Efficient permutation testing of variable importance measures by the example of random forests

Hypothesis testing of variable importance measures (VIMPs) is still the subject of ongoing research. This particularly applies to random forests (RF), for which VIMPs are a popular feature. Among recent developments, heuristic approaches to parametric testing have been proposed whose distributional...

Full description

Saved in:
Bibliographic Details
Published inComputational statistics & data analysis Vol. 181; p. 107689
Main Authors Hapfelmeier, Alexander, Hornung, Roman, Haller, Bernhard
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.05.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hypothesis testing of variable importance measures (VIMPs) is still the subject of ongoing research. This particularly applies to random forests (RF), for which VIMPs are a popular feature. Among recent developments, heuristic approaches to parametric testing have been proposed whose distributional assumptions are based on empirical evidence. Other formal tests under regularity conditions were derived analytically. But these approaches can be computationally expensive or even practically infeasible. This problem also occurs with non-parametric permutation tests, which are, however, distribution-free and can generically be applied to any kind of prediction model and VIMP. Embracing this advantage, it is proposed to use sequential permutation tests and sequential p-value estimation to reduce the computational costs associated with conventional permutation tests. These costs can be particularly high in case of complex prediction models. Therefore, RF's popular and widely used permutation VIMP (pVIMP) serves as a practical and relevant application example. The results of simulation studies confirm the theoretical properties of the sequential tests, that is, the type-I error probability is controlled at a nominal level and a high power is maintained with considerably fewer permutations needed compared to conventional permutation testing. The numerical stability of the methods is investigated in two additional application studies. In summary, theoretically sound sequential permutation testing of VIMP is possible at greatly reduced computational costs. Recommendations for application are given. A respective implementation for RF's pVIMP is provided through the accompanying R package rfvimptest.
AbstractList Hypothesis testing of variable importance measures (VIMPs) is still the subject of ongoing research. This particularly applies to random forests (RF), for which VIMPs are a popular feature. Among recent developments, heuristic approaches to parametric testing have been proposed whose distributional assumptions are based on empirical evidence. Other formal tests under regularity conditions were derived analytically. But these approaches can be computationally expensive or even practically infeasible. This problem also occurs with non-parametric permutation tests, which are, however, distribution-free and can generically be applied to any kind of prediction model and VIMP. Embracing this advantage, it is proposed to use sequential permutation tests and sequential p-value estimation to reduce the computational costs associated with conventional permutation tests. These costs can be particularly high in case of complex prediction models. Therefore, RF's popular and widely used permutation VIMP (pVIMP) serves as a practical and relevant application example. The results of simulation studies confirm the theoretical properties of the sequential tests, that is, the type-I error probability is controlled at a nominal level and a high power is maintained with considerably fewer permutations needed compared to conventional permutation testing. The numerical stability of the methods is investigated in two additional application studies. In summary, theoretically sound sequential permutation testing of VIMP is possible at greatly reduced computational costs. Recommendations for application are given. A respective implementation for RF's pVIMP is provided through the accompanying R package rfvimptest.
ArticleNumber 107689
Author Hornung, Roman
Haller, Bernhard
Hapfelmeier, Alexander
Author_xml – sequence: 1
  givenname: Alexander
  orcidid: 0000-0001-6765-6352
  surname: Hapfelmeier
  fullname: Hapfelmeier, Alexander
  email: alexander.hapfelmeier@tum.de
  organization: Institute of General Practice and Health Services Research, School of Medicine, Technical University of Munich, Orleansstraße 47, Munich, 81667, Germany
– sequence: 2
  givenname: Roman
  surname: Hornung
  fullname: Hornung, Roman
  organization: Institute for Medical Information Processing, Biometry and Epidemiology, University of Munich, Marchioninistr. 15, Munich, 81377, Germany
– sequence: 3
  givenname: Bernhard
  surname: Haller
  fullname: Haller, Bernhard
  organization: Institute of AI and Informatics in Medicine, School of Medicine, Technical University of Munich, Ismaninger Str. 22, Munich, 81675, Germany
BookMark eNp9kLtOwzAUQC0EEm3hB5g8sqT40diJxIKq8pAqscCK5TrX4CqJg-1W9O9xFSaGTpbsc651zxSd974HhG4omVNCxd12bmKj54wwli-kqOozNKGVZIXkJTtHkwzJol5IfommMW4JIWwhqwn6WFnrjIM-4QFCt0s6Od_jBDG5_hN7i_c6OL1pAbtu8CHp3gDuQMddgIg3B5y-AMOP7oaMZDzovvEdtj4_p3iFLqxuI1z_nTP0_rh6Wz4X69enl-XDujBcylSUXJTSApNWcKiayhLDDKOMlLUppTCcaGY5CCqMrEUp6rKmmnEgYMDWRPAZuh3nDsF_7_LPqnPRQNvqHvwuKlbxRZ5GJM0oG1ETfIwBrBqC63Q4KErUMabaqmNMdYypxphZqv5Jxo2pUtCuPa3ejyrk_fcOgorH3gYaF8Ak1Xh3Sv8FSPWSkA
CitedBy_id crossref_primary_10_1371_journal_pone_0303566
crossref_primary_10_3390_e25071028
crossref_primary_10_1039_D4DD00101J
crossref_primary_10_3390_atmos15070799
crossref_primary_10_1093_cercor_bhae100
crossref_primary_10_32604_cmc_2024_057714
crossref_primary_10_1093_bib_bbaf096
crossref_primary_10_1111_exsy_70017
crossref_primary_10_3390_en17174379
crossref_primary_10_3390_math11234710
crossref_primary_10_1016_j_rse_2024_114231
crossref_primary_10_1088_1741_2552_acbee1
crossref_primary_10_1186_s12874_023_02023_2
crossref_primary_10_1186_s42466_024_00310_x
crossref_primary_10_1177_17562864231161892
crossref_primary_10_1016_j_icheatmasstransfer_2024_108286
Cites_doi 10.1080/10618600.2016.1256817
10.1186/1471-2105-14-125
10.1016/j.isprsjprs.2016.01.011
10.1037/a0016973
10.1080/03610926.2020.1764042
10.3390/e24050687
10.1007/s00357-018-9302-x
10.1186/s12859-022-04962-x
10.1186/s12859-020-03622-2
10.1080/07474946.2011.539924
10.1007/s11222-021-10057-z
10.1080/03610919108812956
10.1198/106186006X133933
10.1093/biomet/78.2.301
10.1214/aoms/1177731118
10.1016/j.csda.2011.09.024
10.1016/j.eswa.2019.05.028
10.1186/1471-2105-8-25
10.1186/s12859-016-0995-8
10.1093/bioinformatics/bty1025
10.1038/s41533-021-00258-4
10.1016/j.csda.2019.106839
10.1007/s11634-016-0276-4
10.1145/1147234.1147247
10.1093/bib/bbx124
10.1016/j.csda.2006.12.030
10.1007/BF00058655
10.1007/s11222-012-9349-1
10.1093/bib/bbu012
10.1002/widm.1072
10.1023/A:1010933404324
10.1016/j.csda.2012.09.020
10.1186/1471-2288-14-137
10.1371/journal.pone.0201904
10.1093/bioinformatics/bty373
10.1177/0962280217693034
10.1214/aoms/1177707045
10.1002/sim.7803
10.18637/jss.v077.i01
10.1016/j.csda.2014.06.017
10.1186/1471-2105-9-307
ContentType Journal Article
Copyright 2023 The Author(s)
Copyright_xml – notice: 2023 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.csda.2022.107689
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1872-7352
ExternalDocumentID 10_1016_j_csda_2022_107689
S0167947322002699
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AI.
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HMJ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDS
SES
SEW
SME
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
VH1
VOH
WUQ
XPP
ZMT
ZY4
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c377t-53657fe27f63e8d8f0c2c212059c576c30a2f3e616c796569591a23e0ecef9063
IEDL.DBID .~1
ISSN 0167-9473
IngestDate Fri Aug 22 20:17:42 EDT 2025
Tue Jul 01 02:24:38 EDT 2025
Thu Apr 24 23:01:32 EDT 2025
Fri Feb 23 02:38:29 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords p-value
Sequential permutation test
Prediction model
Machine learning
Variable selection
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c377t-53657fe27f63e8d8f0c2c212059c576c30a2f3e616c796569591a23e0ecef9063
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6765-6352
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0167947322002699
PQID 2834205071
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2834205071
crossref_primary_10_1016_j_csda_2022_107689
crossref_citationtrail_10_1016_j_csda_2022_107689
elsevier_sciencedirect_doi_10_1016_j_csda_2022_107689
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2023
2023-05-00
20230501
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: May 2023
PublicationDecade 2020
PublicationTitle Computational statistics & data analysis
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Breiman (br0090) 2001; 45
Li, Mansmann, Du, Hornung (br0350) 2022; 23
Janitza, Celik, Boulesteix (br0300) 2018; 12
McAlexander, Mentch (br0390) 2020; 7
Adler, Painsky (br0010) 2022; 24
Dwass (br0150) 1957
Hornung (br0260) 2020; 37
Dua, Graff (br0140) 2017
Strobl, Boulesteix, Augustin (br0530) 2007; 52
Belgiu, Drăguţ (br0020) 2016; 114
Kulldorff, Davis, Kolczak, Lewis, Lieu, Platt (br0320) 2011; 30
Besag, Clifford (br0040) 1991; 78
Boulesteix, Janitza, Kruppa, König (br0070) 2012; 2
Good (br0200) 2013
Hapfelmeier, Hothorn, Ulm, Strobl (br0220) 2014; 24
Schneider, Rauscher, Kellerer, Linde, Kneissl, Hapfelmeier (br0500) 2021; 31
Liaw, Wiener (br0360) 2002; 2
Wald (br0590) 1945; 16
Wright, Ziegler, König (br0610) 2016; 17
Friedman (br0170) 1991; 19
Strobl, Malley, Tutz (br0560) 2009; 14
Mentch, Hooker (br0410) 2016; 17
Meinshausen, Ridgeway (br0400) 2006; 7
Tutz (br0570) 2021
Good (br0190) 2006
Riley, Ensor, Snell, Harrell, Martin, Reitsma, Moons, Collins, van Smeden (br0490) 2020; 368
Hapfelmeier, Hothorn, Ulm (br0210) 2012; 56
Lock (br0370) 1991; 20
Degenhardt, Seifert, Szymczak (br0130) 2017; 20
Bommert, Sun, Bischl, Rahnenführer, Lang (br0050) 2020; 143
Hapfelmeier, Ulm (br0240) 2014; 80
Lehmann, Romano, Casella (br0330) 2005
Debeer, Strobl (br0120) 2020; 21
Fernández-Delgado, Cernadas, Barro, Amorim (br0160) 2014; 15
van der Ploeg, Austin, Steyerberg (br0480) 2014; 14
Nembrini, König, Wright (br0460) 2018; 34
Hothorn, Hornik, Zeileis (br0270) 2006; 15
Garge, Bobashev, Eggleston (br0180) 2013; 14
Mentch, Zhou (br0440) 2022; 23
Berry, Johnston, Mielke (br0030) 2011; 3
Hooker, Mentch, Zhou (br0250) 2021; 31
Breiman (br0080) 1996; 24
Wainberg, Alipanahi, Frey (br0580) 2016; 17
Janitza, Hornung (br0310) 2018; 13
Pearson (br0470) 2006; 8
Hapfelmeier, Ulm (br0230) 2013; 60
Czanner, Sarma, Eden, Brown (br0110) 2008
Mentch, Hooker (br0420) 2017; 26
Nembrini (br0450) 2018; 35
Speiser, Miller, Tooze, Ip (br0520) 2019; 134
Ishwaran, Lu (br0290) 2019; 38
Mentch, Zhou (br0430) 2020; 21
Hothorn, Zeileis (br0280) 0 2021
Leisch, Dimitriadou (br0340) 2021
Loecher (br0380) 2022; 51
Boulesteix, Janitza, Hapfelmeier, Van Steen, Strobl (br0060) 2015; 16
Coleman, Peng, Mentch (br0100) 2022; 23
Wright, Ziegler (br0600) 2017; 77
Seibold, Zeileis, Hothorn (br0510) 2018; 27
Strobl, Boulesteix, Zeileis, Hothorn (br0550) 2007; 8
Strobl, Boulesteix, Kneib, Augustin, Zeileis (br0540) 2008; 9
Breiman (10.1016/j.csda.2022.107689_br0090) 2001; 45
Schneider (10.1016/j.csda.2022.107689_br0500) 2021; 31
McAlexander (10.1016/j.csda.2022.107689_br0390) 2020; 7
Belgiu (10.1016/j.csda.2022.107689_br0020) 2016; 114
Janitza (10.1016/j.csda.2022.107689_br0310) 2018; 13
Ishwaran (10.1016/j.csda.2022.107689_br0290) 2019; 38
Hapfelmeier (10.1016/j.csda.2022.107689_br0210) 2012; 56
Boulesteix (10.1016/j.csda.2022.107689_br0060) 2015; 16
Hapfelmeier (10.1016/j.csda.2022.107689_br0230) 2013; 60
Bommert (10.1016/j.csda.2022.107689_br0050) 2020; 143
Riley (10.1016/j.csda.2022.107689_br0490) 2020; 368
Lehmann (10.1016/j.csda.2022.107689_br0330) 2005
Boulesteix (10.1016/j.csda.2022.107689_br0070) 2012; 2
Tutz (10.1016/j.csda.2022.107689_br0570) 2021
Dua (10.1016/j.csda.2022.107689_br0140)
Hothorn (10.1016/j.csda.2022.107689_br0280) 2021
Lock (10.1016/j.csda.2022.107689_br0370) 1991; 20
Kulldorff (10.1016/j.csda.2022.107689_br0320) 2011; 30
Degenhardt (10.1016/j.csda.2022.107689_br0130) 2017; 20
Hapfelmeier (10.1016/j.csda.2022.107689_br0240) 2014; 80
Hothorn (10.1016/j.csda.2022.107689_br0270) 2006; 15
Mentch (10.1016/j.csda.2022.107689_br0410) 2016; 17
van der Ploeg (10.1016/j.csda.2022.107689_br0480) 2014; 14
Strobl (10.1016/j.csda.2022.107689_br0540) 2008; 9
Pearson (10.1016/j.csda.2022.107689_br0470) 2006; 8
Seibold (10.1016/j.csda.2022.107689_br0510) 2018; 27
Berry (10.1016/j.csda.2022.107689_br0030) 2011; 3
Nembrini (10.1016/j.csda.2022.107689_br0460) 2018; 34
Hapfelmeier (10.1016/j.csda.2022.107689_br0220) 2014; 24
Speiser (10.1016/j.csda.2022.107689_br0520) 2019; 134
Strobl (10.1016/j.csda.2022.107689_br0530) 2007; 52
Breiman (10.1016/j.csda.2022.107689_br0080) 1996; 24
Wainberg (10.1016/j.csda.2022.107689_br0580) 2016; 17
Adler (10.1016/j.csda.2022.107689_br0010) 2022; 24
Besag (10.1016/j.csda.2022.107689_br0040) 1991; 78
Nembrini (10.1016/j.csda.2022.107689_br0450) 2018; 35
Mentch (10.1016/j.csda.2022.107689_br0440) 2022; 23
Garge (10.1016/j.csda.2022.107689_br0180) 2013; 14
Hornung (10.1016/j.csda.2022.107689_br0260) 2020; 37
Good (10.1016/j.csda.2022.107689_br0190) 2006
Coleman (10.1016/j.csda.2022.107689_br0100) 2022; 23
Loecher (10.1016/j.csda.2022.107689_br0380) 2022; 51
Wright (10.1016/j.csda.2022.107689_br0610) 2016; 17
Janitza (10.1016/j.csda.2022.107689_br0300) 2018; 12
Debeer (10.1016/j.csda.2022.107689_br0120) 2020; 21
Good (10.1016/j.csda.2022.107689_br0200) 2013
Wright (10.1016/j.csda.2022.107689_br0600) 2017; 77
Li (10.1016/j.csda.2022.107689_br0350) 2022; 23
Liaw (10.1016/j.csda.2022.107689_br0360) 2002; 2
Dwass (10.1016/j.csda.2022.107689_br0150) 1957
Mentch (10.1016/j.csda.2022.107689_br0420) 2017; 26
Strobl (10.1016/j.csda.2022.107689_br0560) 2009; 14
Friedman (10.1016/j.csda.2022.107689_br0170) 1991; 19
Hooker (10.1016/j.csda.2022.107689_br0250) 2021; 31
Strobl (10.1016/j.csda.2022.107689_br0550) 2007; 8
Czanner (10.1016/j.csda.2022.107689_br0110) 2008
Fernández-Delgado (10.1016/j.csda.2022.107689_br0160) 2014; 15
Leisch (10.1016/j.csda.2022.107689_br0340) 2021
Wald (10.1016/j.csda.2022.107689_br0590) 1945; 16
Meinshausen (10.1016/j.csda.2022.107689_br0400) 2006; 7
Mentch (10.1016/j.csda.2022.107689_br0430) 2020; 21
References_xml – volume: 114
  start-page: 24
  year: 2016
  end-page: 31
  ident: br0020
  article-title: Random forest in remote sensing: a review of applications and future directions
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 31
  start-page: 1
  year: 2021
  end-page: 6
  ident: br0500
  article-title: Covid-19 assessment in family practice—a clinical decision rule based on self-rated symptoms and contact history
  publication-title: NPJ Prim. Care Respir. Med.
– year: 2021
  ident: br0340
  article-title: mlbench: Machine Learning Benchmark Problems
– volume: 9
  start-page: 1
  year: 2008
  end-page: 11
  ident: br0540
  article-title: Conditional variable importance for random forests
  publication-title: BMC Bioinform.
– volume: 15
  start-page: 651
  year: 2006
  end-page: 674
  ident: br0270
  article-title: Unbiased recursive partitioning: a conditional inference framework
  publication-title: J. Comput. Graph. Stat.
– volume: 13
  year: 2018
  ident: br0310
  article-title: On the overestimation of random forest's out-of-bag error
  publication-title: PLoS ONE
– year: 2005
  ident: br0330
  article-title: Testing Statistical Hypotheses, vol. 3
– volume: 51
  start-page: 1413
  year: 2022
  end-page: 1425
  ident: br0380
  article-title: Unbiased variable importance for random forests
  publication-title: Commun. Stat., Theory Methods
– volume: 14
  start-page: 323
  year: 2009
  ident: br0560
  article-title: An introduction to recursive partitioning: rationale, application, and characteristics of classification and regression trees, bagging, and random forests
  publication-title: Psychol. Methods
– volume: 26
  start-page: 589
  year: 2017
  end-page: 597
  ident: br0420
  article-title: Formal hypothesis tests for additive structure in random forests
  publication-title: J. Comput. Graph. Stat.
– volume: 23
  start-page: 1
  year: 2022
  end-page: 35
  ident: br0100
  article-title: Scalable and efficient hypothesis testing with random forests
  publication-title: J. Mach. Learn. Res.
– volume: 77
  start-page: 1
  year: 2017
  end-page: 17
  ident: br0600
  article-title: ranger: a fast implementation of random forests for high dimensional data in C++ and R
  publication-title: J. Stat. Softw.
– volume: 19
  start-page: 1
  year: 1991
  end-page: 67
  ident: br0170
  article-title: Multivariate adaptive regression splines
  publication-title: Ann. Stat.
– volume: 2
  start-page: 18
  year: 2002
  end-page: 22
  ident: br0360
  article-title: Classification and regression by randomforest
  publication-title: R News
– volume: 27
  start-page: 3104
  year: 2018
  end-page: 3125
  ident: br0510
  article-title: Individual treatment effect prediction for amyotrophic lateral sclerosis patients
  publication-title: Stat. Methods Med. Res.
– volume: 8
  start-page: 83
  year: 2006
  end-page: 92
  ident: br0470
  article-title: The problem of disguised missing data
  publication-title: ACM SIGKDD Explor. Newsl.
– volume: 30
  start-page: 58
  year: 2011
  end-page: 78
  ident: br0320
  article-title: A maximized sequential probability ratio test for drug and vaccine safety surveillance
  publication-title: Seq. Anal.
– start-page: 1
  year: 2021
  end-page: 23
  ident: br0570
  article-title: Ordinal trees and random forests: score-free recursive partitioning and improved ensembles
  publication-title: J. Classif.
– start-page: 181
  year: 1957
  end-page: 187
  ident: br0150
  article-title: Modified randomization tests for nonparametric hypotheses
  publication-title: Ann. Math. Stat.
– volume: 2
  start-page: 493
  year: 2012
  end-page: 507
  ident: br0070
  article-title: Overview of random forest methodology and practical guidance with emphasis on computational biology and bioinformatics
  publication-title: WIREs Data Min. Knowl. Discov.
– volume: 38
  start-page: 558
  year: 2019
  end-page: 582
  ident: br0290
  article-title: Standard errors and confidence intervals for variable importance in random forest regression, classification, and survival
  publication-title: Stat. Med.
– volume: 21
  start-page: 1
  year: 2020
  end-page: 36
  ident: br0430
  article-title: Randomization as regularization: a degrees of freedom explanation for random forest success
  publication-title: J. Mach. Learn. Res.
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: br0090
  article-title: Random forests
  publication-title: Mach. Learn.
– volume: 15
  start-page: 3133
  year: 2014
  end-page: 3181
  ident: br0160
  article-title: Do we need hundreds of classifiers to solve real world classification problems?
  publication-title: J. Mach. Learn. Res.
– volume: 7
  year: 2006
  ident: br0400
  article-title: Quantile regression forests
  publication-title: J. Mach. Learn. Res.
– volume: 7
  year: 2020
  ident: br0390
  article-title: Predictive inference with random forests: a new perspective on classical analyses
  publication-title: Res. Polit.
– volume: 14
  start-page: 1
  year: 2014
  end-page: 13
  ident: br0480
  article-title: Modern modelling techniques are data hungry: a simulation study for predicting dichotomous endpoints
  publication-title: BMC Med. Res. Methodol.
– volume: 17
  start-page: 1
  year: 2016
  end-page: 10
  ident: br0610
  article-title: Do little interactions get lost in dark random forests?
  publication-title: BMC Bioinform.
– volume: 20
  start-page: 341
  year: 1991
  end-page: 363
  ident: br0370
  article-title: A sequential approximation to a permutation test
  publication-title: Commun. Stat., Simul. Comput.
– year: 2017
  ident: br0140
  article-title: UCI machine learning repository
– volume: 134
  start-page: 93
  year: 2019
  end-page: 101
  ident: br0520
  article-title: A comparison of random forest variable selection methods for classification prediction modeling
  publication-title: Expert Syst. Appl.
– volume: 31
  start-page: 1
  year: 2021
  end-page: 16
  ident: br0250
  article-title: Unrestricted permutation forces extrapolation: variable importance requires at least one more model, or there is no free variable importance
  publication-title: Stat. Comput.
– volume: 24
  start-page: 687
  year: 2022
  ident: br0010
  article-title: Feature importance in gradient boosting trees with cross-validation feature selection
  publication-title: Entropy
– volume: 16
  start-page: 338
  year: 2015
  end-page: 345
  ident: br0060
  article-title: Letter to the editor: on the term ‘interaction’ and related phrases in the literature on random forests
  publication-title: Brief. Bioinform.
– volume: 16
  start-page: 117
  year: 1945
  end-page: 186
  ident: br0590
  article-title: Sequential tests of statistical hypotheses
  publication-title: Ann. Math. Stat.
– volume: 368
  year: 2020
  ident: br0490
  article-title: Calculating the sample size required for developing a clinical prediction model
  publication-title: BMJ
– volume: 3
  start-page: 527
  year: 2011
  end-page: 542
  ident: br0030
  article-title: Permutation methods
  publication-title: WIREs: Comput. Stat.
– volume: 14
  start-page: 1
  year: 2013
  end-page: 8
  ident: br0180
  article-title: Random forest methodology for model-based recursive partitioning: the mobforest package for R
  publication-title: BMC Bioinform.
– volume: 35
  start-page: 2701
  year: 2018
  end-page: 2705
  ident: br0450
  article-title: On what to permute in test-based approaches for variable importance measures in random forests
  publication-title: Bioinformatics
– volume: 12
  start-page: 885
  year: 2018
  end-page: 915
  ident: br0300
  article-title: A computationally fast variable importance test for random forests for high-dimensional data
  publication-title: Adv. Data Anal. Classif.
– volume: 24
  start-page: 21
  year: 2014
  end-page: 34
  ident: br0220
  article-title: A new variable importance measure for random forests with missing data
  publication-title: Stat. Comput.
– volume: 17
  start-page: 3837
  year: 2016
  end-page: 3841
  ident: br0580
  article-title: Are random forests truly the best classifiers?
  publication-title: J. Mach. Learn. Res.
– volume: 78
  start-page: 301
  year: 1991
  end-page: 304
  ident: br0040
  article-title: Sequential Monte Carlo p-values
  publication-title: Biometrika
– volume: 56
  start-page: 1552
  year: 2012
  end-page: 1565
  ident: br0210
  article-title: Recursive partitioning on incomplete data using surrogate decisions and multiple imputation
  publication-title: Comput. Stat. Data Anal.
– volume: 60
  start-page: 50
  year: 2013
  end-page: 69
  ident: br0230
  article-title: A new variable selection approach using random forests
  publication-title: Comput. Stat. Data Anal.
– volume: 52
  start-page: 483
  year: 2007
  end-page: 501
  ident: br0530
  article-title: Unbiased split selection for classification trees based on the Gini index
  publication-title: Comput. Stat. Data Anal.
– volume: 20
  start-page: 492
  year: 2017
  end-page: 503
  ident: br0130
  article-title: Evaluation of variable selection methods for random forests and omics data sets
  publication-title: Brief. Bioinform.
– year: 2008
  ident: br0110
  article-title: A signal-to-noise ratio estimator for generalized linear model systems
  publication-title: Proceedings of the World Congress on Engineering
– volume: 17
  start-page: 841
  year: 2016
  end-page: 881
  ident: br0410
  article-title: Quantifying uncertainty in random forests via confidence intervals and hypothesis tests
  publication-title: J. Mach. Learn. Res.
– volume: 24
  start-page: 123
  year: 1996
  end-page: 140
  ident: br0080
  article-title: Bagging predictors
  publication-title: Mach. Learn.
– start-page: 1
  year: 0 2021
  end-page: 16
  ident: br0280
  article-title: Predictive distribution modeling using transformation forests
  publication-title: J. Comput. Graph. Stat.
– volume: 23
  start-page: 412
  year: 2022
  ident: br0350
  article-title: Benchmark study of feature selection strategies for multi-omics data
  publication-title: BMC Bioinform.
– year: 2006
  ident: br0190
  article-title: Permutation, Parametric, and Bootstrap Tests of Hypotheses
  publication-title: Springer Series in Statistics
– volume: 23
  start-page: 1
  year: 2022
  end-page: 32
  ident: br0440
  article-title: Getting better from worse: augmented bagging and a cautionary tale of variable importance
  publication-title: J. Mach. Learn. Res.
– volume: 37
  start-page: 4
  year: 2020
  end-page: 17
  ident: br0260
  article-title: Ordinal forests
  publication-title: J. Classif.
– volume: 34
  start-page: 3711
  year: 2018
  end-page: 3718
  ident: br0460
  article-title: The revival of the Gini importance?
  publication-title: Bioinformatics
– volume: 8
  start-page: 1
  year: 2007
  end-page: 21
  ident: br0550
  article-title: Bias in random forest variable importance measures: illustrations, sources and a solution
  publication-title: BMC Bioinform.
– volume: 21
  start-page: 1
  year: 2020
  end-page: 30
  ident: br0120
  article-title: Conditional permutation importance revisited
  publication-title: BMC Bioinform.
– volume: 143
  year: 2020
  ident: br0050
  article-title: Benchmark for filter methods for feature selection in high-dimensional classification data
  publication-title: Comput. Stat. Data Anal.
– year: 2013
  ident: br0200
  article-title: Permutation Tests: a Practical Guide to Resampling Methods for Testing Hypotheses
– volume: 80
  start-page: 129
  year: 2014
  end-page: 139
  ident: br0240
  article-title: Variable selection by random forests using data with missing values
  publication-title: Comput. Stat. Data Anal.
– volume: 19
  start-page: 1
  year: 1991
  ident: 10.1016/j.csda.2022.107689_br0170
  article-title: Multivariate adaptive regression splines
  publication-title: Ann. Stat.
– volume: 26
  start-page: 589
  year: 2017
  ident: 10.1016/j.csda.2022.107689_br0420
  article-title: Formal hypothesis tests for additive structure in random forests
  publication-title: J. Comput. Graph. Stat.
  doi: 10.1080/10618600.2016.1256817
– volume: 14
  start-page: 1
  year: 2013
  ident: 10.1016/j.csda.2022.107689_br0180
  article-title: Random forest methodology for model-based recursive partitioning: the mobforest package for R
  publication-title: BMC Bioinform.
  doi: 10.1186/1471-2105-14-125
– volume: 114
  start-page: 24
  year: 2016
  ident: 10.1016/j.csda.2022.107689_br0020
  article-title: Random forest in remote sensing: a review of applications and future directions
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2016.01.011
– volume: 14
  start-page: 323
  year: 2009
  ident: 10.1016/j.csda.2022.107689_br0560
  article-title: An introduction to recursive partitioning: rationale, application, and characteristics of classification and regression trees, bagging, and random forests
  publication-title: Psychol. Methods
  doi: 10.1037/a0016973
– volume: 51
  start-page: 1413
  year: 2022
  ident: 10.1016/j.csda.2022.107689_br0380
  article-title: Unbiased variable importance for random forests
  publication-title: Commun. Stat., Theory Methods
  doi: 10.1080/03610926.2020.1764042
– volume: 24
  start-page: 687
  year: 2022
  ident: 10.1016/j.csda.2022.107689_br0010
  article-title: Feature importance in gradient boosting trees with cross-validation feature selection
  publication-title: Entropy
  doi: 10.3390/e24050687
– volume: 37
  start-page: 4
  year: 2020
  ident: 10.1016/j.csda.2022.107689_br0260
  article-title: Ordinal forests
  publication-title: J. Classif.
  doi: 10.1007/s00357-018-9302-x
– volume: 23
  start-page: 412
  year: 2022
  ident: 10.1016/j.csda.2022.107689_br0350
  article-title: Benchmark study of feature selection strategies for multi-omics data
  publication-title: BMC Bioinform.
  doi: 10.1186/s12859-022-04962-x
– start-page: 1
  year: 2021
  ident: 10.1016/j.csda.2022.107689_br0280
  article-title: Predictive distribution modeling using transformation forests
  publication-title: J. Comput. Graph. Stat.
– volume: 21
  start-page: 1
  year: 2020
  ident: 10.1016/j.csda.2022.107689_br0120
  article-title: Conditional permutation importance revisited
  publication-title: BMC Bioinform.
  doi: 10.1186/s12859-020-03622-2
– volume: 30
  start-page: 58
  year: 2011
  ident: 10.1016/j.csda.2022.107689_br0320
  article-title: A maximized sequential probability ratio test for drug and vaccine safety surveillance
  publication-title: Seq. Anal.
  doi: 10.1080/07474946.2011.539924
– volume: 31
  start-page: 1
  year: 2021
  ident: 10.1016/j.csda.2022.107689_br0250
  article-title: Unrestricted permutation forces extrapolation: variable importance requires at least one more model, or there is no free variable importance
  publication-title: Stat. Comput.
  doi: 10.1007/s11222-021-10057-z
– volume: 20
  start-page: 341
  year: 1991
  ident: 10.1016/j.csda.2022.107689_br0370
  article-title: A sequential approximation to a permutation test
  publication-title: Commun. Stat., Simul. Comput.
  doi: 10.1080/03610919108812956
– year: 2013
  ident: 10.1016/j.csda.2022.107689_br0200
– ident: 10.1016/j.csda.2022.107689_br0140
– year: 2005
  ident: 10.1016/j.csda.2022.107689_br0330
– volume: 7
  year: 2020
  ident: 10.1016/j.csda.2022.107689_br0390
  article-title: Predictive inference with random forests: a new perspective on classical analyses
  publication-title: Res. Polit.
– volume: 15
  start-page: 651
  year: 2006
  ident: 10.1016/j.csda.2022.107689_br0270
  article-title: Unbiased recursive partitioning: a conditional inference framework
  publication-title: J. Comput. Graph. Stat.
  doi: 10.1198/106186006X133933
– volume: 7
  year: 2006
  ident: 10.1016/j.csda.2022.107689_br0400
  article-title: Quantile regression forests
  publication-title: J. Mach. Learn. Res.
– volume: 15
  start-page: 3133
  year: 2014
  ident: 10.1016/j.csda.2022.107689_br0160
  article-title: Do we need hundreds of classifiers to solve real world classification problems?
  publication-title: J. Mach. Learn. Res.
– volume: 78
  start-page: 301
  year: 1991
  ident: 10.1016/j.csda.2022.107689_br0040
  article-title: Sequential Monte Carlo p-values
  publication-title: Biometrika
  doi: 10.1093/biomet/78.2.301
– volume: 16
  start-page: 117
  year: 1945
  ident: 10.1016/j.csda.2022.107689_br0590
  article-title: Sequential tests of statistical hypotheses
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177731118
– volume: 56
  start-page: 1552
  year: 2012
  ident: 10.1016/j.csda.2022.107689_br0210
  article-title: Recursive partitioning on incomplete data using surrogate decisions and multiple imputation
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/j.csda.2011.09.024
– volume: 134
  start-page: 93
  year: 2019
  ident: 10.1016/j.csda.2022.107689_br0520
  article-title: A comparison of random forest variable selection methods for classification prediction modeling
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.05.028
– volume: 3
  start-page: 527
  year: 2011
  ident: 10.1016/j.csda.2022.107689_br0030
  article-title: Permutation methods
  publication-title: WIREs: Comput. Stat.
– volume: 2
  start-page: 18
  year: 2002
  ident: 10.1016/j.csda.2022.107689_br0360
  article-title: Classification and regression by randomforest
  publication-title: R News
– volume: 8
  start-page: 1
  year: 2007
  ident: 10.1016/j.csda.2022.107689_br0550
  article-title: Bias in random forest variable importance measures: illustrations, sources and a solution
  publication-title: BMC Bioinform.
  doi: 10.1186/1471-2105-8-25
– volume: 17
  start-page: 1
  year: 2016
  ident: 10.1016/j.csda.2022.107689_br0610
  article-title: Do little interactions get lost in dark random forests?
  publication-title: BMC Bioinform.
  doi: 10.1186/s12859-016-0995-8
– volume: 35
  start-page: 2701
  year: 2018
  ident: 10.1016/j.csda.2022.107689_br0450
  article-title: On what to permute in test-based approaches for variable importance measures in random forests
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty1025
– volume: 31
  start-page: 1
  year: 2021
  ident: 10.1016/j.csda.2022.107689_br0500
  article-title: Covid-19 assessment in family practice—a clinical decision rule based on self-rated symptoms and contact history
  publication-title: NPJ Prim. Care Respir. Med.
  doi: 10.1038/s41533-021-00258-4
– volume: 368
  year: 2020
  ident: 10.1016/j.csda.2022.107689_br0490
  article-title: Calculating the sample size required for developing a clinical prediction model
  publication-title: BMJ
– volume: 143
  year: 2020
  ident: 10.1016/j.csda.2022.107689_br0050
  article-title: Benchmark for filter methods for feature selection in high-dimensional classification data
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/j.csda.2019.106839
– volume: 17
  start-page: 3837
  year: 2016
  ident: 10.1016/j.csda.2022.107689_br0580
  article-title: Are random forests truly the best classifiers?
  publication-title: J. Mach. Learn. Res.
– volume: 12
  start-page: 885
  year: 2018
  ident: 10.1016/j.csda.2022.107689_br0300
  article-title: A computationally fast variable importance test for random forests for high-dimensional data
  publication-title: Adv. Data Anal. Classif.
  doi: 10.1007/s11634-016-0276-4
– volume: 8
  start-page: 83
  year: 2006
  ident: 10.1016/j.csda.2022.107689_br0470
  article-title: The problem of disguised missing data
  publication-title: ACM SIGKDD Explor. Newsl.
  doi: 10.1145/1147234.1147247
– year: 2008
  ident: 10.1016/j.csda.2022.107689_br0110
  article-title: A signal-to-noise ratio estimator for generalized linear model systems
– volume: 23
  start-page: 1
  year: 2022
  ident: 10.1016/j.csda.2022.107689_br0100
  article-title: Scalable and efficient hypothesis testing with random forests
  publication-title: J. Mach. Learn. Res.
– volume: 20
  start-page: 492
  year: 2017
  ident: 10.1016/j.csda.2022.107689_br0130
  article-title: Evaluation of variable selection methods for random forests and omics data sets
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbx124
– volume: 52
  start-page: 483
  year: 2007
  ident: 10.1016/j.csda.2022.107689_br0530
  article-title: Unbiased split selection for classification trees based on the Gini index
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/j.csda.2006.12.030
– start-page: 1
  year: 2021
  ident: 10.1016/j.csda.2022.107689_br0570
  article-title: Ordinal trees and random forests: score-free recursive partitioning and improved ensembles
  publication-title: J. Classif.
– volume: 24
  start-page: 123
  year: 1996
  ident: 10.1016/j.csda.2022.107689_br0080
  article-title: Bagging predictors
  publication-title: Mach. Learn.
  doi: 10.1007/BF00058655
– volume: 24
  start-page: 21
  year: 2014
  ident: 10.1016/j.csda.2022.107689_br0220
  article-title: A new variable importance measure for random forests with missing data
  publication-title: Stat. Comput.
  doi: 10.1007/s11222-012-9349-1
– volume: 16
  start-page: 338
  year: 2015
  ident: 10.1016/j.csda.2022.107689_br0060
  article-title: Letter to the editor: on the term ‘interaction’ and related phrases in the literature on random forests
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbu012
– volume: 2
  start-page: 493
  year: 2012
  ident: 10.1016/j.csda.2022.107689_br0070
  article-title: Overview of random forest methodology and practical guidance with emphasis on computational biology and bioinformatics
  publication-title: WIREs Data Min. Knowl. Discov.
  doi: 10.1002/widm.1072
– volume: 45
  start-page: 5
  year: 2001
  ident: 10.1016/j.csda.2022.107689_br0090
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 60
  start-page: 50
  year: 2013
  ident: 10.1016/j.csda.2022.107689_br0230
  article-title: A new variable selection approach using random forests
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/j.csda.2012.09.020
– volume: 17
  start-page: 841
  year: 2016
  ident: 10.1016/j.csda.2022.107689_br0410
  article-title: Quantifying uncertainty in random forests via confidence intervals and hypothesis tests
  publication-title: J. Mach. Learn. Res.
– volume: 21
  start-page: 1
  year: 2020
  ident: 10.1016/j.csda.2022.107689_br0430
  article-title: Randomization as regularization: a degrees of freedom explanation for random forest success
  publication-title: J. Mach. Learn. Res.
– volume: 14
  start-page: 1
  year: 2014
  ident: 10.1016/j.csda.2022.107689_br0480
  article-title: Modern modelling techniques are data hungry: a simulation study for predicting dichotomous endpoints
  publication-title: BMC Med. Res. Methodol.
  doi: 10.1186/1471-2288-14-137
– year: 2006
  ident: 10.1016/j.csda.2022.107689_br0190
  article-title: Permutation, Parametric, and Bootstrap Tests of Hypotheses
– volume: 13
  year: 2018
  ident: 10.1016/j.csda.2022.107689_br0310
  article-title: On the overestimation of random forest's out-of-bag error
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0201904
– year: 2021
  ident: 10.1016/j.csda.2022.107689_br0340
– volume: 23
  start-page: 1
  year: 2022
  ident: 10.1016/j.csda.2022.107689_br0440
  article-title: Getting better from worse: augmented bagging and a cautionary tale of variable importance
  publication-title: J. Mach. Learn. Res.
– volume: 34
  start-page: 3711
  year: 2018
  ident: 10.1016/j.csda.2022.107689_br0460
  article-title: The revival of the Gini importance?
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty373
– volume: 27
  start-page: 3104
  year: 2018
  ident: 10.1016/j.csda.2022.107689_br0510
  article-title: Individual treatment effect prediction for amyotrophic lateral sclerosis patients
  publication-title: Stat. Methods Med. Res.
  doi: 10.1177/0962280217693034
– start-page: 181
  year: 1957
  ident: 10.1016/j.csda.2022.107689_br0150
  article-title: Modified randomization tests for nonparametric hypotheses
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177707045
– volume: 38
  start-page: 558
  year: 2019
  ident: 10.1016/j.csda.2022.107689_br0290
  article-title: Standard errors and confidence intervals for variable importance in random forest regression, classification, and survival
  publication-title: Stat. Med.
  doi: 10.1002/sim.7803
– volume: 77
  start-page: 1
  year: 2017
  ident: 10.1016/j.csda.2022.107689_br0600
  article-title: ranger: a fast implementation of random forests for high dimensional data in C++ and R
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v077.i01
– volume: 80
  start-page: 129
  year: 2014
  ident: 10.1016/j.csda.2022.107689_br0240
  article-title: Variable selection by random forests using data with missing values
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/j.csda.2014.06.017
– volume: 9
  start-page: 1
  year: 2008
  ident: 10.1016/j.csda.2022.107689_br0540
  article-title: Conditional variable importance for random forests
  publication-title: BMC Bioinform.
  doi: 10.1186/1471-2105-9-307
SSID ssj0002478
Score 2.4513566
Snippet Hypothesis testing of variable importance measures (VIMPs) is still the subject of ongoing research. This particularly applies to random forests (RF), for...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 107689
SubjectTerms data analysis
Machine learning
p-value
prediction
Prediction model
probability
Sequential permutation test
Variable selection
Title Efficient permutation testing of variable importance measures by the example of random forests
URI https://dx.doi.org/10.1016/j.csda.2022.107689
https://www.proquest.com/docview/2834205071
Volume 181
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iFz2IT3wTwZvU3aRp0xxFlNVFDz7QkyGbJrLidhe7K3rxtzvTtIqCHjwVQhLamcnMl2bmCyF7MraGiaQduTy3kchSBmsuSyKfeZOalKWGYzXy-UXauRFnd8ndFDlqamEwrbL2_cGnV966bmnV0myN-v3WFSbQKyHBInEjobCITwiJVn7w_pXmwUXwxsjvjb3rwpmQ42XLHLmHOIcGwN3qt-D0w01XsedkgczXoJEehvdaJFOuWCJz55-Mq-UyuT-uuCAghNARONtJOGGnYyTRKB7o0NMX2BVjnRTtDyrMDV9KB-EPYUl7bxQmo-7VIFswdocYlg8HFDAtTFGukJuT4-ujTlTfnRDZWMpxlMRpIr3j0qexy_LMty23EKYATVnYYti4bbiPHSjDSgWYTiWKGR67trPOK8Atq2S6GBZujVBknOPMMiYN4D-TqFR5QBZeCM56NmPrhDVC07YmFsf7LZ50k0H2qFHQGgWtg6DXyf7nmFGg1fizd9LoQn8zDg1-_89xu43iNKwaPAoxhRtOSg2gSoAsAF9t_HPuTTKLN8-H3MctMj1-nrhtwCfj3k5lgDtk5vC027nAZ_fytvsB3yblGQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT-MwEB1BOQAHxC6s-F6vtDcUtXbiJD4iBCof7WVB4oTlOvaqiKYVaRH8e2bqpBJIcOBq2ZYztt88xzPPAH-z2BqeyE7kisJGSZ5y3HO5jHzuTWpSnhpB2ci9ftq9TS7v5N0SnDa5MBRWWWN_wPQ5Wtcl7dqa7clw2P5HAfQqyXBF0kFCqWVYIXUq2YKVk4urbn8ByCIJgEwS39Sgzp0JYV62Kkh-SAgsQOqtPvNPH5B67n7ON2Gj5o3sJAztByy58ies9xaiq9UW3J_N5SDQi7AJ4u0sXLKzKelolP_Z2LNnPBhTqhQbjua0Gz-WjcJPwooNXhl2xtyLIcFgqo5urBiPGNJa7KLahtvzs5vTblQ_nxDZOMumkYxTmXknMp_GLi9y37HCoqdCQmXxlGHjjhE-djgfNlNI65RU3IjYdZx1XiF1-QWtcly6HWAkOie45TwzSAGNVKnySC58kgg-sDnfBd4YTdtaW5yeuHjUTRDZgyZDazK0DobeheNFm0lQ1viytmzmQr9bHxqh_8t2f5qJ07hx6DbElG48qzTyqgRtgRRr75t9_4bV7k3vWl9f9K_2YY0eog-hkAfQmj7N3CHSlengqF6Ob5Rv5ic
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+permutation+testing+of+variable+importance+measures+by+the+example+of+random+forests&rft.jtitle=Computational+statistics+%26+data+analysis&rft.au=Hapfelmeier%2C+Alexander&rft.au=Hornung%2C+Roman&rft.au=Haller%2C+Bernhard&rft.date=2023-05-01&rft.issn=0167-9473&rft.volume=181+p.107689-&rft_id=info:doi/10.1016%2Fj.csda.2022.107689&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-9473&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-9473&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-9473&client=summon