J-(cit14)/*[position()=1]
  publication-title: Chem. Phys.
  doi: 10.1016/0301-0104(96)00152-8
– volume: 577
  start-page: 341
  year: 2016
  ident: D0CP02855J-(cit11)/*[position()=1]
  publication-title: Methods Enzymol.
  doi: 10.1016/bs.mie.2016.05.019
– volume: 11
  start-page: 700
  year: 1990
  ident: D0CP02855J-(cit37)/*[position()=1]
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.540110605
– volume: 6
  start-page: 359
  year: 2010
  ident: D0CP02855J-(cit42)/*[position()=1]
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct900366m
– volume: 4
  start-page: 169
  year: 2013
  ident: D0CP02855J-(cit56)/*[position()=1]
  publication-title: Wiley Interdiscip. Rev.: Comput. Mol. Sci.
  doi: 10.1002/wcs.1216
– volume: 111
  start-page: 073003
  year: 2013
  ident: D0CP02855J-(cit52)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.111.073003
– volume: 81
  start-page: 6513
  year: 1997
  ident: D0CP02855J-(cit57)/*[position()=1]
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.365193
– volume: 524
  start-page: 56
  year: 2012
  ident: D0CP02855J-(cit24)/*[position()=1]
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2011.12.053
– volume: 13
  start-page: 2342
  year: 2017
  ident: D0CP02855J-(cit21)/*[position()=1]
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.7b00099
– volume: 13
  start-page: 830
  year: 1992
  ident: D0CP02855J-(cit46)/*[position()=1]
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.540130706
– volume: 12
  start-page: 3441
  year: 2016
  ident: D0CP02855J-(cit71)/*[position()=1]
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.6b00205
– volume: 36
  start-page: 28
  year: 1993
  ident: D0CP02855J-(cit59)/*[position()=1]
  publication-title: Solid State Technol.
– volume: 217
  start-page: 41
  year: 2000
  ident: D0CP02855J-(cit30)/*[position()=1]
  publication-title: Phys. Status Solidi B
  doi: 10.1002/(SICI)1521-3951(200001)217:1<41::AID-PSSB41>3.0.CO;2-V
– volume: 117
  start-page: 10534
  year: 2002
  ident: D0CP02855J-(cit40)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1520134
– volume: 49
  start-page: 1719
  year: 1967
  ident: D0CP02855J-(cit54)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1670299
– volume: 81
  start-page: 125328
  year: 2010
  ident: D0CP02855J-(cit32)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.81.125328
– volume: 263
  start-page: 100
  year: 1996
  ident: D0CP02855J-(cit48)/*[position()=1]
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(96)01165-7
– volume: 72
  start-page: 026501
  year: 2009
  ident: D0CP02855J-(cit4)/*[position()=1]
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/72/2/026501
– volume: 74
  start-page: 255
  year: 2013
  ident: D0CP02855J-(cit33)/*[position()=1]
  publication-title: Mater. Sci. Eng., R
  doi: 10.1016/j.mser.2013.07.001
– volume: 355
  start-page: 257
  year: 2002
  ident: D0CP02855J-(cit15)/*[position()=1]
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(02)00210-5
– volume: 7
  start-page: 3625
  year: 2011
  ident: D0CP02855J-(cit35)/*[position()=1]
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct2005209
– volume: 140
  start-page: A1133
  year: 1965
  ident: D0CP02855J-(cit50)/*[position()=1]
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.140.A1133
– volume: 6
  start-page: 369
  year: 2016
  ident: D0CP02855J-(cit6)/*[position()=1]
  publication-title: Wiley Interdiscip. Rev.: Comput. Mol. Sci.
– volume: 179
  start-page: 109697
  year: 2020
  ident: D0CP02855J-(cit64)/*[position()=1]
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2020.109697
– volume: 60
  start-page: 628
  year: 1992
  ident: D0CP02855J-(cit63)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.106972
– volume: 95
  start-page: 3358
  year: 1991
  ident: D0CP02855J-(cit68)/*[position()=1]
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100161a070
– volume: 100
  start-page: 19357
  year: 1996
  ident: D0CP02855J-(cit39)/*[position()=1]
  publication-title: J. Phys. Chem.
  doi: 10.1021/jp962071j
– volume: 18
  start-page: 463
  year: 1996
  ident: D0CP02855J-(cit69)/*[position()=1]
  publication-title: J. Comput. Chem.
  doi: 10.1002/(SICI)1096-987X(199703)18:4<463::AID-JCC2>3.0.CO;2-R
– volume: 80–81
  start-page: 507
  year: 1993
  ident: D0CP02855J-(cit58)/*[position()=1]
  publication-title: Nucl. Instrum. Methods Phys. Res., Sect. B
  doi: 10.1016/0168-583X(93)96170-H
– volume: 81
  start-page: 5031
  year: 1984
  ident: D0CP02855J-(cit55)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.447489
– volume: 680
  start-page: 99
  year: 2004
  ident: D0CP02855J-(cit41)/*[position()=1]
  publication-title: THEOCHEM
  doi: 10.1016/j.theochem.2004.05.003
– volume-title: A primer in density functional theory
  year: 2003
  ident: D0CP02855J-(cit51)/*[position()=1]
– volume: 10
  start-page: 4765
  year: 2014
  ident: D0CP02855J-(cit70)/*[position()=1]
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct500553x
– volume: 15
  start-page: 892
  year: 2019
  ident: D0CP02855J-(cit12)/*[position()=1]
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.8b01128
– volume: 105
  start-page: 293
  year: 2001
  ident: D0CP02855J-(cit45)/*[position()=1]
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp002747h
– volume: 7
  start-page: e1310
  year: 2017
  ident: D0CP02855J-(cit7)/*[position()=1]
  publication-title: Wiley Interdiscip. Rev.: Comput. Mol. Sci.
– volume: 5
  start-page: 2212
  year: 2009
  ident: D0CP02855J-(cit18)/*[position()=1]
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct900148e
– volume: 122
  start-page: 044708
  year: 2005
  ident: D0CP02855J-(cit44)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1839857
– volume: 15
  start-page: 269
  year: 1994
  ident: D0CP02855J-(cit47)/*[position()=1]
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.540150303
– volume: 112
  start-page: 321
  year: 2012
  ident: D0CP02855J-(cit72)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr200148b
– volume: 117
  start-page: 1
  year: 1995
  ident: D0CP02855J-(cit65)/*[position()=1]
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1995.1039
SSID ssj0001513
Score 2.3805878
Snippet Quantum mechanics/molecular mechanics (QM/MM) is the method of choice for atomistic simulations of large systems that can be partitioned into active and...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 17987
SubjectTerms Adaptive systems
Algorithms
Buffers
Charge density
Computer simulation
Covalence
Covalent bonds
Fragments
Mathematical analysis
Methods
Partitioning
Potential energy
Quantum mechanics
Wave functions
Title Extending scaled-interaction adaptive-partitioning QM/MM to covalently bonded systems
URI https://www.proquest.com/docview/2436405838
https://www.proquest.com/docview/2430377688
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbo9gAXxKti24KC4IKQaRI7r2MVFpWKoK20KxUukWM7BVQl0W72UH4949hOAs2hcIkiP2LH32Q8M87MIPTGA82EJx7HAQtVCrMkwAUNA8ypW9ASOrmB8kbOvoRna3p-GVwO6a0675K2eM9_TfqV_A-qUAa4Ki_Zf0C2fygUwD3gC1dAGK53wnjRWbA7iwAstRRYBX_Y2OzfgjWKl-FG9bR214sMhssyJXLyGuYCe871zbuiVoZwE9Z5OxZYlxZHbjPD6TtVpK0i286qsEzT3lPsq7FBf5PVFf6--zG2LPjdf23aodkwQxoSDMqzCVU9LtNp3SwH9f0RpRhzpeaHKhxaNNpcVfy5eJJzu0QFPv3gpkuQeILgfNif7Jn8X9tW_zNhd4xOknzou4f2fdAa_BnaP12sPn3ut2YQb4h2N9MvZuPVkuRk6P2nhDKoHXsbmxOmkz1Wj9BDozQ4p5oCHqN7snqC7qcWkado3VOCc5sSnElKcC6ykyxz2toZ6MDRdOAYOniG1h8Xq_QMm4QZmJMoanEkfcJLEoe0lJ6UocsJlbFgCQOtmIEaJYHdFrGIJVFqORFMBBGRkSs8kGNISQ7QrKor-Rw51JcgLEYeBU5Do8RjiUuELxhnUJEE8Ry9tYuUcxNNXiU1uc5vwzFHr_u2jY6hMtnq2K51br6xbe5TmKmrjvbn6FVfDYurjrVYJetd18aF1w9jaHMAGPVjCJc33bN_ztHhdEXeiPLwTtM7Qg-Gb-QYzdrNTr4AebQtXhoq-w3EtYmV
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extending+scaled-interaction+adaptive-partitioning+QM%2FMM+to+covalently+bonded+systems&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Yang%2C+Zeng-hui&rft.date=2020-08-24&rft.issn=1463-9076&rft.eissn=1463-9084&rft.volume=22&rft.issue=32&rft.spage=17987&rft.epage=17998&rft_id=info:doi/10.1039%2FD0CP02855J&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D0CP02855J
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon