Quantum autoencoders for efficient compression of quantum data

Classical autoencoders are neural networks that can learn efficient low-dimensional representations of data in higher-dimensional space. The task of an autoencoder is, given an input x, to map x to a lower dimensional point y such that x can likely be recovered from y. The structure of the underlyin...

Full description

Saved in:
Bibliographic Details
Published inQuantum science and technology Vol. 2; no. 4; pp. 45001 - 45012
Main Authors Romero, Jonathan, Olson, Jonathan P, Aspuru-Guzik, Alan
Format Journal Article
LanguageEnglish
Published IOP Publishing 01.12.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Classical autoencoders are neural networks that can learn efficient low-dimensional representations of data in higher-dimensional space. The task of an autoencoder is, given an input x, to map x to a lower dimensional point y such that x can likely be recovered from y. The structure of the underlying autoencoder network can be chosen to represent the data on a smaller dimension, effectively compressing the input. Inspired by this idea, we introduce the model of a quantum autoencoder to perform similar tasks on quantum data. The quantum autoencoder is trained to compress a particular data set of quantum states, where a classical compression algorithm cannot be employed. The parameters of the quantum autoencoder are trained using classical optimization algorithms. We show an example of a simple programmable circuit that can be trained as an efficient autoencoder. We apply our model in the context of quantum simulation to compress ground states of the Hubbard model and molecular Hamiltonians.
AbstractList Classical autoencoders are neural networks that can learn efficient low-dimensional representations of data in higher-dimensional space. The task of an autoencoder is, given an input x , to map x to a lower dimensional point y such that x can likely be recovered from y . The structure of the underlying autoencoder network can be chosen to represent the data on a smaller dimension, effectively compressing the input. Inspired by this idea, we introduce the model of a quantum autoencoder to perform similar tasks on quantum data. The quantum autoencoder is trained to compress a particular data set of quantum states, where a classical compression algorithm cannot be employed. The parameters of the quantum autoencoder are trained using classical optimization algorithms. We show an example of a simple programmable circuit that can be trained as an efficient autoencoder. We apply our model in the context of quantum simulation to compress ground states of the Hubbard model and molecular Hamiltonians.
Classical autoencoders are neural networks that can learn efficient low-dimensional representations of data in higher-dimensional space. The task of an autoencoder is, given an input x, to map x to a lower dimensional point y such that x can likely be recovered from y. The structure of the underlying autoencoder network can be chosen to represent the data on a smaller dimension, effectively compressing the input. Inspired by this idea, we introduce the model of a quantum autoencoder to perform similar tasks on quantum data. The quantum autoencoder is trained to compress a particular data set of quantum states, where a classical compression algorithm cannot be employed. The parameters of the quantum autoencoder are trained using classical optimization algorithms. We show an example of a simple programmable circuit that can be trained as an efficient autoencoder. We apply our model in the context of quantum simulation to compress ground states of the Hubbard model and molecular Hamiltonians.
Author Romero, Jonathan
Aspuru-Guzik, Alan
Olson, Jonathan P
Author_xml – sequence: 1
  givenname: Jonathan
  surname: Romero
  fullname: Romero, Jonathan
  organization: Harvard University Department of Chemistry and Chemical Biology, Cambridge, Massachusetts 02138, United States of America
– sequence: 2
  givenname: Jonathan P
  surname: Olson
  fullname: Olson, Jonathan P
  organization: Harvard University Department of Chemistry and Chemical Biology, Cambridge, Massachusetts 02138, United States of America
– sequence: 3
  givenname: Alan
  surname: Aspuru-Guzik
  fullname: Aspuru-Guzik, Alan
  email: aspuru@chemistry.harvard.edu
  organization: Harvard University Department of Chemistry and Chemical Biology, Cambridge, Massachusetts 02138, United States of America
BookMark eNp9kM1LAzEQxYNUsNbePe7Jk2sn2a_sRZDiFxRE0HOYzQektMk2yR78793SIiLS0wzD-w3vvUsycd5pQq4p3FHgfMGg4nlb1dUCkUPDzsj05zT5tV-QeYxrACgYpS3UU3L_PqBLwzbDIXntpFc6xMz4kGljrLTapUz6bR90jNa7zJtsdyQUJrwi5wY3Uc-Pc0Y-nx4_li_56u35dfmwymXRNCmvTNOypuhkrcsSsWW6Ua0yHeskcEm1AapbCqXiyFVdqzGDUaNDWXEOmhfFjNSHvzL4GIM2QtqEaXSUAtqNoCD2RYh9UrFPKg5FjCD8Aftgtxi-TiG3B8T6Xqz9ENyY7JT85h_5LibBRCmgrACo6JUpvgGL6n1i
CitedBy_id crossref_primary_10_1016_j_neunet_2022_03_043
crossref_primary_10_1103_RevModPhys_94_015004
crossref_primary_10_1103_PhysRevResearch_3_043200
crossref_primary_10_1039_D2CS00203E
crossref_primary_10_1103_PhysRevResearch_5_023039
crossref_primary_10_1103_PhysRevA_102_032412
crossref_primary_10_1088_2058_9565_aad3e4
crossref_primary_10_1016_j_jcp_2020_109950
crossref_primary_10_1007_s42484_024_00163_2
crossref_primary_10_1103_PhysRevResearch_6_033111
crossref_primary_10_1103_PhysRevA_102_032410
crossref_primary_10_1007_s42484_025_00253_9
crossref_primary_10_3390_app11146427
crossref_primary_10_1063_5_0014828
crossref_primary_10_1103_PhysRevResearch_3_023146
crossref_primary_10_1103_PhysRevApplied_21_067001
crossref_primary_10_1038_s41586_019_0980_2
crossref_primary_10_1109_MC_2019_2908942
crossref_primary_10_1109_OJCOMS_2024_3472094
crossref_primary_10_1088_2058_9565_aabd98
crossref_primary_10_1140_epjqt_s40507_024_00255_9
crossref_primary_10_22331_q_2021_01_25_386
crossref_primary_10_1116_5_0192456
crossref_primary_10_1007_s11128_023_04239_z
crossref_primary_10_1103_PhysRevX_8_031084
crossref_primary_10_1109_TQE_2024_3383050
crossref_primary_10_1016_j_eswa_2022_116512
crossref_primary_10_1103_PhysRevResearch_1_033063
crossref_primary_10_22331_q_2022_08_17_777
crossref_primary_10_1103_PhysRevB_108_165408
crossref_primary_10_1038_s41534_019_0174_7
crossref_primary_10_1016_j_fraope_2025_100223
crossref_primary_10_1364_OPTICA_435525
crossref_primary_10_1007_s42484_023_00112_5
crossref_primary_10_1007_s13369_022_06587_x
crossref_primary_10_1038_s41567_019_0747_6
crossref_primary_10_1088_1742_6596_2718_1_012067
crossref_primary_10_1088_2058_9565_ad8e80
crossref_primary_10_22331_q_2022_09_29_824
crossref_primary_10_1103_PhysRevLett_126_190501
crossref_primary_10_1088_2058_9565_acc4e3
crossref_primary_10_1016_j_physleta_2024_129349
crossref_primary_10_1021_acscentsci_8b00307
crossref_primary_10_3390_e25030427
crossref_primary_10_1103_PRXQuantum_2_010324
crossref_primary_10_1016_j_procs_2024_01_171
crossref_primary_10_1103_PhysRevX_7_041052
crossref_primary_10_1038_s41598_018_20403_3
crossref_primary_10_1088_1367_2630_ab7598
crossref_primary_10_22331_q_2024_03_14_1287
crossref_primary_10_1088_2632_2153_acb0b4
crossref_primary_10_1088_2058_9565_ac1ab1
crossref_primary_10_1038_s42254_021_00348_9
crossref_primary_10_1103_PhysRevResearch_7_013007
crossref_primary_10_1007_s11128_024_04438_2
crossref_primary_10_1002_qute_202300130
crossref_primary_10_1007_s42484_020_00019_5
crossref_primary_10_1109_ACCESS_2024_3420707
crossref_primary_10_1007_s42484_022_00070_4
crossref_primary_10_3390_e25040580
crossref_primary_10_1103_PhysRevApplied_21_014053
crossref_primary_10_32362_2500_316X_2019_7_1_5_37
crossref_primary_10_22331_q_2021_07_05_496
crossref_primary_10_1140_epjqt_s40507_021_00109_8
crossref_primary_10_1088_2632_2153_abf3ac
crossref_primary_10_1103_PhysRevResearch_3_L032057
crossref_primary_10_1088_2632_2153_ad6be8
crossref_primary_10_1103_PhysRevX_12_011007
crossref_primary_10_1088_2632_2153_ab9803
crossref_primary_10_1007_s11128_023_04188_7
crossref_primary_10_3390_e24030394
crossref_primary_10_1088_2632_2153_acb12f
crossref_primary_10_1038_s41467_022_31679_5
crossref_primary_10_1002_que2_67
crossref_primary_10_1098_rsif_2022_0541
crossref_primary_10_1038_s41534_024_00865_2
crossref_primary_10_22331_q_2020_05_11_263
crossref_primary_10_1103_PhysRevLett_131_140601
crossref_primary_10_1007_s42484_025_00266_4
crossref_primary_10_1016_j_apenergy_2019_113966
crossref_primary_10_3390_e25020287
crossref_primary_10_1103_PhysRevA_108_062423
crossref_primary_10_1103_PhysRevX_8_031027
crossref_primary_10_1016_j_automatica_2022_110659
crossref_primary_10_1103_PRXQuantum_2_010346
crossref_primary_10_17929_tqs_8_113
crossref_primary_10_1103_PhysRevLett_125_150504
crossref_primary_10_1088_2058_9565_ac79c9
crossref_primary_10_1103_PhysRevLett_124_130502
crossref_primary_10_1103_PhysRevResearch_3_L032049
crossref_primary_10_1016_j_advwatres_2021_104098
crossref_primary_10_1007_s11128_018_2099_z
crossref_primary_10_1209_0295_5075_125_30004
crossref_primary_10_22331_q_2020_11_30_366
crossref_primary_10_1109_TGRS_2021_3085340
crossref_primary_10_1103_PhysRevA_103_L040403
crossref_primary_10_1371_journal_pone_0262346
crossref_primary_10_1007_s42484_020_00018_6
crossref_primary_10_32362_2500_316X_2023_11_5_19_33
crossref_primary_10_1002_qute_202300033
crossref_primary_10_1088_2058_9565_ac3e54
crossref_primary_10_1103_PhysRevA_104_042424
crossref_primary_10_1109_TBDATA_2021_3066151
crossref_primary_10_1007_s11128_023_04243_3
crossref_primary_10_3390_app112311386
crossref_primary_10_1007_s00607_023_01154_0
crossref_primary_10_1038_s41467_021_21728_w
crossref_primary_10_1103_PhysRevA_108_062413
crossref_primary_10_1103_PRXQuantum_3_030341
crossref_primary_10_1002_qute_202000003
crossref_primary_10_1016_j_physleta_2020_126422
crossref_primary_10_1016_j_eswa_2024_125944
crossref_primary_10_1103_PhysRevResearch_5_023186
crossref_primary_10_22331_q_2020_05_28_272
crossref_primary_10_1109_ACCESS_2021_3139323
crossref_primary_10_1140_epjqt_s40507_023_00216_8
crossref_primary_10_1109_LAWP_2024_3432091
crossref_primary_10_1098_rspa_2017_0551
crossref_primary_10_1038_s41467_019_11417_0
crossref_primary_10_22331_q_2020_10_15_342
crossref_primary_10_1142_S0219749923500272
crossref_primary_10_1038_s41534_022_00592_6
crossref_primary_10_1038_s42256_023_00661_1
crossref_primary_10_1038_s41467_022_32550_3
crossref_primary_10_1088_2058_9565_abbe66
crossref_primary_10_1021_acs_chemrev_8b00803
crossref_primary_10_1103_PhysRevLett_132_010602
crossref_primary_10_1103_PhysRevResearch_3_043184
crossref_primary_10_1103_PhysRevA_98_012324
crossref_primary_10_34133_icomputing_0042
crossref_primary_10_1002_qute_202300059
crossref_primary_10_1007_s42484_023_00114_3
crossref_primary_10_22331_q_2023_11_22_1188
crossref_primary_10_1103_PhysRevApplied_19_034017
crossref_primary_10_1109_ACCESS_2024_3411307
crossref_primary_10_1016_j_tust_2023_105317
crossref_primary_10_1103_PhysRevA_101_032308
crossref_primary_10_1088_0256_307X_38_3_030302
crossref_primary_10_1103_PhysRevB_105_224205
crossref_primary_10_1038_s41598_022_07539_z
crossref_primary_10_1126_sciadv_abn9783
crossref_primary_10_1093_nsr_nwy149
crossref_primary_10_1103_PhysRevA_99_032331
crossref_primary_10_22331_q_2023_03_09_942
crossref_primary_10_1007_s11128_023_03846_0
crossref_primary_10_1103_PhysRevLett_129_270501
crossref_primary_10_1016_j_petrol_2021_108361
crossref_primary_10_1088_1402_4896_acc492
crossref_primary_10_1038_s41534_023_00779_5
crossref_primary_10_1088_2632_2153_acf096
crossref_primary_10_1109_ACCESS_2023_3327873
crossref_primary_10_7566_JPSJ_90_032001
crossref_primary_10_1088_1367_2630_aac54f
crossref_primary_10_1103_PhysRevResearch_3_023244
crossref_primary_10_1103_PhysRevResearch_4_013083
crossref_primary_10_1088_2632_2153_acafd5
crossref_primary_10_1002_qute_201900070
crossref_primary_10_1088_2058_9565_acef55
crossref_primary_10_1109_TKDE_2022_3200723
crossref_primary_10_3390_electronics14010072
crossref_primary_10_1103_PhysRevApplied_15_054012
crossref_primary_10_1038_s41534_024_00875_0
crossref_primary_10_3390_app12168256
crossref_primary_10_1038_s41534_022_00556_w
crossref_primary_10_1103_PhysRevLett_122_060501
crossref_primary_10_1088_2058_9565_ab4eb5
crossref_primary_10_1103_PhysRevA_109_032413
crossref_primary_10_1109_JSTSP_2023_3312914
crossref_primary_10_1140_epjc_s10052_023_11719_0
crossref_primary_10_1038_s43588_021_00084_1
crossref_primary_10_1088_1751_8121_abfac7
crossref_primary_10_1103_PhysRevD_109_095028
crossref_primary_10_1038_s41598_024_84171_z
crossref_primary_10_1145_3411466
crossref_primary_10_3390_e22080828
crossref_primary_10_1016_j_neucom_2023_126643
crossref_primary_10_1103_PhysRevResearch_6_033198
crossref_primary_10_1116_5_0145722
crossref_primary_10_3390_ma16124300
crossref_primary_10_1088_1367_2630_ab784c
crossref_primary_10_1088_2058_9565_ac3c53
crossref_primary_10_1088_2058_9565_ac70f5
crossref_primary_10_1088_2058_9565_ac969c
crossref_primary_10_1103_PhysRevLett_133_050603
crossref_primary_10_3390_electronics12112402
crossref_primary_10_1103_PRXQuantum_3_010313
crossref_primary_10_3390_math12111627
crossref_primary_10_1007_s11433_023_2361_6
crossref_primary_10_1103_PhysRevA_98_042308
crossref_primary_10_1007_s11128_022_03466_0
crossref_primary_10_1016_j_revip_2024_100091
crossref_primary_10_22331_q_2021_09_09_539
crossref_primary_10_1038_s41534_020_00302_0
crossref_primary_10_1109_ACCESS_2024_3382150
crossref_primary_10_22331_q_2021_10_05_558
crossref_primary_10_7498_aps_70_20210985
crossref_primary_10_1039_D0SC06627C
crossref_primary_10_1109_TQE_2022_3231124
crossref_primary_10_1103_PhysRevApplied_17_024053
crossref_primary_10_1145_3660647
crossref_primary_10_21923_jesd_1553326
crossref_primary_10_1016_j_mex_2023_102136
crossref_primary_10_1007_s42484_024_00158_z
crossref_primary_10_1103_PhysRevD_105_095004
crossref_primary_10_1103_PhysRevResearch_6_013010
crossref_primary_10_1103_PhysRevX_11_041011
crossref_primary_10_1103_PhysRevA_111_012441
crossref_primary_10_3390_molecules26226761
crossref_primary_10_35848_1347_4065_aca256
crossref_primary_10_1103_PhysRevE_99_013304
crossref_primary_10_1371_journal_pone_0287869
crossref_primary_10_1007_s42484_022_00075_z
crossref_primary_10_1038_s41534_019_0167_6
crossref_primary_10_1088_2632_2153_ada0a4
crossref_primary_10_1038_s41598_024_71284_8
crossref_primary_10_1016_j_neucom_2022_02_004
crossref_primary_10_1016_j_physleta_2022_128054
crossref_primary_10_1103_PhysRevLett_128_180505
crossref_primary_10_1103_PhysRevA_106_062434
crossref_primary_10_1103_PhysRevA_109_032620
crossref_primary_10_22331_q_2023_08_03_1073
crossref_primary_10_1103_PhysRevA_109_032623
crossref_primary_10_1088_2058_9565_ac39f5
crossref_primary_10_1103_PhysRevA_105_062415
crossref_primary_10_3390_e23101281
crossref_primary_10_3390_e26110902
crossref_primary_10_1063_5_0138021
crossref_primary_10_1088_2058_9565_aae22b
crossref_primary_10_1103_PhysRevApplied_20_024071
crossref_primary_10_1103_PhysRevResearch_3_033002
crossref_primary_10_1016_j_ins_2020_05_127
crossref_primary_10_1063_5_0120060
crossref_primary_10_1002_adts_201800182
crossref_primary_10_1103_PhysRevApplied_18_024013
crossref_primary_10_1002_qute_201800065
crossref_primary_10_1088_2058_9565_ad0a05
crossref_primary_10_1007_s42484_022_00063_3
crossref_primary_10_1088_2058_9565_aada1f
crossref_primary_10_22331_q_2021_07_28_512
crossref_primary_10_22331_q_2022_03_30_677
crossref_primary_10_1007_s10773_019_04005_x
crossref_primary_10_1038_s41598_024_56860_2
crossref_primary_10_1088_2058_9565_abf51a
crossref_primary_10_1016_j_jfranklin_2023_06_003
crossref_primary_10_1007_s42484_023_00132_1
crossref_primary_10_22331_q_2019_05_13_140
crossref_primary_10_1088_2058_9565_acdd92
crossref_primary_10_1038_s41573_023_00832_0
crossref_primary_10_1007_s42484_024_00142_7
crossref_primary_10_1103_PhysRevA_105_022415
crossref_primary_10_22331_q_2022_04_13_688
crossref_primary_10_1103_PhysRevResearch_2_033399
crossref_primary_10_1088_1367_2630_acf151
crossref_primary_10_7498_aps_72_20230589
crossref_primary_10_1103_PhysRevResearch_6_013027
crossref_primary_10_1038_s41534_021_00496_x
crossref_primary_10_22331_q_2022_10_06_828
crossref_primary_10_1103_PhysRevA_101_062310
crossref_primary_10_1088_2058_9565_ad133e
crossref_primary_10_1038_s41467_018_07090_4
crossref_primary_10_1038_s41534_024_00872_3
crossref_primary_10_1103_PhysRevResearch_4_023249
crossref_primary_10_1038_s41534_019_0157_8
crossref_primary_10_1088_2632_2153_ac0616
crossref_primary_10_1103_PhysRevA_102_062403
crossref_primary_10_1038_s42005_022_00837_y
crossref_primary_10_1103_PhysRevA_104_062443
crossref_primary_10_1103_PhysRevA_110_022406
crossref_primary_10_1088_2632_2153_abaf98
crossref_primary_10_1002_qute_202200005
crossref_primary_10_22331_q_2022_09_15_804
crossref_primary_10_1038_s41534_022_00611_6
crossref_primary_10_1088_1367_2630_abac39
crossref_primary_10_7498_aps_70_20210930
crossref_primary_10_1103_PhysRevA_110_062418
crossref_primary_10_1007_s42484_024_00215_7
crossref_primary_10_1088_2058_9565_aab859
crossref_primary_10_1088_1572_9494_ad597d
crossref_primary_10_1103_PhysRevResearch_6_023181
crossref_primary_10_1007_s42484_025_00258_4
crossref_primary_10_1109_TKDE_2021_3095103
crossref_primary_10_32604_cmc_2021_013196
crossref_primary_10_1007_s42484_020_00036_4
crossref_primary_10_1103_PRXQuantum_2_020329
crossref_primary_10_3390_math11224678
crossref_primary_10_1088_1751_8121_ad6daf
crossref_primary_10_1002_qute_202000069
crossref_primary_10_1088_2058_9565_abe107
crossref_primary_10_35940_ijsce_E3650_14051124
crossref_primary_10_1109_TQE_2020_3033139
crossref_primary_10_1145_3529756
crossref_primary_10_1007_s11128_024_04388_9
crossref_primary_10_1103_PhysRevResearch_4_013117
crossref_primary_10_1088_2632_2153_ad07f7
crossref_primary_10_1103_PhysRevResearch_3_033200
crossref_primary_10_1147_JRD_2018_2888987
crossref_primary_10_1002_qute_202000063
crossref_primary_10_1007_s42484_020_00025_7
crossref_primary_10_1109_ACCESS_2024_3496901
Cites_doi 10.1103/PhysRevLett.95.110503
10.1103/PhysRevA.75.032311
10.1088/1367-2630/18/2/023023
10.1007/s00220-014-1990-4
10.1088/1367-2630/11/3/033017
10.1103/PhysRevA.92.042303
10.1021/jp970984n
10.1063/1.4768229
10.1137/0916069
10.1002/qua.24969
10.1038/nature15263
10.1109/TIT.2013.2283723
10.1103/PhysRevX.6.031007
10.1098/rspa.2009.0202
10.1016/j.cpc.2012.02.021
10.1016/j.neucom.2008.04.030
10.1109/TCAD.2005.855930
10.1063/1.4772185
10.1038/nature13171
10.1103/PhysRevX.7.021050
10.1103/RevModPhys.86.153
10.1016/j.neucom.2013.09.055
10.1016/j.cpc.2012.11.019
10.1088/1367-2630/16/7/073017
10.1038/ncomms5213
10.1007/s00214-011-1079-5
10.1103/PhysRevA.63.062309
10.1038/nphys1453
10.1103/PhysRevLett.108.110502
10.1126/science.1113479
10.1103/PhysRevLett.87.167902
ContentType Journal Article
Copyright 2017 IOP Publishing Ltd
Copyright_xml – notice: 2017 IOP Publishing Ltd
DBID AAYXX
CITATION
DOI 10.1088/2058-9565/aa8072
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
DocumentTitleAlternate Quantum autoencoders for efficient compression of quantum data
EISSN 2058-9565
ExternalDocumentID 10_1088_2058_9565_aa8072
qstaa8072
GrantInformation_xml – fundername: Air Force Office of Scientific Research
  grantid: FA9550-12-1- 0046
  funderid: https://doi.org/10.13039/100000181
– fundername: Army Research Office
  grantid: W911NF-15-1-0256
  funderid: https://doi.org/10.13039/100000183
– fundername: Office of Naval Research
  grantid: N00014-16-1-2008
  funderid: https://doi.org/10.13039/100000006
GroupedDBID AAGCD
AALHV
AATNI
ABHWH
ABVAM
ACGFS
ACHIP
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ATQHT
CJUJL
CRLBU
EBS
EJD
IJHAN
IOP
IZVLO
KOT
N5L
PJBAE
RIN
ROL
RPA
AAYXX
ABJNI
ADEQX
CITATION
ID FETCH-LOGICAL-c377t-5f79273bc6e44aa92e7d9dfb2bc08c1ef01e9104d8a8d66d807fd119c5880e833
IEDL.DBID IOP
ISSN 2058-9565
IngestDate Tue Jul 01 04:03:38 EDT 2025
Thu Apr 24 23:06:25 EDT 2025
Wed Aug 21 03:40:38 EDT 2024
Thu Jan 07 13:52:09 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c377t-5f79273bc6e44aa92e7d9dfb2bc08c1ef01e9104d8a8d66d807fd119c5880e833
Notes QST-100141.R1
PageCount 12
ParticipantIDs iop_journals_10_1088_2058_9565_aa8072
crossref_citationtrail_10_1088_2058_9565_aa8072
crossref_primary_10_1088_2058_9565_aa8072
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-12-01
PublicationDateYYYYMMDD 2017-12-01
PublicationDate_xml – month: 12
  year: 2017
  text: 2017-12-01
  day: 01
PublicationDecade 2010
PublicationTitle Quantum science and technology
PublicationTitleAbbrev QST
PublicationTitleAlternate Quantum Sci. Technol
PublicationYear 2017
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Aspuru-Guzik (qstaa8072bib2) 2005; 309
Wilde (qstaa8072bib8) 2013
Daskin (qstaa8072bib14) 2012; 137
Buhrman (qstaa8072bib27) 2001; 87
Helgaker (qstaa8072bib29) 2013
Schwarz (qstaa8072bib40) 2012; 108
Abeyesinghe (qstaa8072bib12) 2009; 465
Datta (qstaa8072bib10) 2013; 59
Bishop (qstaa8072bib28) 2006
Dupuis (qstaa8072bib11) 2014; 328
Bang (qstaa8072bib21) 2014; 16
Schön (qstaa8072bib38) 2005; 95
Ben-Aroya (qstaa8072bib41) 2007
Johansson (qstaa8072bib33) 2013; 184
Hanneke (qstaa8072bib17) 2010; 6
Peterson (qstaa8072bib36) 2012; 131
Georgescu (qstaa8072bib37) 2014; 86
Wales (qstaa8072bib34) 1997; 101
Sousa (qstaa8072bib13) 2007; 7
Li (qstaa8072bib25) 2017; 7
Veldhorst (qstaa8072bib18) 2015; 526
Gómez-Bombarelli (qstaa8072bib6) 2016
Peruzzo (qstaa8072bib22) 2014; 5
Tranter (qstaa8072bib31) 2015; 115
Gammelmark (qstaa8072bib20) 2009; 11
McClean (qstaa8072bib23) 2016; 18
Wan (qstaa8072bib7) 2016
Byrd (qstaa8072bib35) 1995; 16
Barends (qstaa8072bib15) 2014; 508
Liou (qstaa8072bib4) 2014; 139
Biamonte (qstaa8072bib5) 2016
Schön (qstaa8072bib39) 2007; 75
Johansson (qstaa8072bib32) 2012; 183
Kraus (qstaa8072bib16) 2001; 63
Santagati (qstaa8072bib26) 2016
Shende (qstaa8072bib9) 2006; 25
Wecker (qstaa8072bib24) 2015; 92
Liou (qstaa8072bib3) 2008; 71
O’Malley (qstaa8072bib1) 2016; 6
Seeley (qstaa8072bib30) 2012; 137
Nielsen (qstaa8072bib19) 2011
References_xml – volume: 7
  start-page: 228
  year: 2007
  ident: qstaa8072bib13
  publication-title: Quantum Info. Comput.
– volume: 95
  year: 2005
  ident: qstaa8072bib38
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.95.110503
– year: 2011
  ident: qstaa8072bib19
– volume: 75
  year: 2007
  ident: qstaa8072bib39
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.75.032311
– volume: 18
  year: 2016
  ident: qstaa8072bib23
  publication-title: New. J. Phys.
  doi: 10.1088/1367-2630/18/2/023023
– volume: 328
  year: 2014
  ident: qstaa8072bib11
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-014-1990-4
– volume: 11
  year: 2009
  ident: qstaa8072bib20
  publication-title: New. J. Phys.
  doi: 10.1088/1367-2630/11/3/033017
– volume: 92
  year: 2015
  ident: qstaa8072bib24
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.92.042303
– volume: 101
  start-page: 5111
  year: 1997
  ident: qstaa8072bib34
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp970984n
– volume: 137
  year: 2012
  ident: qstaa8072bib30
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4768229
– volume: 16
  start-page: 1190
  year: 1995
  ident: qstaa8072bib35
  publication-title: SIAM. J. Sci. Comput
  doi: 10.1137/0916069
– year: 2006
  ident: qstaa8072bib28
– volume: 115
  start-page: 1431
  year: 2015
  ident: qstaa8072bib31
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/qua.24969
– year: 2016
  ident: qstaa8072bib6
– year: 2013
  ident: qstaa8072bib29
– volume: 526
  start-page: 410
  year: 2015
  ident: qstaa8072bib18
  publication-title: Nature
  doi: 10.1038/nature15263
– volume: 59
  start-page: 8057
  year: 2013
  ident: qstaa8072bib10
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2013.2283723
– volume: 6
  year: 2016
  ident: qstaa8072bib1
  publication-title: Phys. Rev. X
  doi: 10.1103/PhysRevX.6.031007
– volume: 465
  start-page: 2537
  year: 2009
  ident: qstaa8072bib12
  publication-title: Proc. of the Royal Society A
  doi: 10.1098/rspa.2009.0202
– year: 2016
  ident: qstaa8072bib26
– volume: 183
  start-page: 1760
  year: 2012
  ident: qstaa8072bib32
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2012.02.021
– volume: 71
  start-page: 3150
  year: 2008
  ident: qstaa8072bib3
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2008.04.030
– year: 2016
  ident: qstaa8072bib7
– year: 2016
  ident: qstaa8072bib5
– volume: 25
  start-page: 1000
  year: 2006
  ident: qstaa8072bib9
  publication-title: IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.
  doi: 10.1109/TCAD.2005.855930
– year: 2007
  ident: qstaa8072bib41
– volume: 137
  year: 2012
  ident: qstaa8072bib14
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4772185
– volume: 508
  start-page: 500
  year: 2014
  ident: qstaa8072bib15
  publication-title: Nature
  doi: 10.1038/nature13171
– volume: 7
  year: 2017
  ident: qstaa8072bib25
  publication-title: Phys. Rev. X
  doi: 10.1103/PhysRevX.7.021050
– volume: 86
  start-page: 153
  year: 2014
  ident: qstaa8072bib37
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.86.153
– volume: 139
  start-page: 84
  year: 2014
  ident: qstaa8072bib4
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.09.055
– volume: 184
  start-page: 1234
  year: 2013
  ident: qstaa8072bib33
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2012.11.019
– year: 2013
  ident: qstaa8072bib8
– volume: 16
  year: 2014
  ident: qstaa8072bib21
  publication-title: New. J. Phys.
  doi: 10.1088/1367-2630/16/7/073017
– volume: 5
  start-page: 4213
  year: 2014
  ident: qstaa8072bib22
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5213
– volume: 131
  start-page: 1
  year: 2012
  ident: qstaa8072bib36
  publication-title: Theor. Chem. Acc.
  doi: 10.1007/s00214-011-1079-5
– volume: 63
  year: 2001
  ident: qstaa8072bib16
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.63.062309
– volume: 6
  start-page: 13
  year: 2010
  ident: qstaa8072bib17
  publication-title: Nat. Phys.
  doi: 10.1038/nphys1453
– volume: 108
  year: 2012
  ident: qstaa8072bib40
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.110502
– volume: 309
  start-page: 1704
  year: 2005
  ident: qstaa8072bib2
  publication-title: Science
  doi: 10.1126/science.1113479
– volume: 87
  year: 2001
  ident: qstaa8072bib27
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.87.167902
SSID ssj0003211906
Score 2.5737996
Snippet Classical autoencoders are neural networks that can learn efficient low-dimensional representations of data in higher-dimensional space. The task of an...
SourceID crossref
iop
SourceType Enrichment Source
Index Database
Publisher
StartPage 45001
SubjectTerms autoencoders
data compression
machine learning
quantum computing
quantum simulation
Title Quantum autoencoders for efficient compression of quantum data
URI https://iopscience.iop.org/article/10.1088/2058-9565/aa8072
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8MwGA5zXrz4gYrf9qAHD926Nk1TBEHEMQW_wMEOQsjHm4vaba69-Ot903bDiQzx1sObNjz0zfskefKEkJNOaDWyAOkDqMSnyjKfa-C-hdSaFHQqlVsauLtnvT69HcSDBjmfnYUZjuqhv4WPlVFwBWEtiOM4XY8xR5GItKXkQYLj73LEGXPXF9w8PM4WWCLnXRZMtyZ_azhXipbwc98qS3eNvEz7VAlKXltFrlr684dd4z87vU5Wa8bpXVahG6QB2Sa5eCoQ0uLdk0U-dF6WTs_sIYH1oPSUwFLkObV5pZLNvKH1xnULpyndIv3u9fNVz6-vUvB1lCS5H9skRaKiNANKpUxDSExqrAqVDrjugA06gMSBGi65YcxgF61B_HSM-Q08irZJMxtmsEM8GkqwscVpY8SpUpQjAZOYypoCUC7ZLmlPURW69hl31128iXK_m3PhsBAOC1FhsUvOZi1GlcfGgthThFjUiTZZEHc8Fzee5CIUVCCDxcIsRsbu_fFN-2QldKW8lLAckGb-UcAhEpFcHZU_3BeladbA
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV27TsMwFLVokRALDwGivJoBBob0kTiJsyAhoGp5lCJRqZuxnesFSFqaLHw910laUYQqJLYM14l1nJt7bJ8cE3LadrRCFiBsABnYVGrfZgqYrSHUUQgqFNIsDTz0_e6Q3o68UXnOaf4vTDIuP_0NvCyMggsIS0Ecw-m6hzmKRKQpBGsFTnMc6QpZ9VzfNeb5vcfBfJHFNf5lrdn25G-NF8pRBR_5rbp0NsnLrF-FqOS1kaWyoT5_WDb-o-NbZKNkntZlEb5NViDeIRdPGUKbvVsiSxPjaWl0zRYSWQtybwksSZZRnRdq2dhKtDUpWxht6S4Zdm6er7p2eaSCrdwgSG1PByESFql8oFSI0IEgCiMtHalaTLVBt9qABIJGTLDI9yPspo4QQ-VhngNz3T1SjZMY9olFHQHa0zh9dBmVkjIkYgJTWlEAyoRfI80ZslyVfuPm2Is3nu97M8YNHtzgwQs8auR83mJceG0siT1DmHmZcNMlcfWFuMk05Q6nHJksFmiOI3DwxzvVydrgusPve_27Q7LumOqeq1qOSDX9yOAYuUkqT_L37wv2vNwk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+autoencoders+for+efficient+compression+of+quantum+data&rft.jtitle=Quantum+science+and+technology&rft.au=Romero%2C+Jonathan&rft.au=Olson%2C+Jonathan+P&rft.au=Aspuru-Guzik%2C+Alan&rft.date=2017-12-01&rft.pub=IOP+Publishing&rft.eissn=2058-9565&rft.volume=2&rft.issue=4&rft_id=info:doi/10.1088%2F2058-9565%2Faa8072&rft.externalDocID=qstaa8072
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2058-9565&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2058-9565&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2058-9565&client=summon