Quantum autoencoders for efficient compression of quantum data
Classical autoencoders are neural networks that can learn efficient low-dimensional representations of data in higher-dimensional space. The task of an autoencoder is, given an input x, to map x to a lower dimensional point y such that x can likely be recovered from y. The structure of the underlyin...
Saved in:
Published in | Quantum science and technology Vol. 2; no. 4; pp. 45001 - 45012 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
01.12.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Classical autoencoders are neural networks that can learn efficient low-dimensional representations of data in higher-dimensional space. The task of an autoencoder is, given an input x, to map x to a lower dimensional point y such that x can likely be recovered from y. The structure of the underlying autoencoder network can be chosen to represent the data on a smaller dimension, effectively compressing the input. Inspired by this idea, we introduce the model of a quantum autoencoder to perform similar tasks on quantum data. The quantum autoencoder is trained to compress a particular data set of quantum states, where a classical compression algorithm cannot be employed. The parameters of the quantum autoencoder are trained using classical optimization algorithms. We show an example of a simple programmable circuit that can be trained as an efficient autoencoder. We apply our model in the context of quantum simulation to compress ground states of the Hubbard model and molecular Hamiltonians. |
---|---|
AbstractList | Classical autoencoders are neural networks that can learn efficient low-dimensional representations of data in higher-dimensional space. The task of an autoencoder is, given an input
x
, to map
x
to a lower dimensional point
y
such that
x
can likely be recovered from
y
. The structure of the underlying autoencoder network can be chosen to represent the data on a smaller dimension, effectively compressing the input. Inspired by this idea, we introduce the model of a quantum autoencoder to perform similar tasks on quantum data. The quantum autoencoder is trained to compress a particular data set of quantum states, where a classical compression algorithm cannot be employed. The parameters of the quantum autoencoder are trained using classical optimization algorithms. We show an example of a simple programmable circuit that can be trained as an efficient autoencoder. We apply our model in the context of quantum simulation to compress ground states of the Hubbard model and molecular Hamiltonians. Classical autoencoders are neural networks that can learn efficient low-dimensional representations of data in higher-dimensional space. The task of an autoencoder is, given an input x, to map x to a lower dimensional point y such that x can likely be recovered from y. The structure of the underlying autoencoder network can be chosen to represent the data on a smaller dimension, effectively compressing the input. Inspired by this idea, we introduce the model of a quantum autoencoder to perform similar tasks on quantum data. The quantum autoencoder is trained to compress a particular data set of quantum states, where a classical compression algorithm cannot be employed. The parameters of the quantum autoencoder are trained using classical optimization algorithms. We show an example of a simple programmable circuit that can be trained as an efficient autoencoder. We apply our model in the context of quantum simulation to compress ground states of the Hubbard model and molecular Hamiltonians. |
Author | Romero, Jonathan Aspuru-Guzik, Alan Olson, Jonathan P |
Author_xml | – sequence: 1 givenname: Jonathan surname: Romero fullname: Romero, Jonathan organization: Harvard University Department of Chemistry and Chemical Biology, Cambridge, Massachusetts 02138, United States of America – sequence: 2 givenname: Jonathan P surname: Olson fullname: Olson, Jonathan P organization: Harvard University Department of Chemistry and Chemical Biology, Cambridge, Massachusetts 02138, United States of America – sequence: 3 givenname: Alan surname: Aspuru-Guzik fullname: Aspuru-Guzik, Alan email: aspuru@chemistry.harvard.edu organization: Harvard University Department of Chemistry and Chemical Biology, Cambridge, Massachusetts 02138, United States of America |
BookMark | eNp9kM1LAzEQxYNUsNbePe7Jk2sn2a_sRZDiFxRE0HOYzQektMk2yR78793SIiLS0wzD-w3vvUsycd5pQq4p3FHgfMGg4nlb1dUCkUPDzsj05zT5tV-QeYxrACgYpS3UU3L_PqBLwzbDIXntpFc6xMz4kGljrLTapUz6bR90jNa7zJtsdyQUJrwi5wY3Uc-Pc0Y-nx4_li_56u35dfmwymXRNCmvTNOypuhkrcsSsWW6Ua0yHeskcEm1AapbCqXiyFVdqzGDUaNDWXEOmhfFjNSHvzL4GIM2QtqEaXSUAtqNoCD2RYh9UrFPKg5FjCD8Aftgtxi-TiG3B8T6Xqz9ENyY7JT85h_5LibBRCmgrACo6JUpvgGL6n1i |
CitedBy_id | crossref_primary_10_1016_j_neunet_2022_03_043 crossref_primary_10_1103_RevModPhys_94_015004 crossref_primary_10_1103_PhysRevResearch_3_043200 crossref_primary_10_1039_D2CS00203E crossref_primary_10_1103_PhysRevResearch_5_023039 crossref_primary_10_1103_PhysRevA_102_032412 crossref_primary_10_1088_2058_9565_aad3e4 crossref_primary_10_1016_j_jcp_2020_109950 crossref_primary_10_1007_s42484_024_00163_2 crossref_primary_10_1103_PhysRevResearch_6_033111 crossref_primary_10_1103_PhysRevA_102_032410 crossref_primary_10_1007_s42484_025_00253_9 crossref_primary_10_3390_app11146427 crossref_primary_10_1063_5_0014828 crossref_primary_10_1103_PhysRevResearch_3_023146 crossref_primary_10_1103_PhysRevApplied_21_067001 crossref_primary_10_1038_s41586_019_0980_2 crossref_primary_10_1109_MC_2019_2908942 crossref_primary_10_1109_OJCOMS_2024_3472094 crossref_primary_10_1088_2058_9565_aabd98 crossref_primary_10_1140_epjqt_s40507_024_00255_9 crossref_primary_10_22331_q_2021_01_25_386 crossref_primary_10_1116_5_0192456 crossref_primary_10_1007_s11128_023_04239_z crossref_primary_10_1103_PhysRevX_8_031084 crossref_primary_10_1109_TQE_2024_3383050 crossref_primary_10_1016_j_eswa_2022_116512 crossref_primary_10_1103_PhysRevResearch_1_033063 crossref_primary_10_22331_q_2022_08_17_777 crossref_primary_10_1103_PhysRevB_108_165408 crossref_primary_10_1038_s41534_019_0174_7 crossref_primary_10_1016_j_fraope_2025_100223 crossref_primary_10_1364_OPTICA_435525 crossref_primary_10_1007_s42484_023_00112_5 crossref_primary_10_1007_s13369_022_06587_x crossref_primary_10_1038_s41567_019_0747_6 crossref_primary_10_1088_1742_6596_2718_1_012067 crossref_primary_10_1088_2058_9565_ad8e80 crossref_primary_10_22331_q_2022_09_29_824 crossref_primary_10_1103_PhysRevLett_126_190501 crossref_primary_10_1088_2058_9565_acc4e3 crossref_primary_10_1016_j_physleta_2024_129349 crossref_primary_10_1021_acscentsci_8b00307 crossref_primary_10_3390_e25030427 crossref_primary_10_1103_PRXQuantum_2_010324 crossref_primary_10_1016_j_procs_2024_01_171 crossref_primary_10_1103_PhysRevX_7_041052 crossref_primary_10_1038_s41598_018_20403_3 crossref_primary_10_1088_1367_2630_ab7598 crossref_primary_10_22331_q_2024_03_14_1287 crossref_primary_10_1088_2632_2153_acb0b4 crossref_primary_10_1088_2058_9565_ac1ab1 crossref_primary_10_1038_s42254_021_00348_9 crossref_primary_10_1103_PhysRevResearch_7_013007 crossref_primary_10_1007_s11128_024_04438_2 crossref_primary_10_1002_qute_202300130 crossref_primary_10_1007_s42484_020_00019_5 crossref_primary_10_1109_ACCESS_2024_3420707 crossref_primary_10_1007_s42484_022_00070_4 crossref_primary_10_3390_e25040580 crossref_primary_10_1103_PhysRevApplied_21_014053 crossref_primary_10_32362_2500_316X_2019_7_1_5_37 crossref_primary_10_22331_q_2021_07_05_496 crossref_primary_10_1140_epjqt_s40507_021_00109_8 crossref_primary_10_1088_2632_2153_abf3ac crossref_primary_10_1103_PhysRevResearch_3_L032057 crossref_primary_10_1088_2632_2153_ad6be8 crossref_primary_10_1103_PhysRevX_12_011007 crossref_primary_10_1088_2632_2153_ab9803 crossref_primary_10_1007_s11128_023_04188_7 crossref_primary_10_3390_e24030394 crossref_primary_10_1088_2632_2153_acb12f crossref_primary_10_1038_s41467_022_31679_5 crossref_primary_10_1002_que2_67 crossref_primary_10_1098_rsif_2022_0541 crossref_primary_10_1038_s41534_024_00865_2 crossref_primary_10_22331_q_2020_05_11_263 crossref_primary_10_1103_PhysRevLett_131_140601 crossref_primary_10_1007_s42484_025_00266_4 crossref_primary_10_1016_j_apenergy_2019_113966 crossref_primary_10_3390_e25020287 crossref_primary_10_1103_PhysRevA_108_062423 crossref_primary_10_1103_PhysRevX_8_031027 crossref_primary_10_1016_j_automatica_2022_110659 crossref_primary_10_1103_PRXQuantum_2_010346 crossref_primary_10_17929_tqs_8_113 crossref_primary_10_1103_PhysRevLett_125_150504 crossref_primary_10_1088_2058_9565_ac79c9 crossref_primary_10_1103_PhysRevLett_124_130502 crossref_primary_10_1103_PhysRevResearch_3_L032049 crossref_primary_10_1016_j_advwatres_2021_104098 crossref_primary_10_1007_s11128_018_2099_z crossref_primary_10_1209_0295_5075_125_30004 crossref_primary_10_22331_q_2020_11_30_366 crossref_primary_10_1109_TGRS_2021_3085340 crossref_primary_10_1103_PhysRevA_103_L040403 crossref_primary_10_1371_journal_pone_0262346 crossref_primary_10_1007_s42484_020_00018_6 crossref_primary_10_32362_2500_316X_2023_11_5_19_33 crossref_primary_10_1002_qute_202300033 crossref_primary_10_1088_2058_9565_ac3e54 crossref_primary_10_1103_PhysRevA_104_042424 crossref_primary_10_1109_TBDATA_2021_3066151 crossref_primary_10_1007_s11128_023_04243_3 crossref_primary_10_3390_app112311386 crossref_primary_10_1007_s00607_023_01154_0 crossref_primary_10_1038_s41467_021_21728_w crossref_primary_10_1103_PhysRevA_108_062413 crossref_primary_10_1103_PRXQuantum_3_030341 crossref_primary_10_1002_qute_202000003 crossref_primary_10_1016_j_physleta_2020_126422 crossref_primary_10_1016_j_eswa_2024_125944 crossref_primary_10_1103_PhysRevResearch_5_023186 crossref_primary_10_22331_q_2020_05_28_272 crossref_primary_10_1109_ACCESS_2021_3139323 crossref_primary_10_1140_epjqt_s40507_023_00216_8 crossref_primary_10_1109_LAWP_2024_3432091 crossref_primary_10_1098_rspa_2017_0551 crossref_primary_10_1038_s41467_019_11417_0 crossref_primary_10_22331_q_2020_10_15_342 crossref_primary_10_1142_S0219749923500272 crossref_primary_10_1038_s41534_022_00592_6 crossref_primary_10_1038_s42256_023_00661_1 crossref_primary_10_1038_s41467_022_32550_3 crossref_primary_10_1088_2058_9565_abbe66 crossref_primary_10_1021_acs_chemrev_8b00803 crossref_primary_10_1103_PhysRevLett_132_010602 crossref_primary_10_1103_PhysRevResearch_3_043184 crossref_primary_10_1103_PhysRevA_98_012324 crossref_primary_10_34133_icomputing_0042 crossref_primary_10_1002_qute_202300059 crossref_primary_10_1007_s42484_023_00114_3 crossref_primary_10_22331_q_2023_11_22_1188 crossref_primary_10_1103_PhysRevApplied_19_034017 crossref_primary_10_1109_ACCESS_2024_3411307 crossref_primary_10_1016_j_tust_2023_105317 crossref_primary_10_1103_PhysRevA_101_032308 crossref_primary_10_1088_0256_307X_38_3_030302 crossref_primary_10_1103_PhysRevB_105_224205 crossref_primary_10_1038_s41598_022_07539_z crossref_primary_10_1126_sciadv_abn9783 crossref_primary_10_1093_nsr_nwy149 crossref_primary_10_1103_PhysRevA_99_032331 crossref_primary_10_22331_q_2023_03_09_942 crossref_primary_10_1007_s11128_023_03846_0 crossref_primary_10_1103_PhysRevLett_129_270501 crossref_primary_10_1016_j_petrol_2021_108361 crossref_primary_10_1088_1402_4896_acc492 crossref_primary_10_1038_s41534_023_00779_5 crossref_primary_10_1088_2632_2153_acf096 crossref_primary_10_1109_ACCESS_2023_3327873 crossref_primary_10_7566_JPSJ_90_032001 crossref_primary_10_1088_1367_2630_aac54f crossref_primary_10_1103_PhysRevResearch_3_023244 crossref_primary_10_1103_PhysRevResearch_4_013083 crossref_primary_10_1088_2632_2153_acafd5 crossref_primary_10_1002_qute_201900070 crossref_primary_10_1088_2058_9565_acef55 crossref_primary_10_1109_TKDE_2022_3200723 crossref_primary_10_3390_electronics14010072 crossref_primary_10_1103_PhysRevApplied_15_054012 crossref_primary_10_1038_s41534_024_00875_0 crossref_primary_10_3390_app12168256 crossref_primary_10_1038_s41534_022_00556_w crossref_primary_10_1103_PhysRevLett_122_060501 crossref_primary_10_1088_2058_9565_ab4eb5 crossref_primary_10_1103_PhysRevA_109_032413 crossref_primary_10_1109_JSTSP_2023_3312914 crossref_primary_10_1140_epjc_s10052_023_11719_0 crossref_primary_10_1038_s43588_021_00084_1 crossref_primary_10_1088_1751_8121_abfac7 crossref_primary_10_1103_PhysRevD_109_095028 crossref_primary_10_1038_s41598_024_84171_z crossref_primary_10_1145_3411466 crossref_primary_10_3390_e22080828 crossref_primary_10_1016_j_neucom_2023_126643 crossref_primary_10_1103_PhysRevResearch_6_033198 crossref_primary_10_1116_5_0145722 crossref_primary_10_3390_ma16124300 crossref_primary_10_1088_1367_2630_ab784c crossref_primary_10_1088_2058_9565_ac3c53 crossref_primary_10_1088_2058_9565_ac70f5 crossref_primary_10_1088_2058_9565_ac969c crossref_primary_10_1103_PhysRevLett_133_050603 crossref_primary_10_3390_electronics12112402 crossref_primary_10_1103_PRXQuantum_3_010313 crossref_primary_10_3390_math12111627 crossref_primary_10_1007_s11433_023_2361_6 crossref_primary_10_1103_PhysRevA_98_042308 crossref_primary_10_1007_s11128_022_03466_0 crossref_primary_10_1016_j_revip_2024_100091 crossref_primary_10_22331_q_2021_09_09_539 crossref_primary_10_1038_s41534_020_00302_0 crossref_primary_10_1109_ACCESS_2024_3382150 crossref_primary_10_22331_q_2021_10_05_558 crossref_primary_10_7498_aps_70_20210985 crossref_primary_10_1039_D0SC06627C crossref_primary_10_1109_TQE_2022_3231124 crossref_primary_10_1103_PhysRevApplied_17_024053 crossref_primary_10_1145_3660647 crossref_primary_10_21923_jesd_1553326 crossref_primary_10_1016_j_mex_2023_102136 crossref_primary_10_1007_s42484_024_00158_z crossref_primary_10_1103_PhysRevD_105_095004 crossref_primary_10_1103_PhysRevResearch_6_013010 crossref_primary_10_1103_PhysRevX_11_041011 crossref_primary_10_1103_PhysRevA_111_012441 crossref_primary_10_3390_molecules26226761 crossref_primary_10_35848_1347_4065_aca256 crossref_primary_10_1103_PhysRevE_99_013304 crossref_primary_10_1371_journal_pone_0287869 crossref_primary_10_1007_s42484_022_00075_z crossref_primary_10_1038_s41534_019_0167_6 crossref_primary_10_1088_2632_2153_ada0a4 crossref_primary_10_1038_s41598_024_71284_8 crossref_primary_10_1016_j_neucom_2022_02_004 crossref_primary_10_1016_j_physleta_2022_128054 crossref_primary_10_1103_PhysRevLett_128_180505 crossref_primary_10_1103_PhysRevA_106_062434 crossref_primary_10_1103_PhysRevA_109_032620 crossref_primary_10_22331_q_2023_08_03_1073 crossref_primary_10_1103_PhysRevA_109_032623 crossref_primary_10_1088_2058_9565_ac39f5 crossref_primary_10_1103_PhysRevA_105_062415 crossref_primary_10_3390_e23101281 crossref_primary_10_3390_e26110902 crossref_primary_10_1063_5_0138021 crossref_primary_10_1088_2058_9565_aae22b crossref_primary_10_1103_PhysRevApplied_20_024071 crossref_primary_10_1103_PhysRevResearch_3_033002 crossref_primary_10_1016_j_ins_2020_05_127 crossref_primary_10_1063_5_0120060 crossref_primary_10_1002_adts_201800182 crossref_primary_10_1103_PhysRevApplied_18_024013 crossref_primary_10_1002_qute_201800065 crossref_primary_10_1088_2058_9565_ad0a05 crossref_primary_10_1007_s42484_022_00063_3 crossref_primary_10_1088_2058_9565_aada1f crossref_primary_10_22331_q_2021_07_28_512 crossref_primary_10_22331_q_2022_03_30_677 crossref_primary_10_1007_s10773_019_04005_x crossref_primary_10_1038_s41598_024_56860_2 crossref_primary_10_1088_2058_9565_abf51a crossref_primary_10_1016_j_jfranklin_2023_06_003 crossref_primary_10_1007_s42484_023_00132_1 crossref_primary_10_22331_q_2019_05_13_140 crossref_primary_10_1088_2058_9565_acdd92 crossref_primary_10_1038_s41573_023_00832_0 crossref_primary_10_1007_s42484_024_00142_7 crossref_primary_10_1103_PhysRevA_105_022415 crossref_primary_10_22331_q_2022_04_13_688 crossref_primary_10_1103_PhysRevResearch_2_033399 crossref_primary_10_1088_1367_2630_acf151 crossref_primary_10_7498_aps_72_20230589 crossref_primary_10_1103_PhysRevResearch_6_013027 crossref_primary_10_1038_s41534_021_00496_x crossref_primary_10_22331_q_2022_10_06_828 crossref_primary_10_1103_PhysRevA_101_062310 crossref_primary_10_1088_2058_9565_ad133e crossref_primary_10_1038_s41467_018_07090_4 crossref_primary_10_1038_s41534_024_00872_3 crossref_primary_10_1103_PhysRevResearch_4_023249 crossref_primary_10_1038_s41534_019_0157_8 crossref_primary_10_1088_2632_2153_ac0616 crossref_primary_10_1103_PhysRevA_102_062403 crossref_primary_10_1038_s42005_022_00837_y crossref_primary_10_1103_PhysRevA_104_062443 crossref_primary_10_1103_PhysRevA_110_022406 crossref_primary_10_1088_2632_2153_abaf98 crossref_primary_10_1002_qute_202200005 crossref_primary_10_22331_q_2022_09_15_804 crossref_primary_10_1038_s41534_022_00611_6 crossref_primary_10_1088_1367_2630_abac39 crossref_primary_10_7498_aps_70_20210930 crossref_primary_10_1103_PhysRevA_110_062418 crossref_primary_10_1007_s42484_024_00215_7 crossref_primary_10_1088_2058_9565_aab859 crossref_primary_10_1088_1572_9494_ad597d crossref_primary_10_1103_PhysRevResearch_6_023181 crossref_primary_10_1007_s42484_025_00258_4 crossref_primary_10_1109_TKDE_2021_3095103 crossref_primary_10_32604_cmc_2021_013196 crossref_primary_10_1007_s42484_020_00036_4 crossref_primary_10_1103_PRXQuantum_2_020329 crossref_primary_10_3390_math11224678 crossref_primary_10_1088_1751_8121_ad6daf crossref_primary_10_1002_qute_202000069 crossref_primary_10_1088_2058_9565_abe107 crossref_primary_10_35940_ijsce_E3650_14051124 crossref_primary_10_1109_TQE_2020_3033139 crossref_primary_10_1145_3529756 crossref_primary_10_1007_s11128_024_04388_9 crossref_primary_10_1103_PhysRevResearch_4_013117 crossref_primary_10_1088_2632_2153_ad07f7 crossref_primary_10_1103_PhysRevResearch_3_033200 crossref_primary_10_1147_JRD_2018_2888987 crossref_primary_10_1002_qute_202000063 crossref_primary_10_1007_s42484_020_00025_7 crossref_primary_10_1109_ACCESS_2024_3496901 |
Cites_doi | 10.1103/PhysRevLett.95.110503 10.1103/PhysRevA.75.032311 10.1088/1367-2630/18/2/023023 10.1007/s00220-014-1990-4 10.1088/1367-2630/11/3/033017 10.1103/PhysRevA.92.042303 10.1021/jp970984n 10.1063/1.4768229 10.1137/0916069 10.1002/qua.24969 10.1038/nature15263 10.1109/TIT.2013.2283723 10.1103/PhysRevX.6.031007 10.1098/rspa.2009.0202 10.1016/j.cpc.2012.02.021 10.1016/j.neucom.2008.04.030 10.1109/TCAD.2005.855930 10.1063/1.4772185 10.1038/nature13171 10.1103/PhysRevX.7.021050 10.1103/RevModPhys.86.153 10.1016/j.neucom.2013.09.055 10.1016/j.cpc.2012.11.019 10.1088/1367-2630/16/7/073017 10.1038/ncomms5213 10.1007/s00214-011-1079-5 10.1103/PhysRevA.63.062309 10.1038/nphys1453 10.1103/PhysRevLett.108.110502 10.1126/science.1113479 10.1103/PhysRevLett.87.167902 |
ContentType | Journal Article |
Copyright | 2017 IOP Publishing Ltd |
Copyright_xml | – notice: 2017 IOP Publishing Ltd |
DBID | AAYXX CITATION |
DOI | 10.1088/2058-9565/aa8072 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
DocumentTitleAlternate | Quantum autoencoders for efficient compression of quantum data |
EISSN | 2058-9565 |
ExternalDocumentID | 10_1088_2058_9565_aa8072 qstaa8072 |
GrantInformation_xml | – fundername: Air Force Office of Scientific Research grantid: FA9550-12-1- 0046 funderid: https://doi.org/10.13039/100000181 – fundername: Army Research Office grantid: W911NF-15-1-0256 funderid: https://doi.org/10.13039/100000183 – fundername: Office of Naval Research grantid: N00014-16-1-2008 funderid: https://doi.org/10.13039/100000006 |
GroupedDBID | AAGCD AALHV AATNI ABHWH ABVAM ACGFS ACHIP AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ATQHT CJUJL CRLBU EBS EJD IJHAN IOP IZVLO KOT N5L PJBAE RIN ROL RPA AAYXX ABJNI ADEQX CITATION |
ID | FETCH-LOGICAL-c377t-5f79273bc6e44aa92e7d9dfb2bc08c1ef01e9104d8a8d66d807fd119c5880e833 |
IEDL.DBID | IOP |
ISSN | 2058-9565 |
IngestDate | Tue Jul 01 04:03:38 EDT 2025 Thu Apr 24 23:06:25 EDT 2025 Wed Aug 21 03:40:38 EDT 2024 Thu Jan 07 13:52:09 EST 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c377t-5f79273bc6e44aa92e7d9dfb2bc08c1ef01e9104d8a8d66d807fd119c5880e833 |
Notes | QST-100141.R1 |
PageCount | 12 |
ParticipantIDs | iop_journals_10_1088_2058_9565_aa8072 crossref_citationtrail_10_1088_2058_9565_aa8072 crossref_primary_10_1088_2058_9565_aa8072 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-12-01 |
PublicationDateYYYYMMDD | 2017-12-01 |
PublicationDate_xml | – month: 12 year: 2017 text: 2017-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Quantum science and technology |
PublicationTitleAbbrev | QST |
PublicationTitleAlternate | Quantum Sci. Technol |
PublicationYear | 2017 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Aspuru-Guzik (qstaa8072bib2) 2005; 309 Wilde (qstaa8072bib8) 2013 Daskin (qstaa8072bib14) 2012; 137 Buhrman (qstaa8072bib27) 2001; 87 Helgaker (qstaa8072bib29) 2013 Schwarz (qstaa8072bib40) 2012; 108 Abeyesinghe (qstaa8072bib12) 2009; 465 Datta (qstaa8072bib10) 2013; 59 Bishop (qstaa8072bib28) 2006 Dupuis (qstaa8072bib11) 2014; 328 Bang (qstaa8072bib21) 2014; 16 Schön (qstaa8072bib38) 2005; 95 Ben-Aroya (qstaa8072bib41) 2007 Johansson (qstaa8072bib33) 2013; 184 Hanneke (qstaa8072bib17) 2010; 6 Peterson (qstaa8072bib36) 2012; 131 Georgescu (qstaa8072bib37) 2014; 86 Wales (qstaa8072bib34) 1997; 101 Sousa (qstaa8072bib13) 2007; 7 Li (qstaa8072bib25) 2017; 7 Veldhorst (qstaa8072bib18) 2015; 526 Gómez-Bombarelli (qstaa8072bib6) 2016 Peruzzo (qstaa8072bib22) 2014; 5 Tranter (qstaa8072bib31) 2015; 115 Gammelmark (qstaa8072bib20) 2009; 11 McClean (qstaa8072bib23) 2016; 18 Wan (qstaa8072bib7) 2016 Byrd (qstaa8072bib35) 1995; 16 Barends (qstaa8072bib15) 2014; 508 Liou (qstaa8072bib4) 2014; 139 Biamonte (qstaa8072bib5) 2016 Schön (qstaa8072bib39) 2007; 75 Johansson (qstaa8072bib32) 2012; 183 Kraus (qstaa8072bib16) 2001; 63 Santagati (qstaa8072bib26) 2016 Shende (qstaa8072bib9) 2006; 25 Wecker (qstaa8072bib24) 2015; 92 Liou (qstaa8072bib3) 2008; 71 O’Malley (qstaa8072bib1) 2016; 6 Seeley (qstaa8072bib30) 2012; 137 Nielsen (qstaa8072bib19) 2011 |
References_xml | – volume: 7 start-page: 228 year: 2007 ident: qstaa8072bib13 publication-title: Quantum Info. Comput. – volume: 95 year: 2005 ident: qstaa8072bib38 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.95.110503 – year: 2011 ident: qstaa8072bib19 – volume: 75 year: 2007 ident: qstaa8072bib39 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.75.032311 – volume: 18 year: 2016 ident: qstaa8072bib23 publication-title: New. J. Phys. doi: 10.1088/1367-2630/18/2/023023 – volume: 328 year: 2014 ident: qstaa8072bib11 publication-title: Commun. Math. Phys. doi: 10.1007/s00220-014-1990-4 – volume: 11 year: 2009 ident: qstaa8072bib20 publication-title: New. J. Phys. doi: 10.1088/1367-2630/11/3/033017 – volume: 92 year: 2015 ident: qstaa8072bib24 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.92.042303 – volume: 101 start-page: 5111 year: 1997 ident: qstaa8072bib34 publication-title: J. Phys. Chem. A doi: 10.1021/jp970984n – volume: 137 year: 2012 ident: qstaa8072bib30 publication-title: J. Chem. Phys. doi: 10.1063/1.4768229 – volume: 16 start-page: 1190 year: 1995 ident: qstaa8072bib35 publication-title: SIAM. J. Sci. Comput doi: 10.1137/0916069 – year: 2006 ident: qstaa8072bib28 – volume: 115 start-page: 1431 year: 2015 ident: qstaa8072bib31 publication-title: Int. J. Quantum Chem. doi: 10.1002/qua.24969 – year: 2016 ident: qstaa8072bib6 – year: 2013 ident: qstaa8072bib29 – volume: 526 start-page: 410 year: 2015 ident: qstaa8072bib18 publication-title: Nature doi: 10.1038/nature15263 – volume: 59 start-page: 8057 year: 2013 ident: qstaa8072bib10 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2013.2283723 – volume: 6 year: 2016 ident: qstaa8072bib1 publication-title: Phys. Rev. X doi: 10.1103/PhysRevX.6.031007 – volume: 465 start-page: 2537 year: 2009 ident: qstaa8072bib12 publication-title: Proc. of the Royal Society A doi: 10.1098/rspa.2009.0202 – year: 2016 ident: qstaa8072bib26 – volume: 183 start-page: 1760 year: 2012 ident: qstaa8072bib32 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2012.02.021 – volume: 71 start-page: 3150 year: 2008 ident: qstaa8072bib3 publication-title: Neurocomputing doi: 10.1016/j.neucom.2008.04.030 – year: 2016 ident: qstaa8072bib7 – year: 2016 ident: qstaa8072bib5 – volume: 25 start-page: 1000 year: 2006 ident: qstaa8072bib9 publication-title: IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. doi: 10.1109/TCAD.2005.855930 – year: 2007 ident: qstaa8072bib41 – volume: 137 year: 2012 ident: qstaa8072bib14 publication-title: J. Chem. Phys. doi: 10.1063/1.4772185 – volume: 508 start-page: 500 year: 2014 ident: qstaa8072bib15 publication-title: Nature doi: 10.1038/nature13171 – volume: 7 year: 2017 ident: qstaa8072bib25 publication-title: Phys. Rev. X doi: 10.1103/PhysRevX.7.021050 – volume: 86 start-page: 153 year: 2014 ident: qstaa8072bib37 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.86.153 – volume: 139 start-page: 84 year: 2014 ident: qstaa8072bib4 publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.09.055 – volume: 184 start-page: 1234 year: 2013 ident: qstaa8072bib33 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2012.11.019 – year: 2013 ident: qstaa8072bib8 – volume: 16 year: 2014 ident: qstaa8072bib21 publication-title: New. J. Phys. doi: 10.1088/1367-2630/16/7/073017 – volume: 5 start-page: 4213 year: 2014 ident: qstaa8072bib22 publication-title: Nat. Commun. doi: 10.1038/ncomms5213 – volume: 131 start-page: 1 year: 2012 ident: qstaa8072bib36 publication-title: Theor. Chem. Acc. doi: 10.1007/s00214-011-1079-5 – volume: 63 year: 2001 ident: qstaa8072bib16 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.63.062309 – volume: 6 start-page: 13 year: 2010 ident: qstaa8072bib17 publication-title: Nat. Phys. doi: 10.1038/nphys1453 – volume: 108 year: 2012 ident: qstaa8072bib40 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.110502 – volume: 309 start-page: 1704 year: 2005 ident: qstaa8072bib2 publication-title: Science doi: 10.1126/science.1113479 – volume: 87 year: 2001 ident: qstaa8072bib27 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.87.167902 |
SSID | ssj0003211906 |
Score | 2.5737996 |
Snippet | Classical autoencoders are neural networks that can learn efficient low-dimensional representations of data in higher-dimensional space. The task of an... |
SourceID | crossref iop |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 45001 |
SubjectTerms | autoencoders data compression machine learning quantum computing quantum simulation |
Title | Quantum autoencoders for efficient compression of quantum data |
URI | https://iopscience.iop.org/article/10.1088/2058-9565/aa8072 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8MwGA5zXrz4gYrf9qAHD926Nk1TBEHEMQW_wMEOQsjHm4vaba69-Ot903bDiQzx1sObNjz0zfskefKEkJNOaDWyAOkDqMSnyjKfa-C-hdSaFHQqlVsauLtnvT69HcSDBjmfnYUZjuqhv4WPlVFwBWEtiOM4XY8xR5GItKXkQYLj73LEGXPXF9w8PM4WWCLnXRZMtyZ_azhXipbwc98qS3eNvEz7VAlKXltFrlr684dd4z87vU5Wa8bpXVahG6QB2Sa5eCoQ0uLdk0U-dF6WTs_sIYH1oPSUwFLkObV5pZLNvKH1xnULpyndIv3u9fNVz6-vUvB1lCS5H9skRaKiNANKpUxDSExqrAqVDrjugA06gMSBGi65YcxgF61B_HSM-Q08irZJMxtmsEM8GkqwscVpY8SpUpQjAZOYypoCUC7ZLmlPURW69hl31128iXK_m3PhsBAOC1FhsUvOZi1GlcfGgthThFjUiTZZEHc8Fzee5CIUVCCDxcIsRsbu_fFN-2QldKW8lLAckGb-UcAhEpFcHZU_3BeladbA |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV27TsMwFLVokRALDwGivJoBBob0kTiJsyAhoGp5lCJRqZuxnesFSFqaLHw910laUYQqJLYM14l1nJt7bJ8cE3LadrRCFiBsABnYVGrfZgqYrSHUUQgqFNIsDTz0_e6Q3o68UXnOaf4vTDIuP_0NvCyMggsIS0Ecw-m6hzmKRKQpBGsFTnMc6QpZ9VzfNeb5vcfBfJHFNf5lrdn25G-NF8pRBR_5rbp0NsnLrF-FqOS1kaWyoT5_WDb-o-NbZKNkntZlEb5NViDeIRdPGUKbvVsiSxPjaWl0zRYSWQtybwksSZZRnRdq2dhKtDUpWxht6S4Zdm6er7p2eaSCrdwgSG1PByESFql8oFSI0IEgCiMtHalaTLVBt9qABIJGTLDI9yPspo4QQ-VhngNz3T1SjZMY9olFHQHa0zh9dBmVkjIkYgJTWlEAyoRfI80ZslyVfuPm2Is3nu97M8YNHtzgwQs8auR83mJceG0siT1DmHmZcNMlcfWFuMk05Q6nHJksFmiOI3DwxzvVydrgusPve_27Q7LumOqeq1qOSDX9yOAYuUkqT_L37wv2vNwk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+autoencoders+for+efficient+compression+of+quantum+data&rft.jtitle=Quantum+science+and+technology&rft.au=Romero%2C+Jonathan&rft.au=Olson%2C+Jonathan+P&rft.au=Aspuru-Guzik%2C+Alan&rft.date=2017-12-01&rft.pub=IOP+Publishing&rft.eissn=2058-9565&rft.volume=2&rft.issue=4&rft_id=info:doi/10.1088%2F2058-9565%2Faa8072&rft.externalDocID=qstaa8072 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2058-9565&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2058-9565&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2058-9565&client=summon |