Catalytic upgrading of bio-oil in hydrothermal liquefaction of algae major model components over liquid acids
•Liquid acid prevent detrimental effect of Maillard reaction on bio-oil formation.•H/C ratio and HHVs of bio-oils increase greatly in the presence of acids.•Light component proportion of bio-oils from algal major components is raised by acids. We selected acetic acid and sulfuric acid as liquid acid...
Saved in:
Published in | Energy conversion and management Vol. 154; pp. 336 - 343 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
15.12.2017
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Liquid acid prevent detrimental effect of Maillard reaction on bio-oil formation.•H/C ratio and HHVs of bio-oils increase greatly in the presence of acids.•Light component proportion of bio-oils from algal major components is raised by acids.
We selected acetic acid and sulfuric acid as liquid acid catalysts to investigate their performance on hydrothermal liquefaction (HTL) of algae major model components, including polysaccharides, proteins, lipids, and polysaccharides-proteins mixture. The aim of this study was to understand the catalytic effects of liquid acid catalysts as well as the formation process mechanisms and properties of the bio-oils from HTL of algae. We also used the two acids in HTL process of Chlorella vulgaris to estimate their catalytic performances in algae and compare this performance with the results from HTL of model components. Product distributions from different catalytic conditions were compared with blank results. Bio-oils were analyzed by elemental analysis, gas chromatography-mass spectrometry (GC–MS), and thermal gravimetric analysis (TGA). The results showed that the addition of acetic acid or sulfuric acid had no positive effect on the enhancement of bio-oil yield from HTL of individual algae major model components; however, the use of liquid acid catalysts could prevent the detrimental effect of interaction between polysaccharides and proteins on bio-oil yield. H/C ratios and higher heating values (HHVs) of bio-oils obtained from HTL of algae major model components increased significantly in the presence of acid catalysts. Sulfuric acid favored the oxygen removal process, and acetic acid reduced the nitrogen content in bio-oil from HTL of proteins. GC–MS results showed that bio-oil composition was greatly altered when adding acids. The light component proportion of catalytic upgraded bio-oils was significantly higher than that of bio-oils obtained with no catalyst. The results of HTL of Chlorella vulgaris with acid catalysts indicate that both acids favor to the hydrolysis of cellulose; therefore, the use of acid catalysts could accelerate the formation of bio-oil from cellular components. The difference between the HTL of algae major model components and real algae using acid catalysts was probably due to the complexity of algae structure. |
---|---|
AbstractList | •Liquid acid prevent detrimental effect of Maillard reaction on bio-oil formation.•H/C ratio and HHVs of bio-oils increase greatly in the presence of acids.•Light component proportion of bio-oils from algal major components is raised by acids.
We selected acetic acid and sulfuric acid as liquid acid catalysts to investigate their performance on hydrothermal liquefaction (HTL) of algae major model components, including polysaccharides, proteins, lipids, and polysaccharides-proteins mixture. The aim of this study was to understand the catalytic effects of liquid acid catalysts as well as the formation process mechanisms and properties of the bio-oils from HTL of algae. We also used the two acids in HTL process of Chlorella vulgaris to estimate their catalytic performances in algae and compare this performance with the results from HTL of model components. Product distributions from different catalytic conditions were compared with blank results. Bio-oils were analyzed by elemental analysis, gas chromatography-mass spectrometry (GC–MS), and thermal gravimetric analysis (TGA). The results showed that the addition of acetic acid or sulfuric acid had no positive effect on the enhancement of bio-oil yield from HTL of individual algae major model components; however, the use of liquid acid catalysts could prevent the detrimental effect of interaction between polysaccharides and proteins on bio-oil yield. H/C ratios and higher heating values (HHVs) of bio-oils obtained from HTL of algae major model components increased significantly in the presence of acid catalysts. Sulfuric acid favored the oxygen removal process, and acetic acid reduced the nitrogen content in bio-oil from HTL of proteins. GC–MS results showed that bio-oil composition was greatly altered when adding acids. The light component proportion of catalytic upgraded bio-oils was significantly higher than that of bio-oils obtained with no catalyst. The results of HTL of Chlorella vulgaris with acid catalysts indicate that both acids favor to the hydrolysis of cellulose; therefore, the use of acid catalysts could accelerate the formation of bio-oil from cellular components. The difference between the HTL of algae major model components and real algae using acid catalysts was probably due to the complexity of algae structure. We selected acetic acid and sulfuric acid as liquid acid catalysts to investigate their performance on hydrothermal liquefaction (HTL) of algae major model components, including polysaccharides, proteins, lipids, and polysaccharides-proteins mixture. The aim of this study was to understand the catalytic effects of liquid acid catalysts as well as the formation process mechanisms and properties of the bio-oils from HTL of algae. We also used the two acids in HTL process of Chlorella vulgaris to estimate their catalytic performances in algae and compare this performance with the results from HTL of model components. Product distributions from different catalytic conditions were compared with blank results. Bio-oils were analyzed by elemental analysis, gas chromatography-mass spectrometry (GC–MS), and thermal gravimetric analysis (TGA). The results showed that the addition of acetic acid or sulfuric acid had no positive effect on the enhancement of bio-oil yield from HTL of individual algae major model components; however, the use of liquid acid catalysts could prevent the detrimental effect of interaction between polysaccharides and proteins on bio-oil yield. H/C ratios and higher heating values (HHVs) of bio-oils obtained from HTL of algae major model components increased significantly in the presence of acid catalysts. Sulfuric acid favored the oxygen removal process, and acetic acid reduced the nitrogen content in bio-oil from HTL of proteins. GC–MS results showed that bio-oil composition was greatly altered when adding acids. The light component proportion of catalytic upgraded bio-oils was significantly higher than that of bio-oils obtained with no catalyst. The results of HTL of Chlorella vulgaris with acid catalysts indicate that both acids favor to the hydrolysis of cellulose; therefore, the use of acid catalysts could accelerate the formation of bio-oil from cellular components. The difference between the HTL of algae major model components and real algae using acid catalysts was probably due to the complexity of algae structure. |
Author | Zhang, Dahai Li, Xianguo Feng, Lijuan Yang, Wenchao |
Author_xml | – sequence: 1 givenname: Wenchao orcidid: 0000-0002-7327-4753 surname: Yang fullname: Yang, Wenchao email: wenchaoaiparents@163.com organization: Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Songling Road 238, Qingdao 266100, China – sequence: 2 givenname: Xianguo surname: Li fullname: Li, Xianguo organization: Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Songling Road 238, Qingdao 266100, China – sequence: 3 givenname: Dahai surname: Zhang fullname: Zhang, Dahai organization: Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Songling Road 238, Qingdao 266100, China – sequence: 4 givenname: Lijuan surname: Feng fullname: Feng, Lijuan email: fenglj@ouc.edu.cn organization: Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Songling Road 238, Qingdao 266100, China |
BookMark | eNqFkMFu2zAQRIkgBeIk_YWAQM9Sd0WFlG4tjDYJYCCX5EysScqhIJEuKQfw35eO23NOe5mZnXnX7DLE4Bi7Q6gRUH4faxdMDDOFugFUNWIN2F2wFXaqr5qmUZdsBdjLquuhvWLXOY8AIO5Brti8poWm4-INP-x3iawPOx4HvvWxin7iPvC3o01xeXNppolP_s_BDWQWH8NJR9OOHJ9pjInP0bqJmzjvS8GwZB7fXfpweMvJeJtv2ZeBpuy-_rs37PX3r5f1Y7V5fnha_9xURii1VMr0ZLfCSNMKZW1Lre0lGiNQoLFUdqlOAYkOcOsACAeSJKRsDJHtByNu2Ldz7j7F0jcveoyHFMpL3UArQeC9UkUlzyqTYs7JDXqf_EzpqBH0Ca0e9X-0-oRWI-qCthh_nI2ubHj3LulsfFE665Mzi7bRfxbxF25_ibo |
CitedBy_id | crossref_primary_10_1016_j_cej_2023_148116 crossref_primary_10_1039_D1GC00845E crossref_primary_10_3390_su14010499 crossref_primary_10_1016_j_biteb_2023_101626 crossref_primary_10_1039_D1GC02505H crossref_primary_10_1007_s13399_023_05011_0 crossref_primary_10_12677_JOCR_2019_72007 crossref_primary_10_1016_j_enconman_2020_113186 crossref_primary_10_1016_j_enconman_2018_02_078 crossref_primary_10_1016_j_biortech_2018_12_081 crossref_primary_10_1039_D0RE00084A crossref_primary_10_3390_catal8120637 crossref_primary_10_1016_j_rser_2019_109548 crossref_primary_10_3390_catal10020145 crossref_primary_10_1016_j_enconman_2023_117392 crossref_primary_10_1016_j_rser_2019_109266 crossref_primary_10_1007_s12155_020_10155_2 crossref_primary_10_1039_D0GC02893B crossref_primary_10_1007_s11802_022_5124_x crossref_primary_10_1016_j_seta_2022_102991 crossref_primary_10_1016_j_envpol_2022_119556 crossref_primary_10_1021_acs_iecr_1c00913 crossref_primary_10_1007_s13399_019_00371_y crossref_primary_10_1016_j_scitotenv_2022_156144 crossref_primary_10_3390_su15086698 crossref_primary_10_1016_j_biombioe_2020_105510 crossref_primary_10_1016_j_cej_2022_140588 crossref_primary_10_1021_acs_energyfuels_0c01618 crossref_primary_10_1016_j_cej_2020_126030 crossref_primary_10_1021_acs_energyfuels_3c00297 crossref_primary_10_1016_j_jaap_2022_105514 crossref_primary_10_1021_acs_iecr_1c04039 |
Cites_doi | 10.1016/j.carres.2006.10.011 10.1016/j.biortech.2010.06.140 10.1016/j.algal.2015.11.009 10.1016/j.enconman.2016.10.034 10.1021/ef501760d 10.1021/ef9000105 10.1021/ie051088y 10.1016/j.biortech.2010.12.113 10.1016/j.enconman.2016.11.006 10.1016/j.enconman.2014.08.004 10.1016/j.fuel.2010.01.025 10.1016/j.biortech.2015.07.020 10.1016/j.fuel.2015.08.055 10.1021/acs.energyfuels.5b00321 10.1016/j.apenergy.2015.07.020 10.1016/j.rser.2015.12.342 10.1039/c0ee00343c 10.1016/j.apenergy.2011.10.041 10.3390/en8076765 10.1016/j.enconman.2017.07.060 10.1021/ef4022015 10.1080/15567036.2012.716140 10.1016/j.rser.2015.04.049 10.1126/science.1224310 10.1016/j.apenergy.2012.03.056 10.1021/ie030079r |
ContentType | Journal Article |
Copyright | 2017 Copyright Elsevier Science Ltd. Dec 15, 2017 |
Copyright_xml | – notice: 2017 – notice: Copyright Elsevier Science Ltd. Dec 15, 2017 |
DBID | AAYXX CITATION 7ST 7TB 8FD C1K FR3 H8D KR7 L7M SOI |
DOI | 10.1016/j.enconman.2017.11.018 |
DatabaseName | CrossRef Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-2227 |
EndPage | 343 |
ExternalDocumentID | 10_1016_j_enconman_2017_11_018 S0196890417310634 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFNM ABFRF ABJNI ABMAC ABYKQ ACBEA ACDAQ ACGFO ACGFS ACIWK ACNCT ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SSR SST SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ 8WZ A6W AAHBH AAQXK AAXKI AAYXX ABXDB ACNNM ADMUD AFFNX AFJKZ AKRWK ASPBG AVWKF AZFZN CITATION FEDTE FGOYB G-2 G8K HVGLF HZ~ H~9 R2- SAC SEW WUQ 7ST 7TB 8FD C1K FR3 H8D KR7 L7M SOI |
ID | FETCH-LOGICAL-c377t-7c9adb3c6c437dd4a4d961cc3131cda1877870a3801be00a1fa6a3662caad9fc3 |
IEDL.DBID | .~1 |
ISSN | 0196-8904 |
IngestDate | Thu Oct 10 16:43:38 EDT 2024 Thu Sep 26 16:54:29 EDT 2024 Fri Feb 23 02:33:03 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Algae major model components Acid catalyst Upgrading Hydrothermal liquefaction Bio-oil |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c377t-7c9adb3c6c437dd4a4d961cc3131cda1877870a3801be00a1fa6a3662caad9fc3 |
ORCID | 0000-0002-7327-4753 |
PQID | 2046031577 |
PQPubID | 2047472 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2046031577 crossref_primary_10_1016_j_enconman_2017_11_018 elsevier_sciencedirect_doi_10_1016_j_enconman_2017_11_018 |
PublicationCentury | 2000 |
PublicationDate | 2017-12-15 |
PublicationDateYYYYMMDD | 2017-12-15 |
PublicationDate_xml | – month: 12 year: 2017 text: 2017-12-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Energy conversion and management |
PublicationYear | 2017 |
Publisher | Elsevier Ltd Elsevier Science Ltd |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science Ltd |
References | Corbitt RA. Standard handbook of environmental engineering, New York; 1999. Biller, Riley, Ross (b0065) 2011; 102 Xu, Hu, Yu, Wang, Cui (b0045) 2016; 38 Yin, Tan (b0075) 2012; 92 Guo, Yeh, Song, Xu, Wang (b0005) 2015; 48 Duan, Savage (b0125) 2011; 4 Yuan, Cheng, Leitch, Xu (b0135) 2010; 101 Yu, Show, Ong, Ling, Lan John, Chen (b0085) 2017; 150 Wang, Tang, Yang (b0010) 2017; 140 Nazari, Yuan, Souzanchi, Ray, Xu (b0140) 2015; 162 Saber, Nakhshiniev, Yoshikawa (b0020) 2016; 58 Yang, Li, Liu, Feng (b0110) 2014; 87 Yoo, Park, Yang, Choi (b0095) 2015; 156 Yang, Li, Liu, Feng (b0040) 2014; 87 Zou, Wu, Yang, Li, Tong (b0035) 2009; 23 Ramirez, Brown, Rainey (b0105) 2015; 8 Díaz-Vázquez LM, Rojas-Pérez A, Fuentes-Caraballo M. Demineralization of Sargassum spp. macroalgae biomass: selective hydrothermal liquefaction process for bio-oil production. Front Energy Res 2015;3(6):1–10. Zheng, Schideman, Tommaso, Chen, Zhou, Nair (b0080) 2017; 141 Savage (b0055) 2012; 338 Wang, Guo, Li, Yang (b0130) 2017; 132 Sinag, Kruse, Schwarzkopf (b0120) 2003; 42 Jena, Das, Kastner (b0030) 2012; 98 Teri, Luo, Savage (b0145) 2014; 28 Costanzo, Hilten, Jena, Das, Kastner (b0015) 2016; 13 Ross, Biller, Kubacki, Li, Lea-Langton, Jones (b0025) 2010; 89 Asghari, Yoshida (b0050) 2006; 45 Bai, Brown, Fu, Shanks, Kieffer (b0115) 2014; 28 Watanabe, Bayer, Kruse (b0060) 2006; 341 Luo, Dai, Savage (b0100) 2015; 29 Yang, Li, Li, Tong, Feng (b0090) 2015; 196 Nazari (10.1016/j.enconman.2017.11.018_b0140) 2015; 162 Guo (10.1016/j.enconman.2017.11.018_b0005) 2015; 48 Ross (10.1016/j.enconman.2017.11.018_b0025) 2010; 89 Wang (10.1016/j.enconman.2017.11.018_b0010) 2017; 140 Zheng (10.1016/j.enconman.2017.11.018_b0080) 2017; 141 Biller (10.1016/j.enconman.2017.11.018_b0065) 2011; 102 Bai (10.1016/j.enconman.2017.11.018_b0115) 2014; 28 Saber (10.1016/j.enconman.2017.11.018_b0020) 2016; 58 Xu (10.1016/j.enconman.2017.11.018_b0045) 2016; 38 10.1016/j.enconman.2017.11.018_b0070 Yuan (10.1016/j.enconman.2017.11.018_b0135) 2010; 101 Yang (10.1016/j.enconman.2017.11.018_b0040) 2014; 87 10.1016/j.enconman.2017.11.018_b0150 Yu (10.1016/j.enconman.2017.11.018_b0085) 2017; 150 Sinag (10.1016/j.enconman.2017.11.018_b0120) 2003; 42 Yoo (10.1016/j.enconman.2017.11.018_b0095) 2015; 156 Watanabe (10.1016/j.enconman.2017.11.018_b0060) 2006; 341 Yang (10.1016/j.enconman.2017.11.018_b0110) 2014; 87 Jena (10.1016/j.enconman.2017.11.018_b0030) 2012; 98 Costanzo (10.1016/j.enconman.2017.11.018_b0015) 2016; 13 Wang (10.1016/j.enconman.2017.11.018_b0130) 2017; 132 Asghari (10.1016/j.enconman.2017.11.018_b0050) 2006; 45 Yang (10.1016/j.enconman.2017.11.018_b0090) 2015; 196 Ramirez (10.1016/j.enconman.2017.11.018_b0105) 2015; 8 Yin (10.1016/j.enconman.2017.11.018_b0075) 2012; 92 Teri (10.1016/j.enconman.2017.11.018_b0145) 2014; 28 Duan (10.1016/j.enconman.2017.11.018_b0125) 2011; 4 Zou (10.1016/j.enconman.2017.11.018_b0035) 2009; 23 Savage (10.1016/j.enconman.2017.11.018_b0055) 2012; 338 Luo (10.1016/j.enconman.2017.11.018_b0100) 2015; 29 |
References_xml | – volume: 13 start-page: 53 year: 2016 end-page: 68 ident: b0015 article-title: Effect of low temperature hydrothermal liquefaction on catalytic hydrodenitrogenation of algae biocrude and model macromolecules publication-title: Algal Res contributor: fullname: Kastner – volume: 28 start-page: 1111 year: 2014 end-page: 1120 ident: b0115 article-title: The influence of alkali and alkaline earth metals and the role of acid pretreatments in production of sugars from switchgrass based on solvent liquefaction publication-title: Energy Fuel contributor: fullname: Kieffer – volume: 48 start-page: 776 year: 2015 end-page: 790 ident: b0005 article-title: A review of bio-oil production from hydrothermal liquefaction of algae publication-title: Renew Sust Energy Rev contributor: fullname: Wang – volume: 338 start-page: 1039 year: 2012 end-page: 1040 ident: b0055 article-title: Algae under pressure and in hot water publication-title: Science contributor: fullname: Savage – volume: 141 start-page: 420 year: 2017 end-page: 428 ident: b0080 article-title: Anaerobic digestion of wastewater generated from the hydrothermal liquefaction of Spirulina: toxicity assessment and minimization publication-title: Energy Convers Manage contributor: fullname: Nair – volume: 162 start-page: 74 year: 2015 end-page: 83 ident: b0140 article-title: Hydrothermal liquefaction of woody biomass in hot-compressed water: catalyst screening and comprehensive characterization of bio-crude oils publication-title: Fuel contributor: fullname: Xu – volume: 28 start-page: 7501 year: 2014 end-page: 7509 ident: b0145 article-title: Hydrothermal treatment of protein, polysaccharide, and lipids alone and in mixtures publication-title: Energy Fuel contributor: fullname: Savage – volume: 196 start-page: 99 year: 2015 end-page: 108 ident: b0090 article-title: Understanding low-lipid algae hydrothermal liquefaction characteristics and pathways through hydrothermal liquefaction of algal major components: crude polysaccharides, crude proteins and their binary mixtures publication-title: Bioresour Technol contributor: fullname: Feng – volume: 156 start-page: 354 year: 2015 end-page: 361 ident: b0095 article-title: Lipid content in microalgae determines the quality of biocrude and energy return on investment of hydrothermal liquefaction publication-title: Appl Energy contributor: fullname: Choi – volume: 87 start-page: 938 year: 2014 end-page: 945 ident: b0110 article-title: Direct hydrothermal liquefaction of undried macroalgae publication-title: Energy Convers Manage contributor: fullname: Feng – volume: 89 start-page: 2234 year: 2010 end-page: 2243 ident: b0025 article-title: Hydrothermal processing of microalgae using alkali and organic acids publication-title: Fuel contributor: fullname: Jones – volume: 98 start-page: 368 year: 2012 end-page: 375 ident: b0030 article-title: Comparison of the effects of Na publication-title: Appl Energy contributor: fullname: Kastner – volume: 140 start-page: 203 year: 2017 end-page: 210 ident: b0010 article-title: Pyrolysis mechanism of microalgae Nannochloropsis sp. based on model compounds and their interaction. Energy Convers publication-title: Manage contributor: fullname: Yang – volume: 102 start-page: 4841 year: 2011 end-page: 4848 ident: b0065 article-title: Catalytic hydrothermal processing of microalgae: decomposition and upgrading of lipids publication-title: Bioresour Technol contributor: fullname: Ross – volume: 42 start-page: 3516 year: 2003 end-page: 3521 ident: b0120 article-title: Key compounds of the hydropyrolysis of glucose in supercritical water in the presence of K publication-title: Ind Eng Chem Res contributor: fullname: Schwarzkopf – volume: 58 start-page: 918 year: 2016 end-page: 930 ident: b0020 article-title: A review of production and upgrading of algal bio-oil publication-title: Renew Sust Energy Rev contributor: fullname: Yoshikawa – volume: 92 start-page: 234 year: 2012 end-page: 239 ident: b0075 article-title: Hydrothermal liquefaction of cellulose to bio-oil under acidic, neutral and alkaline conditions publication-title: Appl Energy contributor: fullname: Tan – volume: 29 start-page: 3208 year: 2015 end-page: 3214 ident: b0100 article-title: Catalytic hydrothermal liquefaction of soy protein concentrate publication-title: Energy Fuel contributor: fullname: Savage – volume: 150 start-page: 1 year: 2017 end-page: 13 ident: b0085 article-title: Microalgae from wastewater treatment to biochar-Feedstock preparation and conversion technologies publication-title: Energy Convers Manage contributor: fullname: Chen – volume: 101 start-page: 9308 year: 2010 end-page: 9313 ident: b0135 article-title: Hydrolytic degradation of alkaline lignin in hot-compressed water and ethanol publication-title: Bioresour Technol contributor: fullname: Xu – volume: 132 start-page: 161 year: 2017 end-page: 171 ident: b0130 article-title: Effect of pretreatment on microalgae pyrolysis: kinetics, biocrude yield and quality, and life cycle assessment publication-title: Energy Convers Manage contributor: fullname: Yang – volume: 87 start-page: 938 year: 2014 end-page: 945 ident: b0040 article-title: Direct hydrothermal liquefaction of undried macroalgae Enteromorpha prolifera using acid catalysts publication-title: Energy Convers Manage contributor: fullname: Feng – volume: 4 start-page: 1447 year: 2011 end-page: 1456 ident: b0125 article-title: Catalytic treatment of crude algal bio-oil in supercritical water: optimization studies publication-title: Energy Environ Sci contributor: fullname: Savage – volume: 8 start-page: 6765 year: 2015 end-page: 6794 ident: b0105 article-title: A review of hydrothermal liquefaction bio-crude properties and prospects for upgrading to transportation fuels publication-title: Energies contributor: fullname: Rainey – volume: 341 start-page: 2891 year: 2006 end-page: 2900 ident: b0060 article-title: Oil formation from glucose with formic acid and cobalt catalyst in hot-compressed water publication-title: Carbohydr Res contributor: fullname: Kruse – volume: 23 start-page: 3753 year: 2009 end-page: 3758 ident: b0035 article-title: Thermochemical catalytic liquefaction of the marine microalgae Dunaliella tertiolecta and characterization of bio-oils publication-title: Energy Fuels contributor: fullname: Tong – volume: 38 start-page: 1478 year: 2016 end-page: 1484 ident: b0045 article-title: Hydrothermal catalytic liquefaction mechanisms of algal biomass to bio-oil publication-title: Energy Source Part A contributor: fullname: Cui – volume: 45 start-page: 2163 year: 2006 end-page: 2173 ident: b0050 article-title: Acid-catalyzed production of 5-hydroxymethyl furfural from D-fructose in subcritical water publication-title: Ind Eng Chem Res contributor: fullname: Yoshida – volume: 341 start-page: 2891 issue: 18 year: 2006 ident: 10.1016/j.enconman.2017.11.018_b0060 article-title: Oil formation from glucose with formic acid and cobalt catalyst in hot-compressed water publication-title: Carbohydr Res doi: 10.1016/j.carres.2006.10.011 contributor: fullname: Watanabe – volume: 101 start-page: 9308 issue: 23 year: 2010 ident: 10.1016/j.enconman.2017.11.018_b0135 article-title: Hydrolytic degradation of alkaline lignin in hot-compressed water and ethanol publication-title: Bioresour Technol doi: 10.1016/j.biortech.2010.06.140 contributor: fullname: Yuan – volume: 13 start-page: 53 year: 2016 ident: 10.1016/j.enconman.2017.11.018_b0015 article-title: Effect of low temperature hydrothermal liquefaction on catalytic hydrodenitrogenation of algae biocrude and model macromolecules publication-title: Algal Res doi: 10.1016/j.algal.2015.11.009 contributor: fullname: Costanzo – volume: 141 start-page: 420 issue: 1 year: 2017 ident: 10.1016/j.enconman.2017.11.018_b0080 article-title: Anaerobic digestion of wastewater generated from the hydrothermal liquefaction of Spirulina: toxicity assessment and minimization publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2016.10.034 contributor: fullname: Zheng – volume: 28 start-page: 7501 issue: 12 year: 2014 ident: 10.1016/j.enconman.2017.11.018_b0145 article-title: Hydrothermal treatment of protein, polysaccharide, and lipids alone and in mixtures publication-title: Energy Fuel doi: 10.1021/ef501760d contributor: fullname: Teri – volume: 23 start-page: 3753 issue: 7 year: 2009 ident: 10.1016/j.enconman.2017.11.018_b0035 article-title: Thermochemical catalytic liquefaction of the marine microalgae Dunaliella tertiolecta and characterization of bio-oils publication-title: Energy Fuels doi: 10.1021/ef9000105 contributor: fullname: Zou – volume: 45 start-page: 2163 issue: 7 year: 2006 ident: 10.1016/j.enconman.2017.11.018_b0050 article-title: Acid-catalyzed production of 5-hydroxymethyl furfural from D-fructose in subcritical water publication-title: Ind Eng Chem Res doi: 10.1021/ie051088y contributor: fullname: Asghari – volume: 102 start-page: 4841 issue: 7 year: 2011 ident: 10.1016/j.enconman.2017.11.018_b0065 article-title: Catalytic hydrothermal processing of microalgae: decomposition and upgrading of lipids publication-title: Bioresour Technol doi: 10.1016/j.biortech.2010.12.113 contributor: fullname: Biller – volume: 132 start-page: 161 issue: 15 year: 2017 ident: 10.1016/j.enconman.2017.11.018_b0130 article-title: Effect of pretreatment on microalgae pyrolysis: kinetics, biocrude yield and quality, and life cycle assessment publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2016.11.006 contributor: fullname: Wang – ident: 10.1016/j.enconman.2017.11.018_b0150 – volume: 87 start-page: 938 year: 2014 ident: 10.1016/j.enconman.2017.11.018_b0110 article-title: Direct hydrothermal liquefaction of undried macroalgae Enteromorpha prolifera using acid catalysts publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2014.08.004 contributor: fullname: Yang – volume: 89 start-page: 2234 issue: 9 year: 2010 ident: 10.1016/j.enconman.2017.11.018_b0025 article-title: Hydrothermal processing of microalgae using alkali and organic acids publication-title: Fuel doi: 10.1016/j.fuel.2010.01.025 contributor: fullname: Ross – volume: 196 start-page: 99 year: 2015 ident: 10.1016/j.enconman.2017.11.018_b0090 article-title: Understanding low-lipid algae hydrothermal liquefaction characteristics and pathways through hydrothermal liquefaction of algal major components: crude polysaccharides, crude proteins and their binary mixtures publication-title: Bioresour Technol doi: 10.1016/j.biortech.2015.07.020 contributor: fullname: Yang – volume: 162 start-page: 74 issue: 15 year: 2015 ident: 10.1016/j.enconman.2017.11.018_b0140 article-title: Hydrothermal liquefaction of woody biomass in hot-compressed water: catalyst screening and comprehensive characterization of bio-crude oils publication-title: Fuel doi: 10.1016/j.fuel.2015.08.055 contributor: fullname: Nazari – volume: 29 start-page: 3208 issue: 5 year: 2015 ident: 10.1016/j.enconman.2017.11.018_b0100 article-title: Catalytic hydrothermal liquefaction of soy protein concentrate publication-title: Energy Fuel doi: 10.1021/acs.energyfuels.5b00321 contributor: fullname: Luo – volume: 87 start-page: 938 year: 2014 ident: 10.1016/j.enconman.2017.11.018_b0040 article-title: Direct hydrothermal liquefaction of undried macroalgae Enteromorpha prolifera using acid catalysts publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2014.08.004 contributor: fullname: Yang – volume: 156 start-page: 354 issue: 15 year: 2015 ident: 10.1016/j.enconman.2017.11.018_b0095 article-title: Lipid content in microalgae determines the quality of biocrude and energy return on investment of hydrothermal liquefaction publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.07.020 contributor: fullname: Yoo – volume: 58 start-page: 918 year: 2016 ident: 10.1016/j.enconman.2017.11.018_b0020 article-title: A review of production and upgrading of algal bio-oil publication-title: Renew Sust Energy Rev doi: 10.1016/j.rser.2015.12.342 contributor: fullname: Saber – volume: 4 start-page: 1447 issue: 4 year: 2011 ident: 10.1016/j.enconman.2017.11.018_b0125 article-title: Catalytic treatment of crude algal bio-oil in supercritical water: optimization studies publication-title: Energy Environ Sci doi: 10.1039/c0ee00343c contributor: fullname: Duan – ident: 10.1016/j.enconman.2017.11.018_b0070 – volume: 92 start-page: 234 year: 2012 ident: 10.1016/j.enconman.2017.11.018_b0075 article-title: Hydrothermal liquefaction of cellulose to bio-oil under acidic, neutral and alkaline conditions publication-title: Appl Energy doi: 10.1016/j.apenergy.2011.10.041 contributor: fullname: Yin – volume: 8 start-page: 6765 issue: 7 year: 2015 ident: 10.1016/j.enconman.2017.11.018_b0105 article-title: A review of hydrothermal liquefaction bio-crude properties and prospects for upgrading to transportation fuels publication-title: Energies doi: 10.3390/en8076765 contributor: fullname: Ramirez – volume: 150 start-page: 1 issue: 15 year: 2017 ident: 10.1016/j.enconman.2017.11.018_b0085 article-title: Microalgae from wastewater treatment to biochar-Feedstock preparation and conversion technologies publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2017.07.060 contributor: fullname: Yu – volume: 28 start-page: 1111 issue: 2 year: 2014 ident: 10.1016/j.enconman.2017.11.018_b0115 article-title: The influence of alkali and alkaline earth metals and the role of acid pretreatments in production of sugars from switchgrass based on solvent liquefaction publication-title: Energy Fuel doi: 10.1021/ef4022015 contributor: fullname: Bai – volume: 140 start-page: 203 year: 2017 ident: 10.1016/j.enconman.2017.11.018_b0010 article-title: Pyrolysis mechanism of microalgae Nannochloropsis sp. based on model compounds and their interaction. Energy Convers publication-title: Manage contributor: fullname: Wang – volume: 38 start-page: 1478 issue: 10 year: 2016 ident: 10.1016/j.enconman.2017.11.018_b0045 article-title: Hydrothermal catalytic liquefaction mechanisms of algal biomass to bio-oil publication-title: Energy Source Part A doi: 10.1080/15567036.2012.716140 contributor: fullname: Xu – volume: 48 start-page: 776 year: 2015 ident: 10.1016/j.enconman.2017.11.018_b0005 article-title: A review of bio-oil production from hydrothermal liquefaction of algae publication-title: Renew Sust Energy Rev doi: 10.1016/j.rser.2015.04.049 contributor: fullname: Guo – volume: 338 start-page: 1039 issue: 6110 year: 2012 ident: 10.1016/j.enconman.2017.11.018_b0055 article-title: Algae under pressure and in hot water publication-title: Science doi: 10.1126/science.1224310 contributor: fullname: Savage – volume: 98 start-page: 368 year: 2012 ident: 10.1016/j.enconman.2017.11.018_b0030 article-title: Comparison of the effects of Na2CO3, Ca3(PO4)2, and NiO catalysts on the thermochemical liquefaction of microalga Spirulina platensis publication-title: Appl Energy doi: 10.1016/j.apenergy.2012.03.056 contributor: fullname: Jena – volume: 42 start-page: 3516 issue: 15 year: 2003 ident: 10.1016/j.enconman.2017.11.018_b0120 article-title: Key compounds of the hydropyrolysis of glucose in supercritical water in the presence of K2CO3 publication-title: Ind Eng Chem Res doi: 10.1021/ie030079r contributor: fullname: Sinag |
SSID | ssj0003506 |
Score | 2.4592886 |
Snippet | •Liquid acid prevent detrimental effect of Maillard reaction on bio-oil formation.•H/C ratio and HHVs of bio-oils increase greatly in the presence of... We selected acetic acid and sulfuric acid as liquid acid catalysts to investigate their performance on hydrothermal liquefaction (HTL) of algae major model... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 336 |
SubjectTerms | Acetic acid Acid catalyst Acids Algae Algae major model components Bio-oil Biodiesel fuels Biofuels Catalysis Catalysts Cellulose Chlorella vulgaris Gas chromatography Gravimetric analysis Hydrothermal liquefaction Lipids Liquefaction Mass spectrometry Mass spectroscopy Oil Polysaccharides Proteins Saccharides Studies Sulfuric acid Thermal analysis Upgrading |
Title | Catalytic upgrading of bio-oil in hydrothermal liquefaction of algae major model components over liquid acids |
URI | https://dx.doi.org/10.1016/j.enconman.2017.11.018 https://www.proquest.com/docview/2046031577 |
Volume | 154 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4QvOjB-Iwomj14LbDstkuPhEhQEy5Kwq3Zp5ZASwocuPjb3VnaiMbEg8e2s9tmZndmtvnmG4TuqTSahlYHRlp3QGGCBbEkNKCW9zqCMRVLD5AdR6MJe5qG0xoaVLUwAKssff_Op3tvXd5pl9psL9O0_QLMLr24wwh3KUpEgROUufDn1nTr4wvmQUPfXxOEA5DeqxKetYArMlsI4EElvAVsntD84_cA9cNV-_gzPEHHZeKI-7tvO0U1k52hoz06wXO0GMC_mK0TwJvlW-HR8Ti3WKZ5kKdznGb4fasLX3O1cHPNgbu1rGwAOSjrMHghZnmBfYccDIDzPAOsBQaopx-RaixUqlcXaDJ8eB2MgrKdQqAo5-uAq1hoSVWkGOVaO7PoOCJKUUKJ0oL0OGxeQV3MkqbTEcSKSNAo6iohdGwVvUT1zL3zCmHjsjIbMkO7GhgHeY8YbbvOFcjQQo_ABmpXOkyWO9aMpIKTzZJK6wlo3R1BEqf1BoorVSff7J841_7n2GZlm6TcgSv3nEED7ZDz639MfYMO4QrwKyRsovq62Jhbl4Ws5Z1fZnfooP_4PBp_Ah6_3wU |
link.rule.ids | 315,783,787,4509,24128,27936,27937,45597,45691 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZ4DMCAeIpCAQ-saevaiZsRVaDyXACpm-UnpGqTqo-hC78dn5uIh5AYWOOzE53Pd-fou-8QuqDKGho7E1nl_AWFSRalitCIOt5pScZ0qgJA9jHpvbDbftxfQd2qFgZglaXvX_r04K3LJ81Sm81xljWfgNmlk7YY4T5FSShbResM8mNv1I33T5wHjUODTZCOQPxLmfCgAWSR-UgCESrhDaDzhO4fv0eoH746BKDrHbRdZo74cvlxu2jF5nto6wuf4D4adeFnzMIL4Pn4dRLg8bhwWGVFVGRDnOX4bWEmoehq5NcaAnlrWdoAclDXYfFIDooJDi1yMCDOixzAFhiwnmFGZrDUmZkeoJfrq-duLyr7KUSacj6LuE6lUVQnmlFujN8XkyZEa0oo0UaSDofTK6kPWsq2WpI4mUiaJG0tpUmdpodoLffvPELY-rTMxczStgHKQd4h1ri29wUqdtAksIaalQ7FeEmbISo82UBUWhegdX8HEV7rNZRWqhbfDEB43_7n3Hq1N6I8glM_zqCDdsz58T-WPkcbveeHe3F_83h3gjZhBMAsJK6jtdlkbk99SjJTZ8HkPgBrxuCe |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Catalytic+upgrading+of+bio-oil+in+hydrothermal+liquefaction+of+algae+major+model+components+over+liquid+acids&rft.jtitle=Energy+conversion+and+management&rft.au=Yang%2C+Wenchao&rft.au=Li%2C+Xianguo&rft.au=Zhang%2C+Dahai&rft.au=Feng%2C+Lijuan&rft.date=2017-12-15&rft.pub=Elsevier+Ltd&rft.issn=0196-8904&rft.eissn=1879-2227&rft.volume=154&rft.spage=336&rft.epage=343&rft_id=info:doi/10.1016%2Fj.enconman.2017.11.018&rft.externalDocID=S0196890417310634 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-8904&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-8904&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-8904&client=summon |