Soil organic carbon sequestration potential for croplands in Finland over 2021–2040 under the interactive impacts of climate change and agricultural management

Cropland soil organic carbon (SOC) stock can be increased by agricultural management, but is subject to various factors. The extent and rates of SOC sequestration potential, as well as the controlling factors, under different climate and management practices across a region or country are important...

Full description

Saved in:
Bibliographic Details
Published inAgricultural systems Vol. 209; p. 103671
Main Authors Tao, Fulu, Palosuo, Taru, Lehtonen, Aleksi, Heikkinen, Jaakko, Mäkipää, Raisa
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.06.2023
Subjects
Online AccessGet full text
ISSN0308-521X
DOI10.1016/j.agsy.2023.103671

Cover

Loading…
Abstract Cropland soil organic carbon (SOC) stock can be increased by agricultural management, but is subject to various factors. The extent and rates of SOC sequestration potential, as well as the controlling factors, under different climate and management practices across a region or country are important for policy-makers and land managers, however have been rarely known. We aim to investigate the extent and rates of SOC sequestration potential over 2021–2040 under different scenarios of climate change and Sustainable Soil Management (SSM) practices, and quantify the impacts of climate change and SSM practices on the SOC sequestration potential, for croplands across Finland at a spatial resolution of 1 km. RothC model is run iteratively to equilibrium to calculate the size of the SOC pools and the annual plant carbon inputs. Then, it is applied to investigate the SOC sequestration potential over 2021–2040 under different scenarios of climate change and SSM practices. Finally, facorial simulation experiments are conducted to quantify the impacts of climate change and SSM practices, alone and in combination, on SOC sequestration potential. Under the combined impacts of climate change and SSM practices, the SOC sequestration potential during 2021–2040 relative to 2020 will be on average − 0.03, 0.007, 0.05, and 0.13 t C ha−1 yr−1, respectively, with carbon input being business as usual, 5%, 10%, and 20% increase. This is equivalent to an annual change rate of −0.04%, 0.009%, 0.07%, and 0.17%, respectively. Therefore, a 20% increase in C input to soil will not be enough to obtain a 4‰ increase per year over the 20-year period in Finland. Carbon input will promote SOC sequestration potential; however, climate change will reduce it on average by 0.28 t C ha−1 yr−1. Across the cropland in Finland, on average, the relative contributions of C input, temperature, and precipitation to SOC sequestration potential in 2021–2040 will be 56%, 24%, and 20%, respectively, however there is a spatially explicit pattern. The SOC sequestration potential will be relatively high and dominated by C input in west and southwest Finland. By contrast, it will be relatively low and dominated by climate in north and east Finland, and the central part of southern Finland. Our findings provide the information as to where, how much, and which SSM practices could be applied for enhancing SOC sequestration at a high spatial resolution, which is essential for stakeholders to increase cropland SOC sequestration efficiently. •IPCC tier 3 approach was applied to quantify cropland SOC sequestration potential.•20% increase in C input would not be enough to meet the 4‰ target over 2021–2040.•Climate change would reduce SOC sequestration on average by 0.28 t C ha−1 yr−1.•20% additional C input is not enough to compensate climate change impact on SOC.•Contribution of C input, temperature, precipitation to SOC sequestration is 56%, 24%, and 20%.
AbstractList Cropland soil organic carbon (SOC) stock can be increased by agricultural management, but is subject to various factors. The extent and rates of SOC sequestration potential, as well as the controlling factors, under different climate and management practices across a region or country are important for policy-makers and land managers, however have been rarely known. We aim to investigate the extent and rates of SOC sequestration potential over 2021–2040 under different scenarios of climate change and Sustainable Soil Management (SSM) practices, and quantify the impacts of climate change and SSM practices on the SOC sequestration potential, for croplands across Finland at a spatial resolution of 1 km. RothC model is run iteratively to equilibrium to calculate the size of the SOC pools and the annual plant carbon inputs. Then, it is applied to investigate the SOC sequestration potential over 2021–2040 under different scenarios of climate change and SSM practices. Finally, facorial simulation experiments are conducted to quantify the impacts of climate change and SSM practices, alone and in combination, on SOC sequestration potential. Under the combined impacts of climate change and SSM practices, the SOC sequestration potential during 2021–2040 relative to 2020 will be on average − 0.03, 0.007, 0.05, and 0.13 t C ha⁻¹ yr⁻¹, respectively, with carbon input being business as usual, 5%, 10%, and 20% increase. This is equivalent to an annual change rate of −0.04%, 0.009%, 0.07%, and 0.17%, respectively. Therefore, a 20% increase in C input to soil will not be enough to obtain a 4‰ increase per year over the 20-year period in Finland. Carbon input will promote SOC sequestration potential; however, climate change will reduce it on average by 0.28 t C ha⁻¹ yr⁻¹. Across the cropland in Finland, on average, the relative contributions of C input, temperature, and precipitation to SOC sequestration potential in 2021–2040 will be 56%, 24%, and 20%, respectively, however there is a spatially explicit pattern. The SOC sequestration potential will be relatively high and dominated by C input in west and southwest Finland. By contrast, it will be relatively low and dominated by climate in north and east Finland, and the central part of southern Finland. Our findings provide the information as to where, how much, and which SSM practices could be applied for enhancing SOC sequestration at a high spatial resolution, which is essential for stakeholders to increase cropland SOC sequestration efficiently.
Cropland soil organic carbon (SOC) stock can be increased by agricultural management, but is subject to various factors. The extent and rates of SOC sequestration potential, as well as the controlling factors, under different climate and management practices across a region or country are important for policy-makers and land managers, however have been rarely known. We aim to investigate the extent and rates of SOC sequestration potential over 2021–2040 under different scenarios of climate change and Sustainable Soil Management (SSM) practices, and quantify the impacts of climate change and SSM practices on the SOC sequestration potential, for croplands across Finland at a spatial resolution of 1 km. RothC model is run iteratively to equilibrium to calculate the size of the SOC pools and the annual plant carbon inputs. Then, it is applied to investigate the SOC sequestration potential over 2021–2040 under different scenarios of climate change and SSM practices. Finally, facorial simulation experiments are conducted to quantify the impacts of climate change and SSM practices, alone and in combination, on SOC sequestration potential. Under the combined impacts of climate change and SSM practices, the SOC sequestration potential during 2021–2040 relative to 2020 will be on average − 0.03, 0.007, 0.05, and 0.13 t C ha−1 yr−1, respectively, with carbon input being business as usual, 5%, 10%, and 20% increase. This is equivalent to an annual change rate of −0.04%, 0.009%, 0.07%, and 0.17%, respectively. Therefore, a 20% increase in C input to soil will not be enough to obtain a 4‰ increase per year over the 20-year period in Finland. Carbon input will promote SOC sequestration potential; however, climate change will reduce it on average by 0.28 t C ha−1 yr−1. Across the cropland in Finland, on average, the relative contributions of C input, temperature, and precipitation to SOC sequestration potential in 2021–2040 will be 56%, 24%, and 20%, respectively, however there is a spatially explicit pattern. The SOC sequestration potential will be relatively high and dominated by C input in west and southwest Finland. By contrast, it will be relatively low and dominated by climate in north and east Finland, and the central part of southern Finland. Our findings provide the information as to where, how much, and which SSM practices could be applied for enhancing SOC sequestration at a high spatial resolution, which is essential for stakeholders to increase cropland SOC sequestration efficiently. •IPCC tier 3 approach was applied to quantify cropland SOC sequestration potential.•20% increase in C input would not be enough to meet the 4‰ target over 2021–2040.•Climate change would reduce SOC sequestration on average by 0.28 t C ha−1 yr−1.•20% additional C input is not enough to compensate climate change impact on SOC.•Contribution of C input, temperature, precipitation to SOC sequestration is 56%, 24%, and 20%.
ArticleNumber 103671
Author Heikkinen, Jaakko
Mäkipää, Raisa
Lehtonen, Aleksi
Tao, Fulu
Palosuo, Taru
Author_xml – sequence: 1
  givenname: Fulu
  surname: Tao
  fullname: Tao, Fulu
  email: fulu.tao@luke.fi
– sequence: 2
  givenname: Taru
  surname: Palosuo
  fullname: Palosuo, Taru
– sequence: 3
  givenname: Aleksi
  surname: Lehtonen
  fullname: Lehtonen, Aleksi
– sequence: 4
  givenname: Jaakko
  surname: Heikkinen
  fullname: Heikkinen, Jaakko
– sequence: 5
  givenname: Raisa
  surname: Mäkipää
  fullname: Mäkipää, Raisa
BookMark eNp9Ubtu3DAQZOEAsZ38QCqWae7Cx0mUgDSBYScGDKRIAqQjeKuVzINEyiR1gLv8Q74gv5Yv8cqXKoUrLhczuzszF-wsxICMvZNiK4WsPxy2bsiPWyWUpoaujTxj50KLZlMp-fM1u8j5IIRopWjO2Z9v0Y88psEFDxxc2sfAMz4smEtyxdNvjgVD8W7kfUwcUpxHF7rMfeA3Pqw1j0dMnBbKv79-K7ETfAkddco9EqpgclD8kepppirz2HMY_eQKcrh3YUC-DnFD8rCMZUm0anLBDTjR4jfsVe_GjG__vZfsx83196svm7uvn2-vPt1tQBtTNmaPTYXYgQFoXd12FR3St3XdtFIhmt2-rRqoarVXu8oI3fQaa9F2vZSN0c7pS_b-NHdO8Vm-nXwGHEkgxiVbLSstjdKtJqg6QcmMnBP2dk4kJz1aKeyagT3YNQO7ZmBPGRCp-Y8Evjw7TEb78WXqxxMVSf_RY7IZPAbAzieEYrvoX6I_ATluqfQ
CitedBy_id crossref_primary_10_1016_j_catena_2024_108435
crossref_primary_10_1016_j_geoderma_2023_116550
crossref_primary_10_1016_j_jclepro_2024_143999
crossref_primary_10_1016_j_jclepro_2024_141455
crossref_primary_10_1016_j_jenvman_2023_119945
crossref_primary_10_3390_land12091755
Cites_doi 10.1016/j.scitotenv.2020.138955
10.1111/gcb.14091
10.1098/rstb.2007.2184
10.1007/s11104-020-04806-8
10.1080/17583004.2018.1557990
10.1038/ngeo2516
10.5194/bg-12-3241-2015
10.1016/j.scitotenv.2020.136672
10.1111/ejss.12193
10.1007/978-981-13-3272-2_2
10.1016/j.agee.2009.11.016
10.1111/gcb.12551
10.1038/s41598-021-84821-6
10.1002/2015JD024651
10.1046/j.1469-8137.2000.00681.x
10.3390/atmos9070261
10.4155/cmt.13.77
10.1111/gcb.16164
10.1126/science.1097396
10.1111/j.1365-2486.2010.02215.x
10.5194/gmd-9-3461-2016
10.1111/gcb.14019
10.1016/j.still.2021.105204
10.1046/j.1466-822X.2001.00267.x
10.1016/j.envsoft.2017.06.046
10.3168/jds.2017-12813
10.1111/gcb.15512
10.1080/17583004.2015.1131383
10.1080/17583004.2019.1633231
10.1016/j.agee.2006.05.013
10.1016/j.still.2015.01.015
10.1002/ldr.696
10.1007/s10113-020-01585-x
10.1016/j.soilbio.2020.107735
10.3354/cr01318
10.1038/sdata.2017.191
10.1016/j.still.2018.10.009
10.1080/03650340310001627658
10.1016/j.scitotenv.2017.03.208
10.1016/j.soilbio.2012.03.023
10.1371/journal.pone.0169748
10.1016/j.geoderma.2009.06.007
10.1111/gcb.15547
10.1016/j.biombioe.2016.08.021
10.1111/gcb.12137
10.1016/0038-0717(92)90189-5
10.1051/agro:2003011
10.1111/j.1475-2743.2002.tb00227.x
10.1111/gcb.14815
10.1073/pnas.1706103114
10.1111/j.1365-2486.2005.001075.x
10.1111/ejss.13033
10.2489/jswc.73.6.145A
10.1002/1522-2624(200008)163:4<421::AID-JPLN421>3.0.CO;2-R
10.1111/gcb.15954
10.1111/j.1365-2389.1994.tb00498.x
ContentType Journal Article
Copyright 2023 The Authors
Copyright_xml – notice: 2023 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.agsy.2023.103671
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
ExternalDocumentID 10_1016_j_agsy_2023_103671
S0308521X23000768
GeographicLocations Finland
GeographicLocations_xml – name: Finland
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
3R3
4.4
457
4G.
5GY
5VS
6I.
6J9
7-5
71M
8P~
9JM
AACTN
AAEDT
AAEDW
AAFTH
AAHBH
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AATTM
AAXKI
AAXUO
ABFNM
ABFRF
ABGRD
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ACRPL
ADBBV
ADEZE
ADMUD
ADNMO
ADQTV
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEQOU
AFJKZ
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HVGLF
HZ~
IHE
J1W
K-O
KOM
LW9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SDF
SDG
SES
SEW
SPCBC
SSA
SSH
SSZ
T5K
UNMZH
WUQ
Y6R
~G-
~KM
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
7S9
EFKBS
EFLBG
L.6
ID FETCH-LOGICAL-c377t-7be85eedc7cc9a69d5204f9668912ee74b958c562b2457038f3e609df11873aa3
IEDL.DBID .~1
ISSN 0308-521X
IngestDate Fri Sep 05 04:57:01 EDT 2025
Tue Jul 01 04:29:20 EDT 2025
Thu Apr 24 23:08:51 EDT 2025
Sun Apr 06 06:55:32 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Climate-smart agriculture
GHG emissions
Carbon stock
Climate change
Agricultural carbon management
Climate change mitigation
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c377t-7be85eedc7cc9a69d5204f9668912ee74b958c562b2457038f3e609df11873aa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0308521X23000768
PQID 3153172393
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3153172393
crossref_primary_10_1016_j_agsy_2023_103671
crossref_citationtrail_10_1016_j_agsy_2023_103671
elsevier_sciencedirect_doi_10_1016_j_agsy_2023_103671
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2023
2023-06-00
20230601
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: June 2023
PublicationDecade 2020
PublicationTitle Agricultural systems
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References FAO (bb0070) 2020
Akujärvi, Heikkinen, Palosuo, Liski (bb0020) 2014; 2–3
Smith, Martino, Cai, Gwary, Janzen, Kumar (bb0325) 2008; 363
Doetterl, Stevens, Six (bb0050) 2015; 8
Hakala, Heikkinen, Sinkko, Pahkala (bb0105) 2016; 95
Mori (bb0235) 2018; 9
Jenkinson, Harkness, Vance, Adams, Harrison (bb0155) 1992; 24
Tao, Palosuo, Valkama, Mäkipää (bb0350) 2019; 186
Aalto, Pirinen, Jylhä (bb0005) 2016; 121
Poeplau, Bolinder, Eriksson, Lundblad, Kätterer (bb0270) 2015; 12
Agricultural Statistics (bb0015) 2021
Gill, Jackson (bb0085) 2000; 147
Geiger (bb0080) 1954; 3
Palosuo, Heikkinen, Regina (bb0250) 2016; 6
Kekkonen, Ojanen, Haakana, Latukka, Regina (bb0165) 2019; 10
Smith, Smith, Wattenbach, Zaehle, Hiederer, Jones, Montanarella, Rounsevell, Reginster, Ewert (bb0320) 2005; 11
Smith, Soussana, Angers (bb0330) 2020; 26
Sanderman, Hengl, Fiske (bb0295) 2017; 114
Mattila, Hagelberg, Söderlund, Joona (bb0225) 2022; 215
Lilja, H., Uusitalo, R., Yli-Halla, M., Nevalainen, R., Väänänen, T., Tamminen, P., (2006). Finnish Soil Database-Soil map at scale 1: 250 000 and properties of soil. MTT:n selvityksiä.
FAO (bb0065) 2017
FAO and ITPS (bb0075) 2020
Paustian, Collier, Baldock, Burgess, Creque, DeLonge, Dungait, Ellert, Frank, Goddard, Govaerts, Grundy, Henning, Izaurralde, Madaras, McConkey, Porzig, Rice, Searle, Seavy, Skalsky, Mulhern, Jahn (bb0255) 2019; 10
Sheehy, Regina, Alakukku, Six (bb0315) 2015; 150
Tribouillois, Constantin, Justes (bb0355) 2018; 24
Bolinder, Janzen, Gregorich, Angers, Vanden Bygaart (bb0030) 2007; 118
Wiréhn, Käyhkö, Neset (bb0365) 2020; 20
Coleman, Jenkinson (bb0040) 1996
Appuhamy, Moraes, Wagner-Riddle, Casper, Kebreab (bb0025) 2018; 101
Lessmann, Ros, Young, de Vries (bb0200) 2022; 28
de Brogniez, Ballabio, Stevens, Jones, Montanarella, van Wesemael (bb0045) 2015; 66
Lal, Smith, Jungkunst, Mitsch, Lehmann, Nair (bb0190) 2018; 73
Reijneveld, van Wensem, Oenema (bb0285) 2009; 152
Launay, Constantin, Chlebowski, Houot, Graux, Klumpp, Martin, Mary, Pellerin, Therond (bb0195) 2021; 27
Gill, Kelly, Parton (bb0090) 2002; 11
Hastings, Wattenbach, Eugster, Li, Buchmann, Smith (bb0115) 2010; 136
Heikkinen, Keskinen, Kostensalo, Nuutinen (bb0130) 2022; 28
Lal (bb0185) 2006; 17
Pettygrove, Heinrich, Eagle (bb0265) 2009
Grosz, Dechow, Gebbert, Hoffmann, Zhao (bb0100) 2017; 96
Lieth (bb0205) 1975
Regina, Heikkinen, Maljanen (bb0280) 2019
Scharlemann, Tanner, Hiederer, Kapos (bb0300) 2014; 5
O’Neill, Tebaldi, van Vuuren (bb0245) 2016; 9
Riggers, Poeplau, Don (bb0290) 2021; 460
Kuzyakov, Schneckenberger (bb0175) 2004; 50
Lugato, Bampa, Panagos, Montanarella, Jones (bb0215) 2015; 20
Abatzoglou, Dobrowski, Parks, Hegewisch (bb0010) 2018; 5
Kuzyakov, Domanski (bb0170) 2000; 163
Jian, Du, Reiter, Stewart (bb0160) 2020; 143
Tao, Rötter, Palosuo, Höhn, Peltonen-Sainio, Rajala, Salo (bb0340) 2015; 65
Martin, Dimassi, Román Dobarco, Guenet, Arrouays, Angers, Blache, Huard, Soussana, Pellerin (bb0220) 2021; 27
IPCC (bb0140) 2019
FAO (bb0060) 1998; 84
Brilli, Bechini, Bindi, Carozzi, Cavalli, Conant, Dorich, Doro (bb0035) 2017; 15
Heikkinen, Ketoja, Nuutinen, Regina (bb0120) 2013; 19
Heikkinen, Keskinen, Regina, Honkanen, Nuutinen (bb0125) 2021; 72
Falloon, Smith (bb0055) 2002; 18
Peltre, Christensen, Dragon, Icard, Kätterer, Houot (bb0260) 2012; 52
Lal (bb0180) 2004; 304
Matus (bb0230) 2021; 11
Tao, Rötter, Palosuo (bb0345) 2018; 24
Nguyen (bb0240) 2003; 23
Hengl, Mendes de Jesus, Heuvelink, Ruiperez Gonzalez, Kilibarda, Blagotić (bb0135) 2017; 12
Schulze, Ciais, Luyssaert, Schrumpf, Janssens, Thiruchittampalam (bb0305) 2010; 16
Jenkinson, Coleman (bb0150) 1994; 45
Soinne, Keskinen, Heikkinen, Hyväluoma, Uusitalo, Peltoniemi, Velmala, Pennanen, Fritze, Kaseva, Hannula, Rasa (bb0335) 2020; 731
Shah, Li, Wang, Collins (bb0310) 2020; 714
Umweltbundesamt (bb0360) 2016
Tribouillois (10.1016/j.agsy.2023.103671_bb0355) 2018; 24
Launay (10.1016/j.agsy.2023.103671_bb0195) 2021; 27
FAO and ITPS (10.1016/j.agsy.2023.103671_bb0075) 2020
10.1016/j.agsy.2023.103671_bb0210
Tao (10.1016/j.agsy.2023.103671_bb0340) 2015; 65
Abatzoglou (10.1016/j.agsy.2023.103671_bb0010) 2018; 5
Kuzyakov (10.1016/j.agsy.2023.103671_bb0170) 2000; 163
Lal (10.1016/j.agsy.2023.103671_bb0180) 2004; 304
Falloon (10.1016/j.agsy.2023.103671_bb0055) 2002; 18
Aalto (10.1016/j.agsy.2023.103671_bb0005) 2016; 121
FAO (10.1016/j.agsy.2023.103671_bb0065) 2017
Tao (10.1016/j.agsy.2023.103671_bb0350) 2019; 186
Riggers (10.1016/j.agsy.2023.103671_bb0290) 2021; 460
Sanderman (10.1016/j.agsy.2023.103671_bb0295) 2017; 114
Grosz (10.1016/j.agsy.2023.103671_bb0100) 2017; 96
Heikkinen (10.1016/j.agsy.2023.103671_bb0125) 2021; 72
Reijneveld (10.1016/j.agsy.2023.103671_bb0285) 2009; 152
Hakala (10.1016/j.agsy.2023.103671_bb0105) 2016; 95
FAO (10.1016/j.agsy.2023.103671_bb0070) 2020
Smith (10.1016/j.agsy.2023.103671_bb0320) 2005; 11
Umweltbundesamt (10.1016/j.agsy.2023.103671_bb0360) 2016
FAO (10.1016/j.agsy.2023.103671_bb0060) 1998; 84
Gill (10.1016/j.agsy.2023.103671_bb0090) 2002; 11
Regina (10.1016/j.agsy.2023.103671_bb0280) 2019
Lieth (10.1016/j.agsy.2023.103671_bb0205) 1975
Bolinder (10.1016/j.agsy.2023.103671_bb0030) 2007; 118
Jenkinson (10.1016/j.agsy.2023.103671_bb0150) 1994; 45
Soinne (10.1016/j.agsy.2023.103671_bb0335) 2020; 731
Poeplau (10.1016/j.agsy.2023.103671_bb0270) 2015; 12
Nguyen (10.1016/j.agsy.2023.103671_bb0240) 2003; 23
Kekkonen (10.1016/j.agsy.2023.103671_bb0165) 2019; 10
Paustian (10.1016/j.agsy.2023.103671_bb0255) 2019; 10
Geiger (10.1016/j.agsy.2023.103671_bb0080) 1954; 3
Doetterl (10.1016/j.agsy.2023.103671_bb0050) 2015; 8
Schulze (10.1016/j.agsy.2023.103671_bb0305) 2010; 16
Hastings (10.1016/j.agsy.2023.103671_bb0115) 2010; 136
Lugato (10.1016/j.agsy.2023.103671_bb0215) 2015; 20
Smith (10.1016/j.agsy.2023.103671_bb0330) 2020; 26
Lal (10.1016/j.agsy.2023.103671_bb0190) 2018; 73
Shah (10.1016/j.agsy.2023.103671_bb0310) 2020; 714
Sheehy (10.1016/j.agsy.2023.103671_bb0315) 2015; 150
Hengl (10.1016/j.agsy.2023.103671_bb0135) 2017; 12
Jenkinson (10.1016/j.agsy.2023.103671_bb0155) 1992; 24
Pettygrove (10.1016/j.agsy.2023.103671_bb0265) 2009
Coleman (10.1016/j.agsy.2023.103671_bb0040) 1996
Martin (10.1016/j.agsy.2023.103671_bb0220) 2021; 27
Palosuo (10.1016/j.agsy.2023.103671_bb0250) 2016; 6
Lal (10.1016/j.agsy.2023.103671_bb0185) 2006; 17
de Brogniez (10.1016/j.agsy.2023.103671_bb0045) 2015; 66
Agricultural Statistics (10.1016/j.agsy.2023.103671_bb0015) 2021
Gill (10.1016/j.agsy.2023.103671_bb0085) 2000; 147
Peltre (10.1016/j.agsy.2023.103671_bb0260) 2012; 52
Smith (10.1016/j.agsy.2023.103671_bb0325) 2008; 363
Heikkinen (10.1016/j.agsy.2023.103671_bb0130) 2022; 28
Wiréhn (10.1016/j.agsy.2023.103671_bb0365) 2020; 20
Heikkinen (10.1016/j.agsy.2023.103671_bb0120) 2013; 19
Mori (10.1016/j.agsy.2023.103671_bb0235) 2018; 9
Brilli (10.1016/j.agsy.2023.103671_bb0035) 2017; 15
Akujärvi (10.1016/j.agsy.2023.103671_bb0020) 2014; 2–3
O’Neill (10.1016/j.agsy.2023.103671_bb0245) 2016; 9
Kuzyakov (10.1016/j.agsy.2023.103671_bb0175) 2004; 50
Lessmann (10.1016/j.agsy.2023.103671_bb0200) 2022; 28
Tao (10.1016/j.agsy.2023.103671_bb0345) 2018; 24
Appuhamy (10.1016/j.agsy.2023.103671_bb0025) 2018; 101
Scharlemann (10.1016/j.agsy.2023.103671_bb0300) 2014; 5
Jian (10.1016/j.agsy.2023.103671_bb0160) 2020; 143
Matus (10.1016/j.agsy.2023.103671_bb0230) 2021; 11
IPCC (10.1016/j.agsy.2023.103671_bb0140) 2019
Mattila (10.1016/j.agsy.2023.103671_bb0225) 2022; 215
References_xml – volume: 66
  start-page: 121
  year: 2015
  end-page: 134
  ident: bb0045
  article-title: A map of the topsoil organic carbon content of Europe generated by a generalized additive model
  publication-title: Eur. J. Soil Sci.
– volume: 95
  start-page: 8
  year: 2016
  end-page: 18
  ident: bb0105
  article-title: Field trial results of straw yield with different harvesting methods, and modelled effects on soil organic carbon. A case study from southern Finland
  publication-title: Biomass Bioenergy
– volume: 65
  start-page: 23
  year: 2015
  end-page: 37
  ident: bb0340
  article-title: Assessing climate effects on wheat yield and water use in Finland using a super-ensemble-based probabilistic approach
  publication-title: Clim. Res.
– year: 2019
  ident: bb0140
  publication-title: 2019 refinement to the 2006 IPCC guidelines for National Greenhouse gas Inventories
– volume: 16
  start-page: 1451
  year: 2010
  end-page: 1469
  ident: bb0305
  article-title: The European carbon balance. Part 4: integration of carbon and other trace-gas fluxes
  publication-title: Glob. Change Biol.
– volume: 152
  start-page: 231
  year: 2009
  end-page: 238
  ident: bb0285
  article-title: Soil organic carbon contents of agricultural land in the Netherlands between 1984 and 2004
  publication-title: Geoderma
– volume: 147
  start-page: 13
  year: 2000
  end-page: 31
  ident: bb0085
  article-title: Global patterns of root turnover for terrestrial ecosystems
  publication-title: New Phytol.
– volume: 96
  start-page: 361
  year: 2017
  end-page: 377
  ident: bb0100
  article-title: The implication of input data aggregation on up-scaling soil organic carbon changes
  publication-title: Environ. Model. Softw.
– volume: 714
  year: 2020
  ident: bb0310
  article-title: Optimizing farmyard manure and cattle slurry applications for intensively managed grasslands based on UK-DNDC model simulations
  publication-title: Science of The Total Environment
– volume: 11
  start-page: 79
  year: 2002
  end-page: 86
  ident: bb0090
  article-title: Using simple environmental variables to estimate below-ground productivity in grasslands
  publication-title: Glob. Ecol. Biogeogr.
– volume: 5
  start-page: 81
  year: 2014
  end-page: 91
  ident: bb0300
  article-title: Global soil carbon: understanding and managing the largest terrestrial carbon pool
  publication-title: Carbon Manag.
– volume: 12
  year: 2017
  ident: bb0135
  article-title: SoilGrids250m: global gridded soil information based on machine learning
  publication-title: PLoS One
– volume: 24
  start-page: 295
  year: 1992
  end-page: 308
  ident: bb0155
  article-title: Calculating net primary production and annual input of organic matter to soil from the amount and radiocarbon content of soil organic matter
  publication-title: Soil Biology & Biochemistry
– volume: 3
  start-page: 603
  year: 1954
  end-page: 607
  ident: bb0080
  article-title: "Klassifikation der Klimate nach W. Köppen" [Classification of climates after W. Köppen]. Landolt-Börnstein – Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik, alte Serie
– volume: 24
  start-page: 1291
  year: 2018
  end-page: 1307
  ident: bb0345
  article-title: Contribution of crop model structure, parameters and climate projections to uncertainty in climate change impact assessments
  publication-title: Glob. Change Biol.
– volume: 136
  start-page: 97
  year: 2010
  end-page: 110
  ident: bb0115
  article-title: Uncertainty propagation in soil greenhouse gas emission models: an experiment using the DNDC model and at the Oensingen cropland site
  publication-title: Agric. Ecosyst. Environ.
– volume: 12
  start-page: 3241
  year: 2015
  end-page: 3251
  ident: bb0270
  article-title: Positive trends in organic carbon storage in Swedish agricultural soils due to unexpected socio-economic drivers
  publication-title: Biogeosciences
– volume: 114
  start-page: 9575
  year: 2017
  end-page: 9580
  ident: bb0295
  article-title: Soil carbon debt of 12,000 years of human land use
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 50
  start-page: 115
  year: 2004
  end-page: 132
  ident: bb0175
  article-title: Review of estimation of plant rhizodeposition and their contribution to soil organic matter formation
  publication-title: Arch. Agron. Soil Sci.
– volume: 17
  start-page: 197
  year: 2006
  end-page: 209
  ident: bb0185
  article-title: Enhancing crop yields in the developing countries through restoration of the soil organic carbon pool in agricultural lands
  publication-title: Land Degrad. Dev.
– volume: 23
  start-page: 375
  year: 2003
  end-page: 396
  ident: bb0240
  article-title: Rhizodeposition of organic C by plants: mechanisms and controls
  publication-title: Agronomie
– volume: 9
  start-page: 3461
  year: 2016
  end-page: 3482
  ident: bb0245
  article-title: The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6
  publication-title: Geosci. Model Dev.
– reference: Lilja, H., Uusitalo, R., Yli-Halla, M., Nevalainen, R., Väänänen, T., Tamminen, P., (2006). Finnish Soil Database-Soil map at scale 1: 250 000 and properties of soil. MTT:n selvityksiä.
– volume: 2–3
  start-page: 1
  year: 2014
  end-page: 8
  ident: bb0020
  article-title: Carbon budget of Finnish croplands — effects of land use change from natural forest to cropland
  publication-title: Geoderma Reg.
– volume: 731
  year: 2020
  ident: bb0335
  article-title: Are there environmental or agricultural benefits in using forest residue biochar in boreal agricultural clay soil?
  publication-title: Sci. Tot. Enviro.
– volume: 363
  start-page: 789
  year: 2008
  end-page: 813
  ident: bb0325
  article-title: Greenhouse gas mitigation in agriculture
  publication-title: PHILOS. T. R. SOC. B.
– year: 2021
  ident: bb0015
  article-title: Agricultural Statistics Finland
– volume: 18
  start-page: 101
  year: 2002
  end-page: 111
  ident: bb0055
  article-title: Simulating SOC changes in long-term experiments with RothC and CENTURY: model evaluation for a regional scale application
  publication-title: Soil Use Manag.
– volume: 28
  start-page: 3960
  year: 2022
  end-page: 3973
  ident: bb0130
  article-title: Climate change induces carbon loss of arable mineral soils in boreal conditions
  publication-title: Glob. Chang. Biol.
– volume: 15
  start-page: 445
  year: 2017
  end-page: 470
  ident: bb0035
  article-title: Review and analysis of strengths and weaknesses of agro-ecosystem models for simulating C and N fluxes
  publication-title: Sci. Tot. Environ.
– volume: 186
  start-page: 70
  year: 2019
  end-page: 78
  ident: bb0350
  article-title: Cropland soils in China have a large potential for carbon sequestration based on literature survey
  publication-title: Soil Till. Res.
– volume: 52
  start-page: 49
  year: 2012
  end-page: 60
  ident: bb0260
  article-title: RothC simulation of carbon accumulation in soil after repeated application of widely different organic amendments
  publication-title: Soil Biol. Biochem.
– volume: 73
  start-page: 145A
  year: 2018
  end-page: 152A
  ident: bb0190
  article-title: The carbon sequestration potential of terrestrial ecosystems
  publication-title: J. Soil Water Conserv.
– volume: 45
  start-page: 167
  year: 1994
  end-page: 174
  ident: bb0150
  article-title: Calculating the annual input of organic matter to soil from measurements of total organic carbon and radiocarbon
  publication-title: Eur. J. Soil Sci.
– volume: 27
  start-page: 2458
  year: 2021
  end-page: 2477
  ident: bb0220
  article-title: Feasibility of the 4 per 1000 aspirational target for soil carbon: A case study for France
  publication-title: Glob. Change Biol.
– year: 2019
  ident: bb0280
  article-title: Greenhouse gas fluxes of agricultural soils in Finland
  publication-title: Greenhouse Gas Emissions. Energy, Environment, and Sustainability
– volume: 24
  start-page: 2513
  year: 2018
  end-page: 2529
  ident: bb0355
  article-title: Cover crops mitigate direct greenhouse gases balance but reduce drainage under climate change scenarios in temperate climate with dry summers
  publication-title: Glob. Change Biol.
– start-page: 237
  year: 1975
  end-page: 263
  ident: bb0205
  article-title: Modeling the primary productivity of the world
  publication-title: Primary productivity of the Biosphere
– volume: 121
  start-page: 3807
  year: 2016
  end-page: 3823
  ident: bb0005
  article-title: New gridded daily climatology of Finland: permutation-based uncertainty estimates and temporal trends in climate
  publication-title: JGR-Atmospheres
– year: 2020
  ident: bb0075
  article-title: Global Soil Organic Carbon Map V1.5: Technical Report
– volume: 72
  start-page: 934
  year: 2021
  end-page: 945
  ident: bb0125
  article-title: Estimation of carbon stocks in boreal cropland soils-methodological considerations
  publication-title: Eur. J. Soil Sci.
– year: 2016
  ident: bb0360
  article-title: Erarbeitung fachlicher, rechtlicher und organisatorischer Grundlagen zur Anpassung an den Klimawandel aus Sicht des Bodenschutzes: Teil 3
  publication-title: Bestimmung der Veränderungen ds Humusgehalts und deren ursachen auf Ackerböden Deutschlands. UBA-Texte 26/2016
– volume: 6
  start-page: 207
  year: 2016
  end-page: 220
  ident: bb0250
  article-title: Method for estimating soil carbon stock changes in Finnish mineral cropland and grassland soils
  publication-title: Carbon Manag.
– year: 2017
  ident: bb0065
  article-title: Voluntary Guidelines for Sustainable Soil Management Food and Agriculture Organization of the United Nations Rome, Italy
– volume: 11
  start-page: 6438
  year: 2021
  ident: bb0230
  article-title: Fine silt and clay content is the main factor defining maximal C and N accumulations in soils: a meta-analysis
  publication-title: Sci. Rep.
– volume: 460
  start-page: 417
  year: 2021
  end-page: 433
  ident: bb0290
  article-title: How much carbon input is required to preserve or increase projected soil organic carbon stocks in German croplands under climate change?
  publication-title: Plant Soil
– volume: 20
  start-page: 18
  year: 2020
  ident: bb0365
  article-title: Analysing trade-offs in adaptation decision-making—agricultural management under climate change in Finland and Sweden
  publication-title: Reg. Environ. Change
– volume: 143
  year: 2020
  ident: bb0160
  article-title: A meta-analysis of global cropland soil carbon changes due to cover cropping
  publication-title: Soil Biol. Biochem.
– volume: 163
  start-page: 421
  year: 2000
  end-page: 431
  ident: bb0170
  article-title: Carbon input by plants into the soil
  publication-title: Review. J. Plant Nutr. Soil Sci.
– volume: 118
  start-page: 29
  year: 2007
  end-page: 42
  ident: bb0030
  article-title: An approach for estimating net primary productivity and annual carbon inputs to soil for common agricultural crops in Canada
  publication-title: Agric. Ecosyst. Environ.
– volume: 5
  year: 2018
  ident: bb0010
  article-title: Terraclimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015
  publication-title: Sci. Data
– volume: 150
  start-page: 107
  year: 2015
  end-page: 113
  ident: bb0315
  article-title: Impact of no-till and reduced tillage on aggregation and aggregate-associated carbon in Northern European agroecosystems
  publication-title: Soil Till. Res.
– year: 2020
  ident: bb0070
  article-title: Technical Specifications and Country Guidelines for Global Soil Organic Carbon Sequestration Potential Map (GSOCseq). Rome
– volume: 215
  year: 2022
  ident: bb0225
  article-title: How farmers approach soil carbon sequestration? Lessons learned from 105 carbon-farming plans
  publication-title: Soil Till. Res.
– start-page: 237
  year: 1996
  end-page: 246
  ident: bb0040
  article-title: RothC-26.3-a model for the turnover of carbon in soil
  publication-title: Evaluation of Soil Organic Matter Models
– volume: 26
  start-page: 219
  year: 2020
  end-page: 241
  ident: bb0330
  article-title: How to measure, report and verify soil carbon change to realize the potential of soil carbon sequestration for atmospheric greenhouse gas removal
  publication-title: Glob. Change Biol.
– volume: 28
  start-page: 1162
  year: 2022
  end-page: 1177
  ident: bb0200
  article-title: Global variation in soil carbon sequestration potential through improved cropland management
  publication-title: Glob. Change Biol.
– volume: 20
  start-page: 3557
  year: 2015
  end-page: 3567
  ident: bb0215
  article-title: Potential carbon sequestration of European arable soils estimated by modeling a comprehensive set of management practices
  publication-title: Glob. Change Biol.
– volume: 10
  start-page: 115
  year: 2019
  end-page: 126
  ident: bb0165
  article-title: Mapping of cultivated organic soils for targeting greenhouse gas mitigation
  publication-title: Carbon Manag.
– volume: 84
  year: 1998
  ident: bb0060
  article-title: World Reference Base for Soil Resources. World Soil Resources Reports
– volume: 304
  start-page: 1623
  year: 2004
  end-page: 1627
  ident: bb0180
  article-title: Soil carbon sequestration impacts on global climate change and food security
  publication-title: Science
– volume: 101
  start-page: 820
  year: 2018
  end-page: 829
  ident: bb0025
  article-title: Predicting manure volatile solid output of lactating dairy cows
  publication-title: J. Dairy Sci.
– volume: 19
  start-page: 1456
  year: 2013
  end-page: 1469
  ident: bb0120
  article-title: Declining trend of carbon in Finnish cropland soils in 1974–2009
  publication-title: Glob. Change Biol.
– volume: 11
  start-page: 2141
  year: 2005
  end-page: 2152
  ident: bb0320
  article-title: Projected changes in mineral soil carbon of European croplands and grasslands, 1990–2080
  publication-title: Glob. Change Biol.
– volume: 27
  start-page: 1645
  year: 2021
  end-page: 1661
  ident: bb0195
  article-title: Estimating the carbon storage potential and greenhouse gas emissions of French arable cropland using high-resolution modeling
  publication-title: Glob. Change Biol.
– volume: 8
  start-page: 780
  year: 2015
  end-page: 783
  ident: bb0050
  article-title: Soil carbon storage controlled by interactions between geochemistry and climate
  publication-title: Nat. Geosci.
– volume: 9
  start-page: 261
  year: 2018
  ident: bb0235
  article-title: Application of farmyard manure rather than manure slurry mitigates the net greenhouse gas emissions from herbage production system in Nasu
  publication-title: Japan.
– volume: 10
  start-page: 567
  year: 2019
  end-page: 587
  ident: bb0255
  article-title: Quantifying carbon for agricultural soil management: from the current status toward a global soil information system
  publication-title: Carbon Management
– year: 2009
  ident: bb0265
  article-title: Dairy Manure Nutrient Content and Forms
– volume: 731
  year: 2020
  ident: 10.1016/j.agsy.2023.103671_bb0335
  article-title: Are there environmental or agricultural benefits in using forest residue biochar in boreal agricultural clay soil?
  publication-title: Sci. Tot. Enviro.
  doi: 10.1016/j.scitotenv.2020.138955
– year: 2009
  ident: 10.1016/j.agsy.2023.103671_bb0265
– volume: 84
  year: 1998
  ident: 10.1016/j.agsy.2023.103671_bb0060
– volume: 24
  start-page: 2513
  year: 2018
  ident: 10.1016/j.agsy.2023.103671_bb0355
  article-title: Cover crops mitigate direct greenhouse gases balance but reduce drainage under climate change scenarios in temperate climate with dry summers
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.14091
– volume: 363
  start-page: 789
  issue: 1492
  year: 2008
  ident: 10.1016/j.agsy.2023.103671_bb0325
  article-title: Greenhouse gas mitigation in agriculture
  publication-title: PHILOS. T. R. SOC. B.
  doi: 10.1098/rstb.2007.2184
– volume: 460
  start-page: 417
  year: 2021
  ident: 10.1016/j.agsy.2023.103671_bb0290
  article-title: How much carbon input is required to preserve or increase projected soil organic carbon stocks in German croplands under climate change?
  publication-title: Plant Soil
  doi: 10.1007/s11104-020-04806-8
– volume: 10
  start-page: 115
  issue: 2
  year: 2019
  ident: 10.1016/j.agsy.2023.103671_bb0165
  article-title: Mapping of cultivated organic soils for targeting greenhouse gas mitigation
  publication-title: Carbon Manag.
  doi: 10.1080/17583004.2018.1557990
– volume: 8
  start-page: 780
  year: 2015
  ident: 10.1016/j.agsy.2023.103671_bb0050
  article-title: Soil carbon storage controlled by interactions between geochemistry and climate
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo2516
– volume: 12
  start-page: 3241
  year: 2015
  ident: 10.1016/j.agsy.2023.103671_bb0270
  article-title: Positive trends in organic carbon storage in Swedish agricultural soils due to unexpected socio-economic drivers
  publication-title: Biogeosciences
  doi: 10.5194/bg-12-3241-2015
– volume: 714
  year: 2020
  ident: 10.1016/j.agsy.2023.103671_bb0310
  article-title: Optimizing farmyard manure and cattle slurry applications for intensively managed grasslands based on UK-DNDC model simulations
  publication-title: Science of The Total Environment
  doi: 10.1016/j.scitotenv.2020.136672
– volume: 66
  start-page: 121
  year: 2015
  ident: 10.1016/j.agsy.2023.103671_bb0045
  article-title: A map of the topsoil organic carbon content of Europe generated by a generalized additive model
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/ejss.12193
– year: 2019
  ident: 10.1016/j.agsy.2023.103671_bb0280
  article-title: Greenhouse gas fluxes of agricultural soils in Finland
  doi: 10.1007/978-981-13-3272-2_2
– year: 2017
  ident: 10.1016/j.agsy.2023.103671_bb0065
– volume: 136
  start-page: 97
  issue: 1–2
  year: 2010
  ident: 10.1016/j.agsy.2023.103671_bb0115
  article-title: Uncertainty propagation in soil greenhouse gas emission models: an experiment using the DNDC model and at the Oensingen cropland site
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2009.11.016
– volume: 20
  start-page: 3557
  year: 2015
  ident: 10.1016/j.agsy.2023.103671_bb0215
  article-title: Potential carbon sequestration of European arable soils estimated by modeling a comprehensive set of management practices
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.12551
– volume: 11
  start-page: 6438
  year: 2021
  ident: 10.1016/j.agsy.2023.103671_bb0230
  article-title: Fine silt and clay content is the main factor defining maximal C and N accumulations in soils: a meta-analysis
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-84821-6
– volume: 121
  start-page: 3807
  year: 2016
  ident: 10.1016/j.agsy.2023.103671_bb0005
  article-title: New gridded daily climatology of Finland: permutation-based uncertainty estimates and temporal trends in climate
  publication-title: JGR-Atmospheres
  doi: 10.1002/2015JD024651
– volume: 147
  start-page: 13
  issue: 1
  year: 2000
  ident: 10.1016/j.agsy.2023.103671_bb0085
  article-title: Global patterns of root turnover for terrestrial ecosystems
  publication-title: New Phytol.
  doi: 10.1046/j.1469-8137.2000.00681.x
– volume: 9
  start-page: 261
  year: 2018
  ident: 10.1016/j.agsy.2023.103671_bb0235
  article-title: Application of farmyard manure rather than manure slurry mitigates the net greenhouse gas emissions from herbage production system in Nasu
  publication-title: Japan. Atmosphere
  doi: 10.3390/atmos9070261
– volume: 5
  start-page: 81
  issue: 1
  year: 2014
  ident: 10.1016/j.agsy.2023.103671_bb0300
  article-title: Global soil carbon: understanding and managing the largest terrestrial carbon pool
  publication-title: Carbon Manag.
  doi: 10.4155/cmt.13.77
– volume: 28
  start-page: 3960
  year: 2022
  ident: 10.1016/j.agsy.2023.103671_bb0130
  article-title: Climate change induces carbon loss of arable mineral soils in boreal conditions
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.16164
– year: 2019
  ident: 10.1016/j.agsy.2023.103671_bb0140
– volume: 304
  start-page: 1623
  issue: 5677
  year: 2004
  ident: 10.1016/j.agsy.2023.103671_bb0180
  article-title: Soil carbon sequestration impacts on global climate change and food security
  publication-title: Science
  doi: 10.1126/science.1097396
– volume: 16
  start-page: 1451
  issue: 5
  year: 2010
  ident: 10.1016/j.agsy.2023.103671_bb0305
  article-title: The European carbon balance. Part 4: integration of carbon and other trace-gas fluxes
  publication-title: Glob. Change Biol.
  doi: 10.1111/j.1365-2486.2010.02215.x
– year: 2020
  ident: 10.1016/j.agsy.2023.103671_bb0070
– volume: 9
  start-page: 3461
  issue: 9
  year: 2016
  ident: 10.1016/j.agsy.2023.103671_bb0245
  article-title: The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-9-3461-2016
– ident: 10.1016/j.agsy.2023.103671_bb0210
– volume: 24
  start-page: 1291
  year: 2018
  ident: 10.1016/j.agsy.2023.103671_bb0345
  article-title: Contribution of crop model structure, parameters and climate projections to uncertainty in climate change impact assessments
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.14019
– volume: 215
  year: 2022
  ident: 10.1016/j.agsy.2023.103671_bb0225
  article-title: How farmers approach soil carbon sequestration? Lessons learned from 105 carbon-farming plans
  publication-title: Soil Till. Res.
  doi: 10.1016/j.still.2021.105204
– start-page: 237
  year: 1975
  ident: 10.1016/j.agsy.2023.103671_bb0205
  article-title: Modeling the primary productivity of the world
– volume: 11
  start-page: 79
  issue: 1
  year: 2002
  ident: 10.1016/j.agsy.2023.103671_bb0090
  article-title: Using simple environmental variables to estimate below-ground productivity in grasslands
  publication-title: Glob. Ecol. Biogeogr.
  doi: 10.1046/j.1466-822X.2001.00267.x
– volume: 96
  start-page: 361
  year: 2017
  ident: 10.1016/j.agsy.2023.103671_bb0100
  article-title: The implication of input data aggregation on up-scaling soil organic carbon changes
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2017.06.046
– volume: 2–3
  start-page: 1
  year: 2014
  ident: 10.1016/j.agsy.2023.103671_bb0020
  article-title: Carbon budget of Finnish croplands — effects of land use change from natural forest to cropland
  publication-title: Geoderma Reg.
– volume: 101
  start-page: 820
  issue: 1
  year: 2018
  ident: 10.1016/j.agsy.2023.103671_bb0025
  article-title: Predicting manure volatile solid output of lactating dairy cows
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2017-12813
– volume: 27
  start-page: 1645
  year: 2021
  ident: 10.1016/j.agsy.2023.103671_bb0195
  article-title: Estimating the carbon storage potential and greenhouse gas emissions of French arable cropland using high-resolution modeling
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.15512
– volume: 6
  start-page: 207
  issue: 5-6
  year: 2016
  ident: 10.1016/j.agsy.2023.103671_bb0250
  article-title: Method for estimating soil carbon stock changes in Finnish mineral cropland and grassland soils
  publication-title: Carbon Manag.
  doi: 10.1080/17583004.2015.1131383
– volume: 10
  start-page: 567
  issue: 6
  year: 2019
  ident: 10.1016/j.agsy.2023.103671_bb0255
  article-title: Quantifying carbon for agricultural soil management: from the current status toward a global soil information system
  publication-title: Carbon Management
  doi: 10.1080/17583004.2019.1633231
– volume: 118
  start-page: 29
  issue: 1–4
  year: 2007
  ident: 10.1016/j.agsy.2023.103671_bb0030
  article-title: An approach for estimating net primary productivity and annual carbon inputs to soil for common agricultural crops in Canada
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2006.05.013
– volume: 150
  start-page: 107
  year: 2015
  ident: 10.1016/j.agsy.2023.103671_bb0315
  article-title: Impact of no-till and reduced tillage on aggregation and aggregate-associated carbon in Northern European agroecosystems
  publication-title: Soil Till. Res.
  doi: 10.1016/j.still.2015.01.015
– volume: 17
  start-page: 197
  year: 2006
  ident: 10.1016/j.agsy.2023.103671_bb0185
  article-title: Enhancing crop yields in the developing countries through restoration of the soil organic carbon pool in agricultural lands
  publication-title: Land Degrad. Dev.
  doi: 10.1002/ldr.696
– volume: 20
  start-page: 18
  year: 2020
  ident: 10.1016/j.agsy.2023.103671_bb0365
  article-title: Analysing trade-offs in adaptation decision-making—agricultural management under climate change in Finland and Sweden
  publication-title: Reg. Environ. Change
  doi: 10.1007/s10113-020-01585-x
– volume: 143
  year: 2020
  ident: 10.1016/j.agsy.2023.103671_bb0160
  article-title: A meta-analysis of global cropland soil carbon changes due to cover cropping
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2020.107735
– volume: 65
  start-page: 23
  year: 2015
  ident: 10.1016/j.agsy.2023.103671_bb0340
  article-title: Assessing climate effects on wheat yield and water use in Finland using a super-ensemble-based probabilistic approach
  publication-title: Clim. Res.
  doi: 10.3354/cr01318
– volume: 5
  year: 2018
  ident: 10.1016/j.agsy.2023.103671_bb0010
  article-title: Terraclimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015
  publication-title: Sci. Data
  doi: 10.1038/sdata.2017.191
– year: 2020
  ident: 10.1016/j.agsy.2023.103671_bb0075
– volume: 186
  start-page: 70
  year: 2019
  ident: 10.1016/j.agsy.2023.103671_bb0350
  article-title: Cropland soils in China have a large potential for carbon sequestration based on literature survey
  publication-title: Soil Till. Res.
  doi: 10.1016/j.still.2018.10.009
– volume: 50
  start-page: 115
  issue: 1
  year: 2004
  ident: 10.1016/j.agsy.2023.103671_bb0175
  article-title: Review of estimation of plant rhizodeposition and their contribution to soil organic matter formation
  publication-title: Arch. Agron. Soil Sci.
  doi: 10.1080/03650340310001627658
– volume: 15
  start-page: 445
  issue: 598
  year: 2017
  ident: 10.1016/j.agsy.2023.103671_bb0035
  article-title: Review and analysis of strengths and weaknesses of agro-ecosystem models for simulating C and N fluxes
  publication-title: Sci. Tot. Environ.
  doi: 10.1016/j.scitotenv.2017.03.208
– volume: 52
  start-page: 49
  year: 2012
  ident: 10.1016/j.agsy.2023.103671_bb0260
  article-title: RothC simulation of carbon accumulation in soil after repeated application of widely different organic amendments
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2012.03.023
– volume: 12
  issue: 2
  year: 2017
  ident: 10.1016/j.agsy.2023.103671_bb0135
  article-title: SoilGrids250m: global gridded soil information based on machine learning
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0169748
– volume: 152
  start-page: 231
  year: 2009
  ident: 10.1016/j.agsy.2023.103671_bb0285
  article-title: Soil organic carbon contents of agricultural land in the Netherlands between 1984 and 2004
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2009.06.007
– volume: 27
  start-page: 2458
  year: 2021
  ident: 10.1016/j.agsy.2023.103671_bb0220
  article-title: Feasibility of the 4 per 1000 aspirational target for soil carbon: A case study for France
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.15547
– volume: 95
  start-page: 8
  year: 2016
  ident: 10.1016/j.agsy.2023.103671_bb0105
  article-title: Field trial results of straw yield with different harvesting methods, and modelled effects on soil organic carbon. A case study from southern Finland
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2016.08.021
– volume: 19
  start-page: 1456
  year: 2013
  ident: 10.1016/j.agsy.2023.103671_bb0120
  article-title: Declining trend of carbon in Finnish cropland soils in 1974–2009
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.12137
– volume: 24
  start-page: 295
  issue: 4
  year: 1992
  ident: 10.1016/j.agsy.2023.103671_bb0155
  article-title: Calculating net primary production and annual input of organic matter to soil from the amount and radiocarbon content of soil organic matter
  publication-title: Soil Biology & Biochemistry
  doi: 10.1016/0038-0717(92)90189-5
– volume: 23
  start-page: 375
  issue: 5-6
  year: 2003
  ident: 10.1016/j.agsy.2023.103671_bb0240
  article-title: Rhizodeposition of organic C by plants: mechanisms and controls
  publication-title: Agronomie
  doi: 10.1051/agro:2003011
– start-page: 237
  year: 1996
  ident: 10.1016/j.agsy.2023.103671_bb0040
  article-title: RothC-26.3-a model for the turnover of carbon in soil
– volume: 18
  start-page: 101
  year: 2002
  ident: 10.1016/j.agsy.2023.103671_bb0055
  article-title: Simulating SOC changes in long-term experiments with RothC and CENTURY: model evaluation for a regional scale application
  publication-title: Soil Use Manag.
  doi: 10.1111/j.1475-2743.2002.tb00227.x
– volume: 26
  start-page: 219
  year: 2020
  ident: 10.1016/j.agsy.2023.103671_bb0330
  article-title: How to measure, report and verify soil carbon change to realize the potential of soil carbon sequestration for atmospheric greenhouse gas removal
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.14815
– volume: 114
  start-page: 9575
  year: 2017
  ident: 10.1016/j.agsy.2023.103671_bb0295
  article-title: Soil carbon debt of 12,000 years of human land use
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1706103114
– volume: 11
  start-page: 2141
  year: 2005
  ident: 10.1016/j.agsy.2023.103671_bb0320
  article-title: Projected changes in mineral soil carbon of European croplands and grasslands, 1990–2080
  publication-title: Glob. Change Biol.
  doi: 10.1111/j.1365-2486.2005.001075.x
– year: 2021
  ident: 10.1016/j.agsy.2023.103671_bb0015
– volume: 3
  start-page: 603
  year: 1954
  ident: 10.1016/j.agsy.2023.103671_bb0080
– volume: 72
  start-page: 934
  year: 2021
  ident: 10.1016/j.agsy.2023.103671_bb0125
  article-title: Estimation of carbon stocks in boreal cropland soils-methodological considerations
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/ejss.13033
– volume: 73
  start-page: 145A
  issue: 6
  year: 2018
  ident: 10.1016/j.agsy.2023.103671_bb0190
  article-title: The carbon sequestration potential of terrestrial ecosystems
  publication-title: J. Soil Water Conserv.
  doi: 10.2489/jswc.73.6.145A
– volume: 163
  start-page: 421
  issue: 4
  year: 2000
  ident: 10.1016/j.agsy.2023.103671_bb0170
  article-title: Carbon input by plants into the soil
  publication-title: Review. J. Plant Nutr. Soil Sci.
  doi: 10.1002/1522-2624(200008)163:4<421::AID-JPLN421>3.0.CO;2-R
– volume: 28
  start-page: 1162
  year: 2022
  ident: 10.1016/j.agsy.2023.103671_bb0200
  article-title: Global variation in soil carbon sequestration potential through improved cropland management
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.15954
– year: 2016
  ident: 10.1016/j.agsy.2023.103671_bb0360
  article-title: Erarbeitung fachlicher, rechtlicher und organisatorischer Grundlagen zur Anpassung an den Klimawandel aus Sicht des Bodenschutzes: Teil 3
– volume: 45
  start-page: 167
  year: 1994
  ident: 10.1016/j.agsy.2023.103671_bb0150
  article-title: Calculating the annual input of organic matter to soil from measurements of total organic carbon and radiocarbon
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/j.1365-2389.1994.tb00498.x
SSID ssj0009108
Score 2.4113083
Snippet Cropland soil organic carbon (SOC) stock can be increased by agricultural management, but is subject to various factors. The extent and rates of SOC...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 103671
SubjectTerms Agricultural carbon management
agricultural management
annuals
carbon sequestration
Carbon stock
climate
Climate change
Climate change mitigation
Climate-smart agriculture
cropland
Finland
GHG emissions
soil
soil management
soil organic carbon
stakeholders
temperature
Title Soil organic carbon sequestration potential for croplands in Finland over 2021–2040 under the interactive impacts of climate change and agricultural management
URI https://dx.doi.org/10.1016/j.agsy.2023.103671
https://www.proquest.com/docview/3153172393
Volume 209
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KXvQgPvHNCN4kNukm3eRYxFIVe1Ght2Wz2UikJqUPwYv4H_wF_jV_iTPZpKKgB29J2BeZ7MwX9vtmGDtGDJx4QiVOIFLh-CoSToxRwnF1itsy4saNSe983W_37vzLQTBosLNaC0O0ysr3W59eeuvqSbN6m81RljVvKNMKDjtAEF2eJ5GC3ReUP__05YvmgeEwtCcJoUOtK-GM5Xip-8nzKRUQJ-15W3i_BacfbrqMPd1VtlKBRujYda2xhsnX2XLnflwlzjAb7P2myIZgazRp0GocFzmUPOk6MS6MiilRg3AgBKpApbtKnS9kOXSznK6B-JyAK_U-Xt9auPGAJGZjQJAIlFeiVFQ94XUprZxAkYIeZoh5DVgBMdAgar4unOpxTq_ZZHfd89uznlOVX3A0F2LqiNiEAYZQLbSOVDtKApw4xd-jMPJaxgg_joJQI36KWz7l8QpTbtpulKRUwZwrxbfYQl7kZpuBm3JXx25gRCL8hNS85Gh0GLiubmF43GFe_d6lrnKTU4mMoaxJaA-SbCXJVtLaaoedzPuMbGaOP1sHtTnlt-9LYuj4s99RbXuJG49OU1RuitlEcowViP54xHf_OfYeW6I7SzzbZwvT8cwcIMSZxoflN3zIFjsXV73-J_8I_Pk
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LTuswELWgLIAF4im4vAaJHQpN6qROlhWiKq9uAKk7y3EclKvepOrjSnd3_4Ev4Nf4EmYSpwgkWLCLkvghjz1zosw5w9gpYuDEEypxApEKx1eRcGKMEo6rUzyWETduTHznu3679-hfD4LBAruouTCUVml9f-XTS29t7zTtajZHWda8J6UV7HaAILr8n7TIlkidCjf7Uufqptd_1971ysJ09L5DDSx3pkrzUk-Tf-dUQ5zo523hfRWfPnnqMvx019maxY3Qqaa2wRZMvslWO09jq51httjLfZENoSrTpEGrcVzkUKZK19q4MCqmlB2EHSFWBareVVJ9Icuhm-V0DZTSCThT7_X_cwvPHhDLbAyIE4GkJUpS1V-8LtmVEyhS0MMMYa-BikMM1ImazwuH-jPPsNlmj93Lh4ueYyswOJoLMXVEbMIAo6gWWkeqHSUBDpziF1IYeS1jhB9HQagRQsUtn6S8wpSbthslKRUx50rxHdbIi9zsMnBT7urYDYxIhJ8QoZd8jQ4D19UtjJB7zKvXXWorT05VMoayzkP7LclWkmwlK1vtsbN5m1ElzvHt20FtTvlhi0mMHt-2O6ltL_Hs0Q8VlZtiNpEcwwUCQB7xXz_s-5gt9x7ubuXtVf9mn63QkyoP7YA1puOZOUTEM42P7I5-A6I2_6o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Soil+organic+carbon+sequestration+potential+for+croplands+in+Finland+over+2021%E2%80%932040+under+the+interactive+impacts+of+climate+change+and+agricultural+management&rft.jtitle=Agricultural+systems&rft.au=Tao%2C+Fulu&rft.au=Palosuo%2C+Taru&rft.au=Lehtonen%2C+Aleksi&rft.au=Heikkinen%2C+Jaakko&rft.date=2023-06-01&rft.issn=0308-521X&rft.volume=209&rft.spage=103671&rft_id=info:doi/10.1016%2Fj.agsy.2023.103671&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_agsy_2023_103671
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0308-521X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0308-521X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0308-521X&client=summon