Full scale self-propulsion computations using discretized propeller for the KRISO container ship KCS

► Self-propulsion computations of a surface ship using discretized propeller in full scale are presented for the first time. ► Computations involve overset grids and autopilot to determine the self-propulsion point and are resource intensive. ►All propulsion factors are obtained numerically by compu...

Full description

Saved in:
Bibliographic Details
Published inComputers & fluids Vol. 51; no. 1; pp. 35 - 47
Main Authors Castro, Alejandro M., Carrica, Pablo M., Stern, Frederick
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 15.12.2011
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ► Self-propulsion computations of a surface ship using discretized propeller in full scale are presented for the first time. ► Computations involve overset grids and autopilot to determine the self-propulsion point and are resource intensive. ►All propulsion factors are obtained numerically by computing the propeller curve, the towed and the self-propelled ships. ► The propeller operates more efficiently in full scale than in model scale with a 12% smaller torque coefficient. ► Blade loads fluctuations are smaller in full scale, with axial force and bending moment amplitudes 13% and 25.9% smaller. Self-propulsion computations of the KCS containership are performed in full-scale with direct discretization of the propeller. A dynamic overset approach is used, which allows for arbitrary rotational speed of the propeller during the computation. The self-propulsion point is obtained using a controller to modify the propeller RPS until the target speed is reached. To obtain propulsion coefficients the open-water curves of the propeller and a towed, unpropelled case are also computed. Together, these computations provide for a complete CFD prediction of self-propulsion factors at full scale. The main differences with a similar model scale simulation following the ITTC procedures are identified and reported. The effect of these differences in the propeller operation point and performance are thoroughly studied and discussed. It is concluded that for this case the propeller operates more efficiently in full scale and is subject to smaller load fluctuations.
AbstractList ► Self-propulsion computations of a surface ship using discretized propeller in full scale are presented for the first time. ► Computations involve overset grids and autopilot to determine the self-propulsion point and are resource intensive. ►All propulsion factors are obtained numerically by computing the propeller curve, the towed and the self-propelled ships. ► The propeller operates more efficiently in full scale than in model scale with a 12% smaller torque coefficient. ► Blade loads fluctuations are smaller in full scale, with axial force and bending moment amplitudes 13% and 25.9% smaller. Self-propulsion computations of the KCS containership are performed in full-scale with direct discretization of the propeller. A dynamic overset approach is used, which allows for arbitrary rotational speed of the propeller during the computation. The self-propulsion point is obtained using a controller to modify the propeller RPS until the target speed is reached. To obtain propulsion coefficients the open-water curves of the propeller and a towed, unpropelled case are also computed. Together, these computations provide for a complete CFD prediction of self-propulsion factors at full scale. The main differences with a similar model scale simulation following the ITTC procedures are identified and reported. The effect of these differences in the propeller operation point and performance are thoroughly studied and discussed. It is concluded that for this case the propeller operates more efficiently in full scale and is subject to smaller load fluctuations.
Self-propulsion computations of the KCS containership are performed in full-scale with direct discretization of the propeller. A dynamic overset approach is used, which allows for arbitrary rotational speed of the propeller during the computation. The self-propulsion point is obtained using a controller to modify the propeller RPS until the target speed is reached. To obtain propulsion coefficients the open-water curves of the propeller and a towed, unpropelled case are also computed. Together, these computations provide for a complete CFD prediction of self-propulsion factors at full scale. The main differences with a similar model scale simulation following the ITTC procedures are identified and reported. The effect of these differences in the propeller operation point and performance are thoroughly studied and discussed. It is concluded that for this case the propeller operates more efficiently in full scale and is subject to smaller load fluctuations.
Author Stern, Frederick
Carrica, Pablo M.
Castro, Alejandro M.
Author_xml – sequence: 1
  givenname: Alejandro M.
  surname: Castro
  fullname: Castro, Alejandro M.
– sequence: 2
  givenname: Pablo M.
  surname: Carrica
  fullname: Carrica, Pablo M.
  email: pablo-carrica@uiowa.edu
– sequence: 3
  givenname: Frederick
  surname: Stern
  fullname: Stern, Frederick
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24586817$$DView record in Pascal Francis
BookMark eNqNkM1q3DAUhUVIIJNJn6HalK7s6M-WvegiDE0TEgg07VrI0nWjQSO7khxon74yE7Lopl1dXXHO4dzvAp2GKQBC7ympKaHt1b4202Ee_eJszQilNZE1Ic0J2tBO9hWRQp6iDSGiqWTPyTm6SGlPys6Z2CB7s3iPk9EecAI_VnOc5sUnNwW85i5Z5_JOeEku_MDWJRMhu99g8aoE7yHicYo4PwO-_3r39FhsIWsXyn96djO-3z1dorNR-wTvXucWfb_5_G13Wz08frnbXT9UhkuZSz1DWjlQ0nNouKZdyziIrtFda1vKRTsMgg2Sio4IqQ0t5xs22tGKng-sa_gWfTzmlmo_F0hZHUrf0lEHmJaketZy1vOStUUfXpV6vX2MOhiX1BzdQcdfiommazsqi04edSZOKUUY3ySUqBW_2qs3_GrFr4hUBX9xfvrLadyRZY7a-f_wXx_9UIC9OIgqGQfBgHURTFZ2cv_M-ANf86kn
CODEN CPFLBI
CitedBy_id crossref_primary_10_1016_j_oceaneng_2021_109180
crossref_primary_10_1007_s13344_016_0053_3
crossref_primary_10_3390_jmse8100748
crossref_primary_10_3390_jmse8100745
crossref_primary_10_1016_j_oceaneng_2018_03_002
crossref_primary_10_1063_5_0232044
crossref_primary_10_1080_19942060_2021_1974091
crossref_primary_10_1007_s13344_021_0068_2
crossref_primary_10_1063_5_0167387
crossref_primary_10_1016_j_oceaneng_2020_107563
crossref_primary_10_1016_j_oceaneng_2020_108376
crossref_primary_10_3390_jmse8010024
crossref_primary_10_1016_j_oceaneng_2017_11_006
crossref_primary_10_3390_jmse6020045
crossref_primary_10_1007_s11804_015_1316_8
crossref_primary_10_1016_j_oceaneng_2024_119718
crossref_primary_10_1016_j_oceaneng_2021_109590
crossref_primary_10_1016_j_apor_2021_102728
crossref_primary_10_1016_j_ijnaoe_2017_07_001
crossref_primary_10_1080_17445302_2024_2312770
crossref_primary_10_1016_j_oceaneng_2023_115875
crossref_primary_10_1016_j_apor_2021_102689
crossref_primary_10_12716_1001_18_02_22
crossref_primary_10_1016_j_apor_2021_102561
crossref_primary_10_1016_j_oceaneng_2018_08_055
crossref_primary_10_1088_1742_6596_1834_1_012015
crossref_primary_10_1016_j_oceaneng_2018_01_087
crossref_primary_10_1016_j_oceaneng_2020_107153
crossref_primary_10_1016_j_oceaneng_2020_107033
crossref_primary_10_1016_j_oceaneng_2018_05_021
crossref_primary_10_1016_j_oceaneng_2015_07_035
crossref_primary_10_3390_jmse11112135
crossref_primary_10_3390_jmse13030619
crossref_primary_10_1016_j_oceaneng_2021_109081
crossref_primary_10_1016_j_oceaneng_2022_111885
crossref_primary_10_1115_1_4045332
crossref_primary_10_1016_j_oceaneng_2012_12_029
crossref_primary_10_1016_j_apor_2020_102417
crossref_primary_10_1016_j_apor_2021_102814
crossref_primary_10_1016_j_oceaneng_2019_04_032
crossref_primary_10_1088_1742_6596_1828_1_012182
crossref_primary_10_1016_j_apor_2016_12_003
crossref_primary_10_1016_j_oceaneng_2019_05_074
crossref_primary_10_1080_17445302_2014_945765
crossref_primary_10_1142_S0219876218400157
crossref_primary_10_1016_j_oceaneng_2019_106446
crossref_primary_10_1016_j_apor_2019_101862
crossref_primary_10_1016_j_oceaneng_2017_06_052
crossref_primary_10_1007_s40430_021_03179_y
crossref_primary_10_1016_j_ijnaoe_2017_02_006
crossref_primary_10_1016_j_oceaneng_2021_108959
crossref_primary_10_1016_j_apor_2021_102944
crossref_primary_10_1063_5_0135551
crossref_primary_10_1016_j_compfluid_2014_03_017
crossref_primary_10_1016_j_enganabound_2024_105979
crossref_primary_10_1016_j_marstruc_2024_103683
crossref_primary_10_1080_08927014_2018_1434157
crossref_primary_10_1016_j_oceaneng_2021_109931
crossref_primary_10_3390_jmse11010133
crossref_primary_10_3390_jmse9050482
crossref_primary_10_1016_j_oceaneng_2021_109773
crossref_primary_10_1016_j_apor_2021_102877
crossref_primary_10_1016_j_ijmultiphaseflow_2013_08_001
crossref_primary_10_1016_j_apor_2021_102996
crossref_primary_10_3390_jmse10010078
crossref_primary_10_1016_j_oceaneng_2015_12_008
crossref_primary_10_1063_5_0041334
crossref_primary_10_1016_j_oceaneng_2014_04_016
crossref_primary_10_1016_j_oceaneng_2016_12_004
crossref_primary_10_1007_s42241_021_0024_x
crossref_primary_10_1016_j_ijnaoe_2023_100557
crossref_primary_10_1088_1757_899X_400_4_042004
crossref_primary_10_1007_s00773_018_0593_8
crossref_primary_10_1016_j_oceaneng_2021_108974
crossref_primary_10_1016_j_oceaneng_2024_119238
crossref_primary_10_1016_j_oceaneng_2020_108052
crossref_primary_10_21595_jve_2021_21789
crossref_primary_10_1016_j_ijnaoe_2017_12_004
crossref_primary_10_1080_17445302_2019_1697091
crossref_primary_10_1016_j_oceaneng_2019_04_002
crossref_primary_10_1016_j_compfluid_2011_10_002
crossref_primary_10_1016_j_oceaneng_2019_04_082
crossref_primary_10_3390_su162411169
crossref_primary_10_1115_1_4047201
crossref_primary_10_1016_j_ijnaoe_2020_10_001
crossref_primary_10_1016_j_oceaneng_2021_108863
crossref_primary_10_1063_5_0183523
crossref_primary_10_1016_j_compfluid_2015_06_010
crossref_primary_10_3390_jmse8040257
crossref_primary_10_1016_j_oceaneng_2022_113105
crossref_primary_10_1016_j_apor_2017_05_005
crossref_primary_10_1007_s00773_020_00718_5
crossref_primary_10_1016_j_oceaneng_2020_107428
crossref_primary_10_1016_j_apor_2019_03_005
crossref_primary_10_1016_j_oceaneng_2025_120367
crossref_primary_10_1016_j_ijnaoe_2020_12_005
crossref_primary_10_1016_j_oceaneng_2019_01_056
crossref_primary_10_59887_fpg_kx4r_pr4d_fba8
crossref_primary_10_1016_j_oceaneng_2021_108595
crossref_primary_10_1016_j_oceaneng_2021_109442
crossref_primary_10_3390_app11178197
crossref_primary_10_1016_j_ijnaoe_2020_12_001
crossref_primary_10_3390_jmse13040626
crossref_primary_10_1016_j_oceaneng_2023_113617
crossref_primary_10_1016_j_oceaneng_2015_05_029
crossref_primary_10_1016_j_ijnaoe_2019_02_001
crossref_primary_10_1016_j_oceaneng_2023_114164
crossref_primary_10_1016_j_apor_2020_102203
crossref_primary_10_1016_j_oceaneng_2025_120469
crossref_primary_10_1177_1475090219862897
crossref_primary_10_1016_j_apor_2020_102328
crossref_primary_10_1016_j_ijnaoe_2016_06_003
crossref_primary_10_1016_j_oceaneng_2021_110434
crossref_primary_10_1016_j_ijnaoe_2023_100560
crossref_primary_10_1016_j_oceaneng_2020_108189
crossref_primary_10_1016_j_oceaneng_2021_109570
Cites_doi 10.2514/6.2005-5117
10.1007/s00773-009-0074-1
10.5957/jsr.2009.53.4.179
10.2514/3.12149
10.1016/j.compfluid.2007.01.007
10.1002/fld.1279
10.1115/OMAE2007-29516
10.1007/s00773-010-0098-6
10.2514/6.2006-1148
10.2514/6.1991-1560
10.1016/0021-9991(86)90099-9
ContentType Journal Article
Copyright 2011 Elsevier Ltd
2015 INIST-CNRS
Copyright_xml – notice: 2011 Elsevier Ltd
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SC
7TB
7U5
8FD
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.compfluid.2011.07.005
DatabaseName CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
Physics
EISSN 1879-0747
EndPage 47
ExternalDocumentID 24586817
10_1016_j_compfluid_2011_07_005
S0045793011002155
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABEFU
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACKIV
ACNNM
ACRLP
ADBBV
ADEZE
ADGUI
ADIYS
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AI.
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SPD
SST
SSW
SSZ
T5K
T9H
TN5
VH1
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
7SC
7TB
7U5
8FD
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c377t-79c067b1093e53a18623e485a86d61346bb42b7148047ac1101c2fdfd493b2853
IEDL.DBID .~1
ISSN 0045-7930
IngestDate Fri Jul 11 03:15:58 EDT 2025
Mon Jul 21 09:16:24 EDT 2025
Thu Apr 24 22:58:49 EDT 2025
Tue Jul 01 02:21:17 EDT 2025
Fri Feb 23 02:29:47 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords CFD
Overset grids
Propellers
Self-propulsion
Full scale ship
Free surface flows
Computational fluid dynamics
Container ship
Digital simulation
Thrusters
Free surface flow
Hydrodynamics
Modelling
Screw propeller
Mesh generation
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c377t-79c067b1093e53a18623e485a86d61346bb42b7148047ac1101c2fdfd493b2853
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 926329361
PQPubID 23500
PageCount 13
ParticipantIDs proquest_miscellaneous_926329361
pascalfrancis_primary_24586817
crossref_primary_10_1016_j_compfluid_2011_07_005
crossref_citationtrail_10_1016_j_compfluid_2011_07_005
elsevier_sciencedirect_doi_10_1016_j_compfluid_2011_07_005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-12-15
PublicationDateYYYYMMDD 2011-12-15
PublicationDate_xml – month: 12
  year: 2011
  text: 2011-12-15
  day: 15
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Computers & fluids
PublicationYear 2011
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Choi, Kim, Lee, Choi, Lee (b0005) 2010; 15
Pankajakshan R, Remotigue S, Taylor L, Jiang M, Briley W, Whitfield D. Validation of control-surface induced submarine maneuvering simulations using UNCLE. In: Proc 24th symposium on naval hydrodynamics, Fukuoka, Japan; 2004.
Hino T, editor. CFD workshop Tokyo 2005, National Maritime Research Institute, Japan; 2005.
Cura Hochbaum A, Vogt M, Gatchell S. Manoeuvring prediction for two tankers based on RANS calculations. In: SIMMAN 2008, Copenhagen, Denmark; 2008.
Wilcox (b0110) 1998
Carrica PM, Castro AM, Stern F. Self-propulsion computations using speed controller and discretized propeller with dynamic overset grids. J Marine Sci Technol, in press
Menter (b0055) 1994; 32
Fossen (b0100) 1994
Carrica, Wilson, Stern (b0050) 2007; 53
White (b0115) 2001
Bhushan, Xing, Carrica, Stern (b0065) 2009; 53
Noack R. SUGGAR: a general capability for moving body overset grid assembly. In: AIAA paper 2005-5117, 17th AIAA computational fluid dynamics conference, Toronto, Ontario, Canada; 2005.
Kim, Kim, Kim, Park, Van (b0010) 2006; 10
Issa (b0090) 1986; 62
ITTC recommended procedures and guidelines. Testing and extrapolation methods, performance propulsion test. Report 7.5-02-03-01.1; 2002.
Schneekluth, Bertram (b0130) 1998
19th ITTC report of the Powering Performance Committee. In: 19th international towing tank conference, Madrid, Spain; 1990.
Balay S, Brown J, Buschelman K, Eijkhout V, Gropp WD, Kaushik D, et al. PETSc users manual. Technical report ANL-95/11-revision 3.0.0, Argonne National Laboratory; 2008.
Bell JB, Howell LH, Colella P. An efficient second-order projection method for viscous incompressible flow. In: 10th AIAA computational fluid dynamics conference, Honolulu, Hawaii; 1991.
Xing T, Shao J, Stern F. BKW-RS-DES of unsteady vortical flow for KVLCC2 at large drift angles. In: 9th international conference on numerical ship hydrodynamics, Ann Arbor, Michigan; 2007.
Carrica, Wilson, Noack, Stern (b0070) 2007; 36
Boger DA, Dreyer JJ. Prediction of hydrodynamic forces and moments for underwater vehicles using overset grids. In: AIAA paper 2006-1148, 44th AIAA aerospace sciences meeting, Reno, Nevada; 2006.
.
Venkatesan G, Clark W. Submarine maneuvering simulations of ONR body 1. In: Proc OMAE2007, San Diego, California; 2007.
Lübke LO. Numerical simulation of the flow around the propelled KCS. In: CFDWS05, Tokyo, Japan; 2005.
G2010.
Carrica PM, Stern F. DES simulations of KVLCC1 in turn and zigzag maneuvers with moving propeller and rudder. In: SIMMAN 2008. Copenhagen, Denmark; 2008.
10.1016/j.compfluid.2011.07.005_b0030
Menter (10.1016/j.compfluid.2011.07.005_b0055) 1994; 32
10.1016/j.compfluid.2011.07.005_b0095
10.1016/j.compfluid.2011.07.005_b0075
Carrica (10.1016/j.compfluid.2011.07.005_b0050) 2007; 53
10.1016/j.compfluid.2011.07.005_b0035
White (10.1016/j.compfluid.2011.07.005_b0115) 2001
10.1016/j.compfluid.2011.07.005_b0015
Bhushan (10.1016/j.compfluid.2011.07.005_b0065) 2009; 53
Fossen (10.1016/j.compfluid.2011.07.005_b0100) 1994
Issa (10.1016/j.compfluid.2011.07.005_b0090) 1986; 62
10.1016/j.compfluid.2011.07.005_b0060
Choi (10.1016/j.compfluid.2011.07.005_b0005) 2010; 15
10.1016/j.compfluid.2011.07.005_b0085
10.1016/j.compfluid.2011.07.005_b0040
10.1016/j.compfluid.2011.07.005_b0020
10.1016/j.compfluid.2011.07.005_b0045
10.1016/j.compfluid.2011.07.005_b0120
Wilcox (10.1016/j.compfluid.2011.07.005_b0110) 1998
Carrica (10.1016/j.compfluid.2011.07.005_b0070) 2007; 36
10.1016/j.compfluid.2011.07.005_b0080
Kim (10.1016/j.compfluid.2011.07.005_b0010) 2006; 10
Schneekluth (10.1016/j.compfluid.2011.07.005_b0130) 1998
10.1016/j.compfluid.2011.07.005_b0025
10.1016/j.compfluid.2011.07.005_b0125
10.1016/j.compfluid.2011.07.005_b0105
References_xml – reference: G2010. <
– reference: Cura Hochbaum A, Vogt M, Gatchell S. Manoeuvring prediction for two tankers based on RANS calculations. In: SIMMAN 2008, Copenhagen, Denmark; 2008.
– reference: Lübke LO. Numerical simulation of the flow around the propelled KCS. In: CFDWS05, Tokyo, Japan; 2005.
– reference: Carrica PM, Castro AM, Stern F. Self-propulsion computations using speed controller and discretized propeller with dynamic overset grids. J Marine Sci Technol, in press,
– year: 1994
  ident: b0100
  article-title: Guidance and control of ocean vehicles
– reference: ITTC recommended procedures and guidelines. Testing and extrapolation methods, performance propulsion test. Report 7.5-02-03-01.1; 2002.
– year: 1998
  ident: b0130
  article-title: Ship design for efficiency and economy
– reference: Carrica PM, Stern F. DES simulations of KVLCC1 in turn and zigzag maneuvers with moving propeller and rudder. In: SIMMAN 2008. Copenhagen, Denmark; 2008.
– volume: 32
  start-page: 1598
  year: 1994
  end-page: 1605
  ident: b0055
  article-title: Two-equation eddy-viscosity turbulence models for engineering applications
  publication-title: AIAA J
– volume: 53
  start-page: 179
  year: 2009
  end-page: 198
  ident: b0065
  article-title: Model- and full-scale URANS simulations of Athena resistance, powering, seakeeping, and 5415 maneuvering
  publication-title: J Ship Res
– volume: 36
  start-page: 1415
  year: 2007
  end-page: 1433
  ident: b0070
  article-title: Ship motions using single-phase level set with dynamic overset grids
  publication-title: Comput Fluids
– reference: Bell JB, Howell LH, Colella P. An efficient second-order projection method for viscous incompressible flow. In: 10th AIAA computational fluid dynamics conference, Honolulu, Hawaii; 1991.
– year: 1998
  ident: b0110
  article-title: Turbulence modeling for CFD
– reference: Pankajakshan R, Remotigue S, Taylor L, Jiang M, Briley W, Whitfield D. Validation of control-surface induced submarine maneuvering simulations using UNCLE. In: Proc 24th symposium on naval hydrodynamics, Fukuoka, Japan; 2004.
– reference: Venkatesan G, Clark W. Submarine maneuvering simulations of ONR body 1. In: Proc OMAE2007, San Diego, California; 2007.
– volume: 62
  start-page: 40
  year: 1986
  end-page: 65
  ident: b0090
  article-title: Solution of the implicitly discretised fluid flow equations by operator-splitting
  publication-title: J Comput Phys
– reference: 19th ITTC report of the Powering Performance Committee. In: 19th international towing tank conference, Madrid, Spain; 1990.
– reference: Hino T, editor. CFD workshop Tokyo 2005, National Maritime Research Institute, Japan; 2005. <
– reference: Xing T, Shao J, Stern F. BKW-RS-DES of unsteady vortical flow for KVLCC2 at large drift angles. In: 9th international conference on numerical ship hydrodynamics, Ann Arbor, Michigan; 2007.
– reference: Balay S, Brown J, Buschelman K, Eijkhout V, Gropp WD, Kaushik D, et al. PETSc users manual. Technical report ANL-95/11-revision 3.0.0, Argonne National Laboratory; 2008.
– reference: Boger DA, Dreyer JJ. Prediction of hydrodynamic forces and moments for underwater vehicles using overset grids. In: AIAA paper 2006-1148, 44th AIAA aerospace sciences meeting, Reno, Nevada; 2006.
– year: 2001
  ident: b0115
  article-title: Fluid mechanics
– reference: >.
– volume: 53
  start-page: 229
  year: 2007
  end-page: 256
  ident: b0050
  article-title: An unsteady single-phase level set method for viscous free surface flows
  publication-title: Int J Numer Methods Fluids
– volume: 15
  start-page: 64
  year: 2010
  end-page: 77
  ident: b0005
  article-title: Computational predictions of ship-speed performance
  publication-title: J Marine Sci Technol
– reference: Noack R. SUGGAR: a general capability for moving body overset grid assembly. In: AIAA paper 2005-5117, 17th AIAA computational fluid dynamics conference, Toronto, Ontario, Canada; 2005.
– volume: 10
  start-page: 1
  year: 2006
  end-page: 11
  ident: b0010
  article-title: Hybrid RANS and potential based numerical simulation for self-propulsion performances of the practical container ship
  publication-title: J Ship Ocean Technol
– reference: .
– ident: 10.1016/j.compfluid.2011.07.005_b0075
  doi: 10.2514/6.2005-5117
– ident: 10.1016/j.compfluid.2011.07.005_b0035
– ident: 10.1016/j.compfluid.2011.07.005_b0060
– volume: 10
  start-page: 1
  issue: 4
  year: 2006
  ident: 10.1016/j.compfluid.2011.07.005_b0010
  article-title: Hybrid RANS and potential based numerical simulation for self-propulsion performances of the practical container ship
  publication-title: J Ship Ocean Technol
– volume: 15
  start-page: 64
  year: 2010
  ident: 10.1016/j.compfluid.2011.07.005_b0005
  article-title: Computational predictions of ship-speed performance
  publication-title: J Marine Sci Technol
  doi: 10.1007/s00773-009-0074-1
– volume: 53
  start-page: 179
  year: 2009
  ident: 10.1016/j.compfluid.2011.07.005_b0065
  article-title: Model- and full-scale URANS simulations of Athena resistance, powering, seakeeping, and 5415 maneuvering
  publication-title: J Ship Res
  doi: 10.5957/jsr.2009.53.4.179
– volume: 32
  start-page: 1598
  year: 1994
  ident: 10.1016/j.compfluid.2011.07.005_b0055
  article-title: Two-equation eddy-viscosity turbulence models for engineering applications
  publication-title: AIAA J
  doi: 10.2514/3.12149
– volume: 36
  start-page: 1415
  year: 2007
  ident: 10.1016/j.compfluid.2011.07.005_b0070
  article-title: Ship motions using single-phase level set with dynamic overset grids
  publication-title: Comput Fluids
  doi: 10.1016/j.compfluid.2007.01.007
– volume: 53
  start-page: 229
  year: 2007
  ident: 10.1016/j.compfluid.2011.07.005_b0050
  article-title: An unsteady single-phase level set method for viscous free surface flows
  publication-title: Int J Numer Methods Fluids
  doi: 10.1002/fld.1279
– ident: 10.1016/j.compfluid.2011.07.005_b0125
– ident: 10.1016/j.compfluid.2011.07.005_b0045
– ident: 10.1016/j.compfluid.2011.07.005_b0030
  doi: 10.1115/OMAE2007-29516
– ident: 10.1016/j.compfluid.2011.07.005_b0095
– ident: 10.1016/j.compfluid.2011.07.005_b0040
  doi: 10.1007/s00773-010-0098-6
– ident: 10.1016/j.compfluid.2011.07.005_b0020
– ident: 10.1016/j.compfluid.2011.07.005_b0120
– ident: 10.1016/j.compfluid.2011.07.005_b0015
– year: 1998
  ident: 10.1016/j.compfluid.2011.07.005_b0130
– ident: 10.1016/j.compfluid.2011.07.005_b0080
  doi: 10.2514/6.2006-1148
– ident: 10.1016/j.compfluid.2011.07.005_b0085
  doi: 10.2514/6.1991-1560
– year: 2001
  ident: 10.1016/j.compfluid.2011.07.005_b0115
– ident: 10.1016/j.compfluid.2011.07.005_b0105
– volume: 62
  start-page: 40
  year: 1986
  ident: 10.1016/j.compfluid.2011.07.005_b0090
  article-title: Solution of the implicitly discretised fluid flow equations by operator-splitting
  publication-title: J Comput Phys
  doi: 10.1016/0021-9991(86)90099-9
– year: 1994
  ident: 10.1016/j.compfluid.2011.07.005_b0100
– year: 1998
  ident: 10.1016/j.compfluid.2011.07.005_b0110
– ident: 10.1016/j.compfluid.2011.07.005_b0025
SSID ssj0004324
Score 2.4242392
Snippet ► Self-propulsion computations of a surface ship using discretized propeller in full scale are presented for the first time. ► Computations involve overset...
Self-propulsion computations of the KCS containership are performed in full-scale with direct discretization of the propeller. A dynamic overset approach is...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 35
SubjectTerms Applied fluid mechanics
Applied sciences
CFD
Computation
Computational fluid dynamics
Computational methods in fluid dynamics
Computer simulation
Containers
Discretization
Exact sciences and technology
Fluid dynamics
Free surface flows
Full scale ship
Fundamental areas of phenomenology (including applications)
Ground, air and sea transportation, marine construction
Hydrodynamics, hydraulics, hydrostatics
Marine construction
Mathematical models
Overset grids
Physics
Propellers
Rotational
Self-propulsion
Title Full scale self-propulsion computations using discretized propeller for the KRISO container ship KCS
URI https://dx.doi.org/10.1016/j.compfluid.2011.07.005
https://www.proquest.com/docview/926329361
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA6lXhQRn1gfJQeva_eRbHa9laK0FitYBW8hySZSKbXY9uLB3-7MPqpFpAevyyYbZmbnlZlvCLmIhcmUb52nXWo9pn3uKZVZzxhwNpTSYLQwoX83iLtP7PaZP9dIp-qFwbLKUvcXOj3X1uWTVknN1nQ0wh5fxkG6ctAzMFzYaM6YQCm__Pwu80DEueKWGaEZI3-lxgvLtt14McpKLE-EM-R_WajtqZoB3Vwx8OKX7s4N0s0u2Sk9SdouDrtHanayT7Z-4AsekAwDTIrbWTqzY-dN83ldmCCjJh_nUOTrKFa_v1Ds0MWmxg-bUXwTc_rvFLxaCl4i7T_0hvcUS9sVNgxSLPOi_c7wkDzdXD92ul45VsEzkRBzoIIBE6URR8rySAUQ00SWJVwlcQbGncVas1ALiJN8JpQB8gYmdJnLWBrpEMz7EalP3ib2mNBEWMdZpMEJgUhDuCR2UarCMDActkuCBokrUkpTYo7j6IuxrIrLXuWSBxJ5IH28D-cN4i8XTgvYjfVLripeyRUJkmAc1i9urnB3-dGQ8SROAtEgtGK3hB8Qb1XUxL4tZjJFxPs0ioOT_xzglGzm2eog9AJ-Rurz94U9B3dnrpu5PDfJRrvX7w6-ALO5AVc
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB7RcKAIoRaoCFDqQ68rdtf2PrihCJQ0j0pNkLhZttdGqaIQkeTCr2dmH2kjVHHodbX2WjPe-cbjmW8AviepLXTofGB87gJhQhloXbjAWnQ2tDYIWhTQH46S7r348SAfdqDT1MJQWmVt-yubXlrr-slVLc2rxXRKNb5C4u4qSc8QuOQH2CV2KtmC3Ztevzv6Ux7J44qMWRA7Iw-30rwoc9vP1tOipvMkRkP5L5A6WOglis5XPS_emO8Sk-4-wWHtTLKbar2fYcfNj2D_L4rBYyjojMloOseWbuaDRdmyi2JkzJYdHaqQHaME-EdGRbpU1_jiCkZvUlj_maFjy9BRZP1fvfFPRtntmmoGGWV6sX5nfAL3d7eTTjeoOysElqfpCqVgEaUMUUk5yXWExxruRCZ1lhSI7yIxRsQmxaNSKFJtUcKRjX3hC5FzEyPCf4HW_GnuToFlqfNScIN-CB42Up8lnuc6jiMrcbosakPSiFLZmnacul_MVJNf9lttdKBIByqkK3HZhnAzcFExb7w_5LrRldraRArx4f3Bl1va3Xw0FjJLsihtA2vUrfAfpIsVPXdP66XKifQ-50l09j8L-AZ73clwoAa9Uf8cPpbB6ygOInkBrdXz2n1F72dlLuvd_Qp9TwQI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Full+scale+self-propulsion+computations+using+discretized+propeller+for+the+KRISO+container+ship+KCS&rft.jtitle=Computers+%26+fluids&rft.au=Castro%2C+Alejandro+M&rft.au=Carrica%2C+Pablo+M&rft.au=Stern%2C+Frederick&rft.date=2011-12-15&rft.issn=0045-7930&rft.volume=51&rft.issue=1&rft.spage=35&rft.epage=47&rft_id=info:doi/10.1016%2Fj.compfluid.2011.07.005&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7930&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7930&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7930&client=summon