Kinetic Simulations of Radiative Magnetic Reconnection in the Coronae of Accreting Black Holes

We perform 2D and 3D particle-in-cell simulations of reconnection in magnetically dominated e plasmas subject to strong Compton cooling. Magnetic reconnection under such conditions can operate in accretion disk coronae around black holes, which produce hard X-rays through Comptonization. Our simulat...

Full description

Saved in:
Bibliographic Details
Published inThe Astrophysical journal Vol. 899; no. 1; pp. 52 - 67
Main Authors Sironi, Lorenzo, Beloborodov, Andrei M.
Format Journal Article
LanguageEnglish
Published Philadelphia The American Astronomical Society 01.08.2020
IOP Publishing
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We perform 2D and 3D particle-in-cell simulations of reconnection in magnetically dominated e plasmas subject to strong Compton cooling. Magnetic reconnection under such conditions can operate in accretion disk coronae around black holes, which produce hard X-rays through Comptonization. Our simulations show that most of the plasma in the reconnection layer is kept cold by Compton losses and locked in magnetically dominated plasmoids with a small thermal pressure. Compton drag clears cavities inside plasmoids and also affects their bulk motions. These effects, however, weakly change the reconnection rate and the plasmoid size distribution from those in nonradiative reconnection. This demonstrates that the reconnection dynamics is governed by similar magnetic stresses in both cases and weakly affected by thermal pressure. We examine the energy distribution of particles energized by radiative reconnection and observe two distinct components: (1) A mildly relativistic peak, which results from bulk motions of cooled plasmoids. This component receives most of the dissipated reconnection power and dominates the output X-ray emission. The peak has a quasi-Maxwellian shape with an effective temperature of ∼100 keV. Thus, it mimics thermal Comptonization used previously to fit hard-state spectra of accreting black holes. (2) A high-energy tail, which receives ∼20% of the dissipated reconnection power. It is populated by particles accelerated impulsively at X-points or "picked up" by fast outflows from X-points. The high-energy particles immediately cool, and their inverse Compton emission explains the MeV spectral tail detected in the hard state of Cyg X-1. Our first-principle simulations support magnetic reconnection as a mechanism powering hard X-ray emission from magnetically dominated regions of accreting black holes.
AbstractList We perform 2D and 3D particle-in-cell simulations of reconnection in magnetically dominated e ± plasmas subject to strong Compton cooling. Magnetic reconnection under such conditions can operate in accretion disk coronae around black holes, which produce hard X-rays through Comptonization. Our simulations show that most of the plasma in the reconnection layer is kept cold by Compton losses and locked in magnetically dominated plasmoids with a small thermal pressure. Compton drag clears cavities inside plasmoids and also affects their bulk motions. These effects, however, weakly change the reconnection rate and the plasmoid size distribution from those in nonradiative reconnection. This demonstrates that the reconnection dynamics is governed by similar magnetic stresses in both cases and weakly affected by thermal pressure. We examine the energy distribution of particles energized by radiative reconnection and observe two distinct components: (1) A mildly relativistic peak, which results from bulk motions of cooled plasmoids. This component receives most of the dissipated reconnection power and dominates the output X-ray emission. The peak has a quasi-Maxwellian shape with an effective temperature of ∼100 keV. Thus, it mimics thermal Comptonization used previously to fit hard-state spectra of accreting black holes. (2) A high-energy tail, which receives ∼20% of the dissipated reconnection power. It is populated by particles accelerated impulsively at X-points or “picked up” by fast outflows from X-points. The high-energy particles immediately cool, and their inverse Compton emission explains the MeV spectral tail detected in the hard state of Cyg X-1. Our first-principle simulations support magnetic reconnection as a mechanism powering hard X-ray emission from magnetically dominated regions of accreting black holes.
