Extremum characteristics of energy consumption in fluidization analyzed by using EMMS
[Display omitted] •Resolve energy consumption terms of the EMMS model in detail.•Realize the GPU accelerated traversal algorithm for solving the EMMS model.•Explore the landscape of extremum characteristics of energy consumption terms.•Elucidate the regime-specific characteristics by multiple contra...
Saved in:
Published in | Chemical engineering journal (Lausanne, Switzerland : 1996) Vol. 342; pp. 386 - 394 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.06.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 1385-8947 1873-3212 |
DOI | 10.1016/j.cej.2018.02.065 |
Cover
Loading…
Abstract | [Display omitted]
•Resolve energy consumption terms of the EMMS model in detail.•Realize the GPU accelerated traversal algorithm for solving the EMMS model.•Explore the landscape of extremum characteristics of energy consumption terms.•Elucidate the regime-specific characteristics by multiple contradictive extremum behaviors.•The intrinsic extremum characteristics are insensitive to different cluster correlations.
This paper investigates the landscape of extremum characteristics for different energy consumption terms in gas-solid fluidization based on the Energy Minimization Multi-Scale (EMMS) model. The influence of typical cluster correlations on the extremum characteristics is also investigated to consolidate the results. The energy consumption terms are resolved into three types, i.e. suspension (“s”), transport (“t”) of the particles and pure dissipation (“d”) caused by their collisions and acceleration. Three regimes which are particle-dominated (PD), fluid-dominated (FD), and particle-fluid compromising (PFC) respectively subject to the extrema of ε = min, Wst = min and Nst = min, are investigated. Then the same procedure is extended to individual and combined terms (i.e. “s”, “t”, “d”, “s + t”, “t + d”, “d + s”) of energy consumption with respect to unit mass of particles (“N”) and to unit volume of bed (“W”). The study of extremum characteristics reveals an enclosure structure which features an upper voidage regime corresponding to minimum energy dissipation rate (MinED), a lower voidage regime to maximum energy dissipation rate (MaxED) and a so-called mesoregime in between. The landscape of extremum characteristics reveals that the stability condition must be constructed according to clear physical meaning, otherwise misleading may occur due to multiple contradictive extrema exist in specific regimes. Although the clustering effects on extremum characteristics exposed some limitations of current correlations, the above-mentioned characteristics are found to be insensitive to cluster diameter correlations, indicating that the findings are intrinsic to the EMMS model. Further work is still needed to explore the mesoscale structure and its relationship with extremum behavior as well as underlying physics in fluidization. |
---|---|
AbstractList | [Display omitted]
•Resolve energy consumption terms of the EMMS model in detail.•Realize the GPU accelerated traversal algorithm for solving the EMMS model.•Explore the landscape of extremum characteristics of energy consumption terms.•Elucidate the regime-specific characteristics by multiple contradictive extremum behaviors.•The intrinsic extremum characteristics are insensitive to different cluster correlations.
This paper investigates the landscape of extremum characteristics for different energy consumption terms in gas-solid fluidization based on the Energy Minimization Multi-Scale (EMMS) model. The influence of typical cluster correlations on the extremum characteristics is also investigated to consolidate the results. The energy consumption terms are resolved into three types, i.e. suspension (“s”), transport (“t”) of the particles and pure dissipation (“d”) caused by their collisions and acceleration. Three regimes which are particle-dominated (PD), fluid-dominated (FD), and particle-fluid compromising (PFC) respectively subject to the extrema of ε = min, Wst = min and Nst = min, are investigated. Then the same procedure is extended to individual and combined terms (i.e. “s”, “t”, “d”, “s + t”, “t + d”, “d + s”) of energy consumption with respect to unit mass of particles (“N”) and to unit volume of bed (“W”). The study of extremum characteristics reveals an enclosure structure which features an upper voidage regime corresponding to minimum energy dissipation rate (MinED), a lower voidage regime to maximum energy dissipation rate (MaxED) and a so-called mesoregime in between. The landscape of extremum characteristics reveals that the stability condition must be constructed according to clear physical meaning, otherwise misleading may occur due to multiple contradictive extrema exist in specific regimes. Although the clustering effects on extremum characteristics exposed some limitations of current correlations, the above-mentioned characteristics are found to be insensitive to cluster diameter correlations, indicating that the findings are intrinsic to the EMMS model. Further work is still needed to explore the mesoscale structure and its relationship with extremum behavior as well as underlying physics in fluidization. |
Author | Du, Mengjie Chen, Jianhua Hu, Shanwei Ge, Wei Liu, Xinhua |
Author_xml | – sequence: 1 givenname: Mengjie surname: Du fullname: Du, Mengjie organization: State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China – sequence: 2 givenname: Shanwei surname: Hu fullname: Hu, Shanwei organization: State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China – sequence: 3 givenname: Jianhua orcidid: 0000-0002-4068-3956 surname: Chen fullname: Chen, Jianhua email: jhchen@ipe.ac.cn organization: State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China – sequence: 4 givenname: Xinhua surname: Liu fullname: Liu, Xinhua email: xhliu@ipe.ac.cn organization: State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China – sequence: 5 givenname: Wei surname: Ge fullname: Ge, Wei organization: State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China |
BookMark | eNp9kMlOwzAURS1UJNrCB7DzDyR4yGSxQlUZpFYsoGvLdeziKHEq20GkX4_bsmLR1Ruk8_TumYGJ7a0C4B6jFCNcPDSpVE1KEK5SRFJU5FdgiquSJpRgMok9rfKkYll5A2beNwihgmE2BZvlT3CqGzoov4QTMihnfDDSw15DZZXbjVD21g_dPpjeQmOhbgdTm4M4zcKKdjyoGm5HOHhjd3C5Xn_cgmstWq_u_uocbJ6Xn4vXZPX-8rZ4WiWSlmVIsqrItogxQrQmecZUrhUWeYXiRtJiG98tcSZiApnXMSXBOaKESsFIxhjSdA7w-a50vfdOab53phNu5Bjxoxfe8OiFH71wRHj0EpnyHyNNOIUJTpj2Ivl4JlWM9G2U414aZaWqjVMy8Lo3F-hfI4J_DA |
CitedBy_id | crossref_primary_10_1021_acs_iecr_9b01715 crossref_primary_10_1016_j_cej_2018_09_171 crossref_primary_10_1016_j_cjche_2022_05_004 crossref_primary_10_1146_annurev_chembioeng_092220_115031 crossref_primary_10_1016_j_partic_2018_09_004 crossref_primary_10_3390_en16010065 crossref_primary_10_1016_j_ces_2018_12_037 crossref_primary_10_1016_j_cej_2019_123122 |
Cites_doi | 10.1007/BF00872838 10.1515/revce-2015-0079 10.1016/j.ces.2015.08.008 10.1016/0301-9322(93)90079-A 10.1016/0032-5910(93)02786-A 10.1016/S1004-9541(12)60377-2 10.1016/j.cej.2016.08.084 10.1016/j.powtec.2009.04.015 10.1016/j.cej.2017.09.162 10.1016/0009-2509(96)00138-8 10.1016/j.ces.2006.08.017 10.1016/S0032-5910(02)00114-6 10.1016/j.ces.2007.11.023 10.1016/j.ces.2015.10.025 10.1016/S0009-2509(99)00274-2 10.1021/ie301894d 10.1016/j.ces.2006.10.010 10.1016/S0009-2509(02)00234-8 |
ContentType | Journal Article |
Copyright | 2018 Elsevier B.V. |
Copyright_xml | – notice: 2018 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.cej.2018.02.065 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3212 |
EndPage | 394 |
ExternalDocumentID | 10_1016_j_cej_2018_02_065 S1385894718302675 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABLST ABMAC ABNUV ABUDA ABYKQ ACDAQ ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SSG SSJ SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABXDB ACVFH ADCNI AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BKOMP BNPGV CITATION FEDTE FGOYB HVGLF HZ~ R2- SEW SSH ZY4 |
ID | FETCH-LOGICAL-c377t-4864b09922ff2549e5fe1a580922c36b947714a212c5d0162150323ca924990f3 |
IEDL.DBID | .~1 |
ISSN | 1385-8947 |
IngestDate | Tue Jul 01 03:51:54 EDT 2025 Thu Apr 24 22:53:11 EDT 2025 Fri Feb 23 02:33:34 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Compromise in competition Cluster Energy minimization multi-scale (EMMS) Mesoscale Stability condition |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c377t-4864b09922ff2549e5fe1a580922c36b947714a212c5d0162150323ca924990f3 |
ORCID | 0000-0002-4068-3956 |
OpenAccessLink | http://ir.ipe.ac.cn/handle/122111/25379 |
PageCount | 9 |
ParticipantIDs | crossref_primary_10_1016_j_cej_2018_02_065 crossref_citationtrail_10_1016_j_cej_2018_02_065 elsevier_sciencedirect_doi_10_1016_j_cej_2018_02_065 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-06-15 |
PublicationDateYYYYMMDD | 2018-06-15 |
PublicationDate_xml | – month: 06 year: 2018 text: 2018-06-15 day: 15 |
PublicationDecade | 2010 |
PublicationTitle | Chemical engineering journal (Lausanne, Switzerland : 1996) |
PublicationYear | 2018 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Li, Kwauk (b0025) 1994 Kuang, Zou, Pan, Yu (b0050) 2012; 51 Subbarao (b0120) 2010; 199 Zeneli, Nikolopoulos, Nikolopoulos, Grammelis, Kakaras (b0125) 2015; 138 NVIDIA, NVIDIA CUDA programming guide version 3.0. Santa Clara, CA:NVIDIA, 2010. Yerushalmi, Cankurt, Geldart, Liss (b0010) 1978 Li, Wen, Qian, Cui, Kwauk, Schouten, Van den Bleek (b0095) 1996; 51 Hartge, Rensner, Werther (b0015) 1988 Huang, Li, Edwards (b0090) 2017 Chen, Dai, Qi (b0115) 2016; 141 Li, Cheng, Zhang, Yuan, Nemet, Fett (b0055) 1999; 54 Ge, Wang, Xu, Chen, Zhou, Lu, Chang, Li (b0065) 2017 Ge, Li (b0075) 2002; 57 Li, Tung, Kwauk (b0020) 1988 Chen, Yang, Ge, Li (b0080) 2012; 20 Li, Chen, Yan, Xu, Zhang (b0060) 1993 Hu, Liu, Zhang, Li, Ge, Wang (b0085) 2017; 307 Davidson (b0005) 1961; 39 Wang, Li (b0030) 2007; 62 Harris, Davidson, Thorpe (b0110) 2002; 127 Wang, Ge, Li (b0130) 2008; 63 Zou, Li, Xia, Ma (b0100) 1994; 78 Gu, Chen (b0105) 1998 Li, Huang, Chen, Ge, Hou (b0135) 2018; 333 Bi, Grace, Zhu (b0040) 1993; 19 Wang, Lu, Li (b0035) 2007; 62 Krupnik, Ovsienko, Oleinik, Ainshtein (b0045) 1990; 58 Yerushalmi (10.1016/j.cej.2018.02.065_b0010) 1978 Li (10.1016/j.cej.2018.02.065_b0055) 1999; 54 Zeneli (10.1016/j.cej.2018.02.065_b0125) 2015; 138 Wang (10.1016/j.cej.2018.02.065_b0030) 2007; 62 Wang (10.1016/j.cej.2018.02.065_b0035) 2007; 62 Zou (10.1016/j.cej.2018.02.065_b0100) 1994; 78 Gu (10.1016/j.cej.2018.02.065_b0105) 1998 Li (10.1016/j.cej.2018.02.065_b0135) 2018; 333 Li (10.1016/j.cej.2018.02.065_b0060) 1993 Bi (10.1016/j.cej.2018.02.065_b0040) 1993; 19 Kuang (10.1016/j.cej.2018.02.065_b0050) 2012; 51 Huang (10.1016/j.cej.2018.02.065_b0090) 2017 Li (10.1016/j.cej.2018.02.065_b0095) 1996; 51 Chen (10.1016/j.cej.2018.02.065_b0115) 2016; 141 Ge (10.1016/j.cej.2018.02.065_b0065) 2017 Ge (10.1016/j.cej.2018.02.065_b0075) 2002; 57 Subbarao (10.1016/j.cej.2018.02.065_b0120) 2010; 199 10.1016/j.cej.2018.02.065_b0070 Davidson (10.1016/j.cej.2018.02.065_b0005) 1961; 39 Hartge (10.1016/j.cej.2018.02.065_b0015) 1988 Li (10.1016/j.cej.2018.02.065_b0025) 1994 Krupnik (10.1016/j.cej.2018.02.065_b0045) 1990; 58 Chen (10.1016/j.cej.2018.02.065_b0080) 2012; 20 Hu (10.1016/j.cej.2018.02.065_b0085) 2017; 307 Harris (10.1016/j.cej.2018.02.065_b0110) 2002; 127 Wang (10.1016/j.cej.2018.02.065_b0130) 2008; 63 Li (10.1016/j.cej.2018.02.065_b0020) 1988 |
References_xml | – start-page: 49 year: 1993 end-page: 54 ident: b0060 article-title: Particle–fluid contacting in circulating fluidized beds, Preprint Volume for CFB-IV publication-title: AIChE – start-page: 501 year: 1998 end-page: 508 ident: b0105 article-title: A model for solid concentration in circulating fluidized beds publication-title: Fluidization – volume: 333 start-page: 327 year: 2018 end-page: 335 ident: b0135 article-title: Mesoscience based on the EMMS principle of compromise in competition publication-title: Chem. Eng. J. – volume: 307 start-page: 326 year: 2017 end-page: 338 ident: b0085 article-title: Quantifying cluster dynamics to improve EMMS drag law and radial heterogeneity description in coupling with gas-solid two-fluid method publication-title: Chem. Eng. J. – start-page: 75 year: 1988 end-page: 89 ident: b0020 article-title: Method of energy minimization in multiscale modeling of particle-fluid two-phase flow publication-title: Circulating Fluidized Bed Technology II – volume: 62 start-page: 814 year: 2007 end-page: 819 ident: b0035 article-title: Choking and flow regime transitions: simulation by a multi-scale CFD approach publication-title: Chem. Eng. Sci. – volume: 51 start-page: 2693 year: 1996 end-page: 2698 ident: b0095 article-title: Structure heterogeneity, regime multiplicity and nonlinear behavior in particle-fluid systems publication-title: Chem. Eng. Sci. – year: 1994 ident: b0025 article-title: Particle-Fluid Two-Phase Flow-The Energy-Minimization Multi-Scale Method – volume: 78 start-page: 173 year: 1994 end-page: 178 ident: b0100 article-title: Cluster structure in a circulating fluidized bed publication-title: Powder Technol. – year: 1988 ident: b0015 article-title: Solids concentration and velocity patterns in circulating fluidized beds publication-title: Circulating Fluidized Bed Technology II – volume: 51 start-page: 14289 year: 2012 end-page: 14302 ident: b0050 article-title: Gas-solid flow and energy dissipation in inclined pneumatic conveying publication-title: Ind. Eng. Chem. Res. – year: 2017 ident: b0065 article-title: Discrete simulation of granular and particle-fluid flows: from fundamental study to engineering application publication-title: Rev. Chem. Eng. – volume: 63 start-page: 1553 year: 2008 end-page: 1571 ident: b0130 article-title: Eulerian simulation of heterogeneous gas-solid flows in CFB risers: EMMS-based sub-grid scale model with a revised cluster description publication-title: Chem. Eng. Sci. – volume: 39 start-page: 230 year: 1961 ident: b0005 article-title: Discussion publication-title: Trans. Inst. Chem. Eng. – year: 1978 ident: b0010 article-title: Flow regimes in gas-solids contact systems publication-title: AIChE Symp. Ser – volume: 54 start-page: 5409 year: 1999 end-page: 5425 ident: b0055 article-title: The EMMS model – its application, development and updated concepts publication-title: Chem. Eng. Sci. – year: 2017 ident: b0090 article-title: Mesoscience: exploring the common principle at mesoscales publication-title: Natl. Sci. Rev. – volume: 138 start-page: 482 year: 2015 end-page: 498 ident: b0125 article-title: Application of an advanced coupled EMMS-TFM model to a pilot scale CFB carbonator publication-title: Chem. Eng. Sci. – volume: 57 start-page: 3993 year: 2002 end-page: 4004 ident: b0075 article-title: Physical mapping of fluidization regimes-the EMMS approach publication-title: Chem. Eng. Sci. – volume: 20 start-page: 167 year: 2012 end-page: 177 ident: b0080 article-title: Stability-driven Structure evolution: exploring the intrinsic similarity between gas-solid and gas-liquid systems publication-title: Chin. J. Chem. Eng. – volume: 62 start-page: 208 year: 2007 end-page: 231 ident: b0030 article-title: Simulation of gas-solid two-phase flow by a multi-scale CFD approach–of the EMMS model to the sub-grid level publication-title: Chem. Eng. Sci. – reference: NVIDIA, NVIDIA CUDA programming guide version 3.0. Santa Clara, CA:NVIDIA, 2010. – volume: 141 start-page: 8 year: 2016 end-page: 16 ident: b0115 article-title: Improvement of EMMS drag model for heterogeneous gas–solid flows based on cluster modeling publication-title: Chem. Eng. Sci. – volume: 199 start-page: 48 year: 2010 end-page: 54 ident: b0120 article-title: A model for cluster size in risers publication-title: Powder Technol. – volume: 58 start-page: 151 year: 1990 end-page: 157 ident: b0045 article-title: Random motion of solid particles and energy dissipation in two-phase flow publication-title: J. Eng. Phys. – volume: 127 start-page: 128 year: 2002 end-page: 143 ident: b0110 article-title: The prediction of particle cluster properties in the near wall region of a vertical riser publication-title: Powder Technol. – volume: 19 start-page: 1077 year: 1993 end-page: 1092 ident: b0040 article-title: Types of choking in vertical pneumatic systems publication-title: Int. J. Multiphase Flow – volume: 58 start-page: 151 year: 1990 ident: 10.1016/j.cej.2018.02.065_b0045 article-title: Random motion of solid particles and energy dissipation in two-phase flow publication-title: J. Eng. Phys. doi: 10.1007/BF00872838 – start-page: 75 year: 1988 ident: 10.1016/j.cej.2018.02.065_b0020 article-title: Method of energy minimization in multiscale modeling of particle-fluid two-phase flow – year: 1994 ident: 10.1016/j.cej.2018.02.065_b0025 – year: 2017 ident: 10.1016/j.cej.2018.02.065_b0065 article-title: Discrete simulation of granular and particle-fluid flows: from fundamental study to engineering application publication-title: Rev. Chem. Eng. doi: 10.1515/revce-2015-0079 – volume: 138 start-page: 482 year: 2015 ident: 10.1016/j.cej.2018.02.065_b0125 article-title: Application of an advanced coupled EMMS-TFM model to a pilot scale CFB carbonator publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2015.08.008 – volume: 39 start-page: 230 year: 1961 ident: 10.1016/j.cej.2018.02.065_b0005 article-title: Discussion publication-title: Trans. Inst. Chem. Eng. – volume: 19 start-page: 1077 year: 1993 ident: 10.1016/j.cej.2018.02.065_b0040 article-title: Types of choking in vertical pneumatic systems publication-title: Int. J. Multiphase Flow doi: 10.1016/0301-9322(93)90079-A – volume: 78 start-page: 173 year: 1994 ident: 10.1016/j.cej.2018.02.065_b0100 article-title: Cluster structure in a circulating fluidized bed publication-title: Powder Technol. doi: 10.1016/0032-5910(93)02786-A – volume: 20 start-page: 167 year: 2012 ident: 10.1016/j.cej.2018.02.065_b0080 article-title: Stability-driven Structure evolution: exploring the intrinsic similarity between gas-solid and gas-liquid systems publication-title: Chin. J. Chem. Eng. doi: 10.1016/S1004-9541(12)60377-2 – ident: 10.1016/j.cej.2018.02.065_b0070 – year: 2017 ident: 10.1016/j.cej.2018.02.065_b0090 article-title: Mesoscience: exploring the common principle at mesoscales publication-title: Natl. Sci. Rev. – start-page: 501 year: 1998 ident: 10.1016/j.cej.2018.02.065_b0105 article-title: A model for solid concentration in circulating fluidized beds publication-title: Fluidization – volume: 307 start-page: 326 year: 2017 ident: 10.1016/j.cej.2018.02.065_b0085 article-title: Quantifying cluster dynamics to improve EMMS drag law and radial heterogeneity description in coupling with gas-solid two-fluid method publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.08.084 – volume: 199 start-page: 48 year: 2010 ident: 10.1016/j.cej.2018.02.065_b0120 article-title: A model for cluster size in risers publication-title: Powder Technol. doi: 10.1016/j.powtec.2009.04.015 – start-page: 49 year: 1993 ident: 10.1016/j.cej.2018.02.065_b0060 article-title: Particle–fluid contacting in circulating fluidized beds, Preprint Volume for CFB-IV – volume: 333 start-page: 327 year: 2018 ident: 10.1016/j.cej.2018.02.065_b0135 article-title: Mesoscience based on the EMMS principle of compromise in competition publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.09.162 – volume: 51 start-page: 2693 year: 1996 ident: 10.1016/j.cej.2018.02.065_b0095 article-title: Structure heterogeneity, regime multiplicity and nonlinear behavior in particle-fluid systems publication-title: Chem. Eng. Sci. doi: 10.1016/0009-2509(96)00138-8 – volume: 62 start-page: 208 year: 2007 ident: 10.1016/j.cej.2018.02.065_b0030 article-title: Simulation of gas-solid two-phase flow by a multi-scale CFD approach–of the EMMS model to the sub-grid level publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2006.08.017 – year: 1978 ident: 10.1016/j.cej.2018.02.065_b0010 article-title: Flow regimes in gas-solids contact systems publication-title: AIChE Symp. Ser – volume: 127 start-page: 128 year: 2002 ident: 10.1016/j.cej.2018.02.065_b0110 article-title: The prediction of particle cluster properties in the near wall region of a vertical riser publication-title: Powder Technol. doi: 10.1016/S0032-5910(02)00114-6 – year: 1988 ident: 10.1016/j.cej.2018.02.065_b0015 article-title: Solids concentration and velocity patterns in circulating fluidized beds – volume: 63 start-page: 1553 year: 2008 ident: 10.1016/j.cej.2018.02.065_b0130 article-title: Eulerian simulation of heterogeneous gas-solid flows in CFB risers: EMMS-based sub-grid scale model with a revised cluster description publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2007.11.023 – volume: 141 start-page: 8 year: 2016 ident: 10.1016/j.cej.2018.02.065_b0115 article-title: Improvement of EMMS drag model for heterogeneous gas–solid flows based on cluster modeling publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2015.10.025 – volume: 54 start-page: 5409 year: 1999 ident: 10.1016/j.cej.2018.02.065_b0055 article-title: The EMMS model – its application, development and updated concepts publication-title: Chem. Eng. Sci. doi: 10.1016/S0009-2509(99)00274-2 – volume: 51 start-page: 14289 year: 2012 ident: 10.1016/j.cej.2018.02.065_b0050 article-title: Gas-solid flow and energy dissipation in inclined pneumatic conveying publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie301894d – volume: 62 start-page: 814 year: 2007 ident: 10.1016/j.cej.2018.02.065_b0035 article-title: Choking and flow regime transitions: simulation by a multi-scale CFD approach publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2006.10.010 – volume: 57 start-page: 3993 year: 2002 ident: 10.1016/j.cej.2018.02.065_b0075 article-title: Physical mapping of fluidization regimes-the EMMS approach publication-title: Chem. Eng. Sci. doi: 10.1016/S0009-2509(02)00234-8 |
SSID | ssj0006919 |
Score | 2.2936084 |
Snippet | [Display omitted]
•Resolve energy consumption terms of the EMMS model in detail.•Realize the GPU accelerated traversal algorithm for solving the EMMS... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 386 |
SubjectTerms | Cluster Compromise in competition Energy minimization multi-scale (EMMS) Mesoscale Stability condition |
Title | Extremum characteristics of energy consumption in fluidization analyzed by using EMMS |
URI | https://dx.doi.org/10.1016/j.cej.2018.02.065 |
Volume | 342 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5FL3oQn1gfJQdPQmx2N_s6ltJSLe3BWuwtZLOJbGm3pbSgHvztZtJdbUE9eFo2TJbNxzCTkG--QeiGpSL20kCSWKmYMB27RAjXJ1GUBDJRVAa2a0mvH3SG7GHkjyqoWdbCAK2yiP3rmG6jdTFSL9Csz7OsPnDgTiuG4OpBGyUoNAf1OuPTdx_fNI8gts09wJiAdXmzaTleUo2B3RVZ2U7ILz_lpo180z5EB8VGETfW_3KEKio_Rvsb8oEnaNh6XS7UdDXFclt2Gc80VraoD0tbYmnjAs5yrCerLC1KL7EAQZJ3leLkDQP__QW3er3BKRq2W0_NDinaJBDpheGSsChgCQV9Wa3huKd8rRzhR9SMSC9IzKJDhwmTo6SfmnWbJE8915MCjl4x1d4Z2slnuTpHWAgWSjdUgqmESRmLyHxRulRrmgYiUVVES4C4LDTEoZXFhJdksTE3mHLAlFOXG0yr6PZrynwtoPGXMStR51tewE2A_33axf-mXaI9eAPil-NfoZ3lYqWuzRZjmdSsD9XQbuO-2-nDs_v43P0EiiDSEA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LawIxEB6sHtoeSp_UPnPoqbAYd7Ovo4ii9XFRwVvIZpOi6Cqi0PbXN7PuikLbQ6-7mWXzEb5JyDffALywWIRO7EkrVCq0mA5tSwjbtYIg8mSkqPTSriW9vtcasbexOy5APa-FQVllxv1bTk_ZOntSydCsLCeTyqCKd1ohkquDbZTcIyihOxUrQqnW7rT6O0L2wrS_B463MCC_3ExlXlJNUeAVpM6dmGJ-Sk97Kad5DmfZXpHUtr9zAQWVXMLpnoPgFYwaH-uVmm_mRB46L5OFJiqt6yMyrbJMqYFMEqJnm0mcVV8SgZ4kXyom0SdBCfw7afR6g2sYNRvDesvKOiVY0vH9tcUCj0UULWa1xhOfcrWqCjeg5ol0vMhM2q8yYdKUdGMzb5PnqWM7UuDpK6TauYFiskjULRAhmC9tXwmmIiZlKALzRWlTrWnsiUiVgeYAcZnZiGM3ixnP9WJTbjDliCmnNjeYluF1F7Lcemj8NZjlqPODhcANx_8edve_sGc4bg17Xd5t9zv3cIJvUAdWdR-guF5t1KPZcayjp2xFfQM3bNMe |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extremum+characteristics+of+energy+consumption+in+fluidization+analyzed+by+using+EMMS&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Du%2C+Mengjie&rft.au=Hu%2C+Shanwei&rft.au=Chen%2C+Jianhua&rft.au=Liu%2C+Xinhua&rft.date=2018-06-15&rft.issn=1385-8947&rft.volume=342&rft.spage=386&rft.epage=394&rft_id=info:doi/10.1016%2Fj.cej.2018.02.065&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cej_2018_02_065 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon |