2D materials towards ultrafast photonic applications
Having accomplished progress in the versatile battlefields of optics, electronics, catalysis, etc. , two-dimensional (2D) materials are now venturing and excelling in yet another arena of ultrafast photonics, a rapidly developing field encompassing a large range of important applications including o...
Saved in:
Published in | Physical chemistry chemical physics : PCCP Vol. 22; no. 39; pp. 2214 - 22156 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
15.10.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 1463-9076 1463-9084 1463-9084 |
DOI | 10.1039/d0cp02841j |
Cover
Abstract | Having accomplished progress in the versatile battlefields of optics, electronics, catalysis,
etc.
, two-dimensional (2D) materials are now venturing and excelling in yet another arena of ultrafast photonics, a rapidly developing field encompassing a large range of important applications including optical modulation through optical limiting/mode-locking, photodetectors, optical communications, integrated miniaturized all-optical devices and so on. Our group has been devoted to building the arsenal of 2D materials with large third-order nonlinearities, including transition metal dichalcogenides (TMDs), carbon nitride, single-element materials from Group 15, 2D hybrids and vdW heterostructures. In particular, we explore their origin of nonlinear optical responses from the aspect of excited state dynamics using time-resolved spectroscopic techniques such as femtosecond transient absorption spectroscopy. In this review, we propose the roadmap for screening 2D materials for ultrafast photonics through focusing on the third-order nonlinear optical properties of 2D materials and corresponding applications, and then performing mechanistic investigations
via
time-resolved spectroscopy and calculations, which in turn provide feedback to further guide the fabrication of 2D materials. We offer our own insights on the future trends for the development and theoretical calculations of 2D materials/devices in the final part of
Perspectives
.
Two-dimensional materials are now excelling in yet another arena of ultrafast photonics, including optical modulation through optical limiting/mode-locking, photodetectors, optical communications, integrated miniaturized all-optical devices,
etc
. |
---|---|
AbstractList | Having accomplished progress in the versatile battlefields of optics, electronics, catalysis,
etc.
, two-dimensional (2D) materials are now venturing and excelling in yet another arena of ultrafast photonics, a rapidly developing field encompassing a large range of important applications including optical modulation through optical limiting/mode-locking, photodetectors, optical communications, integrated miniaturized all-optical devices and so on. Our group has been devoted to building the arsenal of 2D materials with large third-order nonlinearities, including transition metal dichalcogenides (TMDs), carbon nitride, single-element materials from Group 15, 2D hybrids and vdW heterostructures. In particular, we explore their origin of nonlinear optical responses from the aspect of excited state dynamics using time-resolved spectroscopic techniques such as femtosecond transient absorption spectroscopy. In this review, we propose the roadmap for screening 2D materials for ultrafast photonics through focusing on the third-order nonlinear optical properties of 2D materials and corresponding applications, and then performing mechanistic investigations
via
time-resolved spectroscopy and calculations, which in turn provide feedback to further guide the fabrication of 2D materials. We offer our own insights on the future trends for the development and theoretical calculations of 2D materials/devices in the final part of
Perspectives
. Having accomplished progress in the versatile battlefields of optics, electronics, catalysis, etc., two-dimensional (2D) materials are now venturing and excelling in yet another arena of ultrafast photonics, a rapidly developing field encompassing a large range of important applications including optical modulation through optical limiting/mode-locking, photodetectors, optical communications, integrated miniaturized all-optical devices and so on. Our group has been devoted to building the arsenal of 2D materials with large third-order nonlinearities, including transition metal dichalcogenides (TMDs), carbon nitride, single-element materials from Group 15, 2D hybrids and vdW heterostructures. In particular, we explore their origin of nonlinear optical responses from the aspect of excited state dynamics using time-resolved spectroscopic techniques such as femtosecond transient absorption spectroscopy. In this review, we propose the roadmap for screening 2D materials for ultrafast photonics through focusing on the third-order nonlinear optical properties of 2D materials and corresponding applications, and then performing mechanistic investigations via time-resolved spectroscopy and calculations, which in turn provide feedback to further guide the fabrication of 2D materials. We offer our own insights on the future trends for the development and theoretical calculations of 2D materials/devices in the final part of Perspectives. Having accomplished progress in the versatile battlefields of optics, electronics, catalysis, etc., two-dimensional (2D) materials are now venturing and excelling in yet another arena of ultrafast photonics, a rapidly developing field encompassing a large range of important applications including optical modulation through optical limiting/mode-locking, photodetectors, optical communications, integrated miniaturized all-optical devices and so on. Our group has been devoted to building the arsenal of 2D materials with large third-order nonlinearities, including transition metal dichalcogenides (TMDs), carbon nitride, single-element materials from Group 15, 2D hybrids and vdW heterostructures. In particular, we explore their origin of nonlinear optical responses from the aspect of excited state dynamics using time-resolved spectroscopic techniques such as femtosecond transient absorption spectroscopy. In this review, we propose the roadmap for screening 2D materials for ultrafast photonics through focusing on the third-order nonlinear optical properties of 2D materials and corresponding applications, and then performing mechanistic investigations via time-resolved spectroscopy and calculations, which in turn provide feedback to further guide the fabrication of 2D materials. We offer our own insights on the future trends for the development and theoretical calculations of 2D materials/devices in the final part of Perspectives.Having accomplished progress in the versatile battlefields of optics, electronics, catalysis, etc., two-dimensional (2D) materials are now venturing and excelling in yet another arena of ultrafast photonics, a rapidly developing field encompassing a large range of important applications including optical modulation through optical limiting/mode-locking, photodetectors, optical communications, integrated miniaturized all-optical devices and so on. Our group has been devoted to building the arsenal of 2D materials with large third-order nonlinearities, including transition metal dichalcogenides (TMDs), carbon nitride, single-element materials from Group 15, 2D hybrids and vdW heterostructures. In particular, we explore their origin of nonlinear optical responses from the aspect of excited state dynamics using time-resolved spectroscopic techniques such as femtosecond transient absorption spectroscopy. In this review, we propose the roadmap for screening 2D materials for ultrafast photonics through focusing on the third-order nonlinear optical properties of 2D materials and corresponding applications, and then performing mechanistic investigations via time-resolved spectroscopy and calculations, which in turn provide feedback to further guide the fabrication of 2D materials. We offer our own insights on the future trends for the development and theoretical calculations of 2D materials/devices in the final part of Perspectives. Having accomplished progress in the versatile battlefields of optics, electronics, catalysis, etc. , two-dimensional (2D) materials are now venturing and excelling in yet another arena of ultrafast photonics, a rapidly developing field encompassing a large range of important applications including optical modulation through optical limiting/mode-locking, photodetectors, optical communications, integrated miniaturized all-optical devices and so on. Our group has been devoted to building the arsenal of 2D materials with large third-order nonlinearities, including transition metal dichalcogenides (TMDs), carbon nitride, single-element materials from Group 15, 2D hybrids and vdW heterostructures. In particular, we explore their origin of nonlinear optical responses from the aspect of excited state dynamics using time-resolved spectroscopic techniques such as femtosecond transient absorption spectroscopy. In this review, we propose the roadmap for screening 2D materials for ultrafast photonics through focusing on the third-order nonlinear optical properties of 2D materials and corresponding applications, and then performing mechanistic investigations via time-resolved spectroscopy and calculations, which in turn provide feedback to further guide the fabrication of 2D materials. We offer our own insights on the future trends for the development and theoretical calculations of 2D materials/devices in the final part of Perspectives . Two-dimensional materials are now excelling in yet another arena of ultrafast photonics, including optical modulation through optical limiting/mode-locking, photodetectors, optical communications, integrated miniaturized all-optical devices, etc . |
Author | Zhang, Hao-Li Wang, Qiang Zhai, Xin-Ping Ma, Bo |
AuthorAffiliation | Ministry of Education State Key Laboratory of Applied Organic Chemistry (SKLAOC) Key Laboratory of Special Function Materials and Structure Design College of Chemistry and Chemical Engineering Lanzhou University Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province |
AuthorAffiliation_xml | – name: College of Chemistry and Chemical Engineering – name: Ministry of Education – name: Lanzhou University – name: Key Laboratory of Special Function Materials and Structure Design – name: State Key Laboratory of Applied Organic Chemistry (SKLAOC) – name: Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province |
Author_xml | – sequence: 1 givenname: Xin-Ping surname: Zhai fullname: Zhai, Xin-Ping – sequence: 2 givenname: Bo surname: Ma fullname: Ma, Bo – sequence: 3 givenname: Qiang surname: Wang fullname: Wang, Qiang – sequence: 4 givenname: Hao-Li surname: Zhang fullname: Zhang, Hao-Li |
BookMark | eNp90c1LwzAUAPAgE9ymF-9CxYsI1aRJm_Yom58M9KDn8poPzOiamqSI_71xkwlDPL3A-73wPiZo1NlOIXRM8CXBtLqSWPQ4KxlZ7qExYQVNK1yy0fbNiwM08X6JMSY5oWPEsnmygqCcgdYnwX6Akz4Z2uBAgw9J_2aD7YxIoO9bIyAY2_lDtK8jV0c_cYpeb29eZvfp4unuYXa9SAXlPKSFBqAFaFWpvMm5AlFJkIAxCKDAGkUY5LzBksks55JjkRek4jrLStFwrekUnW_-7Z19H5QP9cp4odoWOmUHX2eM8ZIWnJNIz3bo0g6ui91FlRNOWVmUUeGNEs5675SuhQnrmeK8pq0Jrr_XWM_x7Hm9xsdYcrFT0juzAvf5Nz7ZYOfF1v3eJOZP_8vXvdT0C9O1ihE |
CitedBy_id | crossref_primary_10_1021_acsphotonics_3c01634 crossref_primary_10_1007_s13538_021_00917_4 crossref_primary_10_1039_D2CP05006D crossref_primary_10_1039_D1NH00253H crossref_primary_10_1364_JOSAB_482279 crossref_primary_10_1016_j_spmi_2021_107132 crossref_primary_10_3390_molecules27249059 crossref_primary_10_1016_j_jallcom_2022_168329 crossref_primary_10_1016_j_jpcs_2023_111482 crossref_primary_10_1039_D2NR02262A crossref_primary_10_1016_j_apsusc_2021_150050 crossref_primary_10_1002_adfm_202105259 crossref_primary_10_1016_j_measurement_2023_113858 crossref_primary_10_1016_j_crfs_2024_100849 crossref_primary_10_1016_j_ijleo_2021_168096 crossref_primary_10_1016_j_dyepig_2022_110160 crossref_primary_10_1039_D1MA00944C crossref_primary_10_1364_OE_433449 crossref_primary_10_1002_aelm_202300625 crossref_primary_10_1039_D3TC00868A crossref_primary_10_1002_pssr_202500014 crossref_primary_10_1021_acsnano_3c12938 crossref_primary_10_1039_D1CP05602F crossref_primary_10_1021_acsphotonics_2c01375 crossref_primary_10_1016_j_matpr_2022_04_222 crossref_primary_10_1039_D3NR00498H crossref_primary_10_1016_j_optmat_2021_111324 crossref_primary_10_1039_D5DT00248F crossref_primary_10_21468_SciPostPhys_18_1_009 crossref_primary_10_1515_nanoph_2023_0639 crossref_primary_10_1016_j_infrared_2021_103962 crossref_primary_10_1016_j_optmat_2023_114211 crossref_primary_10_1016_j_optlastec_2023_109140 crossref_primary_10_1039_D2CP00374K crossref_primary_10_1039_D1CS00844G crossref_primary_10_3788_IRLA20220371 crossref_primary_10_1016_j_jallcom_2021_160766 crossref_primary_10_1088_1402_4896_ad0d62 crossref_primary_10_1364_JOSAB_482638 crossref_primary_10_1021_acs_nanolett_3c01772 crossref_primary_10_1021_acsami_1c03042 crossref_primary_10_1021_acsphotonics_4c00896 |
Cites_doi | 10.1364/PRJ.8.000110 10.1021/nn403886t 10.1038/nnano.2016.281 10.1073/pnas.0914117107 10.1088/1054-660X/24/10/105111 10.1364/OE.26.022750 10.1088/2040-8978/16/8/085203 10.1039/C5NR01088H 10.1007/BF00691767 10.1038/s41377-020-0278-z 10.1038/s41467-017-00358-1 10.1021/acsnano.5b05556 10.3788/COL201816.020004 10.1002/smll.201400541 10.1021/acs.jpclett.7b00431 10.1002/lpor.201300084 10.1063/1.477330 10.1007/s00340-003-1389-y 10.1007/s13320-018-0514-9 10.1109/JLT.2019.2910892 10.1038/s41566-019-0492-5 10.1088/2053-1583/3/2/021005 10.1364/OE.22.007865 10.1002/adma.200803616 10.1016/0030-4018(83)90135-9 10.1103/RevModPhys.82.3045 10.1021/ja211765y 10.1002/adom.201600323 10.1088/1555-6611/ab20c2 10.1063/1.5029547 10.1063/1.3293411 10.1021/cr300263a 10.1364/OL.39.004591 10.1021/cr00025a008 10.1002/adma.201804779 10.1364/OPTICA.2.000468 10.1364/PRJ.8.000078 10.1515/nanoph-2019-0564 10.1063/1.3207828 10.1038/nphys1274 10.1021/acsnano.5b03308 10.1038/nphoton.2016.15 10.1364/OE.15.007006 10.1007/s12274-014-0637-2 10.1063/1.4767919 10.1021/acs.jpclett.0c01757 10.1021/acsami.7b01709 10.1021/acsnano.8b06503 10.1038/nnano.2012.193 10.1103/PhysRevA.19.2304 10.1002/asia.201201154 10.1002/tcr.201900050 10.1002/lpor.201900240 10.1038/s41467-018-03413-7 10.1039/D0NH00262C 10.1126/science.aal4062 10.1002/adma.201503648 10.1109/LPT.2015.2426178 10.1080/000187398243537 10.1364/AOP.8.000618 10.1038/s41467-018-07882-8 10.1039/C8CS00254A 10.3788/IRLA201948.1103004 10.1002/adom.201901631 10.1002/adma.201606128 10.1364/OL.41.001221 10.1002/adom.201700713 10.1039/C9NH00445A 10.1002/smll.201402041 10.1038/nature08916 10.1002/pssa.201600395 10.1002/adma.201907244 10.1021/acsami.9b00181 10.1038/ncomms1588 10.1002/anie.201507568 10.1039/C6CC03206K 10.1364/OL.37.002652 10.1002/aelm.202000240 10.1364/OL.41.003783 10.1021/acsanm.9b00978 10.1002/adfm.201806346 10.1021/acs.chemrev.6b00558 10.1038/s41586-019-1013-x 10.1038/nature25774 10.1021/nn400280c 10.1039/C8NR06797J 10.1021/acs.chemmater.9b04408 10.1002/adfm.201805311 10.1002/adma.201804858 10.1038/s41467-018-05874-2 10.1364/OE.23.012823 10.1021/acsnano.5b03480 10.1088/1402-4896/ab3ee0 10.1039/C6NR04773D 10.1063/1.5024777 10.1002/adma.201907105 10.1515/nanoph-2018-0106 10.1364/OE.23.011183 10.1364/AO.21.001663 10.1038/nnano.2010.172 10.1002/lpor.201800327 10.1038/s41586-018-0129-8 10.1364/AO.56.009920 10.1073/pnas.1416581112 10.1039/C8QM00237A 10.1109/3.53394 10.1364/OE.23.011453 10.1016/j.cplett.2018.06.001 10.1038/nphoton.2009.25 10.1088/0957-4484/27/46/462001 10.1021/acs.jpclett.9b02590 10.1039/c3nj00061c 10.1002/adma.201906958 10.1063/1.112264 10.1103/PhysRevA.65.031404 10.1021/acs.jpcc.5b10026 10.1007/978-3-030-35813-6_6 10.1039/C3TC31993H 10.1364/AO.55.010307 10.1021/acs.chemrev.8b00264 10.1063/1.4930077 10.1088/0034-4885/79/3/036401 10.1142/9789812832047_0002 10.1002/smll.201503348 10.1002/adom.201601045 10.1364/OL.14.000955 10.1038/nature10067 10.1002/smll.201303698 10.1016/j.ssc.2010.02.001 10.1038/nphoton.2010.186 10.1002/adfm.201706559 10.1002/adfm.200901007 10.1038/s41467-019-13136-y 10.1038/nchem.1589 10.1063/1.2217985 10.1038/nnano.2008.312 10.1080/716100520 10.1021/acsanm.9b00676 10.1039/C5CC01819F 10.1038/s41566-019-0547-7 10.1021/acsanm.8b02233 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2020 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2020 |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1039/d0cp02841j |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef Materials Research Database MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1463-9084 |
EndPage | 22156 |
ExternalDocumentID | 10_1039_D0CP02841J d0cp02841j |
GroupedDBID | - 0-7 0R 123 1TJ 29O 4.4 53G 70 705 70J 7~J 87K AAEMU AAGNR AAIWI AANOJ ABDVN ABFLS ABGFH ABRYZ ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AENEX AFVBQ AGKEF AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ASKNT AUDPV AZFZN BLAPV BSQNT C6K CKLOX CS3 D0L DU5 DZ EBS ECGLT EE0 EF- F5P GNO HZ H~N IDZ J3G J3I JG M4U N9A NHB O9- OK1 P2P R7B R7C RCNCU RIG RNS RPMJG RRA RRC RSCEA SKA SKF SLH TN5 TWZ UCJ UHB VH6 WH7 X YNT --- -DZ -~X 0R~ 2WC 70~ AAJAE AAMEH AAWGC AAXHV AAXPP AAYXX ABASK ABEMK ABJNI ABPDG ABXOH ACGFO AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AGEGJ AGRSR AHGCF AKMSF ALUYA ANUXI APEMP CITATION GGIMP H13 HZ~ R56 RAOCF 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c377t-6faa36afe9e5b57eac9dada00aca3a4be14a57b0d4d257d70c56197f228cb7ff3 |
ISSN | 1463-9076 1463-9084 |
IngestDate | Fri Jul 11 09:45:39 EDT 2025 Sun Jun 29 16:25:42 EDT 2025 Tue Jul 01 00:53:47 EDT 2025 Thu Apr 24 23:10:45 EDT 2025 Sat Jan 08 03:54:54 EST 2022 Wed Nov 11 00:36:16 EST 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 39 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c377t-6faa36afe9e5b57eac9dada00aca3a4be14a57b0d4d257d70c56197f228cb7ff3 |
Notes | Xin-Ping Zhai received her master's degree in physical chemistry from Lanzhou University. She is currently pursuing her PhD degree in physical chemistry in Lanzhou University under the supervision of Prof. Qiang Wang. Her interests are focused on optoelectronic properties of 2D materials. Qiang Wang received a BS degree from Wuhan University in 1999. He then joined Prof. Yi Chen's group at the Institute of Chemistry, Chinese Academy of Sciences as a graduate student and performed research in the field of Capillary Electrophoresis (CE) and spectroscopic analysis. He got his MS degree in the year of 2002. He thereafter went to Boston University in the USA to pursue a PhD degree in Prof. Rosina Georgiadis' group, developing novel label-free detection methods based on surface plasmon resonance (SPR). He transferred to Boston College in 2004 and worked on ultrafast time-resolved spectroscopy under the guidance of Prof. Torsten Fiebig. The main topics were focused on the DNA photonics study on the femtosecond time scale, photoinduced electron and energy transfer processes in DNA upon photon excitation. He obtained his PhD degree in May, 2008 and became an associate professor of chemistry at Lanzhou University in October. He was promoted to a full professorship in 2017. His current research interests include nonlinear optics and ultrafast spectroscopy. Hao-Li Zhang received his BS in organic chemistry in 1994, and PhD degree in 1999 from Lanzhou University. He then worked in the University of Leeds and Oxford University as a postdoc. In 2004, he was appointed as a full professor by the State Key Laboratory of Applied Organic Chemistry (SKLAOC) of Lanzhou University. He is currently the deputy director of SKLAOC and Deputy Dean of the College of Chemistry and Chemical Engineering. In 2014, he became a Fellow of Royal Society of Chemistry (FRSC). He is an editorial board member of Acta Physico-Chimica Sinica and Chinese Chemical Letters, and an advisory board member of Chem. Soc. Rev. Prof. Hao-Li Zhang is interested in developing new organic functional materials for electronic and optoelectronic applications. He has published more than 240 research papers on peerreviewed international journals with citation over 5000, his H index is 37. Current research projects include: design and synthesis of organic semiconductors; novel light emitting materials; nonlinear optical materials; molecular electronics; novel organic/inorganic hybrid materials for advanced optoelectronics. Bo Ma is currently pursuing his PhD degree in material science and engineering in Lanzhou University under the supervision of Prof. Qiang Wang. His interests are focused on optoelectronic properties of 2D materials. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6322-5202 0000-0003-4008-5144 |
PQID | 2451734868 |
PQPubID | 2047499 |
PageCount | 17 |
ParticipantIDs | rsc_primary_d0cp02841j proquest_journals_2451734868 crossref_primary_10_1039_D0CP02841J proquest_miscellaneous_2447836771 crossref_citationtrail_10_1039_D0CP02841J |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20201015 |
PublicationDateYYYYMMDD | 2020-10-15 |
PublicationDate_xml | – month: 10 year: 2020 text: 20201015 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Physical chemistry chemical physics : PCCP |
PublicationYear | 2020 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Liao (D0CP02841J-(cit91)/*[position()=1]) 2010; 107 Kunitski (D0CP02841J-(cit117)/*[position()=1]) 2019; 10 Yalagala (D0CP02841J-(cit136)/*[position()=1]) 2019; 2 Zhao (D0CP02841J-(cit25)/*[position()=1]) 2015; 7 Dai (D0CP02841J-(cit74)/*[position()=1]) 2019; 31 Wang (D0CP02841J-(cit81)/*[position()=1]) 2019; 9 Gao (D0CP02841J-(cit23)/*[position()=1]) 2013; 37 Zhang (D0CP02841J-(cit40)/*[position()=1]) 2020 Zhao (D0CP02841J-(cit46)/*[position()=1]) 1994; 65 Ono (D0CP02841J-(cit123)/*[position()=1]) 2020; 14 Wu (D0CP02841J-(cit127)/*[position()=1]) 2019; 29 Marcaud (D0CP02841J-(cit75)/*[position()=1]) 2020; 8 Hasan (D0CP02841J-(cit18)/*[position()=1]) 2010; 82 Kelly (D0CP02841J-(cit88)/*[position()=1]) 2017; 356 Kelleher (D0CP02841J-(cit99)/*[position()=1]) 2009; 95 Ling (D0CP02841J-(cit14)/*[position()=1]) 2015; 112 Chen (D0CP02841J-(cit54)/*[position()=1]) 2003; 44 Cai (D0CP02841J-(cit131)/*[position()=1]) 2018; 47 Chen (D0CP02841J-(cit78)/*[position()=1]) 2016; 55 Lu (D0CP02841J-(cit143)/*[position()=1]) 2020; 32 Reis (D0CP02841J-(cit67)/*[position()=1]) 1998; 109 Sobon (D0CP02841J-(cit98)/*[position()=1]) 2012; 9 Hu (D0CP02841J-(cit87)/*[position()=1]) 2017; 8 Chhowalla (D0CP02841J-(cit12)/*[position()=1]) 2013; 5 Luo (D0CP02841J-(cit30)/*[position()=1]) 2017; 14 Wang (D0CP02841J-(cit22)/*[position()=1]) 2013; 8 Zhai (D0CP02841J-(cit41)/*[position()=1]) 2020 Guo (D0CP02841J-(cit44)/*[position()=1]) 2019; 13 Passlack (D0CP02841J-(cit53)/*[position()=1]) 2006; 100 Liu (D0CP02841J-(cit92)/*[position()=1]) 2018; 557 Guo (D0CP02841J-(cit1)/*[position()=1]) 2018; 16 Wang (D0CP02841J-(cit86)/*[position()=1]) 2020; 9 Zhao (D0CP02841J-(cit21)/*[position()=1]) 2015; 27 Lu (D0CP02841J-(cit77)/*[position()=1]) 2015; 23 Xu (D0CP02841J-(cit10)/*[position()=1]) 2013; 113 Liu (D0CP02841J-(cit140)/*[position()=1]) 2018; 12 Yang (D0CP02841J-(cit32)/*[position()=1]) 2018; 10 Pan (D0CP02841J-(cit124)/*[position()=1]) 2014; 10 Liu (D0CP02841J-(cit63)/*[position()=1]) 2019; 10 Valverde (D0CP02841J-(cit68)/*[position()=1]) 2018; 706 Qi (D0CP02841J-(cit70)/*[position()=1]) 2010; 63 Boguslawski (D0CP02841J-(cit110)/*[position()=1]) 2014; 24 Zhang (D0CP02841J-(cit125)/*[position()=1]) 2016; 55 Torres-Torres (D0CP02841J-(cit82)/*[position()=1]) 2016; 3 Wang (D0CP02841J-(cit96)/*[position()=1]) 2008; 3 Jiang (D0CP02841J-(cit144)/*[position()=1]) 2020; 8 Butler (D0CP02841J-(cit132)/*[position()=1]) 2013; 7 Zhang (D0CP02841J-(cit33)/*[position()=1]) 2018; 2 Tan (D0CP02841J-(cit134)/*[position()=1]) 2017; 117 Gao (D0CP02841J-(cit19)/*[position()=1]) 2020; 32 Seidler (D0CP02841J-(cit66)/*[position()=1]) 2016; 120 Zhou (D0CP02841J-(cit29)/*[position()=1]) 2016; 41 Xu (D0CP02841J-(cit28)/*[position()=1]) 2016; 52 Zhao (D0CP02841J-(cit72)/*[position()=1]) 2012; 101 Hou (D0CP02841J-(cit57)/*[position()=1]) 2010; 150 Zhang (D0CP02841J-(cit85)/*[position()=1]) 2015; 9 Wu (D0CP02841J-(cit102)/*[position()=1]) 2015; 23 Khazaeinezhad (D0CP02841J-(cit103)/*[position()=1]) 2015; 27 Finn (D0CP02841J-(cit89)/*[position()=1]) 2014; 2 Liu (D0CP02841J-(cit121)/*[position()=1]) 2011; 474 Fan (D0CP02841J-(cit83)/*[position()=1]) 2019; 29 Zhang (D0CP02841J-(cit145)/*[position()=1]) 2020; 14 Sheikbahae (D0CP02841J-(cit47)/*[position()=1]) 1990; 26 Li (D0CP02841J-(cit35)/*[position()=1]) 2020; 20 He (D0CP02841J-(cit138)/*[position()=1]) 2019; 11 Zhu (D0CP02841J-(cit31)/*[position()=1]) 2017; 8 Gong (D0CP02841J-(cit4)/*[position()=1]) 2018; 28 Wang (D0CP02841J-(cit97)/*[position()=1]) 2015; 107 Wang (D0CP02841J-(cit135)/*[position()=1]) 2009; 21 Dean (D0CP02841J-(cit93)/*[position()=1]) 2010; 5 Gan (D0CP02841J-(cit122)/*[position()=1]) 2015; 2 Huang (D0CP02841J-(cit39)/*[position()=1]) 2020; 11 Liu (D0CP02841J-(cit106)/*[position()=1]) 2019; 37 Zhang (D0CP02841J-(cit101)/*[position()=1]) 2015; 8 Ganeev (D0CP02841J-(cit55)/*[position()=1]) 2004; 78 Walker II (D0CP02841J-(cit118)/*[position()=1]) 2016; 213 Sun (D0CP02841J-(cit8)/*[position()=1]) 2016; 10 Lee (D0CP02841J-(cit109)/*[position()=1]) 2014; 16 Heritier (D0CP02841J-(cit51)/*[position()=1]) 1983; 44 Zhou (D0CP02841J-(cit24)/*[position()=1]) 2015; 11 Varma (D0CP02841J-(cit80)/*[position()=1]) 2017; 5 Zhang Lei (D0CP02841J-(cit37)/*[position()=1]) 2019; 48 Chen (D0CP02841J-(cit58)/*[position()=1]) 2007; 15 Xiao (D0CP02841J-(cit38)/*[position()=1]) 2020; 6 Wang (D0CP02841J-(cit6)/*[position()=1]) 2013; 7 Wang (D0CP02841J-(cit11)/*[position()=1]) 2012; 7 Zhang (D0CP02841J-(cit71)/*[position()=1]) 2011; 2 Wang (D0CP02841J-(cit94)/*[position()=1]) 2018; 555 Banfi (D0CP02841J-(cit64)/*[position()=1]) 1998; 47 Hu (D0CP02841J-(cit34)/*[position()=1]) 2018; 28 Zeiri (D0CP02841J-(cit76)/*[position()=1]) 2020; 95 Chen (D0CP02841J-(cit107)/*[position()=1]) 2015; 23 Liu (D0CP02841J-(cit2)/*[position()=1]) 2020; 9 Ahn (D0CP02841J-(cit84)/*[position()=1]) 2017; 56 Glass (D0CP02841J-(cit48)/*[position()=1]) 1995 Yu (D0CP02841J-(cit115)/*[position()=1]) 2013; 7 Chang (D0CP02841J-(cit141)/*[position()=1]) 2019; 2 Mao (D0CP02841J-(cit105)/*[position()=1]) 2016; 12 Xie (D0CP02841J-(cit137)/*[position()=1]) 2018; 30 Shi (D0CP02841J-(cit142)/*[position()=1]) 2020; 32 Walters (D0CP02841J-(cit59)/*[position()=1]) 2015; 9 Migalska-Zalas (D0CP02841J-(cit65)/*[position()=1]) 2008; 3 Xiao (D0CP02841J-(cit36)/*[position()=1]) 2020; 5 Wei (D0CP02841J-(cit60)/*[position()=1]) 2019; 10 Xia (D0CP02841J-(cit16)/*[position()=1]) 2009; 5 Xu (D0CP02841J-(cit114)/*[position()=1]) 2012; 37 Balendhran (D0CP02841J-(cit126)/*[position()=1]) 2015; 11 Bredas (D0CP02841J-(cit146)/*[position()=1]) 1994; 94 Gao (D0CP02841J-(cit104)/*[position()=1]) 2018; 112 Yu (D0CP02841J-(cit9)/*[position()=1]) 2017; 29 Quaglia (D0CP02841J-(cit52)/*[position()=1]) 2002; 65 Bao (D0CP02841J-(cit5)/*[position()=1]) 2009; 19 Koos (D0CP02841J-(cit119)/*[position()=1]) 2009; 3 Chen (D0CP02841J-(cit128)/*[position()=1]) 2019; 13 Moore (D0CP02841J-(cit17)/*[position()=1]) 2010; 464 Ponraj (D0CP02841J-(cit3)/*[position()=1]) 2016; 27 Liu (D0CP02841J-(cit43)/*[position()=1]) 2020; 8 Guo (D0CP02841J-(cit129)/*[position()=1]) 2020; 32 Hantanasirisakul (D0CP02841J-(cit20)/*[position()=1]) 2018; 30 Li (D0CP02841J-(cit112)/*[position()=1]) 2017; 9 Danielzik (D0CP02841J-(cit56)/*[position()=1]) 1985; 38 Bhimanapati (D0CP02841J-(cit133)/*[position()=1]) 2015; 9 Ruiz (D0CP02841J-(cit139)/*[position()=1]) 2019; 2 de Araujo (D0CP02841J-(cit61)/*[position()=1]) 2016; 79 Liu (D0CP02841J-(cit95)/*[position()=1]) 2019; 567 Wang (D0CP02841J-(cit15)/*[position()=1]) 2016; 8 Sheldon (D0CP02841J-(cit49)/*[position()=1]) 1982; 21 Raymer (D0CP02841J-(cit50)/*[position()=1]) 1979; 19 Liu (D0CP02841J-(cit111)/*[position()=1]) 2017; 5 Guo (D0CP02841J-(cit113)/*[position()=1]) 2018; 26 Liu (D0CP02841J-(cit79)/*[position()=1]) 2012; 134 Bonaccorso (D0CP02841J-(cit120)/*[position()=1]) 2010; 4 McManus (D0CP02841J-(cit90)/*[position()=1]) 2017; 12 Zhao (D0CP02841J-(cit26)/*[position()=1]) 2015; 51 Han (D0CP02841J-(cit130)/*[position()=1]) 2018; 118 You (D0CP02841J-(cit42)/*[position()=1]) 2019; 8 Gao (D0CP02841J-(cit27)/*[position()=1]) 2016; 8 Hong (D0CP02841J-(cit62)/*[position()=1]) 2018; 12 Sheik-bahae (D0CP02841J-(cit45)/*[position()=1]) 1989; 14 Yin (D0CP02841J-(cit7)/*[position()=1]) 2018; 9 Luan (D0CP02841J-(cit116)/*[position()=1]) 2016; 41 Liu (D0CP02841J-(cit100)/*[position()=1]) 2014; 39 Jung (D0CP02841J-(cit108)/*[position()=1]) 2014; 22 Baudisch (D0CP02841J-(cit73)/*[position()=1]) 2018; 9 Qin (D0CP02841J-(cit13)/*[position()=1]) 2016; 4 Shekarforoush (D0CP02841J-(cit69)/*[position()=1]) 2018; 123 |
References_xml | – issn: 1995 end-page: p 11-20 publication-title: Landmark papers on photorefractive nonlinear optics doi: Glass – issn: 2020 end-page: p 175-205 publication-title: Quantum Dot Optoelectronic Devices doi: Zhai Huang Feng Zhang Wang – volume: 8 start-page: 110 year: 2020 ident: D0CP02841J-(cit75)/*[position()=1] publication-title: Photonics Res. doi: 10.1364/PRJ.8.000110 – volume: 7 start-page: 9260 year: 2013 ident: D0CP02841J-(cit6)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn403886t – volume: 12 start-page: 343 year: 2017 ident: D0CP02841J-(cit90)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2016.281 – volume: 107 start-page: 6711 year: 2010 ident: D0CP02841J-(cit91)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0914117107 – volume: 24 start-page: 105111 year: 2014 ident: D0CP02841J-(cit110)/*[position()=1] publication-title: Laser Phys. doi: 10.1088/1054-660X/24/10/105111 – volume: 26 start-page: 22750 year: 2018 ident: D0CP02841J-(cit113)/*[position()=1] publication-title: Opt. Express doi: 10.1364/OE.26.022750 – volume: 16 start-page: 085203 year: 2014 ident: D0CP02841J-(cit109)/*[position()=1] publication-title: J. Opt. doi: 10.1088/2040-8978/16/8/085203 – volume: 7 start-page: 9268 year: 2015 ident: D0CP02841J-(cit25)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C5NR01088H – volume: 38 start-page: 31 year: 1985 ident: D0CP02841J-(cit56)/*[position()=1] publication-title: Appl. Phys. B: Lasers Opt. doi: 10.1007/BF00691767 – volume: 9 start-page: 39 year: 2020 ident: D0CP02841J-(cit86)/*[position()=1] publication-title: Light: Sci. Appl. doi: 10.1038/s41377-020-0278-z – volume: 8 start-page: 278 year: 2017 ident: D0CP02841J-(cit87)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-017-00358-1 – volume: 9 start-page: 11509 year: 2015 ident: D0CP02841J-(cit133)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.5b05556 – volume: 16 start-page: 020004 year: 2018 ident: D0CP02841J-(cit1)/*[position()=1] publication-title: Chin. Opt. Lett. doi: 10.3788/COL201816.020004 – volume: 11 start-page: 694 year: 2015 ident: D0CP02841J-(cit24)/*[position()=1] publication-title: Small doi: 10.1002/smll.201400541 – volume: 12 start-page: 1601045 year: 2018 ident: D0CP02841J-(cit62)/*[position()=1] publication-title: Laser Photonics Rev. – volume: 8 start-page: 1610 year: 2017 ident: D0CP02841J-(cit31)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.7b00431 – volume: 7 start-page: L77 year: 2013 ident: D0CP02841J-(cit115)/*[position()=1] publication-title: Laser Photonics Rev. doi: 10.1002/lpor.201300084 – volume: 109 start-page: 6828 year: 1998 ident: D0CP02841J-(cit67)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.477330 – volume: 78 start-page: 433 year: 2004 ident: D0CP02841J-(cit55)/*[position()=1] publication-title: Appl. Phys. B: Lasers Opt. doi: 10.1007/s00340-003-1389-y – volume: 9 start-page: 1 year: 2019 ident: D0CP02841J-(cit81)/*[position()=1] publication-title: Photonic Sens. doi: 10.1007/s13320-018-0514-9 – volume: 37 start-page: 3100 year: 2019 ident: D0CP02841J-(cit106)/*[position()=1] publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2019.2910892 – volume: 13 start-page: 754 year: 2019 ident: D0CP02841J-(cit128)/*[position()=1] publication-title: Nat. Photonics doi: 10.1038/s41566-019-0492-5 – volume: 3 start-page: 021005 year: 2016 ident: D0CP02841J-(cit82)/*[position()=1] publication-title: 2D Mater. doi: 10.1088/2053-1583/3/2/021005 – volume: 22 start-page: 7865 year: 2014 ident: D0CP02841J-(cit108)/*[position()=1] publication-title: Opt. Express doi: 10.1364/OE.22.007865 – volume: 21 start-page: 2430 year: 2009 ident: D0CP02841J-(cit135)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.200803616 – volume: 44 start-page: 267 year: 1983 ident: D0CP02841J-(cit51)/*[position()=1] publication-title: Opt. Commun. doi: 10.1016/0030-4018(83)90135-9 – volume: 82 start-page: 3045 year: 2010 ident: D0CP02841J-(cit18)/*[position()=1] publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.82.3045 – volume: 134 start-page: 5044 year: 2012 ident: D0CP02841J-(cit79)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja211765y – volume: 4 start-page: 1429 year: 2016 ident: D0CP02841J-(cit13)/*[position()=1] publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201600323 – volume: 29 start-page: 075104 year: 2019 ident: D0CP02841J-(cit83)/*[position()=1] publication-title: Laser Phys. doi: 10.1088/1555-6611/ab20c2 – volume: 123 start-page: 245113 year: 2018 ident: D0CP02841J-(cit69)/*[position()=1] publication-title: J. Appl. Phys. doi: 10.1063/1.5029547 – volume: 63 start-page: 33 year: 2010 ident: D0CP02841J-(cit70)/*[position()=1] publication-title: Phys. Today doi: 10.1063/1.3293411 – volume: 113 start-page: 3766 year: 2013 ident: D0CP02841J-(cit10)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr300263a – volume: 39 start-page: 4591 year: 2014 ident: D0CP02841J-(cit100)/*[position()=1] publication-title: Opt. Lett. doi: 10.1364/OL.39.004591 – volume: 94 start-page: 243 year: 1994 ident: D0CP02841J-(cit146)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr00025a008 – volume: 9 start-page: 581 year: 2012 ident: D0CP02841J-(cit98)/*[position()=1] publication-title: Laser Photonics Rev. – volume: 30 start-page: e1804779 year: 2018 ident: D0CP02841J-(cit20)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201804779 – volume: 2 start-page: 468 year: 2015 ident: D0CP02841J-(cit122)/*[position()=1] publication-title: Optica doi: 10.1364/OPTICA.2.000468 – volume: 8 start-page: 78 year: 2020 ident: D0CP02841J-(cit144)/*[position()=1] publication-title: Photonics Res. doi: 10.1364/PRJ.8.000078 – volume: 9 start-page: 2641 year: 2020 ident: D0CP02841J-(cit2)/*[position()=1] publication-title: Nanophotonics doi: 10.1515/nanoph-2019-0564 – volume: 95 start-page: 111108 year: 2009 ident: D0CP02841J-(cit99)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.3207828 – volume: 5 start-page: 398 year: 2009 ident: D0CP02841J-(cit16)/*[position()=1] publication-title: Nat. Phys. doi: 10.1038/nphys1274 – volume: 9 start-page: 9340 year: 2015 ident: D0CP02841J-(cit59)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.5b03308 – volume: 10 start-page: 227 year: 2016 ident: D0CP02841J-(cit8)/*[position()=1] publication-title: Nat. Photonics doi: 10.1038/nphoton.2016.15 – volume: 15 start-page: 7006 year: 2007 ident: D0CP02841J-(cit58)/*[position()=1] publication-title: Opt. Express doi: 10.1364/OE.15.007006 – volume: 8 start-page: 1522 year: 2015 ident: D0CP02841J-(cit101)/*[position()=1] publication-title: Nano Res. doi: 10.1007/s12274-014-0637-2 – volume: 101 start-page: 211106 year: 2012 ident: D0CP02841J-(cit72)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.4767919 – volume: 11 start-page: 6007 year: 2020 ident: D0CP02841J-(cit39)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.0c01757 – volume: 9 start-page: 12759 year: 2017 ident: D0CP02841J-(cit112)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b01709 – volume: 31 start-page: 135703 year: 2019 ident: D0CP02841J-(cit74)/*[position()=1] publication-title: J. Phys.: Condens. Matter – volume: 12 start-page: 10529 year: 2018 ident: D0CP02841J-(cit140)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.8b06503 – volume: 7 start-page: 699 year: 2012 ident: D0CP02841J-(cit11)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.193 – volume: 19 start-page: 2304 year: 1979 ident: D0CP02841J-(cit50)/*[position()=1] publication-title: Phys. Rev. A: At., Mol., Opt. Phys. doi: 10.1103/PhysRevA.19.2304 – volume: 8 start-page: 912 year: 2013 ident: D0CP02841J-(cit22)/*[position()=1] publication-title: Chem. – Asian J. doi: 10.1002/asia.201201154 – volume: 20 start-page: 413 year: 2020 ident: D0CP02841J-(cit35)/*[position()=1] publication-title: Chem. Rec. doi: 10.1002/tcr.201900050 – volume: 14 start-page: 1900240 year: 2020 ident: D0CP02841J-(cit145)/*[position()=1] publication-title: Laser Photonics Rev. doi: 10.1002/lpor.201900240 – volume: 9 start-page: 1018 year: 2018 ident: D0CP02841J-(cit73)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-018-03413-7 – year: 2020 ident: D0CP02841J-(cit40)/*[position()=1] publication-title: Nanoscale Horiz. doi: 10.1039/D0NH00262C – volume: 356 start-page: 69 year: 2017 ident: D0CP02841J-(cit88)/*[position()=1] publication-title: Science doi: 10.1126/science.aal4062 – volume: 27 start-page: 7372 year: 2015 ident: D0CP02841J-(cit21)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201503648 – volume: 27 start-page: 1581 year: 2015 ident: D0CP02841J-(cit103)/*[position()=1] publication-title: IEEE Photonics Technol. Lett. doi: 10.1109/LPT.2015.2426178 – volume: 47 start-page: 447 year: 1998 ident: D0CP02841J-(cit64)/*[position()=1] publication-title: Adv. Phys. doi: 10.1080/000187398243537 – volume: 8 start-page: 618 year: 2016 ident: D0CP02841J-(cit15)/*[position()=1] publication-title: Adv. Opt. Photonics doi: 10.1364/AOP.8.000618 – volume: 10 start-page: 1 year: 2019 ident: D0CP02841J-(cit117)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-018-07882-8 – volume: 47 start-page: 6224 year: 2018 ident: D0CP02841J-(cit131)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00254A – volume: 48 start-page: 1103004 year: 2019 ident: D0CP02841J-(cit37)/*[position()=1] publication-title: Infrared Laser Eng. doi: 10.3788/IRLA201948.1103004 – volume: 8 start-page: 1901631 year: 2020 ident: D0CP02841J-(cit43)/*[position()=1] publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201901631 – volume: 29 start-page: 1606128 year: 2017 ident: D0CP02841J-(cit9)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201606128 – volume: 41 start-page: 1221 year: 2016 ident: D0CP02841J-(cit29)/*[position()=1] publication-title: Opt. Lett. doi: 10.1364/OL.41.001221 – volume: 5 start-page: 1700713 year: 2017 ident: D0CP02841J-(cit80)/*[position()=1] publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201700713 – volume: 5 start-page: 124 year: 2020 ident: D0CP02841J-(cit36)/*[position()=1] publication-title: Nanoscale Horiz. doi: 10.1039/C9NH00445A – volume: 11 start-page: 640 year: 2015 ident: D0CP02841J-(cit126)/*[position()=1] publication-title: Small doi: 10.1002/smll.201402041 – volume: 464 start-page: 194 year: 2010 ident: D0CP02841J-(cit17)/*[position()=1] publication-title: Nature doi: 10.1038/nature08916 – volume: 213 start-page: 3065 year: 2016 ident: D0CP02841J-(cit118)/*[position()=1] publication-title: Phys. Status Solidi A doi: 10.1002/pssa.201600395 – volume: 32 start-page: e1907244 year: 2020 ident: D0CP02841J-(cit142)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201907244 – volume: 3 start-page: 1 year: 2008 ident: D0CP02841J-(cit65)/*[position()=1] publication-title: Dig. J. Nanomater. Bios. – volume: 11 start-page: 15741 year: 2019 ident: D0CP02841J-(cit138)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b00181 – volume: 2 start-page: 574 year: 2011 ident: D0CP02841J-(cit71)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms1588 – volume: 55 start-page: 1666 year: 2016 ident: D0CP02841J-(cit125)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201507568 – volume: 52 start-page: 8107 year: 2016 ident: D0CP02841J-(cit28)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C6CC03206K – volume: 37 start-page: 2652 year: 2012 ident: D0CP02841J-(cit114)/*[position()=1] publication-title: Opt. Lett. doi: 10.1364/OL.37.002652 – volume: 6 start-page: 2000240 year: 2020 ident: D0CP02841J-(cit38)/*[position()=1] publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.202000240 – volume: 41 start-page: 3783 year: 2016 ident: D0CP02841J-(cit116)/*[position()=1] publication-title: Opt. Lett. doi: 10.1364/OL.41.003783 – volume: 2 start-page: 6162 year: 2019 ident: D0CP02841J-(cit139)/*[position()=1] publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.9b00978 – volume: 29 start-page: 1806346 year: 2019 ident: D0CP02841J-(cit127)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201806346 – volume: 117 start-page: 6225 year: 2017 ident: D0CP02841J-(cit134)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00558 – volume: 567 start-page: 323 year: 2019 ident: D0CP02841J-(cit95)/*[position()=1] publication-title: Nature doi: 10.1038/s41586-019-1013-x – volume: 555 start-page: 231 year: 2018 ident: D0CP02841J-(cit94)/*[position()=1] publication-title: Nature doi: 10.1038/nature25774 – volume: 7 start-page: 2898 year: 2013 ident: D0CP02841J-(cit132)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn400280c – volume: 10 start-page: 21106 year: 2018 ident: D0CP02841J-(cit32)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C8NR06797J – volume: 32 start-page: 1703 year: 2020 ident: D0CP02841J-(cit19)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.9b04408 – volume: 28 start-page: 1805311 year: 2018 ident: D0CP02841J-(cit34)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201805311 – volume: 30 start-page: e1804858 year: 2018 ident: D0CP02841J-(cit137)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201804858 – volume: 9 start-page: 3311 year: 2018 ident: D0CP02841J-(cit7)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-018-05874-2 – volume: 23 start-page: 12823 year: 2015 ident: D0CP02841J-(cit107)/*[position()=1] publication-title: Opt. Express doi: 10.1364/OE.23.012823 – volume: 9 start-page: 7142 year: 2015 ident: D0CP02841J-(cit85)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.5b03480 – volume: 95 start-page: 017001 year: 2020 ident: D0CP02841J-(cit76)/*[position()=1] publication-title: Phys. Scr. doi: 10.1088/1402-4896/ab3ee0 – volume: 8 start-page: 15132 year: 2016 ident: D0CP02841J-(cit27)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C6NR04773D – volume: 112 start-page: 171112 year: 2018 ident: D0CP02841J-(cit104)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.5024777 – volume: 32 start-page: 1907105 year: 2020 ident: D0CP02841J-(cit129)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201907105 – volume: 8 start-page: 63 year: 2019 ident: D0CP02841J-(cit42)/*[position()=1] publication-title: Nanophotonics doi: 10.1515/nanoph-2018-0106 – volume: 23 start-page: 11183 year: 2015 ident: D0CP02841J-(cit77)/*[position()=1] publication-title: Opt. Express doi: 10.1364/OE.23.011183 – volume: 21 start-page: 1663 year: 1982 ident: D0CP02841J-(cit49)/*[position()=1] publication-title: Appl. Opt. doi: 10.1364/AO.21.001663 – volume: 5 start-page: 722 year: 2010 ident: D0CP02841J-(cit93)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2010.172 – volume: 13 start-page: 1800327 year: 2019 ident: D0CP02841J-(cit44)/*[position()=1] publication-title: Laser Photonics Rev. doi: 10.1002/lpor.201800327 – volume: 557 start-page: 696 year: 2018 ident: D0CP02841J-(cit92)/*[position()=1] publication-title: Nature doi: 10.1038/s41586-018-0129-8 – volume: 56 start-page: 9920 year: 2017 ident: D0CP02841J-(cit84)/*[position()=1] publication-title: Appl. Opt. doi: 10.1364/AO.56.009920 – volume: 112 start-page: 4523 year: 2015 ident: D0CP02841J-(cit14)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1416581112 – volume: 2 start-page: 1700 year: 2018 ident: D0CP02841J-(cit33)/*[position()=1] publication-title: Mater. Chem. Front. doi: 10.1039/C8QM00237A – volume: 26 start-page: 760 year: 1990 ident: D0CP02841J-(cit47)/*[position()=1] publication-title: IEEE J. Quantum Electron. doi: 10.1109/3.53394 – volume: 23 start-page: 11453 year: 2015 ident: D0CP02841J-(cit102)/*[position()=1] publication-title: Opt. Express doi: 10.1364/OE.23.011453 – volume: 706 start-page: 170 year: 2018 ident: D0CP02841J-(cit68)/*[position()=1] publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2018.06.001 – volume: 3 start-page: 216 year: 2009 ident: D0CP02841J-(cit119)/*[position()=1] publication-title: Nat. Photonics doi: 10.1038/nphoton.2009.25 – volume: 27 start-page: 462001 year: 2016 ident: D0CP02841J-(cit3)/*[position()=1] publication-title: Nanotechnology doi: 10.1088/0957-4484/27/46/462001 – volume: 10 start-page: 6572 year: 2019 ident: D0CP02841J-(cit63)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.9b02590 – volume: 37 start-page: 1692 year: 2013 ident: D0CP02841J-(cit23)/*[position()=1] publication-title: New J. Chem. doi: 10.1039/c3nj00061c – volume: 32 start-page: e1906958 year: 2020 ident: D0CP02841J-(cit143)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201906958 – volume: 65 start-page: 673 year: 1994 ident: D0CP02841J-(cit46)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.112264 – volume: 65 start-page: 031404 year: 2002 ident: D0CP02841J-(cit52)/*[position()=1] publication-title: Phys. Rev. A: At., Mol., Opt. Phys. doi: 10.1103/PhysRevA.65.031404 – volume: 120 start-page: 4481 year: 2016 ident: D0CP02841J-(cit66)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b10026 – volume-title: Quantum Dot Optoelectronic Devices year: 2020 ident: D0CP02841J-(cit41)/*[position()=1] doi: 10.1007/978-3-030-35813-6_6 – volume: 2 start-page: 925 year: 2014 ident: D0CP02841J-(cit89)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/C3TC31993H – volume: 55 start-page: 10307 year: 2016 ident: D0CP02841J-(cit78)/*[position()=1] publication-title: Appl. Opt. doi: 10.1364/AO.55.010307 – volume: 118 start-page: 6151 year: 2018 ident: D0CP02841J-(cit130)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00264 – volume: 14 start-page: 110002 year: 2017 ident: D0CP02841J-(cit30)/*[position()=1] publication-title: Laser Photonics Rev. – volume: 107 start-page: 091905 year: 2015 ident: D0CP02841J-(cit97)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.4930077 – volume: 79 start-page: 036401 year: 2016 ident: D0CP02841J-(cit61)/*[position()=1] publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/79/3/036401 – volume-title: Landmark papers on photorefractive nonlinear optics year: 1995 ident: D0CP02841J-(cit48)/*[position()=1] doi: 10.1142/9789812832047_0002 – volume: 12 start-page: 1489 year: 2016 ident: D0CP02841J-(cit105)/*[position()=1] publication-title: Small doi: 10.1002/smll.201503348 – volume: 5 start-page: 1601045 year: 2017 ident: D0CP02841J-(cit111)/*[position()=1] publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201601045 – volume: 14 start-page: 955 year: 1989 ident: D0CP02841J-(cit45)/*[position()=1] publication-title: Opt. Lett. doi: 10.1364/OL.14.000955 – volume: 474 start-page: 64 year: 2011 ident: D0CP02841J-(cit121)/*[position()=1] publication-title: Nature doi: 10.1038/nature10067 – volume: 10 start-page: 2215 year: 2014 ident: D0CP02841J-(cit124)/*[position()=1] publication-title: Small doi: 10.1002/smll.201303698 – volume: 150 start-page: 875 year: 2010 ident: D0CP02841J-(cit57)/*[position()=1] publication-title: Solid State Commun. doi: 10.1016/j.ssc.2010.02.001 – volume: 4 start-page: 611 year: 2010 ident: D0CP02841J-(cit120)/*[position()=1] publication-title: Nat. Photonics doi: 10.1038/nphoton.2010.186 – volume: 28 start-page: 1706559 year: 2018 ident: D0CP02841J-(cit4)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201706559 – volume: 19 start-page: 3077 year: 2009 ident: D0CP02841J-(cit5)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200901007 – volume: 10 start-page: 5342 year: 2019 ident: D0CP02841J-(cit60)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-019-13136-y – volume: 5 start-page: 263 year: 2013 ident: D0CP02841J-(cit12)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/nchem.1589 – volume: 100 start-page: 024912 year: 2006 ident: D0CP02841J-(cit53)/*[position()=1] publication-title: J. Appl. Phys. doi: 10.1063/1.2217985 – volume: 3 start-page: 738 year: 2008 ident: D0CP02841J-(cit96)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2008.312 – volume: 44 start-page: 705 year: 2003 ident: D0CP02841J-(cit54)/*[position()=1] publication-title: Numer. Heat Transfer, Part A doi: 10.1080/716100520 – volume: 2 start-page: 4222 year: 2019 ident: D0CP02841J-(cit141)/*[position()=1] publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.9b00676 – volume: 51 start-page: 12262 year: 2015 ident: D0CP02841J-(cit26)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C5CC01819F – volume: 14 start-page: 37 year: 2020 ident: D0CP02841J-(cit123)/*[position()=1] publication-title: Nat. Photonics doi: 10.1038/s41566-019-0547-7 – volume: 2 start-page: 937 year: 2019 ident: D0CP02841J-(cit136)/*[position()=1] publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.8b02233 |
SSID | ssj0001513 |
Score | 2.5118968 |
SecondaryResourceType | review_article |
Snippet | Having accomplished progress in the versatile battlefields of optics, electronics, catalysis,
etc.
, two-dimensional (2D) materials are now venturing and... Having accomplished progress in the versatile battlefields of optics, electronics, catalysis, etc., two-dimensional (2D) materials are now venturing and... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2214 |
SubjectTerms | Battlefields Carbon nitride Heterostructures Mathematical analysis Mode locking Optical communication Optical properties Photonics Spectrum analysis Transition metal compounds Two dimensional materials |
Title | 2D materials towards ultrafast photonic applications |
URI | https://www.proquest.com/docview/2451734868 https://www.proquest.com/docview/2447836771 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfY9gAviK-JjIGC4AVVGa7txM3jlHYqUxlFaqWKl8jxBwxNTdWmL_z1nOM4CaIPgxfLujhO5N_5fD777hB6T7kaMWVYxCkTEYsLFaUmJRExUlGmE0O0Neh_vkmmS3a9ilddlr7au6QqLuSvg34l_4Mq0ABX6yX7D8i2nQIB6oAvlIAwlPfCmIwHoHC6L4ESaS_A7gb7u2orjNhVg82PsqoT3PRPqfva6NyDJH3aN1ezJGfy2NUmg3mWtW5g35oE1qvbdTT3615t0q5Zpews9E6KfAX--9572VGnooxmt32TA-wv7Q2OuCclWUKjFLvcbhf6AK0RrYT0WMgFLfKCkgxdmKa_RDimNgKqwnIDqg8b_uwWKn84f_Mlv1rOZvlislocoRPCuT2gP7mcLD7N2lUYNBnqPMvcb_nQtDT92PX9pzLS7TCOtj79S61mLJ6gx83-ILx0YD9FD_T6GXqYeXyeI0bGYQt62IAetqCHHvSwD_oLtLyaLLJp1KS-iCTlvIoSIwRNhNGpjouYw-qYKqEExkIKKlihh0zEvMCKKZC5imMJenDKDSEjWXBj6Ck6Xpdr_RKFGCajBFGteAEVHQtJRibVuBBmhGNFA_TBj0Eum7jwNj3JXV7fT6BpPsbZvB6v6wC9a9tuXDSUg63O_VDmzWzZ5YTFQxtJKRkF6G37GMbOHlCJtS73tg2zTkWAZ4BOAYL2Gx1iATo7_CDfKHN2j55foUcdS5-j42q7169Br6yKNw0L_QYL_Xlf |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=2D+materials+towards+ultrafast+photonic+applications&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Zhai%2C+Xin-Ping&rft.au=Ma%2C+Bo&rft.au=Wang%2C+Qiang&rft.au=Zhang%2C+Hao-Li&rft.date=2020-10-15&rft.issn=1463-9084&rft.eissn=1463-9084&rft.volume=22&rft.issue=39&rft.spage=22140&rft_id=info:doi/10.1039%2Fd0cp02841j&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon |