Extremum characteristics of energy consumption in fluidization analyzed by using EMMS

[Display omitted] •Resolve energy consumption terms of the EMMS model in detail.•Realize the GPU accelerated traversal algorithm for solving the EMMS model.•Explore the landscape of extremum characteristics of energy consumption terms.•Elucidate the regime-specific characteristics by multiple contra...

Full description

Saved in:
Bibliographic Details
Published inChemical engineering journal (Lausanne, Switzerland : 1996) Vol. 342; pp. 386 - 394
Main Authors Du, Mengjie, Hu, Shanwei, Chen, Jianhua, Liu, Xinhua, Ge, Wei
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.06.2018
Subjects
Online AccessGet full text
ISSN1385-8947
1873-3212
DOI10.1016/j.cej.2018.02.065

Cover

Loading…
Abstract [Display omitted] •Resolve energy consumption terms of the EMMS model in detail.•Realize the GPU accelerated traversal algorithm for solving the EMMS model.•Explore the landscape of extremum characteristics of energy consumption terms.•Elucidate the regime-specific characteristics by multiple contradictive extremum behaviors.•The intrinsic extremum characteristics are insensitive to different cluster correlations. This paper investigates the landscape of extremum characteristics for different energy consumption terms in gas-solid fluidization based on the Energy Minimization Multi-Scale (EMMS) model. The influence of typical cluster correlations on the extremum characteristics is also investigated to consolidate the results. The energy consumption terms are resolved into three types, i.e. suspension (“s”), transport (“t”) of the particles and pure dissipation (“d”) caused by their collisions and acceleration. Three regimes which are particle-dominated (PD), fluid-dominated (FD), and particle-fluid compromising (PFC) respectively subject to the extrema of ε = min, Wst = min and Nst = min, are investigated. Then the same procedure is extended to individual and combined terms (i.e. “s”, “t”, “d”, “s + t”, “t + d”, “d + s”) of energy consumption with respect to unit mass of particles (“N”) and to unit volume of bed (“W”). The study of extremum characteristics reveals an enclosure structure which features an upper voidage regime corresponding to minimum energy dissipation rate (MinED), a lower voidage regime to maximum energy dissipation rate (MaxED) and a so-called mesoregime in between. The landscape of extremum characteristics reveals that the stability condition must be constructed according to clear physical meaning, otherwise misleading may occur due to multiple contradictive extrema exist in specific regimes. Although the clustering effects on extremum characteristics exposed some limitations of current correlations, the above-mentioned characteristics are found to be insensitive to cluster diameter correlations, indicating that the findings are intrinsic to the EMMS model. Further work is still needed to explore the mesoscale structure and its relationship with extremum behavior as well as underlying physics in fluidization.
AbstractList [Display omitted] •Resolve energy consumption terms of the EMMS model in detail.•Realize the GPU accelerated traversal algorithm for solving the EMMS model.•Explore the landscape of extremum characteristics of energy consumption terms.•Elucidate the regime-specific characteristics by multiple contradictive extremum behaviors.•The intrinsic extremum characteristics are insensitive to different cluster correlations. This paper investigates the landscape of extremum characteristics for different energy consumption terms in gas-solid fluidization based on the Energy Minimization Multi-Scale (EMMS) model. The influence of typical cluster correlations on the extremum characteristics is also investigated to consolidate the results. The energy consumption terms are resolved into three types, i.e. suspension (“s”), transport (“t”) of the particles and pure dissipation (“d”) caused by their collisions and acceleration. Three regimes which are particle-dominated (PD), fluid-dominated (FD), and particle-fluid compromising (PFC) respectively subject to the extrema of ε = min, Wst = min and Nst = min, are investigated. Then the same procedure is extended to individual and combined terms (i.e. “s”, “t”, “d”, “s + t”, “t + d”, “d + s”) of energy consumption with respect to unit mass of particles (“N”) and to unit volume of bed (“W”). The study of extremum characteristics reveals an enclosure structure which features an upper voidage regime corresponding to minimum energy dissipation rate (MinED), a lower voidage regime to maximum energy dissipation rate (MaxED) and a so-called mesoregime in between. The landscape of extremum characteristics reveals that the stability condition must be constructed according to clear physical meaning, otherwise misleading may occur due to multiple contradictive extrema exist in specific regimes. Although the clustering effects on extremum characteristics exposed some limitations of current correlations, the above-mentioned characteristics are found to be insensitive to cluster diameter correlations, indicating that the findings are intrinsic to the EMMS model. Further work is still needed to explore the mesoscale structure and its relationship with extremum behavior as well as underlying physics in fluidization.
Author Du, Mengjie
Chen, Jianhua
Hu, Shanwei
Ge, Wei
Liu, Xinhua
Author_xml – sequence: 1
  givenname: Mengjie
  surname: Du
  fullname: Du, Mengjie
  organization: State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
– sequence: 2
  givenname: Shanwei
  surname: Hu
  fullname: Hu, Shanwei
  organization: State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
– sequence: 3
  givenname: Jianhua
  orcidid: 0000-0002-4068-3956
  surname: Chen
  fullname: Chen, Jianhua
  email: jhchen@ipe.ac.cn
  organization: State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
– sequence: 4
  givenname: Xinhua
  surname: Liu
  fullname: Liu, Xinhua
  email: xhliu@ipe.ac.cn
  organization: State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
– sequence: 5
  givenname: Wei
  surname: Ge
  fullname: Ge, Wei
  organization: State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
BookMark eNp9kMlOwzAURS1UJNrCB7DzDyR4yGSxQlUZpFYsoGvLdeziKHEq20GkX4_bsmLR1Ruk8_TumYGJ7a0C4B6jFCNcPDSpVE1KEK5SRFJU5FdgiquSJpRgMok9rfKkYll5A2beNwihgmE2BZvlT3CqGzoov4QTMihnfDDSw15DZZXbjVD21g_dPpjeQmOhbgdTm4M4zcKKdjyoGm5HOHhjd3C5Xn_cgmstWq_u_uocbJ6Xn4vXZPX-8rZ4WiWSlmVIsqrItogxQrQmecZUrhUWeYXiRtJiG98tcSZiApnXMSXBOaKESsFIxhjSdA7w-a50vfdOab53phNu5Bjxoxfe8OiFH71wRHj0EpnyHyNNOIUJTpj2Ivl4JlWM9G2U414aZaWqjVMy8Lo3F-hfI4J_DA
CitedBy_id crossref_primary_10_1021_acs_iecr_9b01715
crossref_primary_10_1016_j_cej_2018_09_171
crossref_primary_10_1016_j_cjche_2022_05_004
crossref_primary_10_1146_annurev_chembioeng_092220_115031
crossref_primary_10_1016_j_partic_2018_09_004
crossref_primary_10_3390_en16010065
crossref_primary_10_1016_j_ces_2018_12_037
crossref_primary_10_1016_j_cej_2019_123122
Cites_doi 10.1007/BF00872838
10.1515/revce-2015-0079
10.1016/j.ces.2015.08.008
10.1016/0301-9322(93)90079-A
10.1016/0032-5910(93)02786-A
10.1016/S1004-9541(12)60377-2
10.1016/j.cej.2016.08.084
10.1016/j.powtec.2009.04.015
10.1016/j.cej.2017.09.162
10.1016/0009-2509(96)00138-8
10.1016/j.ces.2006.08.017
10.1016/S0032-5910(02)00114-6
10.1016/j.ces.2007.11.023
10.1016/j.ces.2015.10.025
10.1016/S0009-2509(99)00274-2
10.1021/ie301894d
10.1016/j.ces.2006.10.010
10.1016/S0009-2509(02)00234-8
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright_xml – notice: 2018 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.cej.2018.02.065
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3212
EndPage 394
ExternalDocumentID 10_1016_j_cej_2018_02_065
S1385894718302675
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABLST
ABMAC
ABNUV
ABUDA
ABYKQ
ACDAQ
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KCYFY
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSG
SSJ
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABXDB
ACVFH
ADCNI
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BKOMP
BNPGV
CITATION
FEDTE
FGOYB
HVGLF
HZ~
R2-
SEW
SSH
ZY4
ID FETCH-LOGICAL-c377t-4864b09922ff2549e5fe1a580922c36b947714a212c5d0162150323ca924990f3
IEDL.DBID .~1
ISSN 1385-8947
IngestDate Tue Jul 01 03:51:54 EDT 2025
Thu Apr 24 22:53:11 EDT 2025
Fri Feb 23 02:33:34 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Compromise in competition
Cluster
Energy minimization multi-scale (EMMS)
Mesoscale
Stability condition
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c377t-4864b09922ff2549e5fe1a580922c36b947714a212c5d0162150323ca924990f3
ORCID 0000-0002-4068-3956
OpenAccessLink http://ir.ipe.ac.cn/handle/122111/25379
PageCount 9
ParticipantIDs crossref_primary_10_1016_j_cej_2018_02_065
crossref_citationtrail_10_1016_j_cej_2018_02_065
elsevier_sciencedirect_doi_10_1016_j_cej_2018_02_065
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-06-15
PublicationDateYYYYMMDD 2018-06-15
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-06-15
  day: 15
PublicationDecade 2010
PublicationTitle Chemical engineering journal (Lausanne, Switzerland : 1996)
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Li, Kwauk (b0025) 1994
Kuang, Zou, Pan, Yu (b0050) 2012; 51
Subbarao (b0120) 2010; 199
Zeneli, Nikolopoulos, Nikolopoulos, Grammelis, Kakaras (b0125) 2015; 138
NVIDIA, NVIDIA CUDA programming guide version 3.0. Santa Clara, CA:NVIDIA, 2010.
Yerushalmi, Cankurt, Geldart, Liss (b0010) 1978
Li, Wen, Qian, Cui, Kwauk, Schouten, Van den Bleek (b0095) 1996; 51
Hartge, Rensner, Werther (b0015) 1988
Huang, Li, Edwards (b0090) 2017
Chen, Dai, Qi (b0115) 2016; 141
Li, Cheng, Zhang, Yuan, Nemet, Fett (b0055) 1999; 54
Ge, Wang, Xu, Chen, Zhou, Lu, Chang, Li (b0065) 2017
Ge, Li (b0075) 2002; 57
Li, Tung, Kwauk (b0020) 1988
Chen, Yang, Ge, Li (b0080) 2012; 20
Li, Chen, Yan, Xu, Zhang (b0060) 1993
Hu, Liu, Zhang, Li, Ge, Wang (b0085) 2017; 307
Davidson (b0005) 1961; 39
Wang, Li (b0030) 2007; 62
Harris, Davidson, Thorpe (b0110) 2002; 127
Wang, Ge, Li (b0130) 2008; 63
Zou, Li, Xia, Ma (b0100) 1994; 78
Gu, Chen (b0105) 1998
Li, Huang, Chen, Ge, Hou (b0135) 2018; 333
Bi, Grace, Zhu (b0040) 1993; 19
Wang, Lu, Li (b0035) 2007; 62
Krupnik, Ovsienko, Oleinik, Ainshtein (b0045) 1990; 58
Yerushalmi (10.1016/j.cej.2018.02.065_b0010) 1978
Li (10.1016/j.cej.2018.02.065_b0055) 1999; 54
Zeneli (10.1016/j.cej.2018.02.065_b0125) 2015; 138
Wang (10.1016/j.cej.2018.02.065_b0030) 2007; 62
Wang (10.1016/j.cej.2018.02.065_b0035) 2007; 62
Zou (10.1016/j.cej.2018.02.065_b0100) 1994; 78
Gu (10.1016/j.cej.2018.02.065_b0105) 1998
Li (10.1016/j.cej.2018.02.065_b0135) 2018; 333
Li (10.1016/j.cej.2018.02.065_b0060) 1993
Bi (10.1016/j.cej.2018.02.065_b0040) 1993; 19
Kuang (10.1016/j.cej.2018.02.065_b0050) 2012; 51
Huang (10.1016/j.cej.2018.02.065_b0090) 2017
Li (10.1016/j.cej.2018.02.065_b0095) 1996; 51
Chen (10.1016/j.cej.2018.02.065_b0115) 2016; 141
Ge (10.1016/j.cej.2018.02.065_b0065) 2017
Ge (10.1016/j.cej.2018.02.065_b0075) 2002; 57
Subbarao (10.1016/j.cej.2018.02.065_b0120) 2010; 199
10.1016/j.cej.2018.02.065_b0070
Davidson (10.1016/j.cej.2018.02.065_b0005) 1961; 39
Hartge (10.1016/j.cej.2018.02.065_b0015) 1988
Li (10.1016/j.cej.2018.02.065_b0025) 1994
Krupnik (10.1016/j.cej.2018.02.065_b0045) 1990; 58
Chen (10.1016/j.cej.2018.02.065_b0080) 2012; 20
Hu (10.1016/j.cej.2018.02.065_b0085) 2017; 307
Harris (10.1016/j.cej.2018.02.065_b0110) 2002; 127
Wang (10.1016/j.cej.2018.02.065_b0130) 2008; 63
Li (10.1016/j.cej.2018.02.065_b0020) 1988
References_xml – start-page: 49
  year: 1993
  end-page: 54
  ident: b0060
  article-title: Particle–fluid contacting in circulating fluidized beds, Preprint Volume for CFB-IV
  publication-title: AIChE
– start-page: 501
  year: 1998
  end-page: 508
  ident: b0105
  article-title: A model for solid concentration in circulating fluidized beds
  publication-title: Fluidization
– volume: 333
  start-page: 327
  year: 2018
  end-page: 335
  ident: b0135
  article-title: Mesoscience based on the EMMS principle of compromise in competition
  publication-title: Chem. Eng. J.
– volume: 307
  start-page: 326
  year: 2017
  end-page: 338
  ident: b0085
  article-title: Quantifying cluster dynamics to improve EMMS drag law and radial heterogeneity description in coupling with gas-solid two-fluid method
  publication-title: Chem. Eng. J.
– start-page: 75
  year: 1988
  end-page: 89
  ident: b0020
  article-title: Method of energy minimization in multiscale modeling of particle-fluid two-phase flow
  publication-title: Circulating Fluidized Bed Technology II
– volume: 62
  start-page: 814
  year: 2007
  end-page: 819
  ident: b0035
  article-title: Choking and flow regime transitions: simulation by a multi-scale CFD approach
  publication-title: Chem. Eng. Sci.
– volume: 51
  start-page: 2693
  year: 1996
  end-page: 2698
  ident: b0095
  article-title: Structure heterogeneity, regime multiplicity and nonlinear behavior in particle-fluid systems
  publication-title: Chem. Eng. Sci.
– year: 1994
  ident: b0025
  article-title: Particle-Fluid Two-Phase Flow-The Energy-Minimization Multi-Scale Method
– volume: 78
  start-page: 173
  year: 1994
  end-page: 178
  ident: b0100
  article-title: Cluster structure in a circulating fluidized bed
  publication-title: Powder Technol.
– year: 1988
  ident: b0015
  article-title: Solids concentration and velocity patterns in circulating fluidized beds
  publication-title: Circulating Fluidized Bed Technology II
– volume: 51
  start-page: 14289
  year: 2012
  end-page: 14302
  ident: b0050
  article-title: Gas-solid flow and energy dissipation in inclined pneumatic conveying
  publication-title: Ind. Eng. Chem. Res.
– year: 2017
  ident: b0065
  article-title: Discrete simulation of granular and particle-fluid flows: from fundamental study to engineering application
  publication-title: Rev. Chem. Eng.
– volume: 63
  start-page: 1553
  year: 2008
  end-page: 1571
  ident: b0130
  article-title: Eulerian simulation of heterogeneous gas-solid flows in CFB risers: EMMS-based sub-grid scale model with a revised cluster description
  publication-title: Chem. Eng. Sci.
– volume: 39
  start-page: 230
  year: 1961
  ident: b0005
  article-title: Discussion
  publication-title: Trans. Inst. Chem. Eng.
– year: 1978
  ident: b0010
  article-title: Flow regimes in gas-solids contact systems
  publication-title: AIChE Symp. Ser
– volume: 54
  start-page: 5409
  year: 1999
  end-page: 5425
  ident: b0055
  article-title: The EMMS model – its application, development and updated concepts
  publication-title: Chem. Eng. Sci.
– year: 2017
  ident: b0090
  article-title: Mesoscience: exploring the common principle at mesoscales
  publication-title: Natl. Sci. Rev.
– volume: 138
  start-page: 482
  year: 2015
  end-page: 498
  ident: b0125
  article-title: Application of an advanced coupled EMMS-TFM model to a pilot scale CFB carbonator
  publication-title: Chem. Eng. Sci.
– volume: 57
  start-page: 3993
  year: 2002
  end-page: 4004
  ident: b0075
  article-title: Physical mapping of fluidization regimes-the EMMS approach
  publication-title: Chem. Eng. Sci.
– volume: 20
  start-page: 167
  year: 2012
  end-page: 177
  ident: b0080
  article-title: Stability-driven Structure evolution: exploring the intrinsic similarity between gas-solid and gas-liquid systems
  publication-title: Chin. J. Chem. Eng.
– volume: 62
  start-page: 208
  year: 2007
  end-page: 231
  ident: b0030
  article-title: Simulation of gas-solid two-phase flow by a multi-scale CFD approach–of the EMMS model to the sub-grid level
  publication-title: Chem. Eng. Sci.
– reference: NVIDIA, NVIDIA CUDA programming guide version 3.0. Santa Clara, CA:NVIDIA, 2010.
– volume: 141
  start-page: 8
  year: 2016
  end-page: 16
  ident: b0115
  article-title: Improvement of EMMS drag model for heterogeneous gas–solid flows based on cluster modeling
  publication-title: Chem. Eng. Sci.
– volume: 199
  start-page: 48
  year: 2010
  end-page: 54
  ident: b0120
  article-title: A model for cluster size in risers
  publication-title: Powder Technol.
– volume: 58
  start-page: 151
  year: 1990
  end-page: 157
  ident: b0045
  article-title: Random motion of solid particles and energy dissipation in two-phase flow
  publication-title: J. Eng. Phys.
– volume: 127
  start-page: 128
  year: 2002
  end-page: 143
  ident: b0110
  article-title: The prediction of particle cluster properties in the near wall region of a vertical riser
  publication-title: Powder Technol.
– volume: 19
  start-page: 1077
  year: 1993
  end-page: 1092
  ident: b0040
  article-title: Types of choking in vertical pneumatic systems
  publication-title: Int. J. Multiphase Flow
– volume: 58
  start-page: 151
  year: 1990
  ident: 10.1016/j.cej.2018.02.065_b0045
  article-title: Random motion of solid particles and energy dissipation in two-phase flow
  publication-title: J. Eng. Phys.
  doi: 10.1007/BF00872838
– start-page: 75
  year: 1988
  ident: 10.1016/j.cej.2018.02.065_b0020
  article-title: Method of energy minimization in multiscale modeling of particle-fluid two-phase flow
– year: 1994
  ident: 10.1016/j.cej.2018.02.065_b0025
– year: 2017
  ident: 10.1016/j.cej.2018.02.065_b0065
  article-title: Discrete simulation of granular and particle-fluid flows: from fundamental study to engineering application
  publication-title: Rev. Chem. Eng.
  doi: 10.1515/revce-2015-0079
– volume: 138
  start-page: 482
  year: 2015
  ident: 10.1016/j.cej.2018.02.065_b0125
  article-title: Application of an advanced coupled EMMS-TFM model to a pilot scale CFB carbonator
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2015.08.008
– volume: 39
  start-page: 230
  year: 1961
  ident: 10.1016/j.cej.2018.02.065_b0005
  article-title: Discussion
  publication-title: Trans. Inst. Chem. Eng.
– volume: 19
  start-page: 1077
  year: 1993
  ident: 10.1016/j.cej.2018.02.065_b0040
  article-title: Types of choking in vertical pneumatic systems
  publication-title: Int. J. Multiphase Flow
  doi: 10.1016/0301-9322(93)90079-A
– volume: 78
  start-page: 173
  year: 1994
  ident: 10.1016/j.cej.2018.02.065_b0100
  article-title: Cluster structure in a circulating fluidized bed
  publication-title: Powder Technol.
  doi: 10.1016/0032-5910(93)02786-A
– volume: 20
  start-page: 167
  year: 2012
  ident: 10.1016/j.cej.2018.02.065_b0080
  article-title: Stability-driven Structure evolution: exploring the intrinsic similarity between gas-solid and gas-liquid systems
  publication-title: Chin. J. Chem. Eng.
  doi: 10.1016/S1004-9541(12)60377-2
– ident: 10.1016/j.cej.2018.02.065_b0070
– year: 2017
  ident: 10.1016/j.cej.2018.02.065_b0090
  article-title: Mesoscience: exploring the common principle at mesoscales
  publication-title: Natl. Sci. Rev.
– start-page: 501
  year: 1998
  ident: 10.1016/j.cej.2018.02.065_b0105
  article-title: A model for solid concentration in circulating fluidized beds
  publication-title: Fluidization
– volume: 307
  start-page: 326
  year: 2017
  ident: 10.1016/j.cej.2018.02.065_b0085
  article-title: Quantifying cluster dynamics to improve EMMS drag law and radial heterogeneity description in coupling with gas-solid two-fluid method
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.08.084
– volume: 199
  start-page: 48
  year: 2010
  ident: 10.1016/j.cej.2018.02.065_b0120
  article-title: A model for cluster size in risers
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2009.04.015
– start-page: 49
  year: 1993
  ident: 10.1016/j.cej.2018.02.065_b0060
  article-title: Particle–fluid contacting in circulating fluidized beds, Preprint Volume for CFB-IV
– volume: 333
  start-page: 327
  year: 2018
  ident: 10.1016/j.cej.2018.02.065_b0135
  article-title: Mesoscience based on the EMMS principle of compromise in competition
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.09.162
– volume: 51
  start-page: 2693
  year: 1996
  ident: 10.1016/j.cej.2018.02.065_b0095
  article-title: Structure heterogeneity, regime multiplicity and nonlinear behavior in particle-fluid systems
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/0009-2509(96)00138-8
– volume: 62
  start-page: 208
  year: 2007
  ident: 10.1016/j.cej.2018.02.065_b0030
  article-title: Simulation of gas-solid two-phase flow by a multi-scale CFD approach–of the EMMS model to the sub-grid level
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2006.08.017
– year: 1978
  ident: 10.1016/j.cej.2018.02.065_b0010
  article-title: Flow regimes in gas-solids contact systems
  publication-title: AIChE Symp. Ser
– volume: 127
  start-page: 128
  year: 2002
  ident: 10.1016/j.cej.2018.02.065_b0110
  article-title: The prediction of particle cluster properties in the near wall region of a vertical riser
  publication-title: Powder Technol.
  doi: 10.1016/S0032-5910(02)00114-6
– year: 1988
  ident: 10.1016/j.cej.2018.02.065_b0015
  article-title: Solids concentration and velocity patterns in circulating fluidized beds
– volume: 63
  start-page: 1553
  year: 2008
  ident: 10.1016/j.cej.2018.02.065_b0130
  article-title: Eulerian simulation of heterogeneous gas-solid flows in CFB risers: EMMS-based sub-grid scale model with a revised cluster description
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2007.11.023
– volume: 141
  start-page: 8
  year: 2016
  ident: 10.1016/j.cej.2018.02.065_b0115
  article-title: Improvement of EMMS drag model for heterogeneous gas–solid flows based on cluster modeling
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2015.10.025
– volume: 54
  start-page: 5409
  year: 1999
  ident: 10.1016/j.cej.2018.02.065_b0055
  article-title: The EMMS model – its application, development and updated concepts
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/S0009-2509(99)00274-2
– volume: 51
  start-page: 14289
  year: 2012
  ident: 10.1016/j.cej.2018.02.065_b0050
  article-title: Gas-solid flow and energy dissipation in inclined pneumatic conveying
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie301894d
– volume: 62
  start-page: 814
  year: 2007
  ident: 10.1016/j.cej.2018.02.065_b0035
  article-title: Choking and flow regime transitions: simulation by a multi-scale CFD approach
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2006.10.010
– volume: 57
  start-page: 3993
  year: 2002
  ident: 10.1016/j.cej.2018.02.065_b0075
  article-title: Physical mapping of fluidization regimes-the EMMS approach
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/S0009-2509(02)00234-8
SSID ssj0006919
Score 2.2936084
Snippet [Display omitted] •Resolve energy consumption terms of the EMMS model in detail.•Realize the GPU accelerated traversal algorithm for solving the EMMS...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 386
SubjectTerms Cluster
Compromise in competition
Energy minimization multi-scale (EMMS)
Mesoscale
Stability condition
Title Extremum characteristics of energy consumption in fluidization analyzed by using EMMS
URI https://dx.doi.org/10.1016/j.cej.2018.02.065
Volume 342
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5FL3oQn1gfJQdPQmx2N_s6ltJSLe3BWuwtZLOJbGm3pbSgHvztZtJdbUE9eFo2TJbNxzCTkG--QeiGpSL20kCSWKmYMB27RAjXJ1GUBDJRVAa2a0mvH3SG7GHkjyqoWdbCAK2yiP3rmG6jdTFSL9Csz7OsPnDgTiuG4OpBGyUoNAf1OuPTdx_fNI8gts09wJiAdXmzaTleUo2B3RVZ2U7ILz_lpo180z5EB8VGETfW_3KEKio_Rvsb8oEnaNh6XS7UdDXFclt2Gc80VraoD0tbYmnjAs5yrCerLC1KL7EAQZJ3leLkDQP__QW3er3BKRq2W0_NDinaJBDpheGSsChgCQV9Wa3huKd8rRzhR9SMSC9IzKJDhwmTo6SfmnWbJE8915MCjl4x1d4Z2slnuTpHWAgWSjdUgqmESRmLyHxRulRrmgYiUVVES4C4LDTEoZXFhJdksTE3mHLAlFOXG0yr6PZrynwtoPGXMStR51tewE2A_33axf-mXaI9eAPil-NfoZ3lYqWuzRZjmdSsD9XQbuO-2-nDs_v43P0EiiDSEA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LawIxEB6sHtoeSp_UPnPoqbAYd7Ovo4ii9XFRwVvIZpOi6Cqi0PbXN7PuikLbQ6-7mWXzEb5JyDffALywWIRO7EkrVCq0mA5tSwjbtYIg8mSkqPTSriW9vtcasbexOy5APa-FQVllxv1bTk_ZOntSydCsLCeTyqCKd1ohkquDbZTcIyihOxUrQqnW7rT6O0L2wrS_B463MCC_3ExlXlJNUeAVpM6dmGJ-Sk97Kad5DmfZXpHUtr9zAQWVXMLpnoPgFYwaH-uVmm_mRB46L5OFJiqt6yMyrbJMqYFMEqJnm0mcVV8SgZ4kXyom0SdBCfw7afR6g2sYNRvDesvKOiVY0vH9tcUCj0UULWa1xhOfcrWqCjeg5ol0vMhM2q8yYdKUdGMzb5PnqWM7UuDpK6TauYFiskjULRAhmC9tXwmmIiZlKALzRWlTrWnsiUiVgeYAcZnZiGM3ixnP9WJTbjDliCmnNjeYluF1F7Lcemj8NZjlqPODhcANx_8edve_sGc4bg17Xd5t9zv3cIJvUAdWdR-guF5t1KPZcayjp2xFfQM3bNMe
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extremum+characteristics+of+energy+consumption+in+fluidization+analyzed+by+using+EMMS&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Du%2C+Mengjie&rft.au=Hu%2C+Shanwei&rft.au=Chen%2C+Jianhua&rft.au=Liu%2C+Xinhua&rft.date=2018-06-15&rft.issn=1385-8947&rft.volume=342&rft.spage=386&rft.epage=394&rft_id=info:doi/10.1016%2Fj.cej.2018.02.065&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cej_2018_02_065
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon