The real-time measurement of wear using ultrasonic reflectometry

Ultrasonic reflectometry is commonly used in the fields of non-destructive testing (NDT) for crack detection, wall thickness monitoring and medical imaging. A sound wave is emitted through the material using a piezoelectric transducer. This waveform travels through the host medium at a constant spee...

Full description

Saved in:
Bibliographic Details
Published inWear Vol. 332-333; pp. 1129 - 1133
Main Authors Brunskill, Henry, Harper, P., Lewis, Roger
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.05.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Ultrasonic reflectometry is commonly used in the fields of non-destructive testing (NDT) for crack detection, wall thickness monitoring and medical imaging. A sound wave is emitted through the material using a piezoelectric transducer. This waveform travels through the host medium at a constant speed and is either partially or fully reflected at an interface. The reflected wave is picked up by the same sensor; the signal is then amplified and digitised. If the speed that sound travels through a host medium is known as well as the time this takes, the thickness of the material can be established using the speed, distance and time relationship. Previous work has concluded that the ultrasonic method is too inaccurate to measure wear due to the errors caused by temperature, vibration and the experimental arrangement. This body of work looks at methods to minimise these errors, particularly the inaccuracies introduced from the change in temperature caused by change of acoustic velocity and the thermal expansion of the material, which can be significant in many applications. Numerous case studies are presented using the technique in both laboratory and industrial environments using low cost retro-fittable sensors and small form electronics.
AbstractList Ultrasonic reflectometry is commonly used in the fields of non-destructive testing (NDT) for crack detection, wall thickness monitoring and medical imaging. A sound wave is emitted through the material using a piezoelectric transducer. This waveform travels through the host medium at a constant speed and is either partially or fully reflected at an interface. The reflected wave is picked up by the same sensor; the signal is then amplified and digitised. If the speed that sound travels through a host medium is known as well as the time this takes, the thickness of the material can be established using the speed, distance and time relationship. Previous work has concluded that the ultrasonic method is too inaccurate to measure wear due to the errors caused by temperature, vibration and the experimental arrangement. This body of work looks at methods to minimise these errors, particularly the inaccuracies introduced from the change in temperature caused by change of acoustic velocity and the thermal expansion of the material, which can be significant in many applications. Numerous case studies are presented using the technique in both laboratory and industrial environments using low cost retro-fittable sensors and small form electronics.
Ultrasonic reflectometry is commonly used in the fields of non-destructive testing (NDT) for crack detection, wall thickness monitoring and medical imaging. A sound wave is emitted through the material using a piezoelectric transducer. This waveform travels through the host medium at a constant speed and is either partially or fully reflected at an interface. The reflected wave is picked up by the same sensor; the signal is then amplified and digitised. If the speed that sound travels through a host medium is known as well as the time this takes, the thickness of the material can be established using the speed, distance and time relationship. Previous work has concluded that the ultrasonic method is too inaccurate to measure wear due to the errors caused by temperature, vibration and the experimental arrangement. This body of work looks at methods to minimise these errors, particularly the inaccuracies introduced from the change in temperature caused by change of acoustic velocity and the thermal expansion of the material, which can be significant in many applications. Numerous case studies are presented using the technique in both laboratory and industrial environments using low cost retro-fittable sensors and small form electronics.
Author Harper, P.
Brunskill, Henry
Lewis, Roger
Author_xml – sequence: 1
  givenname: Henry
  surname: Brunskill
  fullname: Brunskill, Henry
  email: h.brunskill@tribosonics.com
  organization: Tribosonics Ltd. Sheffield, South View Cres, South Yorkshire S7 1DH, United Kingdom
– sequence: 2
  givenname: P.
  surname: Harper
  fullname: Harper, P.
  organization: Tribosonics Ltd. Sheffield, South View Cres, South Yorkshire S7 1DH, United Kingdom
– sequence: 3
  givenname: Roger
  surname: Lewis
  fullname: Lewis, Roger
  organization: Department of Mechanical Engineering, The University of Sheffield, Mappin Street, S1 3JD Sheffield, United Kingdom
BookMark eNp9kD9PwzAUxC1UJNrCF2DKyJJgx3bsSAygin9SJZYyW47zDK6SuNgJqN8eR2XmLbf87vTuVmgx-AEQuia4IJhUt_viB3QoSkx4gcsCs_oMLYkUNC-5EAu0xJjRnFRMXqBVjHuMMal5tUT3u0_IAuguH10PWQ86TgF6GMbM22wOzaboho9s6sagox-cSbjtwIy-hzEcL9G51V2Eqz9do_enx93mJd--Pb9uHra5oUKMOedtW4uayXSc1tpSyutGasGEbCuJG860pFYIUrNSN9YaqVtMRUUa01hp6BrdnHIPwX9NEEfVu2ig6_QAfoqKCJFwziqc0PKEmuBjTN-qQ3C9DkdFsJrnUns1N1PzXAqXKs2VTHcnE6QS3w6CisbBYKB1IZVVrXf_2X8B18h1aA
CitedBy_id crossref_primary_10_1016_j_triboint_2021_107140
crossref_primary_10_1109_TIM_2021_3082265
crossref_primary_10_1177_00202940221098051
crossref_primary_10_1016_j_triboint_2023_109210
crossref_primary_10_1177_1350650120919889
crossref_primary_10_1016_j_ultras_2022_106733
crossref_primary_10_1364_OE_400391
crossref_primary_10_1016_j_ultras_2018_08_002
crossref_primary_10_1007_s12598_018_1177_9
crossref_primary_10_1088_2051_672X_aa7da8
crossref_primary_10_1177_0954409717700531
crossref_primary_10_1007_s11249_022_01670_8
crossref_primary_10_3390_ma10050548
crossref_primary_10_1016_j_wear_2017_02_039
crossref_primary_10_17531_ein_2021_2_7
crossref_primary_10_1016_j_triboint_2021_106946
crossref_primary_10_1016_j_triboint_2023_108965
crossref_primary_10_17531__ein_2021_2_7
crossref_primary_10_1016_j_nanoen_2019_104303
Cites_doi 10.1016/0301-679X(89)90006-6
10.1243/135065005X9763
ContentType Journal Article
Copyright 2015 Elsevier B.V.
Copyright_xml – notice: 2015 Elsevier B.V.
DBID AAYXX
CITATION
7SR
7TB
7U5
8BQ
8FD
FR3
JG9
L7M
DOI 10.1016/j.wear.2015.02.049
DatabaseName CrossRef
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-2577
EndPage 1133
ExternalDocumentID 10_1016_j_wear_2015_02_049
S0043164815001581
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
29R
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABMAC
ABNUV
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LY7
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SET
SEW
SMS
SPC
SPCBC
SSG
SSM
SST
SSZ
T5K
WUQ
ZMT
~02
~G-
AAXKI
AAYXX
AKRWK
CITATION
7SR
7TB
7U5
8BQ
8FD
FR3
JG9
L7M
ID FETCH-LOGICAL-c377t-55dd97948888539af3359b8a7478d680b54a83f771942abffc8ad03761bcbf8c3
IEDL.DBID .~1
ISSN 0043-1648
IngestDate Sat Aug 17 03:52:32 EDT 2024
Thu Sep 12 20:12:10 EDT 2024
Fri Feb 23 02:28:49 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Ultrasound
Wear measurement
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c377t-55dd97948888539af3359b8a7478d680b54a83f771942abffc8ad03761bcbf8c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://eprints.whiterose.ac.uk/92649/2/Real-time%20measurement.pdf
PQID 1770375460
PQPubID 23500
PageCount 5
ParticipantIDs proquest_miscellaneous_1770375460
crossref_primary_10_1016_j_wear_2015_02_049
elsevier_sciencedirect_doi_10_1016_j_wear_2015_02_049
PublicationCentury 2000
PublicationDate 2015-05-01
PublicationDateYYYYMMDD 2015-05-01
PublicationDate_xml – month: 05
  year: 2015
  text: 2015-05-01
  day: 01
PublicationDecade 2010
PublicationTitle Wear
PublicationYear 2015
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Dwyer-Joyce (bib4) 2005; 219
Mason, Thurston (bib2) 1976
Birring, Kwun (bib3) 1989; 22
Rabinowicz (bib1) 1995
Dwyer-Joyce (10.1016/j.wear.2015.02.049_bib4) 2005; 219
Rabinowicz (10.1016/j.wear.2015.02.049_bib1) 1995
Mason (10.1016/j.wear.2015.02.049_bib2) 1976
Birring (10.1016/j.wear.2015.02.049_bib3) 1989; 22
References_xml – volume: 22
  start-page: 33
  year: 1989
  end-page: 37
  ident: bib3
  article-title: Ultrasonic measurement of wear
  publication-title: Tribol. Int.
  contributor:
    fullname: Kwun
– year: 1976
  ident: bib2
  article-title: Physical Acoustics (XII)
  contributor:
    fullname: Thurston
– year: 1995
  ident: bib1
  article-title: Friction and Wear of Materials
  contributor:
    fullname: Rabinowicz
– volume: 219
  start-page: 347
  year: 2005
  end-page: 366
  ident: bib4
  article-title: The application of ultrasonic NDT techniques in tribology
  publication-title: Proc. Inst. Mech. Eng. J: J. Eng. Tribol.
  contributor:
    fullname: Dwyer-Joyce
– year: 1976
  ident: 10.1016/j.wear.2015.02.049_bib2
  contributor:
    fullname: Mason
– volume: 22
  start-page: 33
  issue: 1
  year: 1989
  ident: 10.1016/j.wear.2015.02.049_bib3
  article-title: Ultrasonic measurement of wear
  publication-title: Tribol. Int.
  doi: 10.1016/0301-679X(89)90006-6
  contributor:
    fullname: Birring
– volume: 219
  start-page: 347
  year: 2005
  ident: 10.1016/j.wear.2015.02.049_bib4
  article-title: The application of ultrasonic NDT techniques in tribology
  publication-title: Proc. Inst. Mech. Eng. J: J. Eng. Tribol.
  doi: 10.1243/135065005X9763
  contributor:
    fullname: Dwyer-Joyce
– year: 1995
  ident: 10.1016/j.wear.2015.02.049_bib1
  contributor:
    fullname: Rabinowicz
SSID ssj0001956
Score 2.2767658
Snippet Ultrasonic reflectometry is commonly used in the fields of non-destructive testing (NDT) for crack detection, wall thickness monitoring and medical imaging. A...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 1129
SubjectTerms Electronics
Errors
Nondestructive testing
Reflectometry
Sensors
Thermal expansion
Ultrasonic testing
Ultrasound
Wear
Wear measurement
Title The real-time measurement of wear using ultrasonic reflectometry
URI https://dx.doi.org/10.1016/j.wear.2015.02.049
https://search.proquest.com/docview/1770375460
Volume 332-333
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXvQgPrE-SgRvEruPZLO5WcRSFXqy0FtIsolU-qLdIl787Wb2QVXEg8ddJkt2Mjszm3zzDUJXOqQqppyTiFpLqIk1EQl1RJjMmZg5SNEBbTFI-kP6OGKjBrqra2EAVln5_tKnF966utOptNlZjMdQ4wtl3EA2AoG_KL-mPhh5m7752MA8oB6uPmUG6apwpsR4vXlrAngXK3g7gU_z9-D0w00Xsae3h3arpBF3y3nto4adHaCdL1SCh-jWrzf2CeCEQLd4PN1s_eG5wzADDBD3F7ye5Eu1AkJcL-6KTfupzZfvR2jYu3--65OqOwIxMec5YSzLhP-a_C-sD7lCuThmQqcKCPGzJA00oyqNHeehoJHSzplUZYH3J6E22qUmPkbN2XxmTxDOAuulnKBMa8qZ0pEKRZZENDE-u3Oiha5rtchFSYIha3TYq4RXkKBEGUTSK7GFWK05-W0ppffSf467rNUsvY3DwYWa2fl6JUPOi1a9SXD6z2efoW24KpGK56iZL9f2wmcTuW4X5tJGW92Hp_7gE0tNyP8
link.rule.ids 315,786,790,4521,24144,27957,27958,45620,45714
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqMgAD4inK00hsyDQPO443UAUqUDq1UjfLTmxU1JfaVIiF344vDxUQYmBNzpFzvtxd7O--Q-hS-1SFlHMSUGMITUJNREQtEUlqk5BZSNEBbdGN2n36OGCDGmpVtTAAqyx9f-HTc29dXmmW2mzOhkOo8YUybiAbgcAP5ddrkM5D_4brjxXOAwriqmNmEC8rZwqQ15szJ8B3sZy4Ewg1f49OP_x0Hnzut9FWmTXi22JiO6hmJrto8wuX4B66cQuOXQY4ItAuHo9Xe394ajHMAAPG_QUvR9lcLYAR14nbfNd-bLL5-z7q39_1Wm1StkcgSch5RhhLU-E-J_cP62KuUDYMmdCxAkb8NIo9zaiKQ8u5L2igtLVJrFLPORRfJ9rGSXiA6pPpxBwinHrGSVlBmdaUM6UD5Ys0CmiUuPTOiga6qtQiZwULhqzgYa8SXkGCEqUXSKfEBmKV5uS3tZTOTf857qJSs3RGDicXamKmy4X0Oc979Ube0T-ffY7W273njuw8dJ-O0QbcKWCLJ6iezZfm1KUWmT7LTecTIuXKkQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+real-time+measurement+of+wear+using+ultrasonic+reflectometry&rft.jtitle=Wear&rft.au=Brunskill%2C+Henry&rft.au=Harper%2C+P.&rft.au=Lewis%2C+Roger&rft.date=2015-05-01&rft.pub=Elsevier+B.V&rft.issn=0043-1648&rft.eissn=1873-2577&rft.volume=332-333&rft.spage=1129&rft.epage=1133&rft_id=info:doi/10.1016%2Fj.wear.2015.02.049&rft.externalDocID=S0043164815001581
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1648&client=summon