2D materials towards ultrafast photonic applications

Having accomplished progress in the versatile battlefields of optics, electronics, catalysis, etc. , two-dimensional (2D) materials are now venturing and excelling in yet another arena of ultrafast photonics, a rapidly developing field encompassing a large range of important applications including o...

Full description

Saved in:
Bibliographic Details
Published inPhysical chemistry chemical physics : PCCP Vol. 22; no. 39; pp. 2214 - 22156
Main Authors Zhai, Xin-Ping, Ma, Bo, Wang, Qiang, Zhang, Hao-Li
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 15.10.2020
Subjects
Online AccessGet full text
ISSN1463-9076
1463-9084
1463-9084
DOI10.1039/d0cp02841j

Cover

Abstract Having accomplished progress in the versatile battlefields of optics, electronics, catalysis, etc. , two-dimensional (2D) materials are now venturing and excelling in yet another arena of ultrafast photonics, a rapidly developing field encompassing a large range of important applications including optical modulation through optical limiting/mode-locking, photodetectors, optical communications, integrated miniaturized all-optical devices and so on. Our group has been devoted to building the arsenal of 2D materials with large third-order nonlinearities, including transition metal dichalcogenides (TMDs), carbon nitride, single-element materials from Group 15, 2D hybrids and vdW heterostructures. In particular, we explore their origin of nonlinear optical responses from the aspect of excited state dynamics using time-resolved spectroscopic techniques such as femtosecond transient absorption spectroscopy. In this review, we propose the roadmap for screening 2D materials for ultrafast photonics through focusing on the third-order nonlinear optical properties of 2D materials and corresponding applications, and then performing mechanistic investigations via time-resolved spectroscopy and calculations, which in turn provide feedback to further guide the fabrication of 2D materials. We offer our own insights on the future trends for the development and theoretical calculations of 2D materials/devices in the final part of Perspectives . Two-dimensional materials are now excelling in yet another arena of ultrafast photonics, including optical modulation through optical limiting/mode-locking, photodetectors, optical communications, integrated miniaturized all-optical devices, etc .
AbstractList Having accomplished progress in the versatile battlefields of optics, electronics, catalysis, etc. , two-dimensional (2D) materials are now venturing and excelling in yet another arena of ultrafast photonics, a rapidly developing field encompassing a large range of important applications including optical modulation through optical limiting/mode-locking, photodetectors, optical communications, integrated miniaturized all-optical devices and so on. Our group has been devoted to building the arsenal of 2D materials with large third-order nonlinearities, including transition metal dichalcogenides (TMDs), carbon nitride, single-element materials from Group 15, 2D hybrids and vdW heterostructures. In particular, we explore their origin of nonlinear optical responses from the aspect of excited state dynamics using time-resolved spectroscopic techniques such as femtosecond transient absorption spectroscopy. In this review, we propose the roadmap for screening 2D materials for ultrafast photonics through focusing on the third-order nonlinear optical properties of 2D materials and corresponding applications, and then performing mechanistic investigations via time-resolved spectroscopy and calculations, which in turn provide feedback to further guide the fabrication of 2D materials. We offer our own insights on the future trends for the development and theoretical calculations of 2D materials/devices in the final part of Perspectives .
Having accomplished progress in the versatile battlefields of optics, electronics, catalysis, etc., two-dimensional (2D) materials are now venturing and excelling in yet another arena of ultrafast photonics, a rapidly developing field encompassing a large range of important applications including optical modulation through optical limiting/mode-locking, photodetectors, optical communications, integrated miniaturized all-optical devices and so on. Our group has been devoted to building the arsenal of 2D materials with large third-order nonlinearities, including transition metal dichalcogenides (TMDs), carbon nitride, single-element materials from Group 15, 2D hybrids and vdW heterostructures. In particular, we explore their origin of nonlinear optical responses from the aspect of excited state dynamics using time-resolved spectroscopic techniques such as femtosecond transient absorption spectroscopy. In this review, we propose the roadmap for screening 2D materials for ultrafast photonics through focusing on the third-order nonlinear optical properties of 2D materials and corresponding applications, and then performing mechanistic investigations via time-resolved spectroscopy and calculations, which in turn provide feedback to further guide the fabrication of 2D materials. We offer our own insights on the future trends for the development and theoretical calculations of 2D materials/devices in the final part of Perspectives.
Having accomplished progress in the versatile battlefields of optics, electronics, catalysis, etc., two-dimensional (2D) materials are now venturing and excelling in yet another arena of ultrafast photonics, a rapidly developing field encompassing a large range of important applications including optical modulation through optical limiting/mode-locking, photodetectors, optical communications, integrated miniaturized all-optical devices and so on. Our group has been devoted to building the arsenal of 2D materials with large third-order nonlinearities, including transition metal dichalcogenides (TMDs), carbon nitride, single-element materials from Group 15, 2D hybrids and vdW heterostructures. In particular, we explore their origin of nonlinear optical responses from the aspect of excited state dynamics using time-resolved spectroscopic techniques such as femtosecond transient absorption spectroscopy. In this review, we propose the roadmap for screening 2D materials for ultrafast photonics through focusing on the third-order nonlinear optical properties of 2D materials and corresponding applications, and then performing mechanistic investigations via time-resolved spectroscopy and calculations, which in turn provide feedback to further guide the fabrication of 2D materials. We offer our own insights on the future trends for the development and theoretical calculations of 2D materials/devices in the final part of Perspectives.Having accomplished progress in the versatile battlefields of optics, electronics, catalysis, etc., two-dimensional (2D) materials are now venturing and excelling in yet another arena of ultrafast photonics, a rapidly developing field encompassing a large range of important applications including optical modulation through optical limiting/mode-locking, photodetectors, optical communications, integrated miniaturized all-optical devices and so on. Our group has been devoted to building the arsenal of 2D materials with large third-order nonlinearities, including transition metal dichalcogenides (TMDs), carbon nitride, single-element materials from Group 15, 2D hybrids and vdW heterostructures. In particular, we explore their origin of nonlinear optical responses from the aspect of excited state dynamics using time-resolved spectroscopic techniques such as femtosecond transient absorption spectroscopy. In this review, we propose the roadmap for screening 2D materials for ultrafast photonics through focusing on the third-order nonlinear optical properties of 2D materials and corresponding applications, and then performing mechanistic investigations via time-resolved spectroscopy and calculations, which in turn provide feedback to further guide the fabrication of 2D materials. We offer our own insights on the future trends for the development and theoretical calculations of 2D materials/devices in the final part of Perspectives.
Having accomplished progress in the versatile battlefields of optics, electronics, catalysis, etc. , two-dimensional (2D) materials are now venturing and excelling in yet another arena of ultrafast photonics, a rapidly developing field encompassing a large range of important applications including optical modulation through optical limiting/mode-locking, photodetectors, optical communications, integrated miniaturized all-optical devices and so on. Our group has been devoted to building the arsenal of 2D materials with large third-order nonlinearities, including transition metal dichalcogenides (TMDs), carbon nitride, single-element materials from Group 15, 2D hybrids and vdW heterostructures. In particular, we explore their origin of nonlinear optical responses from the aspect of excited state dynamics using time-resolved spectroscopic techniques such as femtosecond transient absorption spectroscopy. In this review, we propose the roadmap for screening 2D materials for ultrafast photonics through focusing on the third-order nonlinear optical properties of 2D materials and corresponding applications, and then performing mechanistic investigations via time-resolved spectroscopy and calculations, which in turn provide feedback to further guide the fabrication of 2D materials. We offer our own insights on the future trends for the development and theoretical calculations of 2D materials/devices in the final part of Perspectives . Two-dimensional materials are now excelling in yet another arena of ultrafast photonics, including optical modulation through optical limiting/mode-locking, photodetectors, optical communications, integrated miniaturized all-optical devices, etc .
Author Zhang, Hao-Li
Wang, Qiang
Zhai, Xin-Ping
Ma, Bo
AuthorAffiliation Ministry of Education
State Key Laboratory of Applied Organic Chemistry (SKLAOC)
Key Laboratory of Special Function Materials and Structure Design
College of Chemistry and Chemical Engineering
Lanzhou University
Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
AuthorAffiliation_xml – name: College of Chemistry and Chemical Engineering
– name: Ministry of Education
– name: Lanzhou University
– name: Key Laboratory of Special Function Materials and Structure Design
– name: State Key Laboratory of Applied Organic Chemistry (SKLAOC)
– name: Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
Author_xml – sequence: 1
  givenname: Xin-Ping
  surname: Zhai
  fullname: Zhai, Xin-Ping
– sequence: 2
  givenname: Bo
  surname: Ma
  fullname: Ma, Bo
– sequence: 3
  givenname: Qiang
  surname: Wang
  fullname: Wang, Qiang
– sequence: 4
  givenname: Hao-Li
  surname: Zhang
  fullname: Zhang, Hao-Li
BookMark eNp90c1LwzAUAPAgE9ymF-9CxYsI1aRJm_Yom58M9KDn8poPzOiamqSI_71xkwlDPL3A-73wPiZo1NlOIXRM8CXBtLqSWPQ4KxlZ7qExYQVNK1yy0fbNiwM08X6JMSY5oWPEsnmygqCcgdYnwX6Akz4Z2uBAgw9J_2aD7YxIoO9bIyAY2_lDtK8jV0c_cYpeb29eZvfp4unuYXa9SAXlPKSFBqAFaFWpvMm5AlFJkIAxCKDAGkUY5LzBksks55JjkRek4jrLStFwrekUnW_-7Z19H5QP9cp4odoWOmUHX2eM8ZIWnJNIz3bo0g6ui91FlRNOWVmUUeGNEs5675SuhQnrmeK8pq0Jrr_XWM_x7Hm9xsdYcrFT0juzAvf5Nz7ZYOfF1v3eJOZP_8vXvdT0C9O1ihE
CitedBy_id crossref_primary_10_1021_acsphotonics_3c01634
crossref_primary_10_1007_s13538_021_00917_4
crossref_primary_10_1039_D2CP05006D
crossref_primary_10_1039_D1NH00253H
crossref_primary_10_1364_JOSAB_482279
crossref_primary_10_1016_j_spmi_2021_107132
crossref_primary_10_3390_molecules27249059
crossref_primary_10_1016_j_jallcom_2022_168329
crossref_primary_10_1016_j_jpcs_2023_111482
crossref_primary_10_1039_D2NR02262A
crossref_primary_10_1016_j_apsusc_2021_150050
crossref_primary_10_1002_adfm_202105259
crossref_primary_10_1016_j_measurement_2023_113858
crossref_primary_10_1016_j_crfs_2024_100849
crossref_primary_10_1016_j_ijleo_2021_168096
crossref_primary_10_1016_j_dyepig_2022_110160
crossref_primary_10_1039_D1MA00944C
crossref_primary_10_1364_OE_433449
crossref_primary_10_1002_aelm_202300625
crossref_primary_10_1039_D3TC00868A
crossref_primary_10_1002_pssr_202500014
crossref_primary_10_1021_acsnano_3c12938
crossref_primary_10_1039_D1CP05602F
crossref_primary_10_1021_acsphotonics_2c01375
crossref_primary_10_1016_j_matpr_2022_04_222
crossref_primary_10_1039_D3NR00498H
crossref_primary_10_1016_j_optmat_2021_111324
crossref_primary_10_1039_D5DT00248F
crossref_primary_10_21468_SciPostPhys_18_1_009
crossref_primary_10_1515_nanoph_2023_0639
crossref_primary_10_1016_j_infrared_2021_103962
crossref_primary_10_1016_j_optmat_2023_114211
crossref_primary_10_1016_j_optlastec_2023_109140
crossref_primary_10_1039_D2CP00374K
crossref_primary_10_1039_D1CS00844G
crossref_primary_10_3788_IRLA20220371
crossref_primary_10_1016_j_jallcom_2021_160766
crossref_primary_10_1088_1402_4896_ad0d62
crossref_primary_10_1364_JOSAB_482638
crossref_primary_10_1021_acs_nanolett_3c01772
crossref_primary_10_1021_acsami_1c03042
crossref_primary_10_1021_acsphotonics_4c00896
Cites_doi 10.1364/PRJ.8.000110
10.1021/nn403886t
10.1038/nnano.2016.281
10.1073/pnas.0914117107
10.1088/1054-660X/24/10/105111
10.1364/OE.26.022750
10.1088/2040-8978/16/8/085203
10.1039/C5NR01088H
10.1007/BF00691767
10.1038/s41377-020-0278-z
10.1038/s41467-017-00358-1
10.1021/acsnano.5b05556
10.3788/COL201816.020004
10.1002/smll.201400541
10.1021/acs.jpclett.7b00431
10.1002/lpor.201300084
10.1063/1.477330
10.1007/s00340-003-1389-y
10.1007/s13320-018-0514-9
10.1109/JLT.2019.2910892
10.1038/s41566-019-0492-5
10.1088/2053-1583/3/2/021005
10.1364/OE.22.007865
10.1002/adma.200803616
10.1016/0030-4018(83)90135-9
10.1103/RevModPhys.82.3045
10.1021/ja211765y
10.1002/adom.201600323
10.1088/1555-6611/ab20c2
10.1063/1.5029547
10.1063/1.3293411
10.1021/cr300263a
10.1364/OL.39.004591
10.1021/cr00025a008
10.1002/adma.201804779
10.1364/OPTICA.2.000468
10.1364/PRJ.8.000078
10.1515/nanoph-2019-0564
10.1063/1.3207828
10.1038/nphys1274
10.1021/acsnano.5b03308
10.1038/nphoton.2016.15
10.1364/OE.15.007006
10.1007/s12274-014-0637-2
10.1063/1.4767919
10.1021/acs.jpclett.0c01757
10.1021/acsami.7b01709
10.1021/acsnano.8b06503
10.1038/nnano.2012.193
10.1103/PhysRevA.19.2304
10.1002/asia.201201154
10.1002/tcr.201900050
10.1002/lpor.201900240
10.1038/s41467-018-03413-7
10.1039/D0NH00262C
10.1126/science.aal4062
10.1002/adma.201503648
10.1109/LPT.2015.2426178
10.1080/000187398243537
10.1364/AOP.8.000618
10.1038/s41467-018-07882-8
10.1039/C8CS00254A
10.3788/IRLA201948.1103004
10.1002/adom.201901631
10.1002/adma.201606128
10.1364/OL.41.001221
10.1002/adom.201700713
10.1039/C9NH00445A
10.1002/smll.201402041
10.1038/nature08916
10.1002/pssa.201600395
10.1002/adma.201907244
10.1021/acsami.9b00181
10.1038/ncomms1588
10.1002/anie.201507568
10.1039/C6CC03206K
10.1364/OL.37.002652
10.1002/aelm.202000240
10.1364/OL.41.003783
10.1021/acsanm.9b00978
10.1002/adfm.201806346
10.1021/acs.chemrev.6b00558
10.1038/s41586-019-1013-x
10.1038/nature25774
10.1021/nn400280c
10.1039/C8NR06797J
10.1021/acs.chemmater.9b04408
10.1002/adfm.201805311
10.1002/adma.201804858
10.1038/s41467-018-05874-2
10.1364/OE.23.012823
10.1021/acsnano.5b03480
10.1088/1402-4896/ab3ee0
10.1039/C6NR04773D
10.1063/1.5024777
10.1002/adma.201907105
10.1515/nanoph-2018-0106
10.1364/OE.23.011183
10.1364/AO.21.001663
10.1038/nnano.2010.172
10.1002/lpor.201800327
10.1038/s41586-018-0129-8
10.1364/AO.56.009920
10.1073/pnas.1416581112
10.1039/C8QM00237A
10.1109/3.53394
10.1364/OE.23.011453
10.1016/j.cplett.2018.06.001
10.1038/nphoton.2009.25
10.1088/0957-4484/27/46/462001
10.1021/acs.jpclett.9b02590
10.1039/c3nj00061c
10.1002/adma.201906958
10.1063/1.112264
10.1103/PhysRevA.65.031404
10.1021/acs.jpcc.5b10026
10.1007/978-3-030-35813-6_6
10.1039/C3TC31993H
10.1364/AO.55.010307
10.1021/acs.chemrev.8b00264
10.1063/1.4930077
10.1088/0034-4885/79/3/036401
10.1142/9789812832047_0002
10.1002/smll.201503348
10.1002/adom.201601045
10.1364/OL.14.000955
10.1038/nature10067
10.1002/smll.201303698
10.1016/j.ssc.2010.02.001
10.1038/nphoton.2010.186
10.1002/adfm.201706559
10.1002/adfm.200901007
10.1038/s41467-019-13136-y
10.1038/nchem.1589
10.1063/1.2217985
10.1038/nnano.2008.312
10.1080/716100520
10.1021/acsanm.9b00676
10.1039/C5CC01819F
10.1038/s41566-019-0547-7
10.1021/acsanm.8b02233
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2020
Copyright_xml – notice: Copyright Royal Society of Chemistry 2020
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1039/d0cp02841j
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef
Materials Research Database
MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1463-9084
EndPage 22156
ExternalDocumentID 10_1039_D0CP02841J
d0cp02841j
GroupedDBID -
0-7
0R
123
1TJ
29O
4.4
53G
70
705
70J
7~J
87K
AAEMU
AAGNR
AAIWI
AANOJ
ABDVN
ABFLS
ABGFH
ABRYZ
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AENEX
AFVBQ
AGKEF
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CKLOX
CS3
D0L
DU5
DZ
EBS
ECGLT
EE0
EF-
F5P
GNO
HZ
H~N
IDZ
J3G
J3I
JG
M4U
N9A
NHB
O9-
OK1
P2P
R7B
R7C
RCNCU
RIG
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SKF
SLH
TN5
TWZ
UCJ
UHB
VH6
WH7
X
YNT
---
-DZ
-~X
0R~
2WC
70~
AAJAE
AAMEH
AAWGC
AAXHV
AAXPP
AAYXX
ABASK
ABEMK
ABJNI
ABPDG
ABXOH
ACGFO
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AGEGJ
AGRSR
AHGCF
AKMSF
ALUYA
ANUXI
APEMP
CITATION
GGIMP
H13
HZ~
R56
RAOCF
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c377t-6faa36afe9e5b57eac9dada00aca3a4be14a57b0d4d257d70c56197f228cb7ff3
ISSN 1463-9076
1463-9084
IngestDate Fri Jul 11 09:45:39 EDT 2025
Sun Jun 29 16:25:42 EDT 2025
Tue Jul 01 00:53:47 EDT 2025
Thu Apr 24 23:10:45 EDT 2025
Sat Jan 08 03:54:54 EST 2022
Wed Nov 11 00:36:16 EST 2020
IsPeerReviewed true
IsScholarly true
Issue 39
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c377t-6faa36afe9e5b57eac9dada00aca3a4be14a57b0d4d257d70c56197f228cb7ff3
Notes Xin-Ping Zhai received her master's degree in physical chemistry from Lanzhou University. She is currently pursuing her PhD degree in physical chemistry in Lanzhou University under the supervision of Prof. Qiang Wang. Her interests are focused on optoelectronic properties of 2D materials.
Qiang Wang received a BS degree from Wuhan University in 1999. He then joined Prof. Yi Chen's group at the Institute of Chemistry, Chinese Academy of Sciences as a graduate student and performed research in the field of Capillary Electrophoresis (CE) and spectroscopic analysis. He got his MS degree in the year of 2002. He thereafter went to Boston University in the USA to pursue a PhD degree in Prof. Rosina Georgiadis' group, developing novel label-free detection methods based on surface plasmon resonance (SPR). He transferred to Boston College in 2004 and worked on ultrafast time-resolved spectroscopy under the guidance of Prof. Torsten Fiebig. The main topics were focused on the DNA photonics study on the femtosecond time scale, photoinduced electron and energy transfer processes in DNA upon photon excitation. He obtained his PhD degree in May, 2008 and became an associate professor of chemistry at Lanzhou University in October. He was promoted to a full professorship in 2017. His current research interests include nonlinear optics and ultrafast spectroscopy.
Hao-Li Zhang received his BS in organic chemistry in 1994, and PhD degree in 1999 from Lanzhou University. He then worked in the University of Leeds and Oxford University as a postdoc. In 2004, he was appointed as a full professor by the State Key Laboratory of Applied Organic Chemistry (SKLAOC) of Lanzhou University. He is currently the deputy director of SKLAOC and Deputy Dean of the College of Chemistry and Chemical Engineering. In 2014, he became a Fellow of Royal Society of Chemistry (FRSC). He is an editorial board member of Acta Physico-Chimica Sinica and Chinese Chemical Letters, and an advisory board member of Chem. Soc. Rev. Prof. Hao-Li Zhang is interested in developing new organic functional materials for electronic and optoelectronic applications. He has published more than 240 research papers on peerreviewed international journals with citation over 5000, his H index is 37. Current research projects include: design and synthesis of organic semiconductors; novel light emitting materials; nonlinear optical materials; molecular electronics; novel organic/inorganic hybrid materials for advanced optoelectronics.
Bo Ma is currently pursuing his PhD degree in material science and engineering in Lanzhou University under the supervision of Prof. Qiang Wang. His interests are focused on optoelectronic properties of 2D materials.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6322-5202
0000-0003-4008-5144
PQID 2451734868
PQPubID 2047499
PageCount 17
ParticipantIDs rsc_primary_d0cp02841j
proquest_journals_2451734868
crossref_primary_10_1039_D0CP02841J
proquest_miscellaneous_2447836771
crossref_citationtrail_10_1039_D0CP02841J
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20201015
PublicationDateYYYYMMDD 2020-10-15
PublicationDate_xml – month: 10
  year: 2020
  text: 20201015
  day: 15
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Physical chemistry chemical physics : PCCP
PublicationYear 2020
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Liao (D0CP02841J-(cit91)/*[position()=1]) 2010; 107
Kunitski (D0CP02841J-(cit117)/*[position()=1]) 2019; 10
Yalagala (D0CP02841J-(cit136)/*[position()=1]) 2019; 2
Zhao (D0CP02841J-(cit25)/*[position()=1]) 2015; 7
Dai (D0CP02841J-(cit74)/*[position()=1]) 2019; 31
Wang (D0CP02841J-(cit81)/*[position()=1]) 2019; 9
Gao (D0CP02841J-(cit23)/*[position()=1]) 2013; 37
Zhang (D0CP02841J-(cit40)/*[position()=1]) 2020
Zhao (D0CP02841J-(cit46)/*[position()=1]) 1994; 65
Ono (D0CP02841J-(cit123)/*[position()=1]) 2020; 14
Wu (D0CP02841J-(cit127)/*[position()=1]) 2019; 29
Marcaud (D0CP02841J-(cit75)/*[position()=1]) 2020; 8
Hasan (D0CP02841J-(cit18)/*[position()=1]) 2010; 82
Kelly (D0CP02841J-(cit88)/*[position()=1]) 2017; 356
Kelleher (D0CP02841J-(cit99)/*[position()=1]) 2009; 95
Ling (D0CP02841J-(cit14)/*[position()=1]) 2015; 112
Chen (D0CP02841J-(cit54)/*[position()=1]) 2003; 44
Cai (D0CP02841J-(cit131)/*[position()=1]) 2018; 47
Chen (D0CP02841J-(cit78)/*[position()=1]) 2016; 55
Lu (D0CP02841J-(cit143)/*[position()=1]) 2020; 32
Reis (D0CP02841J-(cit67)/*[position()=1]) 1998; 109
Sobon (D0CP02841J-(cit98)/*[position()=1]) 2012; 9
Hu (D0CP02841J-(cit87)/*[position()=1]) 2017; 8
Chhowalla (D0CP02841J-(cit12)/*[position()=1]) 2013; 5
Luo (D0CP02841J-(cit30)/*[position()=1]) 2017; 14
Wang (D0CP02841J-(cit22)/*[position()=1]) 2013; 8
Zhai (D0CP02841J-(cit41)/*[position()=1]) 2020
Guo (D0CP02841J-(cit44)/*[position()=1]) 2019; 13
Passlack (D0CP02841J-(cit53)/*[position()=1]) 2006; 100
Liu (D0CP02841J-(cit92)/*[position()=1]) 2018; 557
Guo (D0CP02841J-(cit1)/*[position()=1]) 2018; 16
Wang (D0CP02841J-(cit86)/*[position()=1]) 2020; 9
Zhao (D0CP02841J-(cit21)/*[position()=1]) 2015; 27
Lu (D0CP02841J-(cit77)/*[position()=1]) 2015; 23
Xu (D0CP02841J-(cit10)/*[position()=1]) 2013; 113
Liu (D0CP02841J-(cit140)/*[position()=1]) 2018; 12
Yang (D0CP02841J-(cit32)/*[position()=1]) 2018; 10
Pan (D0CP02841J-(cit124)/*[position()=1]) 2014; 10
Liu (D0CP02841J-(cit63)/*[position()=1]) 2019; 10
Valverde (D0CP02841J-(cit68)/*[position()=1]) 2018; 706
Qi (D0CP02841J-(cit70)/*[position()=1]) 2010; 63
Boguslawski (D0CP02841J-(cit110)/*[position()=1]) 2014; 24
Zhang (D0CP02841J-(cit125)/*[position()=1]) 2016; 55
Torres-Torres (D0CP02841J-(cit82)/*[position()=1]) 2016; 3
Wang (D0CP02841J-(cit96)/*[position()=1]) 2008; 3
Jiang (D0CP02841J-(cit144)/*[position()=1]) 2020; 8
Butler (D0CP02841J-(cit132)/*[position()=1]) 2013; 7
Zhang (D0CP02841J-(cit33)/*[position()=1]) 2018; 2
Tan (D0CP02841J-(cit134)/*[position()=1]) 2017; 117
Gao (D0CP02841J-(cit19)/*[position()=1]) 2020; 32
Seidler (D0CP02841J-(cit66)/*[position()=1]) 2016; 120
Zhou (D0CP02841J-(cit29)/*[position()=1]) 2016; 41
Xu (D0CP02841J-(cit28)/*[position()=1]) 2016; 52
Zhao (D0CP02841J-(cit72)/*[position()=1]) 2012; 101
Hou (D0CP02841J-(cit57)/*[position()=1]) 2010; 150
Zhang (D0CP02841J-(cit85)/*[position()=1]) 2015; 9
Wu (D0CP02841J-(cit102)/*[position()=1]) 2015; 23
Khazaeinezhad (D0CP02841J-(cit103)/*[position()=1]) 2015; 27
Finn (D0CP02841J-(cit89)/*[position()=1]) 2014; 2
Liu (D0CP02841J-(cit121)/*[position()=1]) 2011; 474
Fan (D0CP02841J-(cit83)/*[position()=1]) 2019; 29
Zhang (D0CP02841J-(cit145)/*[position()=1]) 2020; 14
Sheikbahae (D0CP02841J-(cit47)/*[position()=1]) 1990; 26
Li (D0CP02841J-(cit35)/*[position()=1]) 2020; 20
He (D0CP02841J-(cit138)/*[position()=1]) 2019; 11
Zhu (D0CP02841J-(cit31)/*[position()=1]) 2017; 8
Gong (D0CP02841J-(cit4)/*[position()=1]) 2018; 28
Wang (D0CP02841J-(cit97)/*[position()=1]) 2015; 107
Wang (D0CP02841J-(cit135)/*[position()=1]) 2009; 21
Dean (D0CP02841J-(cit93)/*[position()=1]) 2010; 5
Gan (D0CP02841J-(cit122)/*[position()=1]) 2015; 2
Huang (D0CP02841J-(cit39)/*[position()=1]) 2020; 11
Liu (D0CP02841J-(cit106)/*[position()=1]) 2019; 37
Zhang (D0CP02841J-(cit101)/*[position()=1]) 2015; 8
Ganeev (D0CP02841J-(cit55)/*[position()=1]) 2004; 78
Walker II (D0CP02841J-(cit118)/*[position()=1]) 2016; 213
Sun (D0CP02841J-(cit8)/*[position()=1]) 2016; 10
Lee (D0CP02841J-(cit109)/*[position()=1]) 2014; 16
Heritier (D0CP02841J-(cit51)/*[position()=1]) 1983; 44
Zhou (D0CP02841J-(cit24)/*[position()=1]) 2015; 11
Varma (D0CP02841J-(cit80)/*[position()=1]) 2017; 5
Zhang Lei (D0CP02841J-(cit37)/*[position()=1]) 2019; 48
Chen (D0CP02841J-(cit58)/*[position()=1]) 2007; 15
Xiao (D0CP02841J-(cit38)/*[position()=1]) 2020; 6
Wang (D0CP02841J-(cit6)/*[position()=1]) 2013; 7
Wang (D0CP02841J-(cit11)/*[position()=1]) 2012; 7
Zhang (D0CP02841J-(cit71)/*[position()=1]) 2011; 2
Wang (D0CP02841J-(cit94)/*[position()=1]) 2018; 555
Banfi (D0CP02841J-(cit64)/*[position()=1]) 1998; 47
Hu (D0CP02841J-(cit34)/*[position()=1]) 2018; 28
Zeiri (D0CP02841J-(cit76)/*[position()=1]) 2020; 95
Chen (D0CP02841J-(cit107)/*[position()=1]) 2015; 23
Liu (D0CP02841J-(cit2)/*[position()=1]) 2020; 9
Ahn (D0CP02841J-(cit84)/*[position()=1]) 2017; 56
Glass (D0CP02841J-(cit48)/*[position()=1]) 1995
Yu (D0CP02841J-(cit115)/*[position()=1]) 2013; 7
Chang (D0CP02841J-(cit141)/*[position()=1]) 2019; 2
Mao (D0CP02841J-(cit105)/*[position()=1]) 2016; 12
Xie (D0CP02841J-(cit137)/*[position()=1]) 2018; 30
Shi (D0CP02841J-(cit142)/*[position()=1]) 2020; 32
Walters (D0CP02841J-(cit59)/*[position()=1]) 2015; 9
Migalska-Zalas (D0CP02841J-(cit65)/*[position()=1]) 2008; 3
Xiao (D0CP02841J-(cit36)/*[position()=1]) 2020; 5
Wei (D0CP02841J-(cit60)/*[position()=1]) 2019; 10
Xia (D0CP02841J-(cit16)/*[position()=1]) 2009; 5
Xu (D0CP02841J-(cit114)/*[position()=1]) 2012; 37
Balendhran (D0CP02841J-(cit126)/*[position()=1]) 2015; 11
Bredas (D0CP02841J-(cit146)/*[position()=1]) 1994; 94
Gao (D0CP02841J-(cit104)/*[position()=1]) 2018; 112
Yu (D0CP02841J-(cit9)/*[position()=1]) 2017; 29
Quaglia (D0CP02841J-(cit52)/*[position()=1]) 2002; 65
Bao (D0CP02841J-(cit5)/*[position()=1]) 2009; 19
Koos (D0CP02841J-(cit119)/*[position()=1]) 2009; 3
Chen (D0CP02841J-(cit128)/*[position()=1]) 2019; 13
Moore (D0CP02841J-(cit17)/*[position()=1]) 2010; 464
Ponraj (D0CP02841J-(cit3)/*[position()=1]) 2016; 27
Liu (D0CP02841J-(cit43)/*[position()=1]) 2020; 8
Guo (D0CP02841J-(cit129)/*[position()=1]) 2020; 32
Hantanasirisakul (D0CP02841J-(cit20)/*[position()=1]) 2018; 30
Li (D0CP02841J-(cit112)/*[position()=1]) 2017; 9
Danielzik (D0CP02841J-(cit56)/*[position()=1]) 1985; 38
Bhimanapati (D0CP02841J-(cit133)/*[position()=1]) 2015; 9
Ruiz (D0CP02841J-(cit139)/*[position()=1]) 2019; 2
de Araujo (D0CP02841J-(cit61)/*[position()=1]) 2016; 79
Liu (D0CP02841J-(cit95)/*[position()=1]) 2019; 567
Wang (D0CP02841J-(cit15)/*[position()=1]) 2016; 8
Sheldon (D0CP02841J-(cit49)/*[position()=1]) 1982; 21
Raymer (D0CP02841J-(cit50)/*[position()=1]) 1979; 19
Liu (D0CP02841J-(cit111)/*[position()=1]) 2017; 5
Guo (D0CP02841J-(cit113)/*[position()=1]) 2018; 26
Liu (D0CP02841J-(cit79)/*[position()=1]) 2012; 134
Bonaccorso (D0CP02841J-(cit120)/*[position()=1]) 2010; 4
McManus (D0CP02841J-(cit90)/*[position()=1]) 2017; 12
Zhao (D0CP02841J-(cit26)/*[position()=1]) 2015; 51
Han (D0CP02841J-(cit130)/*[position()=1]) 2018; 118
You (D0CP02841J-(cit42)/*[position()=1]) 2019; 8
Gao (D0CP02841J-(cit27)/*[position()=1]) 2016; 8
Hong (D0CP02841J-(cit62)/*[position()=1]) 2018; 12
Sheik-bahae (D0CP02841J-(cit45)/*[position()=1]) 1989; 14
Yin (D0CP02841J-(cit7)/*[position()=1]) 2018; 9
Luan (D0CP02841J-(cit116)/*[position()=1]) 2016; 41
Liu (D0CP02841J-(cit100)/*[position()=1]) 2014; 39
Jung (D0CP02841J-(cit108)/*[position()=1]) 2014; 22
Baudisch (D0CP02841J-(cit73)/*[position()=1]) 2018; 9
Qin (D0CP02841J-(cit13)/*[position()=1]) 2016; 4
Shekarforoush (D0CP02841J-(cit69)/*[position()=1]) 2018; 123
References_xml – issn: 1995
  end-page: p 11-20
  publication-title: Landmark papers on photorefractive nonlinear optics
  doi: Glass
– issn: 2020
  end-page: p 175-205
  publication-title: Quantum Dot Optoelectronic Devices
  doi: Zhai Huang Feng Zhang Wang
– volume: 8
  start-page: 110
  year: 2020
  ident: D0CP02841J-(cit75)/*[position()=1]
  publication-title: Photonics Res.
  doi: 10.1364/PRJ.8.000110
– volume: 7
  start-page: 9260
  year: 2013
  ident: D0CP02841J-(cit6)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn403886t
– volume: 12
  start-page: 343
  year: 2017
  ident: D0CP02841J-(cit90)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2016.281
– volume: 107
  start-page: 6711
  year: 2010
  ident: D0CP02841J-(cit91)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0914117107
– volume: 24
  start-page: 105111
  year: 2014
  ident: D0CP02841J-(cit110)/*[position()=1]
  publication-title: Laser Phys.
  doi: 10.1088/1054-660X/24/10/105111
– volume: 26
  start-page: 22750
  year: 2018
  ident: D0CP02841J-(cit113)/*[position()=1]
  publication-title: Opt. Express
  doi: 10.1364/OE.26.022750
– volume: 16
  start-page: 085203
  year: 2014
  ident: D0CP02841J-(cit109)/*[position()=1]
  publication-title: J. Opt.
  doi: 10.1088/2040-8978/16/8/085203
– volume: 7
  start-page: 9268
  year: 2015
  ident: D0CP02841J-(cit25)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C5NR01088H
– volume: 38
  start-page: 31
  year: 1985
  ident: D0CP02841J-(cit56)/*[position()=1]
  publication-title: Appl. Phys. B: Lasers Opt.
  doi: 10.1007/BF00691767
– volume: 9
  start-page: 39
  year: 2020
  ident: D0CP02841J-(cit86)/*[position()=1]
  publication-title: Light: Sci. Appl.
  doi: 10.1038/s41377-020-0278-z
– volume: 8
  start-page: 278
  year: 2017
  ident: D0CP02841J-(cit87)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00358-1
– volume: 9
  start-page: 11509
  year: 2015
  ident: D0CP02841J-(cit133)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b05556
– volume: 16
  start-page: 020004
  year: 2018
  ident: D0CP02841J-(cit1)/*[position()=1]
  publication-title: Chin. Opt. Lett.
  doi: 10.3788/COL201816.020004
– volume: 11
  start-page: 694
  year: 2015
  ident: D0CP02841J-(cit24)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201400541
– volume: 12
  start-page: 1601045
  year: 2018
  ident: D0CP02841J-(cit62)/*[position()=1]
  publication-title: Laser Photonics Rev.
– volume: 8
  start-page: 1610
  year: 2017
  ident: D0CP02841J-(cit31)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.7b00431
– volume: 7
  start-page: L77
  year: 2013
  ident: D0CP02841J-(cit115)/*[position()=1]
  publication-title: Laser Photonics Rev.
  doi: 10.1002/lpor.201300084
– volume: 109
  start-page: 6828
  year: 1998
  ident: D0CP02841J-(cit67)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.477330
– volume: 78
  start-page: 433
  year: 2004
  ident: D0CP02841J-(cit55)/*[position()=1]
  publication-title: Appl. Phys. B: Lasers Opt.
  doi: 10.1007/s00340-003-1389-y
– volume: 9
  start-page: 1
  year: 2019
  ident: D0CP02841J-(cit81)/*[position()=1]
  publication-title: Photonic Sens.
  doi: 10.1007/s13320-018-0514-9
– volume: 37
  start-page: 3100
  year: 2019
  ident: D0CP02841J-(cit106)/*[position()=1]
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2019.2910892
– volume: 13
  start-page: 754
  year: 2019
  ident: D0CP02841J-(cit128)/*[position()=1]
  publication-title: Nat. Photonics
  doi: 10.1038/s41566-019-0492-5
– volume: 3
  start-page: 021005
  year: 2016
  ident: D0CP02841J-(cit82)/*[position()=1]
  publication-title: 2D Mater.
  doi: 10.1088/2053-1583/3/2/021005
– volume: 22
  start-page: 7865
  year: 2014
  ident: D0CP02841J-(cit108)/*[position()=1]
  publication-title: Opt. Express
  doi: 10.1364/OE.22.007865
– volume: 21
  start-page: 2430
  year: 2009
  ident: D0CP02841J-(cit135)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200803616
– volume: 44
  start-page: 267
  year: 1983
  ident: D0CP02841J-(cit51)/*[position()=1]
  publication-title: Opt. Commun.
  doi: 10.1016/0030-4018(83)90135-9
– volume: 82
  start-page: 3045
  year: 2010
  ident: D0CP02841J-(cit18)/*[position()=1]
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.82.3045
– volume: 134
  start-page: 5044
  year: 2012
  ident: D0CP02841J-(cit79)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja211765y
– volume: 4
  start-page: 1429
  year: 2016
  ident: D0CP02841J-(cit13)/*[position()=1]
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201600323
– volume: 29
  start-page: 075104
  year: 2019
  ident: D0CP02841J-(cit83)/*[position()=1]
  publication-title: Laser Phys.
  doi: 10.1088/1555-6611/ab20c2
– volume: 123
  start-page: 245113
  year: 2018
  ident: D0CP02841J-(cit69)/*[position()=1]
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.5029547
– volume: 63
  start-page: 33
  year: 2010
  ident: D0CP02841J-(cit70)/*[position()=1]
  publication-title: Phys. Today
  doi: 10.1063/1.3293411
– volume: 113
  start-page: 3766
  year: 2013
  ident: D0CP02841J-(cit10)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr300263a
– volume: 39
  start-page: 4591
  year: 2014
  ident: D0CP02841J-(cit100)/*[position()=1]
  publication-title: Opt. Lett.
  doi: 10.1364/OL.39.004591
– volume: 94
  start-page: 243
  year: 1994
  ident: D0CP02841J-(cit146)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr00025a008
– volume: 9
  start-page: 581
  year: 2012
  ident: D0CP02841J-(cit98)/*[position()=1]
  publication-title: Laser Photonics Rev.
– volume: 30
  start-page: e1804779
  year: 2018
  ident: D0CP02841J-(cit20)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201804779
– volume: 2
  start-page: 468
  year: 2015
  ident: D0CP02841J-(cit122)/*[position()=1]
  publication-title: Optica
  doi: 10.1364/OPTICA.2.000468
– volume: 8
  start-page: 78
  year: 2020
  ident: D0CP02841J-(cit144)/*[position()=1]
  publication-title: Photonics Res.
  doi: 10.1364/PRJ.8.000078
– volume: 9
  start-page: 2641
  year: 2020
  ident: D0CP02841J-(cit2)/*[position()=1]
  publication-title: Nanophotonics
  doi: 10.1515/nanoph-2019-0564
– volume: 95
  start-page: 111108
  year: 2009
  ident: D0CP02841J-(cit99)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3207828
– volume: 5
  start-page: 398
  year: 2009
  ident: D0CP02841J-(cit16)/*[position()=1]
  publication-title: Nat. Phys.
  doi: 10.1038/nphys1274
– volume: 9
  start-page: 9340
  year: 2015
  ident: D0CP02841J-(cit59)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b03308
– volume: 10
  start-page: 227
  year: 2016
  ident: D0CP02841J-(cit8)/*[position()=1]
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2016.15
– volume: 15
  start-page: 7006
  year: 2007
  ident: D0CP02841J-(cit58)/*[position()=1]
  publication-title: Opt. Express
  doi: 10.1364/OE.15.007006
– volume: 8
  start-page: 1522
  year: 2015
  ident: D0CP02841J-(cit101)/*[position()=1]
  publication-title: Nano Res.
  doi: 10.1007/s12274-014-0637-2
– volume: 101
  start-page: 211106
  year: 2012
  ident: D0CP02841J-(cit72)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4767919
– volume: 11
  start-page: 6007
  year: 2020
  ident: D0CP02841J-(cit39)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.0c01757
– volume: 9
  start-page: 12759
  year: 2017
  ident: D0CP02841J-(cit112)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b01709
– volume: 31
  start-page: 135703
  year: 2019
  ident: D0CP02841J-(cit74)/*[position()=1]
  publication-title: J. Phys.: Condens. Matter
– volume: 12
  start-page: 10529
  year: 2018
  ident: D0CP02841J-(cit140)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b06503
– volume: 7
  start-page: 699
  year: 2012
  ident: D0CP02841J-(cit11)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.193
– volume: 19
  start-page: 2304
  year: 1979
  ident: D0CP02841J-(cit50)/*[position()=1]
  publication-title: Phys. Rev. A: At., Mol., Opt. Phys.
  doi: 10.1103/PhysRevA.19.2304
– volume: 8
  start-page: 912
  year: 2013
  ident: D0CP02841J-(cit22)/*[position()=1]
  publication-title: Chem. – Asian J.
  doi: 10.1002/asia.201201154
– volume: 20
  start-page: 413
  year: 2020
  ident: D0CP02841J-(cit35)/*[position()=1]
  publication-title: Chem. Rec.
  doi: 10.1002/tcr.201900050
– volume: 14
  start-page: 1900240
  year: 2020
  ident: D0CP02841J-(cit145)/*[position()=1]
  publication-title: Laser Photonics Rev.
  doi: 10.1002/lpor.201900240
– volume: 9
  start-page: 1018
  year: 2018
  ident: D0CP02841J-(cit73)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03413-7
– year: 2020
  ident: D0CP02841J-(cit40)/*[position()=1]
  publication-title: Nanoscale Horiz.
  doi: 10.1039/D0NH00262C
– volume: 356
  start-page: 69
  year: 2017
  ident: D0CP02841J-(cit88)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aal4062
– volume: 27
  start-page: 7372
  year: 2015
  ident: D0CP02841J-(cit21)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201503648
– volume: 27
  start-page: 1581
  year: 2015
  ident: D0CP02841J-(cit103)/*[position()=1]
  publication-title: IEEE Photonics Technol. Lett.
  doi: 10.1109/LPT.2015.2426178
– volume: 47
  start-page: 447
  year: 1998
  ident: D0CP02841J-(cit64)/*[position()=1]
  publication-title: Adv. Phys.
  doi: 10.1080/000187398243537
– volume: 8
  start-page: 618
  year: 2016
  ident: D0CP02841J-(cit15)/*[position()=1]
  publication-title: Adv. Opt. Photonics
  doi: 10.1364/AOP.8.000618
– volume: 10
  start-page: 1
  year: 2019
  ident: D0CP02841J-(cit117)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07882-8
– volume: 47
  start-page: 6224
  year: 2018
  ident: D0CP02841J-(cit131)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00254A
– volume: 48
  start-page: 1103004
  year: 2019
  ident: D0CP02841J-(cit37)/*[position()=1]
  publication-title: Infrared Laser Eng.
  doi: 10.3788/IRLA201948.1103004
– volume: 8
  start-page: 1901631
  year: 2020
  ident: D0CP02841J-(cit43)/*[position()=1]
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201901631
– volume: 29
  start-page: 1606128
  year: 2017
  ident: D0CP02841J-(cit9)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201606128
– volume: 41
  start-page: 1221
  year: 2016
  ident: D0CP02841J-(cit29)/*[position()=1]
  publication-title: Opt. Lett.
  doi: 10.1364/OL.41.001221
– volume: 5
  start-page: 1700713
  year: 2017
  ident: D0CP02841J-(cit80)/*[position()=1]
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201700713
– volume: 5
  start-page: 124
  year: 2020
  ident: D0CP02841J-(cit36)/*[position()=1]
  publication-title: Nanoscale Horiz.
  doi: 10.1039/C9NH00445A
– volume: 11
  start-page: 640
  year: 2015
  ident: D0CP02841J-(cit126)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201402041
– volume: 464
  start-page: 194
  year: 2010
  ident: D0CP02841J-(cit17)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature08916
– volume: 213
  start-page: 3065
  year: 2016
  ident: D0CP02841J-(cit118)/*[position()=1]
  publication-title: Phys. Status Solidi A
  doi: 10.1002/pssa.201600395
– volume: 32
  start-page: e1907244
  year: 2020
  ident: D0CP02841J-(cit142)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201907244
– volume: 3
  start-page: 1
  year: 2008
  ident: D0CP02841J-(cit65)/*[position()=1]
  publication-title: Dig. J. Nanomater. Bios.
– volume: 11
  start-page: 15741
  year: 2019
  ident: D0CP02841J-(cit138)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b00181
– volume: 2
  start-page: 574
  year: 2011
  ident: D0CP02841J-(cit71)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1588
– volume: 55
  start-page: 1666
  year: 2016
  ident: D0CP02841J-(cit125)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201507568
– volume: 52
  start-page: 8107
  year: 2016
  ident: D0CP02841J-(cit28)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C6CC03206K
– volume: 37
  start-page: 2652
  year: 2012
  ident: D0CP02841J-(cit114)/*[position()=1]
  publication-title: Opt. Lett.
  doi: 10.1364/OL.37.002652
– volume: 6
  start-page: 2000240
  year: 2020
  ident: D0CP02841J-(cit38)/*[position()=1]
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.202000240
– volume: 41
  start-page: 3783
  year: 2016
  ident: D0CP02841J-(cit116)/*[position()=1]
  publication-title: Opt. Lett.
  doi: 10.1364/OL.41.003783
– volume: 2
  start-page: 6162
  year: 2019
  ident: D0CP02841J-(cit139)/*[position()=1]
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.9b00978
– volume: 29
  start-page: 1806346
  year: 2019
  ident: D0CP02841J-(cit127)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201806346
– volume: 117
  start-page: 6225
  year: 2017
  ident: D0CP02841J-(cit134)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00558
– volume: 567
  start-page: 323
  year: 2019
  ident: D0CP02841J-(cit95)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/s41586-019-1013-x
– volume: 555
  start-page: 231
  year: 2018
  ident: D0CP02841J-(cit94)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature25774
– volume: 7
  start-page: 2898
  year: 2013
  ident: D0CP02841J-(cit132)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn400280c
– volume: 10
  start-page: 21106
  year: 2018
  ident: D0CP02841J-(cit32)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C8NR06797J
– volume: 32
  start-page: 1703
  year: 2020
  ident: D0CP02841J-(cit19)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.9b04408
– volume: 28
  start-page: 1805311
  year: 2018
  ident: D0CP02841J-(cit34)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201805311
– volume: 30
  start-page: e1804858
  year: 2018
  ident: D0CP02841J-(cit137)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201804858
– volume: 9
  start-page: 3311
  year: 2018
  ident: D0CP02841J-(cit7)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05874-2
– volume: 23
  start-page: 12823
  year: 2015
  ident: D0CP02841J-(cit107)/*[position()=1]
  publication-title: Opt. Express
  doi: 10.1364/OE.23.012823
– volume: 9
  start-page: 7142
  year: 2015
  ident: D0CP02841J-(cit85)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b03480
– volume: 95
  start-page: 017001
  year: 2020
  ident: D0CP02841J-(cit76)/*[position()=1]
  publication-title: Phys. Scr.
  doi: 10.1088/1402-4896/ab3ee0
– volume: 8
  start-page: 15132
  year: 2016
  ident: D0CP02841J-(cit27)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C6NR04773D
– volume: 112
  start-page: 171112
  year: 2018
  ident: D0CP02841J-(cit104)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5024777
– volume: 32
  start-page: 1907105
  year: 2020
  ident: D0CP02841J-(cit129)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201907105
– volume: 8
  start-page: 63
  year: 2019
  ident: D0CP02841J-(cit42)/*[position()=1]
  publication-title: Nanophotonics
  doi: 10.1515/nanoph-2018-0106
– volume: 23
  start-page: 11183
  year: 2015
  ident: D0CP02841J-(cit77)/*[position()=1]
  publication-title: Opt. Express
  doi: 10.1364/OE.23.011183
– volume: 21
  start-page: 1663
  year: 1982
  ident: D0CP02841J-(cit49)/*[position()=1]
  publication-title: Appl. Opt.
  doi: 10.1364/AO.21.001663
– volume: 5
  start-page: 722
  year: 2010
  ident: D0CP02841J-(cit93)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2010.172
– volume: 13
  start-page: 1800327
  year: 2019
  ident: D0CP02841J-(cit44)/*[position()=1]
  publication-title: Laser Photonics Rev.
  doi: 10.1002/lpor.201800327
– volume: 557
  start-page: 696
  year: 2018
  ident: D0CP02841J-(cit92)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/s41586-018-0129-8
– volume: 56
  start-page: 9920
  year: 2017
  ident: D0CP02841J-(cit84)/*[position()=1]
  publication-title: Appl. Opt.
  doi: 10.1364/AO.56.009920
– volume: 112
  start-page: 4523
  year: 2015
  ident: D0CP02841J-(cit14)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1416581112
– volume: 2
  start-page: 1700
  year: 2018
  ident: D0CP02841J-(cit33)/*[position()=1]
  publication-title: Mater. Chem. Front.
  doi: 10.1039/C8QM00237A
– volume: 26
  start-page: 760
  year: 1990
  ident: D0CP02841J-(cit47)/*[position()=1]
  publication-title: IEEE J. Quantum Electron.
  doi: 10.1109/3.53394
– volume: 23
  start-page: 11453
  year: 2015
  ident: D0CP02841J-(cit102)/*[position()=1]
  publication-title: Opt. Express
  doi: 10.1364/OE.23.011453
– volume: 706
  start-page: 170
  year: 2018
  ident: D0CP02841J-(cit68)/*[position()=1]
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2018.06.001
– volume: 3
  start-page: 216
  year: 2009
  ident: D0CP02841J-(cit119)/*[position()=1]
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2009.25
– volume: 27
  start-page: 462001
  year: 2016
  ident: D0CP02841J-(cit3)/*[position()=1]
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/27/46/462001
– volume: 10
  start-page: 6572
  year: 2019
  ident: D0CP02841J-(cit63)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.9b02590
– volume: 37
  start-page: 1692
  year: 2013
  ident: D0CP02841J-(cit23)/*[position()=1]
  publication-title: New J. Chem.
  doi: 10.1039/c3nj00061c
– volume: 32
  start-page: e1906958
  year: 2020
  ident: D0CP02841J-(cit143)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201906958
– volume: 65
  start-page: 673
  year: 1994
  ident: D0CP02841J-(cit46)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.112264
– volume: 65
  start-page: 031404
  year: 2002
  ident: D0CP02841J-(cit52)/*[position()=1]
  publication-title: Phys. Rev. A: At., Mol., Opt. Phys.
  doi: 10.1103/PhysRevA.65.031404
– volume: 120
  start-page: 4481
  year: 2016
  ident: D0CP02841J-(cit66)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b10026
– volume-title: Quantum Dot Optoelectronic Devices
  year: 2020
  ident: D0CP02841J-(cit41)/*[position()=1]
  doi: 10.1007/978-3-030-35813-6_6
– volume: 2
  start-page: 925
  year: 2014
  ident: D0CP02841J-(cit89)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C3TC31993H
– volume: 55
  start-page: 10307
  year: 2016
  ident: D0CP02841J-(cit78)/*[position()=1]
  publication-title: Appl. Opt.
  doi: 10.1364/AO.55.010307
– volume: 118
  start-page: 6151
  year: 2018
  ident: D0CP02841J-(cit130)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00264
– volume: 14
  start-page: 110002
  year: 2017
  ident: D0CP02841J-(cit30)/*[position()=1]
  publication-title: Laser Photonics Rev.
– volume: 107
  start-page: 091905
  year: 2015
  ident: D0CP02841J-(cit97)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4930077
– volume: 79
  start-page: 036401
  year: 2016
  ident: D0CP02841J-(cit61)/*[position()=1]
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/79/3/036401
– volume-title: Landmark papers on photorefractive nonlinear optics
  year: 1995
  ident: D0CP02841J-(cit48)/*[position()=1]
  doi: 10.1142/9789812832047_0002
– volume: 12
  start-page: 1489
  year: 2016
  ident: D0CP02841J-(cit105)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201503348
– volume: 5
  start-page: 1601045
  year: 2017
  ident: D0CP02841J-(cit111)/*[position()=1]
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201601045
– volume: 14
  start-page: 955
  year: 1989
  ident: D0CP02841J-(cit45)/*[position()=1]
  publication-title: Opt. Lett.
  doi: 10.1364/OL.14.000955
– volume: 474
  start-page: 64
  year: 2011
  ident: D0CP02841J-(cit121)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature10067
– volume: 10
  start-page: 2215
  year: 2014
  ident: D0CP02841J-(cit124)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201303698
– volume: 150
  start-page: 875
  year: 2010
  ident: D0CP02841J-(cit57)/*[position()=1]
  publication-title: Solid State Commun.
  doi: 10.1016/j.ssc.2010.02.001
– volume: 4
  start-page: 611
  year: 2010
  ident: D0CP02841J-(cit120)/*[position()=1]
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2010.186
– volume: 28
  start-page: 1706559
  year: 2018
  ident: D0CP02841J-(cit4)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201706559
– volume: 19
  start-page: 3077
  year: 2009
  ident: D0CP02841J-(cit5)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.200901007
– volume: 10
  start-page: 5342
  year: 2019
  ident: D0CP02841J-(cit60)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13136-y
– volume: 5
  start-page: 263
  year: 2013
  ident: D0CP02841J-(cit12)/*[position()=1]
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1589
– volume: 100
  start-page: 024912
  year: 2006
  ident: D0CP02841J-(cit53)/*[position()=1]
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2217985
– volume: 3
  start-page: 738
  year: 2008
  ident: D0CP02841J-(cit96)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2008.312
– volume: 44
  start-page: 705
  year: 2003
  ident: D0CP02841J-(cit54)/*[position()=1]
  publication-title: Numer. Heat Transfer, Part A
  doi: 10.1080/716100520
– volume: 2
  start-page: 4222
  year: 2019
  ident: D0CP02841J-(cit141)/*[position()=1]
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.9b00676
– volume: 51
  start-page: 12262
  year: 2015
  ident: D0CP02841J-(cit26)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC01819F
– volume: 14
  start-page: 37
  year: 2020
  ident: D0CP02841J-(cit123)/*[position()=1]
  publication-title: Nat. Photonics
  doi: 10.1038/s41566-019-0547-7
– volume: 2
  start-page: 937
  year: 2019
  ident: D0CP02841J-(cit136)/*[position()=1]
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.8b02233
SSID ssj0001513
Score 2.5118968
SecondaryResourceType review_article
Snippet Having accomplished progress in the versatile battlefields of optics, electronics, catalysis, etc. , two-dimensional (2D) materials are now venturing and...
Having accomplished progress in the versatile battlefields of optics, electronics, catalysis, etc., two-dimensional (2D) materials are now venturing and...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2214
SubjectTerms Battlefields
Carbon nitride
Heterostructures
Mathematical analysis
Mode locking
Optical communication
Optical properties
Photonics
Spectrum analysis
Transition metal compounds
Two dimensional materials
Title 2D materials towards ultrafast photonic applications
URI https://www.proquest.com/docview/2451734868
https://www.proquest.com/docview/2447836771
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfY9gAviK-JjIGC4AVVGa7txM3jlHYqUxlFaqWKl8jxBwxNTdWmL_z1nOM4CaIPgxfLujhO5N_5fD777hB6T7kaMWVYxCkTEYsLFaUmJRExUlGmE0O0Neh_vkmmS3a9ilddlr7au6QqLuSvg34l_4Mq0ABX6yX7D8i2nQIB6oAvlIAwlPfCmIwHoHC6L4ESaS_A7gb7u2orjNhVg82PsqoT3PRPqfva6NyDJH3aN1ezJGfy2NUmg3mWtW5g35oE1qvbdTT3615t0q5Zpews9E6KfAX--9572VGnooxmt32TA-wv7Q2OuCclWUKjFLvcbhf6AK0RrYT0WMgFLfKCkgxdmKa_RDimNgKqwnIDqg8b_uwWKn84f_Mlv1rOZvlislocoRPCuT2gP7mcLD7N2lUYNBnqPMvcb_nQtDT92PX9pzLS7TCOtj79S61mLJ6gx83-ILx0YD9FD_T6GXqYeXyeI0bGYQt62IAetqCHHvSwD_oLtLyaLLJp1KS-iCTlvIoSIwRNhNGpjouYw-qYKqEExkIKKlihh0zEvMCKKZC5imMJenDKDSEjWXBj6Ck6Xpdr_RKFGCajBFGteAEVHQtJRibVuBBmhGNFA_TBj0Eum7jwNj3JXV7fT6BpPsbZvB6v6wC9a9tuXDSUg63O_VDmzWzZ5YTFQxtJKRkF6G37GMbOHlCJtS73tg2zTkWAZ4BOAYL2Gx1iATo7_CDfKHN2j55foUcdS5-j42q7169Br6yKNw0L_QYL_Xlf
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=2D+materials+towards+ultrafast+photonic+applications&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Zhai%2C+Xin-Ping&rft.au=Ma%2C+Bo&rft.au=Wang%2C+Qiang&rft.au=Zhang%2C+Hao-Li&rft.date=2020-10-15&rft.issn=1463-9084&rft.eissn=1463-9084&rft.volume=22&rft.issue=39&rft.spage=22140&rft_id=info:doi/10.1039%2Fd0cp02841j&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon