Soil organic carbon sequestration potential for croplands in Finland over 2021–2040 under the interactive impacts of climate change and agricultural management
Cropland soil organic carbon (SOC) stock can be increased by agricultural management, but is subject to various factors. The extent and rates of SOC sequestration potential, as well as the controlling factors, under different climate and management practices across a region or country are important...
Saved in:
Published in | Agricultural systems Vol. 209; p. 103671 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.06.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0308-521X |
DOI | 10.1016/j.agsy.2023.103671 |
Cover
Loading…
Abstract | Cropland soil organic carbon (SOC) stock can be increased by agricultural management, but is subject to various factors. The extent and rates of SOC sequestration potential, as well as the controlling factors, under different climate and management practices across a region or country are important for policy-makers and land managers, however have been rarely known.
We aim to investigate the extent and rates of SOC sequestration potential over 2021–2040 under different scenarios of climate change and Sustainable Soil Management (SSM) practices, and quantify the impacts of climate change and SSM practices on the SOC sequestration potential, for croplands across Finland at a spatial resolution of 1 km.
RothC model is run iteratively to equilibrium to calculate the size of the SOC pools and the annual plant carbon inputs. Then, it is applied to investigate the SOC sequestration potential over 2021–2040 under different scenarios of climate change and SSM practices. Finally, facorial simulation experiments are conducted to quantify the impacts of climate change and SSM practices, alone and in combination, on SOC sequestration potential.
Under the combined impacts of climate change and SSM practices, the SOC sequestration potential during 2021–2040 relative to 2020 will be on average − 0.03, 0.007, 0.05, and 0.13 t C ha−1 yr−1, respectively, with carbon input being business as usual, 5%, 10%, and 20% increase. This is equivalent to an annual change rate of −0.04%, 0.009%, 0.07%, and 0.17%, respectively. Therefore, a 20% increase in C input to soil will not be enough to obtain a 4‰ increase per year over the 20-year period in Finland. Carbon input will promote SOC sequestration potential; however, climate change will reduce it on average by 0.28 t C ha−1 yr−1. Across the cropland in Finland, on average, the relative contributions of C input, temperature, and precipitation to SOC sequestration potential in 2021–2040 will be 56%, 24%, and 20%, respectively, however there is a spatially explicit pattern. The SOC sequestration potential will be relatively high and dominated by C input in west and southwest Finland. By contrast, it will be relatively low and dominated by climate in north and east Finland, and the central part of southern Finland.
Our findings provide the information as to where, how much, and which SSM practices could be applied for enhancing SOC sequestration at a high spatial resolution, which is essential for stakeholders to increase cropland SOC sequestration efficiently.
•IPCC tier 3 approach was applied to quantify cropland SOC sequestration potential.•20% increase in C input would not be enough to meet the 4‰ target over 2021–2040.•Climate change would reduce SOC sequestration on average by 0.28 t C ha−1 yr−1.•20% additional C input is not enough to compensate climate change impact on SOC.•Contribution of C input, temperature, precipitation to SOC sequestration is 56%, 24%, and 20%. |
---|---|
AbstractList | Cropland soil organic carbon (SOC) stock can be increased by agricultural management, but is subject to various factors. The extent and rates of SOC sequestration potential, as well as the controlling factors, under different climate and management practices across a region or country are important for policy-makers and land managers, however have been rarely known. We aim to investigate the extent and rates of SOC sequestration potential over 2021–2040 under different scenarios of climate change and Sustainable Soil Management (SSM) practices, and quantify the impacts of climate change and SSM practices on the SOC sequestration potential, for croplands across Finland at a spatial resolution of 1 km. RothC model is run iteratively to equilibrium to calculate the size of the SOC pools and the annual plant carbon inputs. Then, it is applied to investigate the SOC sequestration potential over 2021–2040 under different scenarios of climate change and SSM practices. Finally, facorial simulation experiments are conducted to quantify the impacts of climate change and SSM practices, alone and in combination, on SOC sequestration potential. Under the combined impacts of climate change and SSM practices, the SOC sequestration potential during 2021–2040 relative to 2020 will be on average − 0.03, 0.007, 0.05, and 0.13 t C ha⁻¹ yr⁻¹, respectively, with carbon input being business as usual, 5%, 10%, and 20% increase. This is equivalent to an annual change rate of −0.04%, 0.009%, 0.07%, and 0.17%, respectively. Therefore, a 20% increase in C input to soil will not be enough to obtain a 4‰ increase per year over the 20-year period in Finland. Carbon input will promote SOC sequestration potential; however, climate change will reduce it on average by 0.28 t C ha⁻¹ yr⁻¹. Across the cropland in Finland, on average, the relative contributions of C input, temperature, and precipitation to SOC sequestration potential in 2021–2040 will be 56%, 24%, and 20%, respectively, however there is a spatially explicit pattern. The SOC sequestration potential will be relatively high and dominated by C input in west and southwest Finland. By contrast, it will be relatively low and dominated by climate in north and east Finland, and the central part of southern Finland. Our findings provide the information as to where, how much, and which SSM practices could be applied for enhancing SOC sequestration at a high spatial resolution, which is essential for stakeholders to increase cropland SOC sequestration efficiently. Cropland soil organic carbon (SOC) stock can be increased by agricultural management, but is subject to various factors. The extent and rates of SOC sequestration potential, as well as the controlling factors, under different climate and management practices across a region or country are important for policy-makers and land managers, however have been rarely known. We aim to investigate the extent and rates of SOC sequestration potential over 2021–2040 under different scenarios of climate change and Sustainable Soil Management (SSM) practices, and quantify the impacts of climate change and SSM practices on the SOC sequestration potential, for croplands across Finland at a spatial resolution of 1 km. RothC model is run iteratively to equilibrium to calculate the size of the SOC pools and the annual plant carbon inputs. Then, it is applied to investigate the SOC sequestration potential over 2021–2040 under different scenarios of climate change and SSM practices. Finally, facorial simulation experiments are conducted to quantify the impacts of climate change and SSM practices, alone and in combination, on SOC sequestration potential. Under the combined impacts of climate change and SSM practices, the SOC sequestration potential during 2021–2040 relative to 2020 will be on average − 0.03, 0.007, 0.05, and 0.13 t C ha−1 yr−1, respectively, with carbon input being business as usual, 5%, 10%, and 20% increase. This is equivalent to an annual change rate of −0.04%, 0.009%, 0.07%, and 0.17%, respectively. Therefore, a 20% increase in C input to soil will not be enough to obtain a 4‰ increase per year over the 20-year period in Finland. Carbon input will promote SOC sequestration potential; however, climate change will reduce it on average by 0.28 t C ha−1 yr−1. Across the cropland in Finland, on average, the relative contributions of C input, temperature, and precipitation to SOC sequestration potential in 2021–2040 will be 56%, 24%, and 20%, respectively, however there is a spatially explicit pattern. The SOC sequestration potential will be relatively high and dominated by C input in west and southwest Finland. By contrast, it will be relatively low and dominated by climate in north and east Finland, and the central part of southern Finland. Our findings provide the information as to where, how much, and which SSM practices could be applied for enhancing SOC sequestration at a high spatial resolution, which is essential for stakeholders to increase cropland SOC sequestration efficiently. •IPCC tier 3 approach was applied to quantify cropland SOC sequestration potential.•20% increase in C input would not be enough to meet the 4‰ target over 2021–2040.•Climate change would reduce SOC sequestration on average by 0.28 t C ha−1 yr−1.•20% additional C input is not enough to compensate climate change impact on SOC.•Contribution of C input, temperature, precipitation to SOC sequestration is 56%, 24%, and 20%. |
ArticleNumber | 103671 |
Author | Heikkinen, Jaakko Mäkipää, Raisa Lehtonen, Aleksi Tao, Fulu Palosuo, Taru |
Author_xml | – sequence: 1 givenname: Fulu surname: Tao fullname: Tao, Fulu email: fulu.tao@luke.fi – sequence: 2 givenname: Taru surname: Palosuo fullname: Palosuo, Taru – sequence: 3 givenname: Aleksi surname: Lehtonen fullname: Lehtonen, Aleksi – sequence: 4 givenname: Jaakko surname: Heikkinen fullname: Heikkinen, Jaakko – sequence: 5 givenname: Raisa surname: Mäkipää fullname: Mäkipää, Raisa |
BookMark | eNp9Ubtu3DAQZOEAsZ38QCqWae7Cx0mUgDSBYScGDKRIAqQjeKuVzINEyiR1gLv8Q74gv5Yv8cqXKoUrLhczuzszF-wsxICMvZNiK4WsPxy2bsiPWyWUpoaujTxj50KLZlMp-fM1u8j5IIRopWjO2Z9v0Y88psEFDxxc2sfAMz4smEtyxdNvjgVD8W7kfUwcUpxHF7rMfeA3Pqw1j0dMnBbKv79-K7ETfAkddco9EqpgclD8kepppirz2HMY_eQKcrh3YUC-DnFD8rCMZUm0anLBDTjR4jfsVe_GjG__vZfsx83196svm7uvn2-vPt1tQBtTNmaPTYXYgQFoXd12FR3St3XdtFIhmt2-rRqoarVXu8oI3fQaa9F2vZSN0c7pS_b-NHdO8Vm-nXwGHEkgxiVbLSstjdKtJqg6QcmMnBP2dk4kJz1aKeyagT3YNQO7ZmBPGRCp-Y8Evjw7TEb78WXqxxMVSf_RY7IZPAbAzieEYrvoX6I_ATluqfQ |
CitedBy_id | crossref_primary_10_1016_j_catena_2024_108435 crossref_primary_10_1016_j_geoderma_2023_116550 crossref_primary_10_1016_j_jclepro_2024_143999 crossref_primary_10_1016_j_jclepro_2024_141455 crossref_primary_10_1016_j_jenvman_2023_119945 crossref_primary_10_3390_land12091755 |
Cites_doi | 10.1016/j.scitotenv.2020.138955 10.1111/gcb.14091 10.1098/rstb.2007.2184 10.1007/s11104-020-04806-8 10.1080/17583004.2018.1557990 10.1038/ngeo2516 10.5194/bg-12-3241-2015 10.1016/j.scitotenv.2020.136672 10.1111/ejss.12193 10.1007/978-981-13-3272-2_2 10.1016/j.agee.2009.11.016 10.1111/gcb.12551 10.1038/s41598-021-84821-6 10.1002/2015JD024651 10.1046/j.1469-8137.2000.00681.x 10.3390/atmos9070261 10.4155/cmt.13.77 10.1111/gcb.16164 10.1126/science.1097396 10.1111/j.1365-2486.2010.02215.x 10.5194/gmd-9-3461-2016 10.1111/gcb.14019 10.1016/j.still.2021.105204 10.1046/j.1466-822X.2001.00267.x 10.1016/j.envsoft.2017.06.046 10.3168/jds.2017-12813 10.1111/gcb.15512 10.1080/17583004.2015.1131383 10.1080/17583004.2019.1633231 10.1016/j.agee.2006.05.013 10.1016/j.still.2015.01.015 10.1002/ldr.696 10.1007/s10113-020-01585-x 10.1016/j.soilbio.2020.107735 10.3354/cr01318 10.1038/sdata.2017.191 10.1016/j.still.2018.10.009 10.1080/03650340310001627658 10.1016/j.scitotenv.2017.03.208 10.1016/j.soilbio.2012.03.023 10.1371/journal.pone.0169748 10.1016/j.geoderma.2009.06.007 10.1111/gcb.15547 10.1016/j.biombioe.2016.08.021 10.1111/gcb.12137 10.1016/0038-0717(92)90189-5 10.1051/agro:2003011 10.1111/j.1475-2743.2002.tb00227.x 10.1111/gcb.14815 10.1073/pnas.1706103114 10.1111/j.1365-2486.2005.001075.x 10.1111/ejss.13033 10.2489/jswc.73.6.145A 10.1002/1522-2624(200008)163:4<421::AID-JPLN421>3.0.CO;2-R 10.1111/gcb.15954 10.1111/j.1365-2389.1994.tb00498.x |
ContentType | Journal Article |
Copyright | 2023 The Authors |
Copyright_xml | – notice: 2023 The Authors |
DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.agsy.2023.103671 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
ExternalDocumentID | 10_1016_j_agsy_2023_103671 S0308521X23000768 |
GeographicLocations | Finland |
GeographicLocations_xml | – name: Finland |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23M 3R3 4.4 457 4G. 5GY 5VS 6I. 6J9 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAFTH AAHBH AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AATTM AAXKI AAXUO ABFNM ABFRF ABGRD ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFO ACGFS ACIUM ACRLP ACRPL ADBBV ADEZE ADMUD ADNMO ADQTV AEBSH AEFWE AEIPS AEKER AENEX AEQOU AFJKZ AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HVGLF HZ~ IHE J1W K-O KOM LW9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SDF SDG SES SEW SPCBC SSA SSH SSZ T5K UNMZH WUQ Y6R ~G- ~KM AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP CITATION 7S9 EFKBS EFLBG L.6 |
ID | FETCH-LOGICAL-c377t-7be85eedc7cc9a69d5204f9668912ee74b958c562b2457038f3e609df11873aa3 |
IEDL.DBID | .~1 |
ISSN | 0308-521X |
IngestDate | Fri Sep 05 04:57:01 EDT 2025 Tue Jul 01 04:29:20 EDT 2025 Thu Apr 24 23:08:51 EDT 2025 Sun Apr 06 06:55:32 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Climate-smart agriculture GHG emissions Carbon stock Climate change Agricultural carbon management Climate change mitigation |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c377t-7be85eedc7cc9a69d5204f9668912ee74b958c562b2457038f3e609df11873aa3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0308521X23000768 |
PQID | 3153172393 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_3153172393 crossref_primary_10_1016_j_agsy_2023_103671 crossref_citationtrail_10_1016_j_agsy_2023_103671 elsevier_sciencedirect_doi_10_1016_j_agsy_2023_103671 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2023 2023-06-00 20230601 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 06 year: 2023 text: June 2023 |
PublicationDecade | 2020 |
PublicationTitle | Agricultural systems |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | FAO (bb0070) 2020 Akujärvi, Heikkinen, Palosuo, Liski (bb0020) 2014; 2–3 Smith, Martino, Cai, Gwary, Janzen, Kumar (bb0325) 2008; 363 Doetterl, Stevens, Six (bb0050) 2015; 8 Hakala, Heikkinen, Sinkko, Pahkala (bb0105) 2016; 95 Mori (bb0235) 2018; 9 Jenkinson, Harkness, Vance, Adams, Harrison (bb0155) 1992; 24 Tao, Palosuo, Valkama, Mäkipää (bb0350) 2019; 186 Aalto, Pirinen, Jylhä (bb0005) 2016; 121 Poeplau, Bolinder, Eriksson, Lundblad, Kätterer (bb0270) 2015; 12 Agricultural Statistics (bb0015) 2021 Gill, Jackson (bb0085) 2000; 147 Geiger (bb0080) 1954; 3 Palosuo, Heikkinen, Regina (bb0250) 2016; 6 Kekkonen, Ojanen, Haakana, Latukka, Regina (bb0165) 2019; 10 Smith, Smith, Wattenbach, Zaehle, Hiederer, Jones, Montanarella, Rounsevell, Reginster, Ewert (bb0320) 2005; 11 Smith, Soussana, Angers (bb0330) 2020; 26 Sanderman, Hengl, Fiske (bb0295) 2017; 114 Mattila, Hagelberg, Söderlund, Joona (bb0225) 2022; 215 Lilja, H., Uusitalo, R., Yli-Halla, M., Nevalainen, R., Väänänen, T., Tamminen, P., (2006). Finnish Soil Database-Soil map at scale 1: 250 000 and properties of soil. MTT:n selvityksiä. FAO (bb0065) 2017 FAO and ITPS (bb0075) 2020 Paustian, Collier, Baldock, Burgess, Creque, DeLonge, Dungait, Ellert, Frank, Goddard, Govaerts, Grundy, Henning, Izaurralde, Madaras, McConkey, Porzig, Rice, Searle, Seavy, Skalsky, Mulhern, Jahn (bb0255) 2019; 10 Sheehy, Regina, Alakukku, Six (bb0315) 2015; 150 Tribouillois, Constantin, Justes (bb0355) 2018; 24 Bolinder, Janzen, Gregorich, Angers, Vanden Bygaart (bb0030) 2007; 118 Wiréhn, Käyhkö, Neset (bb0365) 2020; 20 Coleman, Jenkinson (bb0040) 1996 Appuhamy, Moraes, Wagner-Riddle, Casper, Kebreab (bb0025) 2018; 101 Lessmann, Ros, Young, de Vries (bb0200) 2022; 28 de Brogniez, Ballabio, Stevens, Jones, Montanarella, van Wesemael (bb0045) 2015; 66 Lal, Smith, Jungkunst, Mitsch, Lehmann, Nair (bb0190) 2018; 73 Reijneveld, van Wensem, Oenema (bb0285) 2009; 152 Launay, Constantin, Chlebowski, Houot, Graux, Klumpp, Martin, Mary, Pellerin, Therond (bb0195) 2021; 27 Gill, Kelly, Parton (bb0090) 2002; 11 Hastings, Wattenbach, Eugster, Li, Buchmann, Smith (bb0115) 2010; 136 Heikkinen, Keskinen, Kostensalo, Nuutinen (bb0130) 2022; 28 Lal (bb0185) 2006; 17 Pettygrove, Heinrich, Eagle (bb0265) 2009 Grosz, Dechow, Gebbert, Hoffmann, Zhao (bb0100) 2017; 96 Lieth (bb0205) 1975 Regina, Heikkinen, Maljanen (bb0280) 2019 Scharlemann, Tanner, Hiederer, Kapos (bb0300) 2014; 5 O’Neill, Tebaldi, van Vuuren (bb0245) 2016; 9 Riggers, Poeplau, Don (bb0290) 2021; 460 Kuzyakov, Schneckenberger (bb0175) 2004; 50 Lugato, Bampa, Panagos, Montanarella, Jones (bb0215) 2015; 20 Abatzoglou, Dobrowski, Parks, Hegewisch (bb0010) 2018; 5 Kuzyakov, Domanski (bb0170) 2000; 163 Jian, Du, Reiter, Stewart (bb0160) 2020; 143 Tao, Rötter, Palosuo, Höhn, Peltonen-Sainio, Rajala, Salo (bb0340) 2015; 65 Martin, Dimassi, Román Dobarco, Guenet, Arrouays, Angers, Blache, Huard, Soussana, Pellerin (bb0220) 2021; 27 IPCC (bb0140) 2019 FAO (bb0060) 1998; 84 Brilli, Bechini, Bindi, Carozzi, Cavalli, Conant, Dorich, Doro (bb0035) 2017; 15 Heikkinen, Ketoja, Nuutinen, Regina (bb0120) 2013; 19 Heikkinen, Keskinen, Regina, Honkanen, Nuutinen (bb0125) 2021; 72 Falloon, Smith (bb0055) 2002; 18 Peltre, Christensen, Dragon, Icard, Kätterer, Houot (bb0260) 2012; 52 Lal (bb0180) 2004; 304 Matus (bb0230) 2021; 11 Tao, Rötter, Palosuo (bb0345) 2018; 24 Nguyen (bb0240) 2003; 23 Hengl, Mendes de Jesus, Heuvelink, Ruiperez Gonzalez, Kilibarda, Blagotić (bb0135) 2017; 12 Schulze, Ciais, Luyssaert, Schrumpf, Janssens, Thiruchittampalam (bb0305) 2010; 16 Jenkinson, Coleman (bb0150) 1994; 45 Soinne, Keskinen, Heikkinen, Hyväluoma, Uusitalo, Peltoniemi, Velmala, Pennanen, Fritze, Kaseva, Hannula, Rasa (bb0335) 2020; 731 Shah, Li, Wang, Collins (bb0310) 2020; 714 Umweltbundesamt (bb0360) 2016 Tribouillois (10.1016/j.agsy.2023.103671_bb0355) 2018; 24 Launay (10.1016/j.agsy.2023.103671_bb0195) 2021; 27 FAO and ITPS (10.1016/j.agsy.2023.103671_bb0075) 2020 10.1016/j.agsy.2023.103671_bb0210 Tao (10.1016/j.agsy.2023.103671_bb0340) 2015; 65 Abatzoglou (10.1016/j.agsy.2023.103671_bb0010) 2018; 5 Kuzyakov (10.1016/j.agsy.2023.103671_bb0170) 2000; 163 Lal (10.1016/j.agsy.2023.103671_bb0180) 2004; 304 Falloon (10.1016/j.agsy.2023.103671_bb0055) 2002; 18 Aalto (10.1016/j.agsy.2023.103671_bb0005) 2016; 121 FAO (10.1016/j.agsy.2023.103671_bb0065) 2017 Tao (10.1016/j.agsy.2023.103671_bb0350) 2019; 186 Riggers (10.1016/j.agsy.2023.103671_bb0290) 2021; 460 Sanderman (10.1016/j.agsy.2023.103671_bb0295) 2017; 114 Grosz (10.1016/j.agsy.2023.103671_bb0100) 2017; 96 Heikkinen (10.1016/j.agsy.2023.103671_bb0125) 2021; 72 Reijneveld (10.1016/j.agsy.2023.103671_bb0285) 2009; 152 Hakala (10.1016/j.agsy.2023.103671_bb0105) 2016; 95 FAO (10.1016/j.agsy.2023.103671_bb0070) 2020 Smith (10.1016/j.agsy.2023.103671_bb0320) 2005; 11 Umweltbundesamt (10.1016/j.agsy.2023.103671_bb0360) 2016 FAO (10.1016/j.agsy.2023.103671_bb0060) 1998; 84 Gill (10.1016/j.agsy.2023.103671_bb0090) 2002; 11 Regina (10.1016/j.agsy.2023.103671_bb0280) 2019 Lieth (10.1016/j.agsy.2023.103671_bb0205) 1975 Bolinder (10.1016/j.agsy.2023.103671_bb0030) 2007; 118 Jenkinson (10.1016/j.agsy.2023.103671_bb0150) 1994; 45 Soinne (10.1016/j.agsy.2023.103671_bb0335) 2020; 731 Poeplau (10.1016/j.agsy.2023.103671_bb0270) 2015; 12 Nguyen (10.1016/j.agsy.2023.103671_bb0240) 2003; 23 Kekkonen (10.1016/j.agsy.2023.103671_bb0165) 2019; 10 Paustian (10.1016/j.agsy.2023.103671_bb0255) 2019; 10 Geiger (10.1016/j.agsy.2023.103671_bb0080) 1954; 3 Doetterl (10.1016/j.agsy.2023.103671_bb0050) 2015; 8 Schulze (10.1016/j.agsy.2023.103671_bb0305) 2010; 16 Hastings (10.1016/j.agsy.2023.103671_bb0115) 2010; 136 Lugato (10.1016/j.agsy.2023.103671_bb0215) 2015; 20 Smith (10.1016/j.agsy.2023.103671_bb0330) 2020; 26 Lal (10.1016/j.agsy.2023.103671_bb0190) 2018; 73 Shah (10.1016/j.agsy.2023.103671_bb0310) 2020; 714 Sheehy (10.1016/j.agsy.2023.103671_bb0315) 2015; 150 Hengl (10.1016/j.agsy.2023.103671_bb0135) 2017; 12 Jenkinson (10.1016/j.agsy.2023.103671_bb0155) 1992; 24 Pettygrove (10.1016/j.agsy.2023.103671_bb0265) 2009 Coleman (10.1016/j.agsy.2023.103671_bb0040) 1996 Martin (10.1016/j.agsy.2023.103671_bb0220) 2021; 27 Palosuo (10.1016/j.agsy.2023.103671_bb0250) 2016; 6 Lal (10.1016/j.agsy.2023.103671_bb0185) 2006; 17 de Brogniez (10.1016/j.agsy.2023.103671_bb0045) 2015; 66 Agricultural Statistics (10.1016/j.agsy.2023.103671_bb0015) 2021 Gill (10.1016/j.agsy.2023.103671_bb0085) 2000; 147 Peltre (10.1016/j.agsy.2023.103671_bb0260) 2012; 52 Smith (10.1016/j.agsy.2023.103671_bb0325) 2008; 363 Heikkinen (10.1016/j.agsy.2023.103671_bb0130) 2022; 28 Wiréhn (10.1016/j.agsy.2023.103671_bb0365) 2020; 20 Heikkinen (10.1016/j.agsy.2023.103671_bb0120) 2013; 19 Mori (10.1016/j.agsy.2023.103671_bb0235) 2018; 9 Brilli (10.1016/j.agsy.2023.103671_bb0035) 2017; 15 Akujärvi (10.1016/j.agsy.2023.103671_bb0020) 2014; 2–3 O’Neill (10.1016/j.agsy.2023.103671_bb0245) 2016; 9 Kuzyakov (10.1016/j.agsy.2023.103671_bb0175) 2004; 50 Lessmann (10.1016/j.agsy.2023.103671_bb0200) 2022; 28 Tao (10.1016/j.agsy.2023.103671_bb0345) 2018; 24 Appuhamy (10.1016/j.agsy.2023.103671_bb0025) 2018; 101 Scharlemann (10.1016/j.agsy.2023.103671_bb0300) 2014; 5 Jian (10.1016/j.agsy.2023.103671_bb0160) 2020; 143 Matus (10.1016/j.agsy.2023.103671_bb0230) 2021; 11 IPCC (10.1016/j.agsy.2023.103671_bb0140) 2019 Mattila (10.1016/j.agsy.2023.103671_bb0225) 2022; 215 |
References_xml | – volume: 66 start-page: 121 year: 2015 end-page: 134 ident: bb0045 article-title: A map of the topsoil organic carbon content of Europe generated by a generalized additive model publication-title: Eur. J. Soil Sci. – volume: 95 start-page: 8 year: 2016 end-page: 18 ident: bb0105 article-title: Field trial results of straw yield with different harvesting methods, and modelled effects on soil organic carbon. A case study from southern Finland publication-title: Biomass Bioenergy – volume: 65 start-page: 23 year: 2015 end-page: 37 ident: bb0340 article-title: Assessing climate effects on wheat yield and water use in Finland using a super-ensemble-based probabilistic approach publication-title: Clim. Res. – year: 2019 ident: bb0140 publication-title: 2019 refinement to the 2006 IPCC guidelines for National Greenhouse gas Inventories – volume: 16 start-page: 1451 year: 2010 end-page: 1469 ident: bb0305 article-title: The European carbon balance. Part 4: integration of carbon and other trace-gas fluxes publication-title: Glob. Change Biol. – volume: 152 start-page: 231 year: 2009 end-page: 238 ident: bb0285 article-title: Soil organic carbon contents of agricultural land in the Netherlands between 1984 and 2004 publication-title: Geoderma – volume: 147 start-page: 13 year: 2000 end-page: 31 ident: bb0085 article-title: Global patterns of root turnover for terrestrial ecosystems publication-title: New Phytol. – volume: 96 start-page: 361 year: 2017 end-page: 377 ident: bb0100 article-title: The implication of input data aggregation on up-scaling soil organic carbon changes publication-title: Environ. Model. Softw. – volume: 714 year: 2020 ident: bb0310 article-title: Optimizing farmyard manure and cattle slurry applications for intensively managed grasslands based on UK-DNDC model simulations publication-title: Science of The Total Environment – volume: 11 start-page: 79 year: 2002 end-page: 86 ident: bb0090 article-title: Using simple environmental variables to estimate below-ground productivity in grasslands publication-title: Glob. Ecol. Biogeogr. – volume: 5 start-page: 81 year: 2014 end-page: 91 ident: bb0300 article-title: Global soil carbon: understanding and managing the largest terrestrial carbon pool publication-title: Carbon Manag. – volume: 12 year: 2017 ident: bb0135 article-title: SoilGrids250m: global gridded soil information based on machine learning publication-title: PLoS One – volume: 24 start-page: 295 year: 1992 end-page: 308 ident: bb0155 article-title: Calculating net primary production and annual input of organic matter to soil from the amount and radiocarbon content of soil organic matter publication-title: Soil Biology & Biochemistry – volume: 3 start-page: 603 year: 1954 end-page: 607 ident: bb0080 article-title: "Klassifikation der Klimate nach W. Köppen" [Classification of climates after W. Köppen]. Landolt-Börnstein – Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik, alte Serie – volume: 24 start-page: 1291 year: 2018 end-page: 1307 ident: bb0345 article-title: Contribution of crop model structure, parameters and climate projections to uncertainty in climate change impact assessments publication-title: Glob. Change Biol. – volume: 136 start-page: 97 year: 2010 end-page: 110 ident: bb0115 article-title: Uncertainty propagation in soil greenhouse gas emission models: an experiment using the DNDC model and at the Oensingen cropland site publication-title: Agric. Ecosyst. Environ. – volume: 12 start-page: 3241 year: 2015 end-page: 3251 ident: bb0270 article-title: Positive trends in organic carbon storage in Swedish agricultural soils due to unexpected socio-economic drivers publication-title: Biogeosciences – volume: 114 start-page: 9575 year: 2017 end-page: 9580 ident: bb0295 article-title: Soil carbon debt of 12,000 years of human land use publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 50 start-page: 115 year: 2004 end-page: 132 ident: bb0175 article-title: Review of estimation of plant rhizodeposition and their contribution to soil organic matter formation publication-title: Arch. Agron. Soil Sci. – volume: 17 start-page: 197 year: 2006 end-page: 209 ident: bb0185 article-title: Enhancing crop yields in the developing countries through restoration of the soil organic carbon pool in agricultural lands publication-title: Land Degrad. Dev. – volume: 23 start-page: 375 year: 2003 end-page: 396 ident: bb0240 article-title: Rhizodeposition of organic C by plants: mechanisms and controls publication-title: Agronomie – volume: 9 start-page: 3461 year: 2016 end-page: 3482 ident: bb0245 article-title: The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6 publication-title: Geosci. Model Dev. – reference: Lilja, H., Uusitalo, R., Yli-Halla, M., Nevalainen, R., Väänänen, T., Tamminen, P., (2006). Finnish Soil Database-Soil map at scale 1: 250 000 and properties of soil. MTT:n selvityksiä. – volume: 2–3 start-page: 1 year: 2014 end-page: 8 ident: bb0020 article-title: Carbon budget of Finnish croplands — effects of land use change from natural forest to cropland publication-title: Geoderma Reg. – volume: 731 year: 2020 ident: bb0335 article-title: Are there environmental or agricultural benefits in using forest residue biochar in boreal agricultural clay soil? publication-title: Sci. Tot. Enviro. – volume: 363 start-page: 789 year: 2008 end-page: 813 ident: bb0325 article-title: Greenhouse gas mitigation in agriculture publication-title: PHILOS. T. R. SOC. B. – year: 2021 ident: bb0015 article-title: Agricultural Statistics Finland – volume: 18 start-page: 101 year: 2002 end-page: 111 ident: bb0055 article-title: Simulating SOC changes in long-term experiments with RothC and CENTURY: model evaluation for a regional scale application publication-title: Soil Use Manag. – volume: 28 start-page: 3960 year: 2022 end-page: 3973 ident: bb0130 article-title: Climate change induces carbon loss of arable mineral soils in boreal conditions publication-title: Glob. Chang. Biol. – volume: 15 start-page: 445 year: 2017 end-page: 470 ident: bb0035 article-title: Review and analysis of strengths and weaknesses of agro-ecosystem models for simulating C and N fluxes publication-title: Sci. Tot. Environ. – volume: 186 start-page: 70 year: 2019 end-page: 78 ident: bb0350 article-title: Cropland soils in China have a large potential for carbon sequestration based on literature survey publication-title: Soil Till. Res. – volume: 52 start-page: 49 year: 2012 end-page: 60 ident: bb0260 article-title: RothC simulation of carbon accumulation in soil after repeated application of widely different organic amendments publication-title: Soil Biol. Biochem. – volume: 73 start-page: 145A year: 2018 end-page: 152A ident: bb0190 article-title: The carbon sequestration potential of terrestrial ecosystems publication-title: J. Soil Water Conserv. – volume: 45 start-page: 167 year: 1994 end-page: 174 ident: bb0150 article-title: Calculating the annual input of organic matter to soil from measurements of total organic carbon and radiocarbon publication-title: Eur. J. Soil Sci. – volume: 27 start-page: 2458 year: 2021 end-page: 2477 ident: bb0220 article-title: Feasibility of the 4 per 1000 aspirational target for soil carbon: A case study for France publication-title: Glob. Change Biol. – year: 2019 ident: bb0280 article-title: Greenhouse gas fluxes of agricultural soils in Finland publication-title: Greenhouse Gas Emissions. Energy, Environment, and Sustainability – volume: 24 start-page: 2513 year: 2018 end-page: 2529 ident: bb0355 article-title: Cover crops mitigate direct greenhouse gases balance but reduce drainage under climate change scenarios in temperate climate with dry summers publication-title: Glob. Change Biol. – start-page: 237 year: 1975 end-page: 263 ident: bb0205 article-title: Modeling the primary productivity of the world publication-title: Primary productivity of the Biosphere – volume: 121 start-page: 3807 year: 2016 end-page: 3823 ident: bb0005 article-title: New gridded daily climatology of Finland: permutation-based uncertainty estimates and temporal trends in climate publication-title: JGR-Atmospheres – year: 2020 ident: bb0075 article-title: Global Soil Organic Carbon Map V1.5: Technical Report – volume: 72 start-page: 934 year: 2021 end-page: 945 ident: bb0125 article-title: Estimation of carbon stocks in boreal cropland soils-methodological considerations publication-title: Eur. J. Soil Sci. – year: 2016 ident: bb0360 article-title: Erarbeitung fachlicher, rechtlicher und organisatorischer Grundlagen zur Anpassung an den Klimawandel aus Sicht des Bodenschutzes: Teil 3 publication-title: Bestimmung der Veränderungen ds Humusgehalts und deren ursachen auf Ackerböden Deutschlands. UBA-Texte 26/2016 – volume: 6 start-page: 207 year: 2016 end-page: 220 ident: bb0250 article-title: Method for estimating soil carbon stock changes in Finnish mineral cropland and grassland soils publication-title: Carbon Manag. – year: 2017 ident: bb0065 article-title: Voluntary Guidelines for Sustainable Soil Management Food and Agriculture Organization of the United Nations Rome, Italy – volume: 11 start-page: 6438 year: 2021 ident: bb0230 article-title: Fine silt and clay content is the main factor defining maximal C and N accumulations in soils: a meta-analysis publication-title: Sci. Rep. – volume: 460 start-page: 417 year: 2021 end-page: 433 ident: bb0290 article-title: How much carbon input is required to preserve or increase projected soil organic carbon stocks in German croplands under climate change? publication-title: Plant Soil – volume: 20 start-page: 18 year: 2020 ident: bb0365 article-title: Analysing trade-offs in adaptation decision-making—agricultural management under climate change in Finland and Sweden publication-title: Reg. Environ. Change – volume: 143 year: 2020 ident: bb0160 article-title: A meta-analysis of global cropland soil carbon changes due to cover cropping publication-title: Soil Biol. Biochem. – volume: 163 start-page: 421 year: 2000 end-page: 431 ident: bb0170 article-title: Carbon input by plants into the soil publication-title: Review. J. Plant Nutr. Soil Sci. – volume: 118 start-page: 29 year: 2007 end-page: 42 ident: bb0030 article-title: An approach for estimating net primary productivity and annual carbon inputs to soil for common agricultural crops in Canada publication-title: Agric. Ecosyst. Environ. – volume: 5 year: 2018 ident: bb0010 article-title: Terraclimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015 publication-title: Sci. Data – volume: 150 start-page: 107 year: 2015 end-page: 113 ident: bb0315 article-title: Impact of no-till and reduced tillage on aggregation and aggregate-associated carbon in Northern European agroecosystems publication-title: Soil Till. Res. – year: 2020 ident: bb0070 article-title: Technical Specifications and Country Guidelines for Global Soil Organic Carbon Sequestration Potential Map (GSOCseq). Rome – volume: 215 year: 2022 ident: bb0225 article-title: How farmers approach soil carbon sequestration? Lessons learned from 105 carbon-farming plans publication-title: Soil Till. Res. – start-page: 237 year: 1996 end-page: 246 ident: bb0040 article-title: RothC-26.3-a model for the turnover of carbon in soil publication-title: Evaluation of Soil Organic Matter Models – volume: 26 start-page: 219 year: 2020 end-page: 241 ident: bb0330 article-title: How to measure, report and verify soil carbon change to realize the potential of soil carbon sequestration for atmospheric greenhouse gas removal publication-title: Glob. Change Biol. – volume: 28 start-page: 1162 year: 2022 end-page: 1177 ident: bb0200 article-title: Global variation in soil carbon sequestration potential through improved cropland management publication-title: Glob. Change Biol. – volume: 20 start-page: 3557 year: 2015 end-page: 3567 ident: bb0215 article-title: Potential carbon sequestration of European arable soils estimated by modeling a comprehensive set of management practices publication-title: Glob. Change Biol. – volume: 10 start-page: 115 year: 2019 end-page: 126 ident: bb0165 article-title: Mapping of cultivated organic soils for targeting greenhouse gas mitigation publication-title: Carbon Manag. – volume: 84 year: 1998 ident: bb0060 article-title: World Reference Base for Soil Resources. World Soil Resources Reports – volume: 304 start-page: 1623 year: 2004 end-page: 1627 ident: bb0180 article-title: Soil carbon sequestration impacts on global climate change and food security publication-title: Science – volume: 101 start-page: 820 year: 2018 end-page: 829 ident: bb0025 article-title: Predicting manure volatile solid output of lactating dairy cows publication-title: J. Dairy Sci. – volume: 19 start-page: 1456 year: 2013 end-page: 1469 ident: bb0120 article-title: Declining trend of carbon in Finnish cropland soils in 1974–2009 publication-title: Glob. Change Biol. – volume: 11 start-page: 2141 year: 2005 end-page: 2152 ident: bb0320 article-title: Projected changes in mineral soil carbon of European croplands and grasslands, 1990–2080 publication-title: Glob. Change Biol. – volume: 27 start-page: 1645 year: 2021 end-page: 1661 ident: bb0195 article-title: Estimating the carbon storage potential and greenhouse gas emissions of French arable cropland using high-resolution modeling publication-title: Glob. Change Biol. – volume: 8 start-page: 780 year: 2015 end-page: 783 ident: bb0050 article-title: Soil carbon storage controlled by interactions between geochemistry and climate publication-title: Nat. Geosci. – volume: 9 start-page: 261 year: 2018 ident: bb0235 article-title: Application of farmyard manure rather than manure slurry mitigates the net greenhouse gas emissions from herbage production system in Nasu publication-title: Japan. – volume: 10 start-page: 567 year: 2019 end-page: 587 ident: bb0255 article-title: Quantifying carbon for agricultural soil management: from the current status toward a global soil information system publication-title: Carbon Management – year: 2009 ident: bb0265 article-title: Dairy Manure Nutrient Content and Forms – volume: 731 year: 2020 ident: 10.1016/j.agsy.2023.103671_bb0335 article-title: Are there environmental or agricultural benefits in using forest residue biochar in boreal agricultural clay soil? publication-title: Sci. Tot. Enviro. doi: 10.1016/j.scitotenv.2020.138955 – year: 2009 ident: 10.1016/j.agsy.2023.103671_bb0265 – volume: 84 year: 1998 ident: 10.1016/j.agsy.2023.103671_bb0060 – volume: 24 start-page: 2513 year: 2018 ident: 10.1016/j.agsy.2023.103671_bb0355 article-title: Cover crops mitigate direct greenhouse gases balance but reduce drainage under climate change scenarios in temperate climate with dry summers publication-title: Glob. Change Biol. doi: 10.1111/gcb.14091 – volume: 363 start-page: 789 issue: 1492 year: 2008 ident: 10.1016/j.agsy.2023.103671_bb0325 article-title: Greenhouse gas mitigation in agriculture publication-title: PHILOS. T. R. SOC. B. doi: 10.1098/rstb.2007.2184 – volume: 460 start-page: 417 year: 2021 ident: 10.1016/j.agsy.2023.103671_bb0290 article-title: How much carbon input is required to preserve or increase projected soil organic carbon stocks in German croplands under climate change? publication-title: Plant Soil doi: 10.1007/s11104-020-04806-8 – volume: 10 start-page: 115 issue: 2 year: 2019 ident: 10.1016/j.agsy.2023.103671_bb0165 article-title: Mapping of cultivated organic soils for targeting greenhouse gas mitigation publication-title: Carbon Manag. doi: 10.1080/17583004.2018.1557990 – volume: 8 start-page: 780 year: 2015 ident: 10.1016/j.agsy.2023.103671_bb0050 article-title: Soil carbon storage controlled by interactions between geochemistry and climate publication-title: Nat. Geosci. doi: 10.1038/ngeo2516 – volume: 12 start-page: 3241 year: 2015 ident: 10.1016/j.agsy.2023.103671_bb0270 article-title: Positive trends in organic carbon storage in Swedish agricultural soils due to unexpected socio-economic drivers publication-title: Biogeosciences doi: 10.5194/bg-12-3241-2015 – volume: 714 year: 2020 ident: 10.1016/j.agsy.2023.103671_bb0310 article-title: Optimizing farmyard manure and cattle slurry applications for intensively managed grasslands based on UK-DNDC model simulations publication-title: Science of The Total Environment doi: 10.1016/j.scitotenv.2020.136672 – volume: 66 start-page: 121 year: 2015 ident: 10.1016/j.agsy.2023.103671_bb0045 article-title: A map of the topsoil organic carbon content of Europe generated by a generalized additive model publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.12193 – year: 2019 ident: 10.1016/j.agsy.2023.103671_bb0280 article-title: Greenhouse gas fluxes of agricultural soils in Finland doi: 10.1007/978-981-13-3272-2_2 – year: 2017 ident: 10.1016/j.agsy.2023.103671_bb0065 – volume: 136 start-page: 97 issue: 1–2 year: 2010 ident: 10.1016/j.agsy.2023.103671_bb0115 article-title: Uncertainty propagation in soil greenhouse gas emission models: an experiment using the DNDC model and at the Oensingen cropland site publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2009.11.016 – volume: 20 start-page: 3557 year: 2015 ident: 10.1016/j.agsy.2023.103671_bb0215 article-title: Potential carbon sequestration of European arable soils estimated by modeling a comprehensive set of management practices publication-title: Glob. Change Biol. doi: 10.1111/gcb.12551 – volume: 11 start-page: 6438 year: 2021 ident: 10.1016/j.agsy.2023.103671_bb0230 article-title: Fine silt and clay content is the main factor defining maximal C and N accumulations in soils: a meta-analysis publication-title: Sci. Rep. doi: 10.1038/s41598-021-84821-6 – volume: 121 start-page: 3807 year: 2016 ident: 10.1016/j.agsy.2023.103671_bb0005 article-title: New gridded daily climatology of Finland: permutation-based uncertainty estimates and temporal trends in climate publication-title: JGR-Atmospheres doi: 10.1002/2015JD024651 – volume: 147 start-page: 13 issue: 1 year: 2000 ident: 10.1016/j.agsy.2023.103671_bb0085 article-title: Global patterns of root turnover for terrestrial ecosystems publication-title: New Phytol. doi: 10.1046/j.1469-8137.2000.00681.x – volume: 9 start-page: 261 year: 2018 ident: 10.1016/j.agsy.2023.103671_bb0235 article-title: Application of farmyard manure rather than manure slurry mitigates the net greenhouse gas emissions from herbage production system in Nasu publication-title: Japan. Atmosphere doi: 10.3390/atmos9070261 – volume: 5 start-page: 81 issue: 1 year: 2014 ident: 10.1016/j.agsy.2023.103671_bb0300 article-title: Global soil carbon: understanding and managing the largest terrestrial carbon pool publication-title: Carbon Manag. doi: 10.4155/cmt.13.77 – volume: 28 start-page: 3960 year: 2022 ident: 10.1016/j.agsy.2023.103671_bb0130 article-title: Climate change induces carbon loss of arable mineral soils in boreal conditions publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.16164 – year: 2019 ident: 10.1016/j.agsy.2023.103671_bb0140 – volume: 304 start-page: 1623 issue: 5677 year: 2004 ident: 10.1016/j.agsy.2023.103671_bb0180 article-title: Soil carbon sequestration impacts on global climate change and food security publication-title: Science doi: 10.1126/science.1097396 – volume: 16 start-page: 1451 issue: 5 year: 2010 ident: 10.1016/j.agsy.2023.103671_bb0305 article-title: The European carbon balance. Part 4: integration of carbon and other trace-gas fluxes publication-title: Glob. Change Biol. doi: 10.1111/j.1365-2486.2010.02215.x – year: 2020 ident: 10.1016/j.agsy.2023.103671_bb0070 – volume: 9 start-page: 3461 issue: 9 year: 2016 ident: 10.1016/j.agsy.2023.103671_bb0245 article-title: The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6 publication-title: Geosci. Model Dev. doi: 10.5194/gmd-9-3461-2016 – ident: 10.1016/j.agsy.2023.103671_bb0210 – volume: 24 start-page: 1291 year: 2018 ident: 10.1016/j.agsy.2023.103671_bb0345 article-title: Contribution of crop model structure, parameters and climate projections to uncertainty in climate change impact assessments publication-title: Glob. Change Biol. doi: 10.1111/gcb.14019 – volume: 215 year: 2022 ident: 10.1016/j.agsy.2023.103671_bb0225 article-title: How farmers approach soil carbon sequestration? Lessons learned from 105 carbon-farming plans publication-title: Soil Till. Res. doi: 10.1016/j.still.2021.105204 – start-page: 237 year: 1975 ident: 10.1016/j.agsy.2023.103671_bb0205 article-title: Modeling the primary productivity of the world – volume: 11 start-page: 79 issue: 1 year: 2002 ident: 10.1016/j.agsy.2023.103671_bb0090 article-title: Using simple environmental variables to estimate below-ground productivity in grasslands publication-title: Glob. Ecol. Biogeogr. doi: 10.1046/j.1466-822X.2001.00267.x – volume: 96 start-page: 361 year: 2017 ident: 10.1016/j.agsy.2023.103671_bb0100 article-title: The implication of input data aggregation on up-scaling soil organic carbon changes publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2017.06.046 – volume: 2–3 start-page: 1 year: 2014 ident: 10.1016/j.agsy.2023.103671_bb0020 article-title: Carbon budget of Finnish croplands — effects of land use change from natural forest to cropland publication-title: Geoderma Reg. – volume: 101 start-page: 820 issue: 1 year: 2018 ident: 10.1016/j.agsy.2023.103671_bb0025 article-title: Predicting manure volatile solid output of lactating dairy cows publication-title: J. Dairy Sci. doi: 10.3168/jds.2017-12813 – volume: 27 start-page: 1645 year: 2021 ident: 10.1016/j.agsy.2023.103671_bb0195 article-title: Estimating the carbon storage potential and greenhouse gas emissions of French arable cropland using high-resolution modeling publication-title: Glob. Change Biol. doi: 10.1111/gcb.15512 – volume: 6 start-page: 207 issue: 5-6 year: 2016 ident: 10.1016/j.agsy.2023.103671_bb0250 article-title: Method for estimating soil carbon stock changes in Finnish mineral cropland and grassland soils publication-title: Carbon Manag. doi: 10.1080/17583004.2015.1131383 – volume: 10 start-page: 567 issue: 6 year: 2019 ident: 10.1016/j.agsy.2023.103671_bb0255 article-title: Quantifying carbon for agricultural soil management: from the current status toward a global soil information system publication-title: Carbon Management doi: 10.1080/17583004.2019.1633231 – volume: 118 start-page: 29 issue: 1–4 year: 2007 ident: 10.1016/j.agsy.2023.103671_bb0030 article-title: An approach for estimating net primary productivity and annual carbon inputs to soil for common agricultural crops in Canada publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2006.05.013 – volume: 150 start-page: 107 year: 2015 ident: 10.1016/j.agsy.2023.103671_bb0315 article-title: Impact of no-till and reduced tillage on aggregation and aggregate-associated carbon in Northern European agroecosystems publication-title: Soil Till. Res. doi: 10.1016/j.still.2015.01.015 – volume: 17 start-page: 197 year: 2006 ident: 10.1016/j.agsy.2023.103671_bb0185 article-title: Enhancing crop yields in the developing countries through restoration of the soil organic carbon pool in agricultural lands publication-title: Land Degrad. Dev. doi: 10.1002/ldr.696 – volume: 20 start-page: 18 year: 2020 ident: 10.1016/j.agsy.2023.103671_bb0365 article-title: Analysing trade-offs in adaptation decision-making—agricultural management under climate change in Finland and Sweden publication-title: Reg. Environ. Change doi: 10.1007/s10113-020-01585-x – volume: 143 year: 2020 ident: 10.1016/j.agsy.2023.103671_bb0160 article-title: A meta-analysis of global cropland soil carbon changes due to cover cropping publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2020.107735 – volume: 65 start-page: 23 year: 2015 ident: 10.1016/j.agsy.2023.103671_bb0340 article-title: Assessing climate effects on wheat yield and water use in Finland using a super-ensemble-based probabilistic approach publication-title: Clim. Res. doi: 10.3354/cr01318 – volume: 5 year: 2018 ident: 10.1016/j.agsy.2023.103671_bb0010 article-title: Terraclimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015 publication-title: Sci. Data doi: 10.1038/sdata.2017.191 – year: 2020 ident: 10.1016/j.agsy.2023.103671_bb0075 – volume: 186 start-page: 70 year: 2019 ident: 10.1016/j.agsy.2023.103671_bb0350 article-title: Cropland soils in China have a large potential for carbon sequestration based on literature survey publication-title: Soil Till. Res. doi: 10.1016/j.still.2018.10.009 – volume: 50 start-page: 115 issue: 1 year: 2004 ident: 10.1016/j.agsy.2023.103671_bb0175 article-title: Review of estimation of plant rhizodeposition and their contribution to soil organic matter formation publication-title: Arch. Agron. Soil Sci. doi: 10.1080/03650340310001627658 – volume: 15 start-page: 445 issue: 598 year: 2017 ident: 10.1016/j.agsy.2023.103671_bb0035 article-title: Review and analysis of strengths and weaknesses of agro-ecosystem models for simulating C and N fluxes publication-title: Sci. Tot. Environ. doi: 10.1016/j.scitotenv.2017.03.208 – volume: 52 start-page: 49 year: 2012 ident: 10.1016/j.agsy.2023.103671_bb0260 article-title: RothC simulation of carbon accumulation in soil after repeated application of widely different organic amendments publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2012.03.023 – volume: 12 issue: 2 year: 2017 ident: 10.1016/j.agsy.2023.103671_bb0135 article-title: SoilGrids250m: global gridded soil information based on machine learning publication-title: PLoS One doi: 10.1371/journal.pone.0169748 – volume: 152 start-page: 231 year: 2009 ident: 10.1016/j.agsy.2023.103671_bb0285 article-title: Soil organic carbon contents of agricultural land in the Netherlands between 1984 and 2004 publication-title: Geoderma doi: 10.1016/j.geoderma.2009.06.007 – volume: 27 start-page: 2458 year: 2021 ident: 10.1016/j.agsy.2023.103671_bb0220 article-title: Feasibility of the 4 per 1000 aspirational target for soil carbon: A case study for France publication-title: Glob. Change Biol. doi: 10.1111/gcb.15547 – volume: 95 start-page: 8 year: 2016 ident: 10.1016/j.agsy.2023.103671_bb0105 article-title: Field trial results of straw yield with different harvesting methods, and modelled effects on soil organic carbon. A case study from southern Finland publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2016.08.021 – volume: 19 start-page: 1456 year: 2013 ident: 10.1016/j.agsy.2023.103671_bb0120 article-title: Declining trend of carbon in Finnish cropland soils in 1974–2009 publication-title: Glob. Change Biol. doi: 10.1111/gcb.12137 – volume: 24 start-page: 295 issue: 4 year: 1992 ident: 10.1016/j.agsy.2023.103671_bb0155 article-title: Calculating net primary production and annual input of organic matter to soil from the amount and radiocarbon content of soil organic matter publication-title: Soil Biology & Biochemistry doi: 10.1016/0038-0717(92)90189-5 – volume: 23 start-page: 375 issue: 5-6 year: 2003 ident: 10.1016/j.agsy.2023.103671_bb0240 article-title: Rhizodeposition of organic C by plants: mechanisms and controls publication-title: Agronomie doi: 10.1051/agro:2003011 – start-page: 237 year: 1996 ident: 10.1016/j.agsy.2023.103671_bb0040 article-title: RothC-26.3-a model for the turnover of carbon in soil – volume: 18 start-page: 101 year: 2002 ident: 10.1016/j.agsy.2023.103671_bb0055 article-title: Simulating SOC changes in long-term experiments with RothC and CENTURY: model evaluation for a regional scale application publication-title: Soil Use Manag. doi: 10.1111/j.1475-2743.2002.tb00227.x – volume: 26 start-page: 219 year: 2020 ident: 10.1016/j.agsy.2023.103671_bb0330 article-title: How to measure, report and verify soil carbon change to realize the potential of soil carbon sequestration for atmospheric greenhouse gas removal publication-title: Glob. Change Biol. doi: 10.1111/gcb.14815 – volume: 114 start-page: 9575 year: 2017 ident: 10.1016/j.agsy.2023.103671_bb0295 article-title: Soil carbon debt of 12,000 years of human land use publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1706103114 – volume: 11 start-page: 2141 year: 2005 ident: 10.1016/j.agsy.2023.103671_bb0320 article-title: Projected changes in mineral soil carbon of European croplands and grasslands, 1990–2080 publication-title: Glob. Change Biol. doi: 10.1111/j.1365-2486.2005.001075.x – year: 2021 ident: 10.1016/j.agsy.2023.103671_bb0015 – volume: 3 start-page: 603 year: 1954 ident: 10.1016/j.agsy.2023.103671_bb0080 – volume: 72 start-page: 934 year: 2021 ident: 10.1016/j.agsy.2023.103671_bb0125 article-title: Estimation of carbon stocks in boreal cropland soils-methodological considerations publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.13033 – volume: 73 start-page: 145A issue: 6 year: 2018 ident: 10.1016/j.agsy.2023.103671_bb0190 article-title: The carbon sequestration potential of terrestrial ecosystems publication-title: J. Soil Water Conserv. doi: 10.2489/jswc.73.6.145A – volume: 163 start-page: 421 issue: 4 year: 2000 ident: 10.1016/j.agsy.2023.103671_bb0170 article-title: Carbon input by plants into the soil publication-title: Review. J. Plant Nutr. Soil Sci. doi: 10.1002/1522-2624(200008)163:4<421::AID-JPLN421>3.0.CO;2-R – volume: 28 start-page: 1162 year: 2022 ident: 10.1016/j.agsy.2023.103671_bb0200 article-title: Global variation in soil carbon sequestration potential through improved cropland management publication-title: Glob. Change Biol. doi: 10.1111/gcb.15954 – year: 2016 ident: 10.1016/j.agsy.2023.103671_bb0360 article-title: Erarbeitung fachlicher, rechtlicher und organisatorischer Grundlagen zur Anpassung an den Klimawandel aus Sicht des Bodenschutzes: Teil 3 – volume: 45 start-page: 167 year: 1994 ident: 10.1016/j.agsy.2023.103671_bb0150 article-title: Calculating the annual input of organic matter to soil from measurements of total organic carbon and radiocarbon publication-title: Eur. J. Soil Sci. doi: 10.1111/j.1365-2389.1994.tb00498.x |
SSID | ssj0009108 |
Score | 2.4113083 |
Snippet | Cropland soil organic carbon (SOC) stock can be increased by agricultural management, but is subject to various factors. The extent and rates of SOC... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 103671 |
SubjectTerms | Agricultural carbon management agricultural management annuals carbon sequestration Carbon stock climate Climate change Climate change mitigation Climate-smart agriculture cropland Finland GHG emissions soil soil management soil organic carbon stakeholders temperature |
Title | Soil organic carbon sequestration potential for croplands in Finland over 2021–2040 under the interactive impacts of climate change and agricultural management |
URI | https://dx.doi.org/10.1016/j.agsy.2023.103671 https://www.proquest.com/docview/3153172393 |
Volume | 209 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KXvQgPvHNCN4kNukm3eRYxFIVe1Ght2Wz2UikJqUPwYv4H_wF_jV_iTPZpKKgB29J2BeZ7MwX9vtmGDtGDJx4QiVOIFLh-CoSToxRwnF1itsy4saNSe983W_37vzLQTBosLNaC0O0ysr3W59eeuvqSbN6m81RljVvKNMKDjtAEF2eJ5GC3ReUP__05YvmgeEwtCcJoUOtK-GM5Xip-8nzKRUQJ-15W3i_BacfbrqMPd1VtlKBRujYda2xhsnX2XLnflwlzjAb7P2myIZgazRp0GocFzmUPOk6MS6MiilRg3AgBKpApbtKnS9kOXSznK6B-JyAK_U-Xt9auPGAJGZjQJAIlFeiVFQ94XUprZxAkYIeZoh5DVgBMdAgar4unOpxTq_ZZHfd89uznlOVX3A0F2LqiNiEAYZQLbSOVDtKApw4xd-jMPJaxgg_joJQI36KWz7l8QpTbtpulKRUwZwrxbfYQl7kZpuBm3JXx25gRCL8hNS85Gh0GLiubmF43GFe_d6lrnKTU4mMoaxJaA-SbCXJVtLaaoedzPuMbGaOP1sHtTnlt-9LYuj4s99RbXuJG49OU1RuitlEcowViP54xHf_OfYeW6I7SzzbZwvT8cwcIMSZxoflN3zIFjsXV73-J_8I_Pk |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LTuswELWgLIAF4im4vAaJHQpN6qROlhWiKq9uAKk7y3EclKvepOrjSnd3_4Ev4Nf4EmYSpwgkWLCLkvghjz1zosw5w9gpYuDEEypxApEKx1eRcGKMEo6rUzyWETduTHznu3679-hfD4LBAruouTCUVml9f-XTS29t7zTtajZHWda8J6UV7HaAILr8n7TIlkidCjf7Uufqptd_1971ysJ09L5DDSx3pkrzUk-Tf-dUQ5zo523hfRWfPnnqMvx019maxY3Qqaa2wRZMvslWO09jq51httjLfZENoSrTpEGrcVzkUKZK19q4MCqmlB2EHSFWBareVVJ9Icuhm-V0DZTSCThT7_X_cwvPHhDLbAyIE4GkJUpS1V-8LtmVEyhS0MMMYa-BikMM1ImazwuH-jPPsNlmj93Lh4ueYyswOJoLMXVEbMIAo6gWWkeqHSUBDpziF1IYeS1jhB9HQagRQsUtn6S8wpSbthslKRUx50rxHdbIi9zsMnBT7urYDYxIhJ8QoZd8jQ4D19UtjJB7zKvXXWorT05VMoayzkP7LclWkmwlK1vtsbN5m1ElzvHt20FtTvlhi0mMHt-2O6ltL_Hs0Q8VlZtiNpEcwwUCQB7xXz_s-5gt9x7ubuXtVf9mn63QkyoP7YA1puOZOUTEM42P7I5-A6I2_6o |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Soil+organic+carbon+sequestration+potential+for+croplands+in+Finland+over+2021%E2%80%932040+under+the+interactive+impacts+of+climate+change+and+agricultural+management&rft.jtitle=Agricultural+systems&rft.au=Tao%2C+Fulu&rft.au=Palosuo%2C+Taru&rft.au=Lehtonen%2C+Aleksi&rft.au=Heikkinen%2C+Jaakko&rft.date=2023-06-01&rft.issn=0308-521X&rft.volume=209&rft.spage=103671&rft_id=info:doi/10.1016%2Fj.agsy.2023.103671&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_agsy_2023_103671 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0308-521X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0308-521X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0308-521X&client=summon |