Effects of non-uniform strains on tensile fracture of fiber-reinforced ceramic composites
Effects of non-uniform strains on tensile fracture of fiber-reinforced ceramic–matrix composites have not been satisfactorily explained by existing mechanics-based models. In this paper, we use an exact model of fiber fragmentation under global load sharing conditions to predict fracture in three mo...
Saved in:
Published in | Journal of the mechanics and physics of solids Vol. 60; no. 12; pp. 2003 - 2018 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.12.2012
|
Subjects | |
Online Access | Get full text |
ISSN | 0022-5096 |
DOI | 10.1016/j.jmps.2012.07.006 |
Cover
Abstract | Effects of non-uniform strains on tensile fracture of fiber-reinforced ceramic–matrix composites have not been satisfactorily explained by existing mechanics-based models. In this paper, we use an exact model of fiber fragmentation under global load sharing conditions to predict fracture in three model problems in which non-uniform strains occur: (i) an end-constrained plate subject to a linear transverse temperature gradient; (ii) an internally-pressurized cylindrical tube with a linear through-thickness temperature gradient; and (iii) a rectangular beam under combined bending and tension. Fracture is assumed to occur when the global load reaches a maximum value. Approximations to the exact fragmentation model are also assessed, with the goal of decoupling the effects of two important parts of the computed stress–strain response: the rate of post-peak strain softening and the magnitude of the plateau “flow” stress once fiber fragmentation is complete. We find that for cases in which the fiber Weibull modulus is low and hence its plateau strength is high relative to its peak and the loading yields a sufficiently high strain gradient, the failure strain lies in the plateau regime. Consequently, the results can be predicted with good accuracy using a perfectly-plastic representation of the post-peak response. In contrast, for cases in which the fiber Weibull modulus is high, the failure strain lies in the softening portion of the curve. Here a linear-softening model is found to yield accurate results. A preliminary assessment of the model has been made by comparing predicted and measured bending/tension strength and failure strain ratios for one specific composite. The correlations appear good, though additional experiments are required in order to critically assess the model predictions over a range of loading scenarios.
► Mechanics-based model for composite fracture that includes strain gradient effects. ► Solutions for failure stress and strain in three model problems. ► Failure maps that highlight mechanisms operative in domains of interest. ► Dependence of failure strain on strain gradient, including loading path effects. ► Good agreement between theory and experiment (tension and bending). |
---|---|
AbstractList | Effects of non-uniform strains on tensile fracture of fiber-reinforced ceramic–matrix composites have not been satisfactorily explained by existing mechanics-based models. In this paper, we use an exact model of fiber fragmentation under global load sharing conditions to predict fracture in three model problems in which non-uniform strains occur: (i) an end-constrained plate subject to a linear transverse temperature gradient; (ii) an internally-pressurized cylindrical tube with a linear through-thickness temperature gradient; and (iii) a rectangular beam under combined bending and tension. Fracture is assumed to occur when the global load reaches a maximum value. Approximations to the exact fragmentation model are also assessed, with the goal of decoupling the effects of two important parts of the computed stress–strain response: the rate of post-peak strain softening and the magnitude of the plateau “flow” stress once fiber fragmentation is complete. We find that for cases in which the fiber Weibull modulus is low and hence its plateau strength is high relative to its peak and the loading yields a sufficiently high strain gradient, the failure strain lies in the plateau regime. Consequently, the results can be predicted with good accuracy using a perfectly-plastic representation of the post-peak response. In contrast, for cases in which the fiber Weibull modulus is high, the failure strain lies in the softening portion of the curve. Here a linear-softening model is found to yield accurate results. A preliminary assessment of the model has been made by comparing predicted and measured bending/tension strength and failure strain ratios for one specific composite. The correlations appear good, though additional experiments are required in order to critically assess the model predictions over a range of loading scenarios.
► Mechanics-based model for composite fracture that includes strain gradient effects. ► Solutions for failure stress and strain in three model problems. ► Failure maps that highlight mechanisms operative in domains of interest. ► Dependence of failure strain on strain gradient, including loading path effects. ► Good agreement between theory and experiment (tension and bending). Effects of non-uniform strains on tensile fracture of fiber-reinforced ceramic-matrix composites have not been satisfactorily explained by existing mechanics-based models. In this paper, we use an exact model of fiber fragmentation under global load sharing conditions to predict fracture in three model problems in which non-uniform strains occur: (i) an end-constrained plate subject to a linear transverse temperature gradient; (ii) an internally-pressurized cylindrical tube with a linear through-thickness temperature gradient; and (iii) a rectangular beam under combined bending and tension. Fracture is assumed to occur when the global load reaches a maximum value. Approximations to the exact fragmentation model are also assessed, with the goal of decoupling the effects of two important parts of the computed stress-strain response: the rate of post-peak strain softening and the magnitude of the plateau "flow" stress once fiber fragmentation is complete. We find that for cases in which the fiber Weibull modulus is low and hence its plateau strength is high relative to its peak and the loading yields a sufficiently high strain gradient, the failure strain lies in the plateau regime. Consequently, the results can be predicted with good accuracy using a perfectly-plastic representation of the post-peak response. In contrast, for cases in which the fiber Weibull modulus is high, the failure strain lies in the softening portion of the curve. Here a linear-softening model is found to yield accurate results. A preliminary assessment of the model has been made by comparing predicted and measured bending/tension strength and failure strain ratios for one specific composite. The correlations appear good, though additional experiments are required in order to critically assess the model predictions over a range of loading scenarios. |
Author | Zok, Frank W. Rajan, Varun P. |
Author_xml | – sequence: 1 givenname: Varun P. surname: Rajan fullname: Rajan, Varun P. – sequence: 2 givenname: Frank W. surname: Zok fullname: Zok, Frank W. email: zok@engineering.ucsb.edu |
BookMark | eNp9kEtLxDAUhbMYwRn1D7jq0k3rTR9JC25kGB8w4EYXrkKa3kBKm9QkFfz3towrF7O6cDnfgfPtyMY6i4TcUsgoUHbfZ_04hSwHmmfAMwC2IVuAPE8raNgl2YXQA0AFnG7J50FrVDEkTidLTzpbo50fkxC9NHZ52ySiDWbARHup4uxxjWrTok89GrukFXaJQi9HoxLlxskFEzFckwsth4A3f_eKfDwd3vcv6fHt-XX_eExVwXlMS9pCSaEuC9Yip1LSsqMUKeelhKKWjFW8kZiXSDvZFa3WdcNy1MgVl7LhxRW5O_VO3n3NGKIYTVA4DNKim4OgtGBVVQKs0foUVd6F4FELZaKMxtl17SAoiNWg6MVqUKwGBXCxGFzQ_B86eTNK_3MeejhBuOz_NuhFUAbt4sv4RbronDmH_wKzz4_i |
CitedBy_id | crossref_primary_10_1115_1_4056414 crossref_primary_10_1016_j_compstruct_2020_112186 crossref_primary_10_1016_j_jmps_2015_08_009 crossref_primary_10_1016_j_ijsolstr_2020_05_002 crossref_primary_10_1016_j_compstruct_2016_05_002 crossref_primary_10_1016_j_ijmecsci_2020_105528 crossref_primary_10_1016_j_compstruct_2022_116097 crossref_primary_10_1111_jace_16840 crossref_primary_10_1111_jace_17961 crossref_primary_10_1016_j_mechmat_2024_105227 crossref_primary_10_1016_j_carbon_2019_10_026 |
Cites_doi | 10.1016/0020-7683(94)90010-8 10.1007/BF02403007 10.1016/0022-5096(93)90086-U 10.1007/BF00355946 10.1111/j.1151-2916.1995.tb08618.x 10.1007/BF01143218 10.1016/S1359-6454(98)00041-X 10.1016/0001-6160(88)90083-1 10.1111/j.1151-2916.1992.tb05495.x 10.1016/0956-7151(95)00003-E 10.1177/002199837400800209 10.1016/0022-5096(95)00045-K 10.1111/j.1151-2916.1985.tb15313.x 10.1016/0956-7151(92)90461-M 10.1111/j.1151-2916.1991.tb06852.x 10.1177/002199836700100305 10.1007/BF02327601 10.1111/j.1151-2916.1994.tb06981.x 10.1111/j.1151-2916.1997.tb03013.x 10.1111/j.1151-2916.1999.tb01899.x 10.1088/0508-3443/3/3/302 10.1016/S0020-7683(96)00179-5 10.1016/0022-5096(93)90085-T 10.1016/0266-3538(93)90121-V 10.1016/j.compscitech.2005.03.010 |
ContentType | Journal Article |
Copyright | 2012 Elsevier Ltd |
Copyright_xml | – notice: 2012 Elsevier Ltd |
DBID | AAYXX CITATION 7QQ 7SR 7TB 7U5 8BQ 8FD FR3 JG9 KR7 L7M |
DOI | 10.1016/j.jmps.2012.07.006 |
DatabaseName | CrossRef Ceramic Abstracts Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Ceramic Abstracts Engineering Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EndPage | 2018 |
ExternalDocumentID | 10_1016_j_jmps_2012_07_006 S0022509612001494 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29L 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABFSI ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADIYS ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BJAXD BKOJK BLXMC CS3 DU5 E.L EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMV HVGLF HZ~ H~9 IHE J1W JJJVA KOM LY7 M24 M38 M41 MO0 N9A NDZJH O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SET SEW SMS SPC SPCBC SPD SPG SST SSZ T5K VH1 WUQ XFK XPP YQT ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7QQ 7SR 7TB 7U5 8BQ 8FD EFKBS FR3 JG9 KR7 L7M |
ID | FETCH-LOGICAL-c377t-41b04108436be71aa14d11e1774a038a66579ae24e1dad3bff8962efe7c7aa973 |
IEDL.DBID | AIKHN |
ISSN | 0022-5096 |
IngestDate | Thu Sep 04 19:58:26 EDT 2025 Tue Jul 01 00:53:05 EDT 2025 Thu Apr 24 23:03:59 EDT 2025 Fri Feb 16 04:41:23 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Fiber-reinforced composite material Constitutive behavior Fracture |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c377t-41b04108436be71aa14d11e1774a038a66579ae24e1dad3bff8962efe7c7aa973 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0022509612001494 |
PQID | 1136554007 |
PQPubID | 23500 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_1136554007 crossref_citationtrail_10_1016_j_jmps_2012_07_006 crossref_primary_10_1016_j_jmps_2012_07_006 elsevier_sciencedirect_doi_10_1016_j_jmps_2012_07_006 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2012 2012-12-00 20121201 |
PublicationDateYYYYMMDD | 2012-12-01 |
PublicationDate_xml | – month: 12 year: 2012 text: December 2012 |
PublicationDecade | 2010 |
PublicationTitle | Journal of the mechanics and physics of solids |
PublicationYear | 2012 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Hedgepeth, van Dyke (bib12) 1967; 1 Neumeister (bib21) 1993; 41 Whitney, Knight (bib29) 1980; 20 Hild, Domergue, Leckie, Evans (bib13) 1994; 31 McNulty, Zok (bib19) 1997; 80 Phoenix (bib23) 1993; 48 Aveston, J., Cooper, G.A., Kelly, A., 1971. Single and multiple fracture, in: The Properties of Fiber Composites, National Physical Laboratory. IPC Science and Technology Press Ltd. pp. 15–24. Curtin (bib6) 1991; 26 Zhou, Curtin (bib30) 1995; 43 Jansson, Leckie (bib16) 1992; 40 Evans, Zok (bib11) 1994; 29 Curtin (bib7) 1991; 74 Tada, Paris, Irwin (bib27) 1985 Bullock (bib3) 1974; 8 Curtin (bib9) 1998 Cox (bib5) 1952; 3 Steif, Trojnacki (bib26) 1994; 77 Cady, Heredia, Evans (bib4) 1995; 78 Prewo (bib24) 1986; 21 Hui, Phoenix, Ibnabdeljalil, Smith (bib14) 1995; 43 Curtin, Ahn, Takeda (bib10) 1998; 46 Thouless, Evans (bib28) 1988; 36 Marshall, Evans (bib17) 1985; 68 MATLAB Version 7.9.0.529 (R2009b), 2009. The MathWorks, Inc., Natick, Massachusetts. Ibnabdeljalil, Curtin (bib15) 1997; 34 Ramamurty (bib25) 2004; 65 Beyerle, Spearing, Zok, Evans (bib2) 1992; 75 McNulty, Zok, Genin, Evans (bib20) 1999; 82 Neumeister (bib22) 1993; 41 Curtin (10.1016/j.jmps.2012.07.006_bib9) 1998 Prewo (10.1016/j.jmps.2012.07.006_bib24) 1986; 21 Cady (10.1016/j.jmps.2012.07.006_bib4) 1995; 78 Curtin (10.1016/j.jmps.2012.07.006_bib6) 1991; 26 Jansson (10.1016/j.jmps.2012.07.006_bib16) 1992; 40 10.1016/j.jmps.2012.07.006_bib1 Hild (10.1016/j.jmps.2012.07.006_bib13) 1994; 31 Beyerle (10.1016/j.jmps.2012.07.006_bib2) 1992; 75 10.1016/j.jmps.2012.07.006_bib18 Thouless (10.1016/j.jmps.2012.07.006_bib28) 1988; 36 Evans (10.1016/j.jmps.2012.07.006_bib11) 1994; 29 Hui (10.1016/j.jmps.2012.07.006_bib14) 1995; 43 McNulty (10.1016/j.jmps.2012.07.006_bib20) 1999; 82 Ramamurty (10.1016/j.jmps.2012.07.006_bib25) 2004; 65 Ibnabdeljalil (10.1016/j.jmps.2012.07.006_bib15) 1997; 34 Curtin (10.1016/j.jmps.2012.07.006_bib10) 1998; 46 Neumeister (10.1016/j.jmps.2012.07.006_bib22) 1993; 41 Bullock (10.1016/j.jmps.2012.07.006_bib3) 1974; 8 Steif (10.1016/j.jmps.2012.07.006_bib26) 1994; 77 Phoenix (10.1016/j.jmps.2012.07.006_bib23) 1993; 48 Whitney (10.1016/j.jmps.2012.07.006_bib29) 1980; 20 McNulty (10.1016/j.jmps.2012.07.006_bib19) 1997; 80 Neumeister (10.1016/j.jmps.2012.07.006_bib21) 1993; 41 Cox (10.1016/j.jmps.2012.07.006_bib5) 1952; 3 Curtin (10.1016/j.jmps.2012.07.006_bib7) 1991; 74 Hedgepeth (10.1016/j.jmps.2012.07.006_bib12) 1967; 1 Marshall (10.1016/j.jmps.2012.07.006_bib17) 1985; 68 Tada (10.1016/j.jmps.2012.07.006_bib27) 1985 Zhou (10.1016/j.jmps.2012.07.006_bib30) 1995; 43 |
References_xml | – volume: 74 start-page: 2837 year: 1991 end-page: 2845 ident: bib7 article-title: Theory of mechanical properties of ceramic-matrix composites publication-title: J. Am. Ceram. Soc. – volume: 29 start-page: 3857 year: 1994 end-page: 3896 ident: bib11 article-title: The physics and mechanics of fibre-reinforced brittle matrix composites publication-title: J. Mater. Sci. – volume: 36 start-page: 517 year: 1988 end-page: 522 ident: bib28 article-title: Effects of pull-out on the mechanical properties of ceramic-matrix composites publication-title: Acta Metall. – volume: 1 start-page: 294 year: 1967 end-page: 309 ident: bib12 article-title: Local stress concentrations in imperfect filamentary composite materials publication-title: J. Comp. Mater. – volume: 21 start-page: 3590 year: 1986 end-page: 3600 ident: bib24 article-title: Tension and flexural strength of silicon carbide fiber-reinforced glass ceramics publication-title: J. Mater. Sci. – volume: 77 start-page: 221 year: 1994 end-page: 229 ident: bib26 article-title: Bend strength vs. tensile strength of fiber-reinforced ceramics publication-title: J. Am. Ceram. Soc. – reference: Aveston, J., Cooper, G.A., Kelly, A., 1971. Single and multiple fracture, in: The Properties of Fiber Composites, National Physical Laboratory. IPC Science and Technology Press Ltd. pp. 15–24. – year: 1985 ident: bib27 article-title: The stress analysis of cracks handbook – volume: 78 start-page: 2065 year: 1995 end-page: 2078 ident: bib4 article-title: In-plane mechanical properties of several ceramic-matrix composites publication-title: J. Am. Ceram. Soc. – volume: 80 start-page: 1535 year: 1997 end-page: 1543 ident: bib19 article-title: Application of weakest-link fracture statistics to fiber-reinforced ceramic-matrix composites publication-title: J. Am. Ceram. Soc. – volume: 82 start-page: 1217 year: 1999 end-page: 1228 ident: bib20 article-title: Notch-sensitivity of fiber-reinforced ceramic-matrix composites: effects of inelastic straining and volume-dependent strength publication-title: J. Am. Ceram. Soc. – volume: 65 start-page: 1815 year: 2004 end-page: 1825 ident: bib25 article-title: Assessment of load transfer characteristics of a fiber-reinforced titanium-matrix composite publication-title: Comp. Sci. Tech. – volume: 3 start-page: 72 year: 1952 end-page: 79 ident: bib5 article-title: The elasticity and strength of paper and other fibrous materials publication-title: Br. J. App. Phys. – volume: 20 start-page: 211 year: 1980 end-page: 216 ident: bib29 article-title: The relationship between tensile strength and flexure strength in fiber-reinforced composites publication-title: Exp. Mech. – year: 1998 ident: bib9 article-title: Stochastic damage evolution and failure in fiber-reinforced composites. Volume 36 of Advances in Applied Mechanics – volume: 41 start-page: 1405 year: 1993 end-page: 1424 ident: bib22 article-title: Bundle pullout: a failure mechanism limiting the tensile strength of continuous fiber reinforced brittle matrix composites and its implications for strength dependence on volume and type of loading publication-title: J. Mech. Phys. Solids – volume: 43 start-page: 3094 year: 1995 end-page: 3104 ident: bib30 article-title: Failure of fiber composites: a lattice Green function model publication-title: Acta Metall. Mater. – volume: 26 start-page: 5239 year: 1991 end-page: 5253 ident: bib6 article-title: Exact theory of fibre fragmentation in a single-filament composite publication-title: J. Mater. Sci. – volume: 40 start-page: 2967 year: 1992 end-page: 2978 ident: bib16 article-title: The mechanics of failure of silicon carbide fiber reinforced glass-matrix composites publication-title: Acta Metall. Mater. – volume: 31 start-page: 1035 year: 1994 end-page: 1045 ident: bib13 article-title: Tensile and flexural ultimate strength of fiber-reinforced ceramic-matrix composites publication-title: Int. J. Solids Struct. – volume: 48 start-page: 65 year: 1993 end-page: 80 ident: bib23 article-title: Statistical issues in the fracture of brittle-matrix fibrous composites publication-title: Comp. Sci. Tech. – volume: 34 start-page: 2649 year: 1997 end-page: 2668 ident: bib15 article-title: Strength and reliability of fiber-reinforced composites: localized load-sharing and associated size effects publication-title: Int. J. Solids Struct. – volume: 41 start-page: 1383 year: 1993 end-page: 1404 ident: bib21 article-title: A constitutive law for continuous fiber reinforced brittle matrix composites with fiber fragmentation and stress recovery publication-title: J. Mech. Phys. Solids – volume: 68 start-page: 225 year: 1985 end-page: 231 ident: bib17 article-title: Failure mechanisms in ceramic-fiber/ceramic matrix composites publication-title: J. Am. Ceram. Soc. – volume: 75 start-page: 2719 year: 1992 end-page: 2725 ident: bib2 article-title: Damage and failure in unidirectional ceramic-matrix composites publication-title: J. Am. Ceram. Soc. – volume: 46 start-page: 3409 year: 1998 end-page: 3420 ident: bib10 article-title: Modeling brittle and tough stress-strain behavior in unidirectional ceramic matrix composites publication-title: Acta Mater. – reference: MATLAB Version 7.9.0.529 (R2009b), 2009. The MathWorks, Inc., Natick, Massachusetts. – volume: 8 start-page: 200 year: 1974 end-page: 206 ident: bib3 article-title: Strength ratios of composite materials in flexure and in tension publication-title: J. Comp. Mater. – volume: 43 start-page: 1551 year: 1995 end-page: 1585 ident: bib14 article-title: An exact closed form solution for fragmentation of weibull fibers in a single filament composite with applications to fiber-reinforced ceramics publication-title: J. Mech. Phys. Solids – volume: 31 start-page: 1035 year: 1994 ident: 10.1016/j.jmps.2012.07.006_bib13 article-title: Tensile and flexural ultimate strength of fiber-reinforced ceramic-matrix composites publication-title: Int. J. Solids Struct. doi: 10.1016/0020-7683(94)90010-8 – volume: 21 start-page: 3590 year: 1986 ident: 10.1016/j.jmps.2012.07.006_bib24 article-title: Tension and flexural strength of silicon carbide fiber-reinforced glass ceramics publication-title: J. Mater. Sci. doi: 10.1007/BF02403007 – volume: 41 start-page: 1405 year: 1993 ident: 10.1016/j.jmps.2012.07.006_bib22 article-title: Bundle pullout: a failure mechanism limiting the tensile strength of continuous fiber reinforced brittle matrix composites and its implications for strength dependence on volume and type of loading publication-title: J. Mech. Phys. Solids doi: 10.1016/0022-5096(93)90086-U – volume: 29 start-page: 3857 year: 1994 ident: 10.1016/j.jmps.2012.07.006_bib11 article-title: The physics and mechanics of fibre-reinforced brittle matrix composites publication-title: J. Mater. Sci. doi: 10.1007/BF00355946 – volume: 78 start-page: 2065 year: 1995 ident: 10.1016/j.jmps.2012.07.006_bib4 article-title: In-plane mechanical properties of several ceramic-matrix composites publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.1995.tb08618.x – volume: 26 start-page: 5239 year: 1991 ident: 10.1016/j.jmps.2012.07.006_bib6 article-title: Exact theory of fibre fragmentation in a single-filament composite publication-title: J. Mater. Sci. doi: 10.1007/BF01143218 – volume: 46 start-page: 3409 year: 1998 ident: 10.1016/j.jmps.2012.07.006_bib10 article-title: Modeling brittle and tough stress-strain behavior in unidirectional ceramic matrix composites publication-title: Acta Mater. doi: 10.1016/S1359-6454(98)00041-X – volume: 36 start-page: 517 year: 1988 ident: 10.1016/j.jmps.2012.07.006_bib28 article-title: Effects of pull-out on the mechanical properties of ceramic-matrix composites publication-title: Acta Metall. doi: 10.1016/0001-6160(88)90083-1 – volume: 75 start-page: 2719 year: 1992 ident: 10.1016/j.jmps.2012.07.006_bib2 article-title: Damage and failure in unidirectional ceramic-matrix composites publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.1992.tb05495.x – volume: 43 start-page: 3094 year: 1995 ident: 10.1016/j.jmps.2012.07.006_bib30 article-title: Failure of fiber composites: a lattice Green function model publication-title: Acta Metall. Mater. doi: 10.1016/0956-7151(95)00003-E – volume: 8 start-page: 200 year: 1974 ident: 10.1016/j.jmps.2012.07.006_bib3 article-title: Strength ratios of composite materials in flexure and in tension publication-title: J. Comp. Mater. doi: 10.1177/002199837400800209 – volume: 43 start-page: 1551 year: 1995 ident: 10.1016/j.jmps.2012.07.006_bib14 article-title: An exact closed form solution for fragmentation of weibull fibers in a single filament composite with applications to fiber-reinforced ceramics publication-title: J. Mech. Phys. Solids doi: 10.1016/0022-5096(95)00045-K – year: 1998 ident: 10.1016/j.jmps.2012.07.006_bib9 – volume: 68 start-page: 225 year: 1985 ident: 10.1016/j.jmps.2012.07.006_bib17 article-title: Failure mechanisms in ceramic-fiber/ceramic matrix composites publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.1985.tb15313.x – volume: 40 start-page: 2967 year: 1992 ident: 10.1016/j.jmps.2012.07.006_bib16 article-title: The mechanics of failure of silicon carbide fiber reinforced glass-matrix composites publication-title: Acta Metall. Mater. doi: 10.1016/0956-7151(92)90461-M – year: 1985 ident: 10.1016/j.jmps.2012.07.006_bib27 – volume: 74 start-page: 2837 year: 1991 ident: 10.1016/j.jmps.2012.07.006_bib7 article-title: Theory of mechanical properties of ceramic-matrix composites publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.1991.tb06852.x – volume: 1 start-page: 294 year: 1967 ident: 10.1016/j.jmps.2012.07.006_bib12 article-title: Local stress concentrations in imperfect filamentary composite materials publication-title: J. Comp. Mater. doi: 10.1177/002199836700100305 – volume: 20 start-page: 211 year: 1980 ident: 10.1016/j.jmps.2012.07.006_bib29 article-title: The relationship between tensile strength and flexure strength in fiber-reinforced composites publication-title: Exp. Mech. doi: 10.1007/BF02327601 – ident: 10.1016/j.jmps.2012.07.006_bib18 – volume: 77 start-page: 221 year: 1994 ident: 10.1016/j.jmps.2012.07.006_bib26 article-title: Bend strength vs. tensile strength of fiber-reinforced ceramics publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.1994.tb06981.x – volume: 80 start-page: 1535 year: 1997 ident: 10.1016/j.jmps.2012.07.006_bib19 article-title: Application of weakest-link fracture statistics to fiber-reinforced ceramic-matrix composites publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.1997.tb03013.x – volume: 82 start-page: 1217 year: 1999 ident: 10.1016/j.jmps.2012.07.006_bib20 article-title: Notch-sensitivity of fiber-reinforced ceramic-matrix composites: effects of inelastic straining and volume-dependent strength publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.1999.tb01899.x – ident: 10.1016/j.jmps.2012.07.006_bib1 – volume: 3 start-page: 72 year: 1952 ident: 10.1016/j.jmps.2012.07.006_bib5 article-title: The elasticity and strength of paper and other fibrous materials publication-title: Br. J. App. Phys. doi: 10.1088/0508-3443/3/3/302 – volume: 34 start-page: 2649 year: 1997 ident: 10.1016/j.jmps.2012.07.006_bib15 article-title: Strength and reliability of fiber-reinforced composites: localized load-sharing and associated size effects publication-title: Int. J. Solids Struct. doi: 10.1016/S0020-7683(96)00179-5 – volume: 41 start-page: 1383 year: 1993 ident: 10.1016/j.jmps.2012.07.006_bib21 article-title: A constitutive law for continuous fiber reinforced brittle matrix composites with fiber fragmentation and stress recovery publication-title: J. Mech. Phys. Solids doi: 10.1016/0022-5096(93)90085-T – volume: 48 start-page: 65 year: 1993 ident: 10.1016/j.jmps.2012.07.006_bib23 article-title: Statistical issues in the fracture of brittle-matrix fibrous composites publication-title: Comp. Sci. Tech. doi: 10.1016/0266-3538(93)90121-V – volume: 65 start-page: 1815 year: 2004 ident: 10.1016/j.jmps.2012.07.006_bib25 article-title: Assessment of load transfer characteristics of a fiber-reinforced titanium-matrix composite publication-title: Comp. Sci. Tech. doi: 10.1016/j.compscitech.2005.03.010 |
SSID | ssj0005071 |
Score | 2.1073241 |
Snippet | Effects of non-uniform strains on tensile fracture of fiber-reinforced ceramic–matrix composites have not been satisfactorily explained by existing... Effects of non-uniform strains on tensile fracture of fiber-reinforced ceramic-matrix composites have not been satisfactorily explained by existing... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2003 |
SubjectTerms | Constitutive behavior Failure Fiber composites Fiber-reinforced composite material Fibers Fracture Fracture mechanics Fragmentation Mathematical models Strain Temperature gradient |
Title | Effects of non-uniform strains on tensile fracture of fiber-reinforced ceramic composites |
URI | https://dx.doi.org/10.1016/j.jmps.2012.07.006 https://www.proquest.com/docview/1136554007 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbGdoED4imeU5C4oULTpq8jQqDBxA4IxDhFXupIoDGmPa78duI-eEnswKVVo6RKHddxks-fAY5zp0O5odCzmBpPkQ28LEFeqkg0qcI0LwhMb3tx50Hd9KN-Ay7qWBiGVVa2v7TphbWuSs4qaZ6Nn585xtfpImcsCQo_Xy1BKwizOGpC6_y62-l9IT38RNak4dygip0pYV4vr2Nm7eYtQSYzjP-an35Z6mL6uVqD1cpvFOdl19ahQaMNWPnGJrgJTyUT8VS8WeEW9d58xFFXr2JapIFwxSNRwNWHJCzHRs0nxFUtY0a8CRUUqk4ewtCEk9QLRpszpIumW_BwdXl_0fGqzAmeCZNk5ik58JX0UxXGA0okolS5lCSdr4d-mCIft2RIgSKZYx4OrE2zOCBLiUkQsyTchqbrKO2AiMhQFKM1aDLFOQj9PHdXi85xQle4C7KWlzYVrTh_1lDX-LEXzTLWLGPt82l3vAsnn23GJanGwtpRPQz6h2poZ_UXtjuqx0y7f4YPQnBEb_Op5jw2zo1y7tHeP9-9D8v8VOJaDqA5m8zp0Hkns0Eblk7fZbvSQb537x67H89L50Q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYKDMCAeIo3RmJDoXHixMmIKqrynFqpTNbVOUtUbVr1sfLb8eWBAAkGlgzOOXLOl_M5_u47xq4yZ0OZwdCzkBhPog28VAFtVQSYREKSFQSmzy9xpycf-lG_wVp1LgzBKivfX_r0wltXLc1Km83p2xvl-DpbpIolQRHnyxW2JqNQEa7v5v0LzsNXoqYMJ_Eqc6YEeQ3HU-Lsph-CRGUY_7Y6_fDTxeLT3mZbVdTIb8uB7bAG5rts8wuX4B57LXmI53xiudvSe8uccq7GfF4UgXDNOS_A6iPkljKjljMkUUuIEW-GBYGq0wY3OKMS9Zyw5gTowvk-67Xvuq2OV9VN8Eyo1MKTYuBL4ScyjAeoBICQmRAoXKQHfpgAHbakgIFEkUEWDqxN0jhAi8oogFSFB2zVDRQPGY_QYBSDNWBSSRUI_SxzVwsubALXeMRErS9tKlJxeq2RrtFjQ0061qRj7dNZd3zErj_7TEtKjT-lo3oa9DfD0M7n_9nvsp4z7b4YOgaBHCfLuaYqNi6IcsHR8T-ffcHWO93nJ_10__J4wjboTolwOWWri9kSz1ycshicF3b4AY4h5mw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+non-uniform+strains+on+tensile+fracture+of+fiber-reinforced+ceramic+composites&rft.jtitle=Journal+of+the+mechanics+and+physics+of+solids&rft.au=Rajan%2C+Varun+P.&rft.au=Zok%2C+Frank+W.&rft.date=2012-12-01&rft.pub=Elsevier+Ltd&rft.issn=0022-5096&rft.volume=60&rft.issue=12&rft.spage=2003&rft.epage=2018&rft_id=info:doi/10.1016%2Fj.jmps.2012.07.006&rft.externalDocID=S0022509612001494 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-5096&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-5096&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-5096&client=summon |