Kinetic Simulations of Radiative Magnetic Reconnection in the Coronae of Accreting Black Holes
We perform 2D and 3D particle-in-cell simulations of reconnection in magnetically dominated e plasmas subject to strong Compton cooling. Magnetic reconnection under such conditions can operate in accretion disk coronae around black holes, which produce hard X-rays through Comptonization. Our simulat...
Saved in:
Published in | The Astrophysical journal Vol. 899; no. 1; pp. 52 - 67 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Philadelphia
The American Astronomical Society
01.08.2020
IOP Publishing |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We perform 2D and 3D particle-in-cell simulations of reconnection in magnetically dominated e plasmas subject to strong Compton cooling. Magnetic reconnection under such conditions can operate in accretion disk coronae around black holes, which produce hard X-rays through Comptonization. Our simulations show that most of the plasma in the reconnection layer is kept cold by Compton losses and locked in magnetically dominated plasmoids with a small thermal pressure. Compton drag clears cavities inside plasmoids and also affects their bulk motions. These effects, however, weakly change the reconnection rate and the plasmoid size distribution from those in nonradiative reconnection. This demonstrates that the reconnection dynamics is governed by similar magnetic stresses in both cases and weakly affected by thermal pressure. We examine the energy distribution of particles energized by radiative reconnection and observe two distinct components: (1) A mildly relativistic peak, which results from bulk motions of cooled plasmoids. This component receives most of the dissipated reconnection power and dominates the output X-ray emission. The peak has a quasi-Maxwellian shape with an effective temperature of ∼100 keV. Thus, it mimics thermal Comptonization used previously to fit hard-state spectra of accreting black holes. (2) A high-energy tail, which receives ∼20% of the dissipated reconnection power. It is populated by particles accelerated impulsively at X-points or "picked up" by fast outflows from X-points. The high-energy particles immediately cool, and their inverse Compton emission explains the MeV spectral tail detected in the hard state of Cyg X-1. Our first-principle simulations support magnetic reconnection as a mechanism powering hard X-ray emission from magnetically dominated regions of accreting black holes. |
---|---|
AbstractList | We perform 2D and 3D particle-in-cell simulations of reconnection in magnetically dominated e ± plasmas subject to strong Compton cooling. Magnetic reconnection under such conditions can operate in accretion disk coronae around black holes, which produce hard X-rays through Comptonization. Our simulations show that most of the plasma in the reconnection layer is kept cold by Compton losses and locked in magnetically dominated plasmoids with a small thermal pressure. Compton drag clears cavities inside plasmoids and also affects their bulk motions. These effects, however, weakly change the reconnection rate and the plasmoid size distribution from those in nonradiative reconnection. This demonstrates that the reconnection dynamics is governed by similar magnetic stresses in both cases and weakly affected by thermal pressure. We examine the energy distribution of particles energized by radiative reconnection and observe two distinct components: (1) A mildly relativistic peak, which results from bulk motions of cooled plasmoids. This component receives most of the dissipated reconnection power and dominates the output X-ray emission. The peak has a quasi-Maxwellian shape with an effective temperature of ∼100 keV. Thus, it mimics thermal Comptonization used previously to fit hard-state spectra of accreting black holes. (2) A high-energy tail, which receives ∼20% of the dissipated reconnection power. It is populated by particles accelerated impulsively at X-points or “picked up” by fast outflows from X-points. The high-energy particles immediately cool, and their inverse Compton emission explains the MeV spectral tail detected in the hard state of Cyg X-1. Our first-principle simulations support magnetic reconnection as a mechanism powering hard X-ray emission from magnetically dominated regions of accreting black holes. We perform 2D and 3D particle-in-cell simulations of reconnection in magnetically dominated e plasmas subject to strong Compton cooling. Magnetic reconnection under such conditions can operate in accretion disk coronae around black holes, which produce hard X-rays through Comptonization. Our simulations show that most of the plasma in the reconnection layer is kept cold by Compton losses and locked in magnetically dominated plasmoids with a small thermal pressure. Compton drag clears cavities inside plasmoids and also affects their bulk motions. These effects, however, weakly change the reconnection rate and the plasmoid size distribution from those in nonradiative reconnection. This demonstrates that the reconnection dynamics is governed by similar magnetic stresses in both cases and weakly affected by thermal pressure. We examine the energy distribution of particles energized by radiative reconnection and observe two distinct components: (1) A mildly relativistic peak, which results from bulk motions of cooled plasmoids. This component receives most of the dissipated reconnection power and dominates the output X-ray emission. The peak has a quasi-Maxwellian shape with an effective temperature of ∼100 keV. Thus, it mimics thermal Comptonization used previously to fit hard-state spectra of accreting black holes. (2) A high-energy tail, which receives ∼20% of the dissipated reconnection power. It is populated by particles accelerated impulsively at X-points or "picked up" by fast outflows from X-points. The high-energy particles immediately cool, and their inverse Compton emission explains the MeV spectral tail detected in the hard state of Cyg X-1. Our first-principle simulations support magnetic reconnection as a mechanism powering hard X-ray emission from magnetically dominated regions of accreting black holes. We perform 2D and 3D particle-in-cell simulations of reconnection in magnetically dominated e ± plasmas subject to strong Compton cooling. Magnetic reconnection under such conditions can operate in accretion disk coronae around black holes, which produce hard X-rays through Comptonization. Our simulations show that most of the plasma in the reconnection layer is kept cold by Compton losses and locked in magnetically dominated plasmoids with a small thermal pressure. Compton drag clears cavities inside plasmoids and also affects their bulk motions. These effects, however, weakly change the reconnection rate and the plasmoid size distribution from those in nonradiative reconnection. This demonstrates that the reconnection dynamics is governed by similar magnetic stresses in both cases and weakly affected by thermal pressure. We examine the energy distribution of particles energized by radiative reconnection and observe two distinct components: (1) A mildly relativistic peak, which results from bulk motions of cooled plasmoids. This component receives most of the dissipated reconnection power and dominates the output X-ray emission. The peak has a quasi-Maxwellian shape with an effective temperature of ∼100 keV. Thus, it mimics thermal Comptonization used previously to fit hard-state spectra of accreting black holes. (2) A high-energy tail, which receives ∼20% of the dissipated reconnection power. It is populated by particles accelerated impulsively at X -points or “picked up” by fast outflows from X -points. The high-energy particles immediately cool, and their inverse Compton emission explains the MeV spectral tail detected in the hard state of Cyg X-1. Our first-principle simulations support magnetic reconnection as a mechanism powering hard X-ray emission from magnetically dominated regions of accreting black holes. We perform 2D and 3D particle-in-cell simulations of reconnection in magnetically dominated e± plasmas subject to strong Compton cooling. Magnetic reconnection under such conditions can operate in accretion disk coronae around black holes, which produce hard X-rays through Comptonization. Our simulations show that most of the plasma in the reconnection layer is kept cold by Compton losses and locked in magnetically dominated plasmoids with a small thermal pressure. Compton drag clears cavities inside plasmoids and also affects their bulk motions. These effects, however, weakly change the reconnection rate and the plasmoid size distribution from those in nonradiative reconnection. This demonstrates that the reconnection dynamics is governed by similar magnetic stresses in both cases and weakly affected by thermal pressure. We examine the energy distribution of particles energized by radiative reconnection and observe two distinct components: (1) A mildly relativistic peak, which results from bulk motions of cooled plasmoids. This component receives most of the dissipated reconnection power and dominates the output X-ray emission. The peak has a quasi-Maxwellian shape with an effective temperature of ~100 keV. Thus, it mimics thermal Comptonization used previously to fit hard-state spectra of accreting black holes. (2) A high-energy tail, which receives ~20% of the dissipated reconnection power. It is populated by particles accelerated impulsively at X-points or "picked up" by fast outflows from X-points. The high-energy particles immediately cool, and their inverse Compton emission explains the MeV spectral tail detected in the hard state of Cyg X-1. Our first-principle simulations support magnetic reconnection as a mechanism powering hard X-ray emission from magnetically dominated regions of accreting black holes. |
Author | Beloborodov, Andrei M. Sironi, Lorenzo |
Author_xml | – sequence: 1 givenname: Lorenzo surname: Sironi fullname: Sironi, Lorenzo email: lsironi@astro.columbia.edu organization: Columbia University Department of Astronomy and Columbia Astrophysics Laboratory, 550 W. 120th St., New York, NY 10027, USA – sequence: 2 givenname: Andrei M. surname: Beloborodov fullname: Beloborodov, Andrei M. organization: Max Planck Institute for Astrophysics, Karl-Schwarzschild-Str. 1, D-85741, Garching, Germany |
BackLink | https://www.osti.gov/servlets/purl/1803040$$D View this record in Osti.gov |
BookMark | eNp9kMFLwzAUh4NMcJvePQa9WpcmbZMe51AnToSp4MmQpumW2SUzyQT_e1s7FAQ9Pd7j-z1-fAPQM9YoAI5jdE5YQkdxSliUkJSORCEyjPdA__vUA32EUBJlhD4fgIH3q3bFed4HL7faqKAlfNDrbS2CtsZDW8G5KHWzvSt4JxYdMVfSGqNky0BtYFgqOLHOGqHaxFhK13BmAS9qIV_h1NbKH4L9StReHe3mEDxdXT5OptHs_vpmMp5FklAaIiJJhSsscEFKVrK86ZYKRliaKhRXKpZZJaSglUyyvEQKZyrPC5pjUWCKS4TIEJx0f60Pmnupg5LLXV0eM0RQ0kKnHbRx9m2rfOAru3Wm6cVxQhKWEcxaKuso6az3TlW8-fYlJjihax4j3grnrV3e2uWd8CaIfgU3Tq-F-_gvctZFtN38lPkT_wQXl5Jo |
CitedBy_id | crossref_primary_10_3847_1538_4357_ada385 crossref_primary_10_1007_s11214_024_01073_2 crossref_primary_10_1051_0004_6361_202140981 crossref_primary_10_3847_2041_8213_ac84db crossref_primary_10_1093_mnras_stad3573 crossref_primary_10_3847_1538_4357_acd0b0 crossref_primary_10_1017_S0022377824000448 crossref_primary_10_3389_fspas_2023_1308056 crossref_primary_10_1017_S0022377821001185 crossref_primary_10_3847_1538_4357_ac2e08 crossref_primary_10_3847_2041_8213_ad192b crossref_primary_10_3847_1538_4357_acffc6 crossref_primary_10_1093_mnras_staa2346 crossref_primary_10_1093_mnras_stab2513 crossref_primary_10_3847_2041_8213_acfe7c crossref_primary_10_3389_fspas_2023_1292682 crossref_primary_10_3847_1538_4357_abedab crossref_primary_10_3847_1538_4357_abedac crossref_primary_10_3847_1538_4357_ac1c76 crossref_primary_10_1063_5_0134320 crossref_primary_10_1093_mnras_stae934 crossref_primary_10_1063_5_0257673 crossref_primary_10_3847_1538_4357_ac17e7 crossref_primary_10_1093_mnras_stad3863 crossref_primary_10_1093_mnras_stab2745 crossref_primary_10_3847_2041_8213_ac0147 crossref_primary_10_3847_2041_8213_acf135 crossref_primary_10_3389_fspas_2024_1530392 crossref_primary_10_3847_1538_4357_ac2429 crossref_primary_10_1093_mnras_stac2730 crossref_primary_10_1103_PhysRevLett_132_085202 crossref_primary_10_1051_0004_6361_202347531 crossref_primary_10_3390_universe10120451 crossref_primary_10_1017_S0022377822000046 crossref_primary_10_3847_1538_4357_ad1827 crossref_primary_10_3847_2041_8213_abd9bc crossref_primary_10_1063_5_0201683 crossref_primary_10_3847_2041_8213_abafa6 crossref_primary_10_1093_mnras_stab2534 crossref_primary_10_1051_epjconf_202329010002 crossref_primary_10_3847_2041_8213_acb264 crossref_primary_10_1093_mnras_stab562 crossref_primary_10_3847_1538_4357_ad03e8 crossref_primary_10_3847_1538_4357_acb68a crossref_primary_10_3847_2041_8213_acbea9 crossref_primary_10_1093_mnras_stad1588 crossref_primary_10_1063_5_0233583 crossref_primary_10_3847_1538_4357_acb7dd crossref_primary_10_3847_1538_4357_ac1b29 crossref_primary_10_3847_1538_4357_ada35e |
Cites_doi | 10.3847/2041-8213/ab2a15 10.1088/0004-637X/726/2/75 10.3847/2041-8213/aa7892 10.1093/mnras/stv641 10.1088/0004-637X/774/1/41 10.1111/j.1365-2966.2005.08767.x 10.1093/mnras/sty452 10.1093/mnras/stz2626 10.1093/mnrasl/slu162 10.1086/337972 10.1093/mnras/stx2530 10.1088/0004-637X/780/1/3 10.3847/1538-4357/ab03d7 10.3847/1538-4357/ab191b 10.1063/1.2218817 10.1093/mnras/stw1620 10.1086/522226 10.1093/mnras/stx237 10.3847/1538-4357/ab287a 10.1063/1.3571602 10.1093/mnras/sty2702 10.1017/S0022377818000624 10.3847/1538-4357/aa8f4f 10.1143/PTPS.155.99 10.1093/mnras/stv042 10.3847/1538-4357/aac820 10.1063/1.3703318 10.1088/0004-637X/815/2/101 10.1086/374808 10.1093/mnras/stx2883 10.3847/1538-4357/ab29ff 10.1007/s11214-014-0132-9 10.1088/0004-637X/771/1/54 10.1086/340436 10.1103/PhysRevLett.109.265002 10.1016/j.newast.2014.09.006 10.1103/PhysRevLett.105.235002 10.1103/PhysRevLett.113.155005 10.1088/0004-637X/782/2/104 10.3847/2041-8205/816/1/L8 10.3847/1538-4357/aa9380 10.1088/0004-637X/770/2/147 10.1088/2041-8205/783/1/L21 10.3847/1538-4357/833/2/155 10.1088/0004-637X/698/2/1523 10.1088/0004-637X/806/2/167 10.1093/mnrasl/sly157 10.1086/589640 |
ContentType | Journal Article |
Copyright | 2020. The American Astronomical Society. All rights reserved. Copyright IOP Publishing Aug 01, 2020 |
Copyright_xml | – notice: 2020. The American Astronomical Society. All rights reserved. – notice: Copyright IOP Publishing Aug 01, 2020 |
CorporateAuthor | Columbia Univ., New York, NY (United States) |
CorporateAuthor_xml | – name: Columbia Univ., New York, NY (United States) |
DBID | AAYXX CITATION 7TG 8FD H8D KL. L7M OIOZB OTOTI |
DOI | 10.3847/1538-4357/aba622 |
DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Technology Research Database Aerospace Database Meteorological & Geoastrophysical Abstracts - Academic Advanced Technologies Database with Aerospace OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | CrossRef Aerospace Database Meteorological & Geoastrophysical Abstracts Technology Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | Aerospace Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics Physics |
DocumentTitleAlternate | Kinetic Simulations of Radiative Magnetic Reconnection in the Coronae of Accreting Black Holes |
EISSN | 1538-4357 |
ExternalDocumentID | 1803040 10_3847_1538_4357_aba622 apjaba622 |
GroupedDBID | -DZ -~X 123 1JI 23N 2FS 2WC 4.4 6J9 85S AAFWJ AAGCD AAJIO ABHWH ACBEA ACGFS ACHIP ACNCT ADACN AEFHF AENEX AFPKN AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN CJUJL CRLBU CS3 EBS F5P FRP GROUPED_DOAJ IJHAN IOP KOT M~E N5L O3W O43 OK1 PJBAE RIN RNS ROL SJN SY9 T37 TN5 TR2 WH7 XSW AAYXX CITATION 7TG 8FD AEINN H8D KL. L7M ABPTK OIOZB OTOTI |
ID | FETCH-LOGICAL-c377t-3c3f2f2a2b3d8d894295a83855e01fe1c6faca7fc469d0e26e99b792ab272d003 |
IEDL.DBID | IOP |
ISSN | 0004-637X 1538-4357 |
IngestDate | Mon Jul 10 02:30:33 EDT 2023 Wed Aug 13 08:45:36 EDT 2025 Tue Jul 01 03:24:25 EDT 2025 Thu Apr 24 23:12:48 EDT 2025 Wed Aug 21 03:34:37 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c377t-3c3f2f2a2b3d8d894295a83855e01fe1c6faca7fc469d0e26e99b792ab272d003 |
Notes | AAS19652 High-Energy Phenomena and Fundamental Physics ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 SC0016542 USDOE Office of Science (SC), Fusion Energy Sciences (FES) |
OpenAccessLink | https://www.osti.gov/servlets/purl/1803040 |
PQID | 2434863280 |
PQPubID | 4562441 |
PageCount | 16 |
ParticipantIDs | crossref_citationtrail_10_3847_1538_4357_aba622 crossref_primary_10_3847_1538_4357_aba622 proquest_journals_2434863280 iop_journals_10_3847_1538_4357_aba622 osti_scitechconnect_1803040 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-08-01 |
PublicationDateYYYYMMDD | 2020-08-01 |
PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Philadelphia |
PublicationPlace_xml | – name: Philadelphia – name: United States |
PublicationTitle | The Astrophysical journal |
PublicationTitleAbbrev | APJ |
PublicationTitleAlternate | Astrophys. J |
PublicationYear | 2020 |
Publisher | The American Astronomical Society IOP Publishing |
Publisher_xml | – name: The American Astronomical Society – name: IOP Publishing |
References | Guo (apjaba622bib11) 2014; 113 Uzdensky (apjaba622bib42) 2014; 780 Sironi (apjaba622bib37) 2014; 783 Rowan (apjaba622bib32) 2019; 873 Kagan (apjaba622bib17) 2013; 774 Petropoulou (apjaba622bib29) 2018; 481 Guo (apjaba622bib13) 2015; 806 Huang (apjaba622bib15) 2012; 109 Uzdensky (apjaba622bib40) 2010; 105 Hakobyan (apjaba622bib14) 2019; 877 Zdziarski (apjaba622bib47) 2004; 155 Zenitani (apjaba622bib49) 2007; 670 Kagan (apjaba622bib18) 2016; 833 Chatterjee (apjaba622bib9) 2019; 490 Jiang (apjaba622bib16) 2019; 880 Petropoulou (apjaba622bib30) 2019; 880 Nalewajko (apjaba622bib26) 2015; 815 Kagan (apjaba622bib19) 2018; 476 Sironi (apjaba622bib38) 2013; 771 Cerutti (apjaba622bib7) 2013; 770 Cerutti (apjaba622bib6) 2015; 448 Loureiro (apjaba622bib21) 2012; 19 Werner (apjaba622bib45) 2018; 473 Bégué (apjaba622bib2) 2017; 467 Zenitani (apjaba622bib48) 2001; 562 Kagan (apjaba622bib20) 2015; 191 Spitkovsky (apjaba622bib39) 2005 Werner (apjaba622bib46) 2016; 816 Zhdankin (apjaba622bib50) 2018; 474 Rowan (apjaba622bib31) 2017; 850 Sironi (apjaba622bib35) 2009; 698 Sironi (apjaba622bib34) 2015; 450 Cerutti (apjaba622bib8) 2014; 782 Sironi (apjaba622bib36) 2011; 726 Parfrey (apjaba622bib28) 2015; 446 Beloborodov (apjaba622bib3) 2017; 850 Lyutikov (apjaba622bib24) 2003; 589 McConnell (apjaba622bib25) 2002; 572 Belyaev (apjaba622bib4) 2015; 36 Daughton (apjaba622bib10) 2006; 13 Sironi (apjaba622bib33) 2016; 462 Werner (apjaba622bib44) 2017; 843 Nalewajko (apjaba622bib27) 2018; 84 Lyubarsky (apjaba622bib22) 2008; 682 Buneman (apjaba622bib5) 1993 Ball (apjaba622bib1) 2018; 862 Uzdensky (apjaba622bib41) 2011; 18 Guo (apjaba622bib12) 2019; 879 Werner (apjaba622bib43) 2019; 482 Lyubarsky (apjaba622bib23) 2005; 358 |
References_xml | – volume: 879 start-page: L23 year: 2019 ident: apjaba622bib12 publication-title: ApJL doi: 10.3847/2041-8213/ab2a15 – volume: 726 start-page: 75 year: 2011 ident: apjaba622bib36 publication-title: ApJ doi: 10.1088/0004-637X/726/2/75 – volume: 843 start-page: L27 year: 2017 ident: apjaba622bib44 publication-title: ApJL doi: 10.3847/2041-8213/aa7892 – volume: 450 start-page: 183 year: 2015 ident: apjaba622bib34 publication-title: MNRAS doi: 10.1093/mnras/stv641 – volume: 774 start-page: 41 year: 2013 ident: apjaba622bib17 publication-title: ApJ doi: 10.1088/0004-637X/774/1/41 – volume: 358 start-page: 113 year: 2005 ident: apjaba622bib23 publication-title: MNRAS doi: 10.1111/j.1365-2966.2005.08767.x – volume: 476 start-page: 3902 year: 2018 ident: apjaba622bib19 publication-title: MNRAS doi: 10.1093/mnras/sty452 – volume: 490 start-page: 2200 year: 2019 ident: apjaba622bib9 publication-title: MNRAS doi: 10.1093/mnras/stz2626 – volume: 446 start-page: L61 year: 2015 ident: apjaba622bib28 publication-title: MNRAS doi: 10.1093/mnrasl/slu162 – volume: 562 start-page: L63 year: 2001 ident: apjaba622bib48 publication-title: ApJL doi: 10.1086/337972 – volume: 473 start-page: 4840 year: 2018 ident: apjaba622bib45 publication-title: MNRAS doi: 10.1093/mnras/stx2530 – volume: 780 start-page: 3 year: 2014 ident: apjaba622bib42 publication-title: ApJ doi: 10.1088/0004-637X/780/1/3 – volume: 873 start-page: 2 year: 2019 ident: apjaba622bib32 publication-title: ApJ doi: 10.3847/1538-4357/ab03d7 – volume: 877 start-page: 53 year: 2019 ident: apjaba622bib14 publication-title: ApJ doi: 10.3847/1538-4357/ab191b – start-page: 345 year: 2005 ident: apjaba622bib39 – volume: 13 start-page: 072101 year: 2006 ident: apjaba622bib10 publication-title: PhPl doi: 10.1063/1.2218817 – volume: 462 start-page: 48 year: 2016 ident: apjaba622bib33 publication-title: MNRAS doi: 10.1093/mnras/stw1620 – volume: 670 start-page: 702 year: 2007 ident: apjaba622bib49 publication-title: ApJ doi: 10.1086/522226 – volume: 467 start-page: 2594 year: 2017 ident: apjaba622bib2 publication-title: MNRAS doi: 10.1093/mnras/stx237 – volume: 880 start-page: 37 year: 2019 ident: apjaba622bib30 publication-title: ApJ doi: 10.3847/1538-4357/ab287a – volume: 18 start-page: 042105 year: 2011 ident: apjaba622bib41 publication-title: PhPl doi: 10.1063/1.3571602 – volume: 481 start-page: 5687 year: 2018 ident: apjaba622bib29 publication-title: MNRAS doi: 10.1093/mnras/sty2702 – start-page: 67 year: 1993 ident: apjaba622bib5 – volume: 84 start-page: 755840301 year: 2018 ident: apjaba622bib27 publication-title: JPlPh doi: 10.1017/S0022377818000624 – volume: 850 start-page: 141 year: 2017 ident: apjaba622bib3 publication-title: ApJ doi: 10.3847/1538-4357/aa8f4f – volume: 155 start-page: 99 year: 2004 ident: apjaba622bib47 publication-title: PThPS doi: 10.1143/PTPS.155.99 – volume: 448 start-page: 606 year: 2015 ident: apjaba622bib6 publication-title: MNRAS doi: 10.1093/mnras/stv042 – volume: 862 start-page: 80 year: 2018 ident: apjaba622bib1 publication-title: ApJ doi: 10.3847/1538-4357/aac820 – volume: 19 start-page: 042303 year: 2012 ident: apjaba622bib21 publication-title: PhPl doi: 10.1063/1.3703318 – volume: 815 start-page: 101 year: 2015 ident: apjaba622bib26 publication-title: ApJ doi: 10.1088/0004-637X/815/2/101 – volume: 589 start-page: 893 year: 2003 ident: apjaba622bib24 publication-title: ApJ doi: 10.1086/374808 – volume: 474 start-page: 2514 year: 2018 ident: apjaba622bib50 publication-title: MNRAS doi: 10.1093/mnras/stx2883 – volume: 880 start-page: 67 year: 2019 ident: apjaba622bib16 publication-title: ApJ doi: 10.3847/1538-4357/ab29ff – volume: 191 start-page: 545 year: 2015 ident: apjaba622bib20 publication-title: SSRv doi: 10.1007/s11214-014-0132-9 – volume: 771 start-page: 54 year: 2013 ident: apjaba622bib38 publication-title: ApJ doi: 10.1088/0004-637X/771/1/54 – volume: 572 start-page: 984 year: 2002 ident: apjaba622bib25 publication-title: ApJ doi: 10.1086/340436 – volume: 109 start-page: 265002 year: 2012 ident: apjaba622bib15 publication-title: PhRvL doi: 10.1103/PhysRevLett.109.265002 – volume: 36 start-page: 37 year: 2015 ident: apjaba622bib4 publication-title: NewA doi: 10.1016/j.newast.2014.09.006 – volume: 105 start-page: 235002 year: 2010 ident: apjaba622bib40 publication-title: PhRvL doi: 10.1103/PhysRevLett.105.235002 – volume: 113 start-page: 155005 year: 2014 ident: apjaba622bib11 publication-title: PhRvL doi: 10.1103/PhysRevLett.113.155005 – volume: 782 start-page: 104 year: 2014 ident: apjaba622bib8 publication-title: ApJ doi: 10.1088/0004-637X/782/2/104 – volume: 816 start-page: L8 year: 2016 ident: apjaba622bib46 publication-title: ApJL doi: 10.3847/2041-8205/816/1/L8 – volume: 850 start-page: 29 year: 2017 ident: apjaba622bib31 publication-title: ApJ doi: 10.3847/1538-4357/aa9380 – volume: 770 start-page: 147 year: 2013 ident: apjaba622bib7 publication-title: ApJ doi: 10.1088/0004-637X/770/2/147 – volume: 783 start-page: L21 year: 2014 ident: apjaba622bib37 publication-title: ApJL doi: 10.1088/2041-8205/783/1/L21 – volume: 833 start-page: 155 year: 2016 ident: apjaba622bib18 publication-title: ApJ doi: 10.3847/1538-4357/833/2/155 – volume: 698 start-page: 1523 year: 2009 ident: apjaba622bib35 publication-title: ApJ doi: 10.1088/0004-637X/698/2/1523 – volume: 806 start-page: 167 year: 2015 ident: apjaba622bib13 publication-title: ApJ doi: 10.1088/0004-637X/806/2/167 – volume: 482 start-page: L60 year: 2019 ident: apjaba622bib43 publication-title: MNRAS doi: 10.1093/mnrasl/sly157 – volume: 682 start-page: 1436 year: 2008 ident: apjaba622bib22 publication-title: ApJ doi: 10.1086/589640 |
SSID | ssj0004299 |
Score | 2.5856874 |
Snippet | We perform 2D and 3D particle-in-cell simulations of reconnection in magnetically dominated e plasmas subject to strong Compton cooling. Magnetic reconnection... We perform 2D and 3D particle-in-cell simulations of reconnection in magnetically dominated e ± plasmas subject to strong Compton cooling. Magnetic... We perform 2D and 3D particle-in-cell simulations of reconnection in magnetically dominated e ± plasmas subject to strong Compton cooling. Magnetic... We perform 2D and 3D particle-in-cell simulations of reconnection in magnetically dominated e± plasmas subject to strong Compton cooling. Magnetic reconnection... |
SourceID | osti proquest crossref iop |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 52 |
SubjectTerms | Accretion Accretion disks Activation ASTRONOMY AND ASTROPHYSICS Astrophysical black holes Astrophysics Black holes Emission Energy dissipation Energy distribution First principles Hard X-rays Magnetic reconnection Particle in cell technique Particle size distribution Plasmas (physics) Relativistic disks Relativistic jets Simulation Solar magnetic reconnection Stellar accretion disks Stress concentration X-ray emissions X-rays |
Title | Kinetic Simulations of Radiative Magnetic Reconnection in the Coronae of Accreting Black Holes |
URI | https://iopscience.iop.org/article/10.3847/1538-4357/aba622 https://www.proquest.com/docview/2434863280 https://www.osti.gov/servlets/purl/1803040 |
Volume | 899 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTxQxFG8QY-JFEDWsIOlBTTzM7kzb6Uc8bQhko0GIStyDcdJPQpQdwi4H_Ot9bzoLQQ0xXiY9tJ2Z177fe6_t-5WQl6EUyVorC2FtKoR3vLA2yKLmSvMqeOMjJjgffJCTY_FuWk9XyNvrXJj2vIf-IRQzUXAWIeo3BywddToKVl6NrLOSAf7e5xoMJ2bvHR7dJEUy0_u-opBcTfMe5V97uGWT7sF7AZ9b0LA_8LkzOvtr5Ovyc_NZk-_Dy4Ub-p-_MTn-5_-sk0e9M0rHuepjshJnG2RzPMfl8fbsir6mXTmvfsw3yIOjXHpCvr0H7xRa0U-nZ_0FYHPaJvoRqQ4QQemBPck1MMAFMO_yJ-jpjILHSXeRN8FGbDH2_qJLu6bdWiKdIMPUU3K8v_d5d1L0VzUUniu1KLjniSVmmeNBB21A-LXVXNd1LKsUKy-T9VYlD9F4KCOT0RinDLOOKRYAWZ6R1Vk7i5uEBmaRNTDGJI0QJhqhYnIyuMrGSjg_IKPlYDW-5zHH6zR-NBDPoEAbFGiDAm2yQAfkzXWL88zhcUfdVzBOTa_I8zvqbeEMaWBwkWy3F2RTadxqLgdkezlxbrpiggstOdPl8398yRZ5yDC8784bbpPVxcVlfAE-0MLtdHMdnof8yy82-f_j |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB61RSAuCAqoSwv4QJE4hE1sx4kPHFYtqy1LSwVU7Il04geqRDerZhHqr-IvMk7cVghUcenNB9tJvsm8bM9ngBc2lR4RVSIRfSJNLRJEq5JcFKXIrNHGhQLn_QM1OZLvZvlsBX5d1sI0i2j6X1OzJwruIQz6LciWDjsdJS9fDLFGxflwYX08VTl15z8pZ2vf7O2SgLc5H7_9vDNJ4rUCiRFFsUyEEZ57jrwWtrSlJoucYynKPHdp5l1mlEeDhTeUOdrUceW0rgvNseYFt6QFNO8q3MoFuTZSoA_iy1UhJtcx3paJEsWs3xf951v_4QdX6VvJJzSk1X_5hM7Rje_DvRihslGPxwNYcfN12Bi1Yc28OT1nL1nX7pdE2nW4fdi3HsLXKYWsNIp9OjmNt4K1rPHsY-A_CGaV7eO3vkfIesnCd0UV7GTOKAxlO4FMAV0YMTLmrKvFZt0CI5sE2qlHcHQjQD-GtXkzdxvALMdAJeicV1pK7bQsnK-VrTN0mazNAIYXaFYmkpuHOza-V5TkBPyrgH8V8K96_Afw6nLEoif2uKbvNgmoitrdXtNvM4iwoj84MPBGIKusDPvP6QC2LiR7NRWXQpZK8DJ98p8PeQ53DnfH1fu9g-km3OUh_e_OI27B2vLsh3tKMdKyftb9lwyOb1oRfgNa8R4E |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Kinetic+Simulations+of+Radiative+Magnetic+Reconnection+in+the+Coronae+of+Accreting+Black+Holes&rft.jtitle=The+Astrophysical+journal&rft.au=Sironi%2C+Lorenzo&rft.au=Beloborodov%2C+Andrei+M&rft.date=2020-08-01&rft.pub=IOP+Publishing&rft.issn=0004-637X&rft.eissn=1538-4357&rft.volume=899&rft.issue=1&rft_id=info:doi/10.3847%2F1538-4357%2Faba622&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon |