Full scale self-propulsion computations using discretized propeller for the KRISO container ship KCS
► Self-propulsion computations of a surface ship using discretized propeller in full scale are presented for the first time. ► Computations involve overset grids and autopilot to determine the self-propulsion point and are resource intensive. ►All propulsion factors are obtained numerically by compu...
Saved in:
Published in | Computers & fluids Vol. 51; no. 1; pp. 35 - 47 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
15.12.2011
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ► Self-propulsion computations of a surface ship using discretized propeller in full scale are presented for the first time. ► Computations involve overset grids and autopilot to determine the self-propulsion point and are resource intensive. ►All propulsion factors are obtained numerically by computing the propeller curve, the towed and the self-propelled ships. ► The propeller operates more efficiently in full scale than in model scale with a 12% smaller torque coefficient. ► Blade loads fluctuations are smaller in full scale, with axial force and bending moment amplitudes 13% and 25.9% smaller.
Self-propulsion computations of the KCS containership are performed in full-scale with direct discretization of the propeller. A dynamic overset approach is used, which allows for arbitrary rotational speed of the propeller during the computation. The self-propulsion point is obtained using a controller to modify the propeller RPS until the target speed is reached. To obtain propulsion coefficients the open-water curves of the propeller and a towed, unpropelled case are also computed. Together, these computations provide for a complete CFD prediction of self-propulsion factors at full scale. The main differences with a similar model scale simulation following the ITTC procedures are identified and reported. The effect of these differences in the propeller operation point and performance are thoroughly studied and discussed. It is concluded that for this case the propeller operates more efficiently in full scale and is subject to smaller load fluctuations. |
---|---|
AbstractList | ► Self-propulsion computations of a surface ship using discretized propeller in full scale are presented for the first time. ► Computations involve overset grids and autopilot to determine the self-propulsion point and are resource intensive. ►All propulsion factors are obtained numerically by computing the propeller curve, the towed and the self-propelled ships. ► The propeller operates more efficiently in full scale than in model scale with a 12% smaller torque coefficient. ► Blade loads fluctuations are smaller in full scale, with axial force and bending moment amplitudes 13% and 25.9% smaller.
Self-propulsion computations of the KCS containership are performed in full-scale with direct discretization of the propeller. A dynamic overset approach is used, which allows for arbitrary rotational speed of the propeller during the computation. The self-propulsion point is obtained using a controller to modify the propeller RPS until the target speed is reached. To obtain propulsion coefficients the open-water curves of the propeller and a towed, unpropelled case are also computed. Together, these computations provide for a complete CFD prediction of self-propulsion factors at full scale. The main differences with a similar model scale simulation following the ITTC procedures are identified and reported. The effect of these differences in the propeller operation point and performance are thoroughly studied and discussed. It is concluded that for this case the propeller operates more efficiently in full scale and is subject to smaller load fluctuations. Self-propulsion computations of the KCS containership are performed in full-scale with direct discretization of the propeller. A dynamic overset approach is used, which allows for arbitrary rotational speed of the propeller during the computation. The self-propulsion point is obtained using a controller to modify the propeller RPS until the target speed is reached. To obtain propulsion coefficients the open-water curves of the propeller and a towed, unpropelled case are also computed. Together, these computations provide for a complete CFD prediction of self-propulsion factors at full scale. The main differences with a similar model scale simulation following the ITTC procedures are identified and reported. The effect of these differences in the propeller operation point and performance are thoroughly studied and discussed. It is concluded that for this case the propeller operates more efficiently in full scale and is subject to smaller load fluctuations. |
Author | Stern, Frederick Carrica, Pablo M. Castro, Alejandro M. |
Author_xml | – sequence: 1 givenname: Alejandro M. surname: Castro fullname: Castro, Alejandro M. – sequence: 2 givenname: Pablo M. surname: Carrica fullname: Carrica, Pablo M. email: pablo-carrica@uiowa.edu – sequence: 3 givenname: Frederick surname: Stern fullname: Stern, Frederick |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24586817$$DView record in Pascal Francis |
BookMark | eNqNkM1q3DAUhUVIIJNJn6HalK7s6M-WvegiDE0TEgg07VrI0nWjQSO7khxon74yE7Lopl1dXXHO4dzvAp2GKQBC7ympKaHt1b4202Ee_eJszQilNZE1Ic0J2tBO9hWRQp6iDSGiqWTPyTm6SGlPys6Z2CB7s3iPk9EecAI_VnOc5sUnNwW85i5Z5_JOeEku_MDWJRMhu99g8aoE7yHicYo4PwO-_3r39FhsIWsXyn96djO-3z1dorNR-wTvXucWfb_5_G13Wz08frnbXT9UhkuZSz1DWjlQ0nNouKZdyziIrtFda1vKRTsMgg2Sio4IqQ0t5xs22tGKng-sa_gWfTzmlmo_F0hZHUrf0lEHmJaketZy1vOStUUfXpV6vX2MOhiX1BzdQcdfiommazsqi04edSZOKUUY3ySUqBW_2qs3_GrFr4hUBX9xfvrLadyRZY7a-f_wXx_9UIC9OIgqGQfBgHURTFZ2cv_M-ANf86kn |
CODEN | CPFLBI |
CitedBy_id | crossref_primary_10_1016_j_oceaneng_2021_109180 crossref_primary_10_1007_s13344_016_0053_3 crossref_primary_10_3390_jmse8100748 crossref_primary_10_3390_jmse8100745 crossref_primary_10_1016_j_oceaneng_2018_03_002 crossref_primary_10_1063_5_0232044 crossref_primary_10_1080_19942060_2021_1974091 crossref_primary_10_1007_s13344_021_0068_2 crossref_primary_10_1063_5_0167387 crossref_primary_10_1016_j_oceaneng_2020_107563 crossref_primary_10_1016_j_oceaneng_2020_108376 crossref_primary_10_3390_jmse8010024 crossref_primary_10_1016_j_oceaneng_2017_11_006 crossref_primary_10_3390_jmse6020045 crossref_primary_10_1007_s11804_015_1316_8 crossref_primary_10_1016_j_oceaneng_2024_119718 crossref_primary_10_1016_j_oceaneng_2021_109590 crossref_primary_10_1016_j_apor_2021_102728 crossref_primary_10_1016_j_ijnaoe_2017_07_001 crossref_primary_10_1080_17445302_2024_2312770 crossref_primary_10_1016_j_oceaneng_2023_115875 crossref_primary_10_1016_j_apor_2021_102689 crossref_primary_10_12716_1001_18_02_22 crossref_primary_10_1016_j_apor_2021_102561 crossref_primary_10_1016_j_oceaneng_2018_08_055 crossref_primary_10_1088_1742_6596_1834_1_012015 crossref_primary_10_1016_j_oceaneng_2018_01_087 crossref_primary_10_1016_j_oceaneng_2020_107153 crossref_primary_10_1016_j_oceaneng_2020_107033 crossref_primary_10_1016_j_oceaneng_2018_05_021 crossref_primary_10_1016_j_oceaneng_2015_07_035 crossref_primary_10_3390_jmse11112135 crossref_primary_10_3390_jmse13030619 crossref_primary_10_1016_j_oceaneng_2021_109081 crossref_primary_10_1016_j_oceaneng_2022_111885 crossref_primary_10_1115_1_4045332 crossref_primary_10_1016_j_oceaneng_2012_12_029 crossref_primary_10_1016_j_apor_2020_102417 crossref_primary_10_1016_j_apor_2021_102814 crossref_primary_10_1016_j_oceaneng_2019_04_032 crossref_primary_10_1088_1742_6596_1828_1_012182 crossref_primary_10_1016_j_apor_2016_12_003 crossref_primary_10_1016_j_oceaneng_2019_05_074 crossref_primary_10_1080_17445302_2014_945765 crossref_primary_10_1142_S0219876218400157 crossref_primary_10_1016_j_oceaneng_2019_106446 crossref_primary_10_1016_j_apor_2019_101862 crossref_primary_10_1016_j_oceaneng_2017_06_052 crossref_primary_10_1007_s40430_021_03179_y crossref_primary_10_1016_j_ijnaoe_2017_02_006 crossref_primary_10_1016_j_oceaneng_2021_108959 crossref_primary_10_1016_j_apor_2021_102944 crossref_primary_10_1063_5_0135551 crossref_primary_10_1016_j_compfluid_2014_03_017 crossref_primary_10_1016_j_enganabound_2024_105979 crossref_primary_10_1016_j_marstruc_2024_103683 crossref_primary_10_1080_08927014_2018_1434157 crossref_primary_10_1016_j_oceaneng_2021_109931 crossref_primary_10_3390_jmse11010133 crossref_primary_10_3390_jmse9050482 crossref_primary_10_1016_j_oceaneng_2021_109773 crossref_primary_10_1016_j_apor_2021_102877 crossref_primary_10_1016_j_ijmultiphaseflow_2013_08_001 crossref_primary_10_1016_j_apor_2021_102996 crossref_primary_10_3390_jmse10010078 crossref_primary_10_1016_j_oceaneng_2015_12_008 crossref_primary_10_1063_5_0041334 crossref_primary_10_1016_j_oceaneng_2014_04_016 crossref_primary_10_1016_j_oceaneng_2016_12_004 crossref_primary_10_1007_s42241_021_0024_x crossref_primary_10_1016_j_ijnaoe_2023_100557 crossref_primary_10_1088_1757_899X_400_4_042004 crossref_primary_10_1007_s00773_018_0593_8 crossref_primary_10_1016_j_oceaneng_2021_108974 crossref_primary_10_1016_j_oceaneng_2024_119238 crossref_primary_10_1016_j_oceaneng_2020_108052 crossref_primary_10_21595_jve_2021_21789 crossref_primary_10_1016_j_ijnaoe_2017_12_004 crossref_primary_10_1080_17445302_2019_1697091 crossref_primary_10_1016_j_oceaneng_2019_04_002 crossref_primary_10_1016_j_compfluid_2011_10_002 crossref_primary_10_1016_j_oceaneng_2019_04_082 crossref_primary_10_3390_su162411169 crossref_primary_10_1115_1_4047201 crossref_primary_10_1016_j_ijnaoe_2020_10_001 crossref_primary_10_1016_j_oceaneng_2021_108863 crossref_primary_10_1063_5_0183523 crossref_primary_10_1016_j_compfluid_2015_06_010 crossref_primary_10_3390_jmse8040257 crossref_primary_10_1016_j_oceaneng_2022_113105 crossref_primary_10_1016_j_apor_2017_05_005 crossref_primary_10_1007_s00773_020_00718_5 crossref_primary_10_1016_j_oceaneng_2020_107428 crossref_primary_10_1016_j_apor_2019_03_005 crossref_primary_10_1016_j_oceaneng_2025_120367 crossref_primary_10_1016_j_ijnaoe_2020_12_005 crossref_primary_10_1016_j_oceaneng_2019_01_056 crossref_primary_10_59887_fpg_kx4r_pr4d_fba8 crossref_primary_10_1016_j_oceaneng_2021_108595 crossref_primary_10_1016_j_oceaneng_2021_109442 crossref_primary_10_3390_app11178197 crossref_primary_10_1016_j_ijnaoe_2020_12_001 crossref_primary_10_3390_jmse13040626 crossref_primary_10_1016_j_oceaneng_2023_113617 crossref_primary_10_1016_j_oceaneng_2015_05_029 crossref_primary_10_1016_j_ijnaoe_2019_02_001 crossref_primary_10_1016_j_oceaneng_2023_114164 crossref_primary_10_1016_j_apor_2020_102203 crossref_primary_10_1016_j_oceaneng_2025_120469 crossref_primary_10_1177_1475090219862897 crossref_primary_10_1016_j_apor_2020_102328 crossref_primary_10_1016_j_ijnaoe_2016_06_003 crossref_primary_10_1016_j_oceaneng_2021_110434 crossref_primary_10_1016_j_ijnaoe_2023_100560 crossref_primary_10_1016_j_oceaneng_2020_108189 crossref_primary_10_1016_j_oceaneng_2021_109570 |
Cites_doi | 10.2514/6.2005-5117 10.1007/s00773-009-0074-1 10.5957/jsr.2009.53.4.179 10.2514/3.12149 10.1016/j.compfluid.2007.01.007 10.1002/fld.1279 10.1115/OMAE2007-29516 10.1007/s00773-010-0098-6 10.2514/6.2006-1148 10.2514/6.1991-1560 10.1016/0021-9991(86)90099-9 |
ContentType | Journal Article |
Copyright | 2011 Elsevier Ltd 2015 INIST-CNRS |
Copyright_xml | – notice: 2011 Elsevier Ltd – notice: 2015 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7SC 7TB 7U5 8FD FR3 H8D JQ2 KR7 L7M L~C L~D |
DOI | 10.1016/j.compfluid.2011.07.005 |
DatabaseName | CrossRef Pascal-Francis Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Technology Research Database Engineering Research Database Aerospace Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences Physics |
EISSN | 1879-0747 |
EndPage | 47 |
ExternalDocumentID | 24586817 10_1016_j_compfluid_2011_07_005 S0045793011002155 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABAOU ABEFU ABFNM ABJNI ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFS ACIWK ACKIV ACNNM ACRLP ADBBV ADEZE ADGUI ADIYS ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AI. AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SPD SST SSW SSZ T5K T9H TN5 VH1 WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS IQODW 7SC 7TB 7U5 8FD FR3 H8D JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c377t-79c067b1093e53a18623e485a86d61346bb42b7148047ac1101c2fdfd493b2853 |
IEDL.DBID | .~1 |
ISSN | 0045-7930 |
IngestDate | Fri Jul 11 03:15:58 EDT 2025 Mon Jul 21 09:16:24 EDT 2025 Thu Apr 24 22:58:49 EDT 2025 Tue Jul 01 02:21:17 EDT 2025 Fri Feb 23 02:29:47 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | CFD Overset grids Propellers Self-propulsion Full scale ship Free surface flows Computational fluid dynamics Container ship Digital simulation Thrusters Free surface flow Hydrodynamics Modelling Screw propeller Mesh generation |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c377t-79c067b1093e53a18623e485a86d61346bb42b7148047ac1101c2fdfd493b2853 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 926329361 |
PQPubID | 23500 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_926329361 pascalfrancis_primary_24586817 crossref_primary_10_1016_j_compfluid_2011_07_005 crossref_citationtrail_10_1016_j_compfluid_2011_07_005 elsevier_sciencedirect_doi_10_1016_j_compfluid_2011_07_005 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-12-15 |
PublicationDateYYYYMMDD | 2011-12-15 |
PublicationDate_xml | – month: 12 year: 2011 text: 2011-12-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | Computers & fluids |
PublicationYear | 2011 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Choi, Kim, Lee, Choi, Lee (b0005) 2010; 15 Pankajakshan R, Remotigue S, Taylor L, Jiang M, Briley W, Whitfield D. Validation of control-surface induced submarine maneuvering simulations using UNCLE. In: Proc 24th symposium on naval hydrodynamics, Fukuoka, Japan; 2004. Hino T, editor. CFD workshop Tokyo 2005, National Maritime Research Institute, Japan; 2005. Cura Hochbaum A, Vogt M, Gatchell S. Manoeuvring prediction for two tankers based on RANS calculations. In: SIMMAN 2008, Copenhagen, Denmark; 2008. Wilcox (b0110) 1998 Carrica PM, Castro AM, Stern F. Self-propulsion computations using speed controller and discretized propeller with dynamic overset grids. J Marine Sci Technol, in press Menter (b0055) 1994; 32 Fossen (b0100) 1994 Carrica, Wilson, Stern (b0050) 2007; 53 White (b0115) 2001 Bhushan, Xing, Carrica, Stern (b0065) 2009; 53 Noack R. SUGGAR: a general capability for moving body overset grid assembly. In: AIAA paper 2005-5117, 17th AIAA computational fluid dynamics conference, Toronto, Ontario, Canada; 2005. Kim, Kim, Kim, Park, Van (b0010) 2006; 10 Issa (b0090) 1986; 62 ITTC recommended procedures and guidelines. Testing and extrapolation methods, performance propulsion test. Report 7.5-02-03-01.1; 2002. Schneekluth, Bertram (b0130) 1998 19th ITTC report of the Powering Performance Committee. In: 19th international towing tank conference, Madrid, Spain; 1990. Balay S, Brown J, Buschelman K, Eijkhout V, Gropp WD, Kaushik D, et al. PETSc users manual. Technical report ANL-95/11-revision 3.0.0, Argonne National Laboratory; 2008. Bell JB, Howell LH, Colella P. An efficient second-order projection method for viscous incompressible flow. In: 10th AIAA computational fluid dynamics conference, Honolulu, Hawaii; 1991. Xing T, Shao J, Stern F. BKW-RS-DES of unsteady vortical flow for KVLCC2 at large drift angles. In: 9th international conference on numerical ship hydrodynamics, Ann Arbor, Michigan; 2007. Carrica, Wilson, Noack, Stern (b0070) 2007; 36 Boger DA, Dreyer JJ. Prediction of hydrodynamic forces and moments for underwater vehicles using overset grids. In: AIAA paper 2006-1148, 44th AIAA aerospace sciences meeting, Reno, Nevada; 2006. . Venkatesan G, Clark W. Submarine maneuvering simulations of ONR body 1. In: Proc OMAE2007, San Diego, California; 2007. Lübke LO. Numerical simulation of the flow around the propelled KCS. In: CFDWS05, Tokyo, Japan; 2005. G2010. Carrica PM, Stern F. DES simulations of KVLCC1 in turn and zigzag maneuvers with moving propeller and rudder. In: SIMMAN 2008. Copenhagen, Denmark; 2008. 10.1016/j.compfluid.2011.07.005_b0030 Menter (10.1016/j.compfluid.2011.07.005_b0055) 1994; 32 10.1016/j.compfluid.2011.07.005_b0095 10.1016/j.compfluid.2011.07.005_b0075 Carrica (10.1016/j.compfluid.2011.07.005_b0050) 2007; 53 10.1016/j.compfluid.2011.07.005_b0035 White (10.1016/j.compfluid.2011.07.005_b0115) 2001 10.1016/j.compfluid.2011.07.005_b0015 Bhushan (10.1016/j.compfluid.2011.07.005_b0065) 2009; 53 Fossen (10.1016/j.compfluid.2011.07.005_b0100) 1994 Issa (10.1016/j.compfluid.2011.07.005_b0090) 1986; 62 10.1016/j.compfluid.2011.07.005_b0060 Choi (10.1016/j.compfluid.2011.07.005_b0005) 2010; 15 10.1016/j.compfluid.2011.07.005_b0085 10.1016/j.compfluid.2011.07.005_b0040 10.1016/j.compfluid.2011.07.005_b0020 10.1016/j.compfluid.2011.07.005_b0045 10.1016/j.compfluid.2011.07.005_b0120 Wilcox (10.1016/j.compfluid.2011.07.005_b0110) 1998 Carrica (10.1016/j.compfluid.2011.07.005_b0070) 2007; 36 10.1016/j.compfluid.2011.07.005_b0080 Kim (10.1016/j.compfluid.2011.07.005_b0010) 2006; 10 Schneekluth (10.1016/j.compfluid.2011.07.005_b0130) 1998 10.1016/j.compfluid.2011.07.005_b0025 10.1016/j.compfluid.2011.07.005_b0125 10.1016/j.compfluid.2011.07.005_b0105 |
References_xml | – reference: G2010. < – reference: Cura Hochbaum A, Vogt M, Gatchell S. Manoeuvring prediction for two tankers based on RANS calculations. In: SIMMAN 2008, Copenhagen, Denmark; 2008. – reference: Lübke LO. Numerical simulation of the flow around the propelled KCS. In: CFDWS05, Tokyo, Japan; 2005. – reference: Carrica PM, Castro AM, Stern F. Self-propulsion computations using speed controller and discretized propeller with dynamic overset grids. J Marine Sci Technol, in press, – year: 1994 ident: b0100 article-title: Guidance and control of ocean vehicles – reference: ITTC recommended procedures and guidelines. Testing and extrapolation methods, performance propulsion test. Report 7.5-02-03-01.1; 2002. – year: 1998 ident: b0130 article-title: Ship design for efficiency and economy – reference: Carrica PM, Stern F. DES simulations of KVLCC1 in turn and zigzag maneuvers with moving propeller and rudder. In: SIMMAN 2008. Copenhagen, Denmark; 2008. – volume: 32 start-page: 1598 year: 1994 end-page: 1605 ident: b0055 article-title: Two-equation eddy-viscosity turbulence models for engineering applications publication-title: AIAA J – volume: 53 start-page: 179 year: 2009 end-page: 198 ident: b0065 article-title: Model- and full-scale URANS simulations of Athena resistance, powering, seakeeping, and 5415 maneuvering publication-title: J Ship Res – volume: 36 start-page: 1415 year: 2007 end-page: 1433 ident: b0070 article-title: Ship motions using single-phase level set with dynamic overset grids publication-title: Comput Fluids – reference: Bell JB, Howell LH, Colella P. An efficient second-order projection method for viscous incompressible flow. In: 10th AIAA computational fluid dynamics conference, Honolulu, Hawaii; 1991. – year: 1998 ident: b0110 article-title: Turbulence modeling for CFD – reference: Pankajakshan R, Remotigue S, Taylor L, Jiang M, Briley W, Whitfield D. Validation of control-surface induced submarine maneuvering simulations using UNCLE. In: Proc 24th symposium on naval hydrodynamics, Fukuoka, Japan; 2004. – reference: Venkatesan G, Clark W. Submarine maneuvering simulations of ONR body 1. In: Proc OMAE2007, San Diego, California; 2007. – volume: 62 start-page: 40 year: 1986 end-page: 65 ident: b0090 article-title: Solution of the implicitly discretised fluid flow equations by operator-splitting publication-title: J Comput Phys – reference: 19th ITTC report of the Powering Performance Committee. In: 19th international towing tank conference, Madrid, Spain; 1990. – reference: Hino T, editor. CFD workshop Tokyo 2005, National Maritime Research Institute, Japan; 2005. < – reference: Xing T, Shao J, Stern F. BKW-RS-DES of unsteady vortical flow for KVLCC2 at large drift angles. In: 9th international conference on numerical ship hydrodynamics, Ann Arbor, Michigan; 2007. – reference: Balay S, Brown J, Buschelman K, Eijkhout V, Gropp WD, Kaushik D, et al. PETSc users manual. Technical report ANL-95/11-revision 3.0.0, Argonne National Laboratory; 2008. – reference: Boger DA, Dreyer JJ. Prediction of hydrodynamic forces and moments for underwater vehicles using overset grids. In: AIAA paper 2006-1148, 44th AIAA aerospace sciences meeting, Reno, Nevada; 2006. – year: 2001 ident: b0115 article-title: Fluid mechanics – reference: >. – volume: 53 start-page: 229 year: 2007 end-page: 256 ident: b0050 article-title: An unsteady single-phase level set method for viscous free surface flows publication-title: Int J Numer Methods Fluids – volume: 15 start-page: 64 year: 2010 end-page: 77 ident: b0005 article-title: Computational predictions of ship-speed performance publication-title: J Marine Sci Technol – reference: Noack R. SUGGAR: a general capability for moving body overset grid assembly. In: AIAA paper 2005-5117, 17th AIAA computational fluid dynamics conference, Toronto, Ontario, Canada; 2005. – volume: 10 start-page: 1 year: 2006 end-page: 11 ident: b0010 article-title: Hybrid RANS and potential based numerical simulation for self-propulsion performances of the practical container ship publication-title: J Ship Ocean Technol – reference: . – ident: 10.1016/j.compfluid.2011.07.005_b0075 doi: 10.2514/6.2005-5117 – ident: 10.1016/j.compfluid.2011.07.005_b0035 – ident: 10.1016/j.compfluid.2011.07.005_b0060 – volume: 10 start-page: 1 issue: 4 year: 2006 ident: 10.1016/j.compfluid.2011.07.005_b0010 article-title: Hybrid RANS and potential based numerical simulation for self-propulsion performances of the practical container ship publication-title: J Ship Ocean Technol – volume: 15 start-page: 64 year: 2010 ident: 10.1016/j.compfluid.2011.07.005_b0005 article-title: Computational predictions of ship-speed performance publication-title: J Marine Sci Technol doi: 10.1007/s00773-009-0074-1 – volume: 53 start-page: 179 year: 2009 ident: 10.1016/j.compfluid.2011.07.005_b0065 article-title: Model- and full-scale URANS simulations of Athena resistance, powering, seakeeping, and 5415 maneuvering publication-title: J Ship Res doi: 10.5957/jsr.2009.53.4.179 – volume: 32 start-page: 1598 year: 1994 ident: 10.1016/j.compfluid.2011.07.005_b0055 article-title: Two-equation eddy-viscosity turbulence models for engineering applications publication-title: AIAA J doi: 10.2514/3.12149 – volume: 36 start-page: 1415 year: 2007 ident: 10.1016/j.compfluid.2011.07.005_b0070 article-title: Ship motions using single-phase level set with dynamic overset grids publication-title: Comput Fluids doi: 10.1016/j.compfluid.2007.01.007 – volume: 53 start-page: 229 year: 2007 ident: 10.1016/j.compfluid.2011.07.005_b0050 article-title: An unsteady single-phase level set method for viscous free surface flows publication-title: Int J Numer Methods Fluids doi: 10.1002/fld.1279 – ident: 10.1016/j.compfluid.2011.07.005_b0125 – ident: 10.1016/j.compfluid.2011.07.005_b0045 – ident: 10.1016/j.compfluid.2011.07.005_b0030 doi: 10.1115/OMAE2007-29516 – ident: 10.1016/j.compfluid.2011.07.005_b0095 – ident: 10.1016/j.compfluid.2011.07.005_b0040 doi: 10.1007/s00773-010-0098-6 – ident: 10.1016/j.compfluid.2011.07.005_b0020 – ident: 10.1016/j.compfluid.2011.07.005_b0120 – ident: 10.1016/j.compfluid.2011.07.005_b0015 – year: 1998 ident: 10.1016/j.compfluid.2011.07.005_b0130 – ident: 10.1016/j.compfluid.2011.07.005_b0080 doi: 10.2514/6.2006-1148 – ident: 10.1016/j.compfluid.2011.07.005_b0085 doi: 10.2514/6.1991-1560 – year: 2001 ident: 10.1016/j.compfluid.2011.07.005_b0115 – ident: 10.1016/j.compfluid.2011.07.005_b0105 – volume: 62 start-page: 40 year: 1986 ident: 10.1016/j.compfluid.2011.07.005_b0090 article-title: Solution of the implicitly discretised fluid flow equations by operator-splitting publication-title: J Comput Phys doi: 10.1016/0021-9991(86)90099-9 – year: 1994 ident: 10.1016/j.compfluid.2011.07.005_b0100 – year: 1998 ident: 10.1016/j.compfluid.2011.07.005_b0110 – ident: 10.1016/j.compfluid.2011.07.005_b0025 |
SSID | ssj0004324 |
Score | 2.4242392 |
Snippet | ► Self-propulsion computations of a surface ship using discretized propeller in full scale are presented for the first time. ► Computations involve overset... Self-propulsion computations of the KCS containership are performed in full-scale with direct discretization of the propeller. A dynamic overset approach is... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 35 |
SubjectTerms | Applied fluid mechanics Applied sciences CFD Computation Computational fluid dynamics Computational methods in fluid dynamics Computer simulation Containers Discretization Exact sciences and technology Fluid dynamics Free surface flows Full scale ship Fundamental areas of phenomenology (including applications) Ground, air and sea transportation, marine construction Hydrodynamics, hydraulics, hydrostatics Marine construction Mathematical models Overset grids Physics Propellers Rotational Self-propulsion |
Title | Full scale self-propulsion computations using discretized propeller for the KRISO container ship KCS |
URI | https://dx.doi.org/10.1016/j.compfluid.2011.07.005 https://www.proquest.com/docview/926329361 |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA6lXhQRn1gfJQeva_eRbHa9laK0FitYBW8hySZSKbXY9uLB3-7MPqpFpAevyyYbZmbnlZlvCLmIhcmUb52nXWo9pn3uKZVZzxhwNpTSYLQwoX83iLtP7PaZP9dIp-qFwbLKUvcXOj3X1uWTVknN1nQ0wh5fxkG6ctAzMFzYaM6YQCm__Pwu80DEueKWGaEZI3-lxgvLtt14McpKLE-EM-R_WajtqZoB3Vwx8OKX7s4N0s0u2Sk9SdouDrtHanayT7Z-4AsekAwDTIrbWTqzY-dN83ldmCCjJh_nUOTrKFa_v1Ds0MWmxg-bUXwTc_rvFLxaCl4i7T_0hvcUS9sVNgxSLPOi_c7wkDzdXD92ul45VsEzkRBzoIIBE6URR8rySAUQ00SWJVwlcQbGncVas1ALiJN8JpQB8gYmdJnLWBrpEMz7EalP3ib2mNBEWMdZpMEJgUhDuCR2UarCMDActkuCBokrUkpTYo7j6IuxrIrLXuWSBxJ5IH28D-cN4i8XTgvYjfVLripeyRUJkmAc1i9urnB3-dGQ8SROAtEgtGK3hB8Qb1XUxL4tZjJFxPs0ioOT_xzglGzm2eog9AJ-Rurz94U9B3dnrpu5PDfJRrvX7w6-ALO5AVc |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB7RcKAIoRaoCFDqQ68rdtf2PrihCJQ0j0pNkLhZttdGqaIQkeTCr2dmH2kjVHHodbX2WjPe-cbjmW8AviepLXTofGB87gJhQhloXbjAWnQ2tDYIWhTQH46S7r348SAfdqDT1MJQWmVt-yubXlrr-slVLc2rxXRKNb5C4u4qSc8QuOQH2CV2KtmC3Ztevzv6Ux7J44qMWRA7Iw-30rwoc9vP1tOipvMkRkP5L5A6WOglis5XPS_emO8Sk-4-wWHtTLKbar2fYcfNj2D_L4rBYyjojMloOseWbuaDRdmyi2JkzJYdHaqQHaME-EdGRbpU1_jiCkZvUlj_maFjy9BRZP1fvfFPRtntmmoGGWV6sX5nfAL3d7eTTjeoOysElqfpCqVgEaUMUUk5yXWExxruRCZ1lhSI7yIxRsQmxaNSKFJtUcKRjX3hC5FzEyPCf4HW_GnuToFlqfNScIN-CB42Up8lnuc6jiMrcbosakPSiFLZmnacul_MVJNf9lttdKBIByqkK3HZhnAzcFExb7w_5LrRldraRArx4f3Bl1va3Xw0FjJLsihtA2vUrfAfpIsVPXdP66XKifQ-50l09j8L-AZ73clwoAa9Uf8cPpbB6ygOInkBrdXz2n1F72dlLuvd_Qp9TwQI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Full+scale+self-propulsion+computations+using+discretized+propeller+for+the+KRISO+container+ship+KCS&rft.jtitle=Computers+%26+fluids&rft.au=Castro%2C+Alejandro+M&rft.au=Carrica%2C+Pablo+M&rft.au=Stern%2C+Frederick&rft.date=2011-12-15&rft.issn=0045-7930&rft.volume=51&rft.issue=1&rft.spage=35&rft.epage=47&rft_id=info:doi/10.1016%2Fj.compfluid.2011.07.005&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7930&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7930&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7930&client=summon |