We perform 2D and 3D particle-in-cell simulations of reconnection in magnetically dominated e plasmas subject to strong Compton cooling. Magnetic reconnection under such conditions can operate in accretion disk coronae around black holes, which produce hard X-rays through Comptonization. Our simulations show that most of the plasma in the reconnection layer is kept cold by Compton losses and locked in magnetically dominated plasmoids with a small thermal pressure. Compton drag clears cavities inside plasmoids and also affects their bulk motions. These effects, however, weakly change the reconnection rate and the plasmoid size distribution from those in nonradiative reconnection. This demonstrates that the reconnection dynamics is governed by similar magnetic stresses in both cases and weakly affected by thermal pressure. We examine the energy distribution of particles energized by radiative reconnection and observe two distinct components: (1) A mildly relativistic peak, which results from bulk motions of cooled plasmoids. This component receives most of the dissipated reconnection power and dominates the output X-ray emission. The peak has a quasi-Maxwellian shape with an effective temperature of ∼100 keV. Thus, it mimics thermal Comptonization used previously to fit hard-state spectra of accreting black holes. (2) A high-energy tail, which receives ∼20% of the dissipated reconnection power. It is populated by particles accelerated impulsively at X-points or "picked up" by fast outflows from X-points. The high-energy particles immediately cool, and their inverse Compton emission explains the MeV spectral tail detected in the hard state of Cyg X-1. Our first-principle simulations support magnetic reconnection as a mechanism powering hard X-ray emission from magnetically dominated regions of accreting black holes.
We perform 2D and 3D particle-in-cell simulations of reconnection in magnetically dominated e ± plasmas subject to strong Compton cooling. Magnetic reconnection under such conditions can operate in accretion disk coronae around black holes, which produce hard X-rays through Comptonization. Our simulations show that most of the plasma in the reconnection layer is kept cold by Compton losses and locked in magnetically dominated plasmoids with a small thermal pressure. Compton drag clears cavities inside plasmoids and also affects their bulk motions. These effects, however, weakly change the reconnection rate and the plasmoid size distribution from those in nonradiative reconnection. This demonstrates that the reconnection dynamics is governed by similar magnetic stresses in both cases and weakly affected by thermal pressure. We examine the energy distribution of particles energized by radiative reconnection and observe two distinct components: (1) A mildly relativistic peak, which results from bulk motions of cooled plasmoids. This component receives most of the dissipated reconnection power and dominates the output X-ray emission. The peak has a quasi-Maxwellian shape with an effective temperature of ∼100 keV. Thus, it mimics thermal Comptonization used previously to fit hard-state spectra of accreting black holes. (2) A high-energy tail, which receives ∼20% of the dissipated reconnection power. It is populated by particles accelerated impulsively at X -points or “picked up” by fast outflows from X -points. The high-energy particles immediately cool, and their inverse Compton emission explains the MeV spectral tail detected in the hard state of Cyg X-1. Our first-principle simulations support magnetic reconnection as a mechanism powering hard X-ray emission from magnetically dominated regions of accreting black holes.
We perform 2D and 3D particle-in-cell simulations of reconnection in magnetically dominated e± plasmas subject to strong Compton cooling. Magnetic reconnection under such conditions can operate in accretion disk coronae around black holes, which produce hard X-rays through Comptonization. Our simulations show that most of the plasma in the reconnection layer is kept cold by Compton losses and locked in magnetically dominated plasmoids with a small thermal pressure. Compton drag clears cavities inside plasmoids and also affects their bulk motions. These effects, however, weakly change the reconnection rate and the plasmoid size distribution from those in nonradiative reconnection. This demonstrates that the reconnection dynamics is governed by similar magnetic stresses in both cases and weakly affected by thermal pressure. We examine the energy distribution of particles energized by radiative reconnection and observe two distinct components: (1) A mildly relativistic peak, which results from bulk motions of cooled plasmoids. This component receives most of the dissipated reconnection power and dominates the output X-ray emission. The peak has a quasi-Maxwellian shape with an effective temperature of ~100 keV. Thus, it mimics thermal Comptonization used previously to fit hard-state spectra of accreting black holes. (2) A high-energy tail, which receives ~20% of the dissipated reconnection power. It is populated by particles accelerated impulsively at X-points or "picked up" by fast outflows from X-points. The high-energy particles immediately cool, and their inverse Compton emission explains the MeV spectral tail detected in the hard state of Cyg X-1. Our first-principle simulations support magnetic reconnection as a mechanism powering hard X-ray emission from magnetically dominated regions of accreting black holes.
Author Beloborodov, Andrei M.
Sironi, Lorenzo
Author_xml – sequence: 1
  givenname: Lorenzo
  surname: Sironi
  fullname: Sironi, Lorenzo
  email: lsironi@astro.columbia.edu
  organization: Columbia University Department of Astronomy and Columbia Astrophysics Laboratory, 550 W. 120th St., New York, NY 10027, USA
– sequence: 2
  givenname: Andrei M.
  surname: Beloborodov
  fullname: Beloborodov, Andrei M.
  organization: Max Planck Institute for Astrophysics, Karl-Schwarzschild-Str. 1, D-85741, Garching, Germany
BackLink https://www.osti.gov/servlets/purl/1803040$$D View this record in Osti.gov
BookMark eNp9kMFLwzAUh4NMcJvePQa9WpcmbZMe51AnToSp4MmQpumW2SUzyQT_e1s7FAQ9Pd7j-z1-fAPQM9YoAI5jdE5YQkdxSliUkJSORCEyjPdA__vUA32EUBJlhD4fgIH3q3bFed4HL7faqKAlfNDrbS2CtsZDW8G5KHWzvSt4JxYdMVfSGqNky0BtYFgqOLHOGqHaxFhK13BmAS9qIV_h1NbKH4L9StReHe3mEDxdXT5OptHs_vpmMp5FklAaIiJJhSsscEFKVrK86ZYKRliaKhRXKpZZJaSglUyyvEQKZyrPC5pjUWCKS4TIEJx0f60Pmnupg5LLXV0eM0RQ0kKnHbRx9m2rfOAru3Wm6cVxQhKWEcxaKuso6az3TlW8-fYlJjihax4j3grnrV3e2uWd8CaIfgU3Tq-F-_gvctZFtN38lPkT_wQXl5Jo
CitedBy_id crossref_primary_10_3847_1538_4357_ada385
crossref_primary_10_1007_s11214_024_01073_2
crossref_primary_10_1051_0004_6361_202140981
crossref_primary_10_3847_2041_8213_ac84db
crossref_primary_10_1093_mnras_stad3573
crossref_primary_10_3847_1538_4357_acd0b0
crossref_primary_10_1017_S0022377824000448
crossref_primary_10_3389_fspas_2023_1308056
crossref_primary_10_1017_S0022377821001185
crossref_primary_10_3847_1538_4357_ac2e08
crossref_primary_10_3847_2041_8213_ad192b
crossref_primary_10_3847_1538_4357_acffc6
crossref_primary_10_1093_mnras_staa2346
crossref_primary_10_1093_mnras_stab2513
crossref_primary_10_3847_2041_8213_acfe7c
crossref_primary_10_3389_fspas_2023_1292682
crossref_primary_10_3847_1538_4357_abedab
crossref_primary_10_3847_1538_4357_abedac
crossref_primary_10_3847_1538_4357_ac1c76
crossref_primary_10_1063_5_0134320
crossref_primary_10_1093_mnras_stae934
crossref_primary_10_1063_5_0257673
crossref_primary_10_3847_1538_4357_ac17e7
crossref_primary_10_1093_mnras_stad3863
crossref_primary_10_1093_mnras_stab2745
crossref_primary_10_3847_2041_8213_ac0147
crossref_primary_10_3847_2041_8213_acf135
crossref_primary_10_3389_fspas_2024_1530392
crossref_primary_10_3847_1538_4357_ac2429
crossref_primary_10_1093_mnras_stac2730
crossref_primary_10_1103_PhysRevLett_132_085202
crossref_primary_10_1051_0004_6361_202347531
crossref_primary_10_3390_universe10120451
crossref_primary_10_1017_S0022377822000046
crossref_primary_10_3847_1538_4357_ad1827
crossref_primary_10_3847_2041_8213_abd9bc
crossref_primary_10_1063_5_0201683
crossref_primary_10_3847_2041_8213_abafa6
crossref_primary_10_1093_mnras_stab2534
crossref_primary_10_1051_epjconf_202329010002
crossref_primary_10_3847_2041_8213_acb264
crossref_primary_10_1093_mnras_stab562
crossref_primary_10_3847_1538_4357_ad03e8
crossref_primary_10_3847_1538_4357_acb68a
crossref_primary_10_3847_2041_8213_acbea9
crossref_primary_10_1093_mnras_stad1588
crossref_primary_10_1063_5_0233583
crossref_primary_10_3847_1538_4357_acb7dd
crossref_primary_10_3847_1538_4357_ac1b29
crossref_primary_10_3847_1538_4357_ada35e
Cites_doi 10.3847/2041-8213/ab2a15
10.1088/0004-637X/726/2/75
10.3847/2041-8213/aa7892
10.1093/mnras/stv641
10.1088/0004-637X/774/1/41
10.1111/j.1365-2966.2005.08767.x
10.1093/mnras/sty452
10.1093/mnras/stz2626
10.1093/mnrasl/slu162
10.1086/337972
10.1093/mnras/stx2530
10.1088/0004-637X/780/1/3
10.3847/1538-4357/ab03d7
10.3847/1538-4357/ab191b
10.1063/1.2218817
10.1093/mnras/stw1620
10.1086/522226
10.1093/mnras/stx237
10.3847/1538-4357/ab287a
10.1063/1.3571602
10.1093/mnras/sty2702
10.1017/S0022377818000624
10.3847/1538-4357/aa8f4f
10.1143/PTPS.155.99
10.1093/mnras/stv042
10.3847/1538-4357/aac820
10.1063/1.3703318
10.1088/0004-637X/815/2/101
10.1086/374808
10.1093/mnras/stx2883
10.3847/1538-4357/ab29ff
10.1007/s11214-014-0132-9
10.1088/0004-637X/771/1/54
10.1086/340436
10.1103/PhysRevLett.109.265002
10.1016/j.newast.2014.09.006
10.1103/PhysRevLett.105.235002
10.1103/PhysRevLett.113.155005
10.1088/0004-637X/782/2/104
10.3847/2041-8205/816/1/L8
10.3847/1538-4357/aa9380
10.1088/0004-637X/770/2/147
10.1088/2041-8205/783/1/L21
10.3847/1538-4357/833/2/155
10.1088/0004-637X/698/2/1523
10.1088/0004-637X/806/2/167
10.1093/mnrasl/sly157
10.1086/589640
ContentType Journal Article
Copyright 2020. The American Astronomical Society. All rights reserved.
Copyright IOP Publishing Aug 01, 2020
Copyright_xml – notice: 2020. The American Astronomical Society. All rights reserved.
– notice: Copyright IOP Publishing Aug 01, 2020
CorporateAuthor Columbia Univ., New York, NY (United States)
CorporateAuthor_xml – name: Columbia Univ., New York, NY (United States)
DBID AAYXX
CITATION
7TG
8FD
H8D
KL.
L7M
OIOZB
OTOTI
DOI 10.3847/1538-4357/aba622
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Aerospace Database
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList Aerospace Database

CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
DocumentTitleAlternate Kinetic Simulations of Radiative Magnetic Reconnection in the Coronae of Accreting Black Holes
EISSN 1538-4357
ExternalDocumentID 1803040
10_3847_1538_4357_aba622
apjaba622
GroupedDBID -DZ
-~X
123
1JI
23N
2FS
2WC
4.4
6J9
85S
AAFWJ
AAGCD
AAJIO
ABHWH
ACBEA
ACGFS
ACHIP
ACNCT
ADACN
AEFHF
AENEX
AFPKN
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
CJUJL
CRLBU
CS3
EBS
F5P
FRP
GROUPED_DOAJ
IJHAN
IOP
KOT
M~E
N5L
O3W
O43
OK1
PJBAE
RIN
RNS
ROL
SJN
SY9
T37
TN5
TR2
WH7
XSW
AAYXX
CITATION
7TG
8FD
AEINN
H8D
KL.
L7M
ABPTK
OIOZB
OTOTI
ID FETCH-LOGICAL-c377t-3c3f2f2a2b3d8d894295a83855e01fe1c6faca7fc469d0e26e99b792ab272d003
IEDL.DBID IOP
ISSN 0004-637X
1538-4357
IngestDate Mon Jul 10 02:30:33 EDT 2023
Wed Aug 13 08:45:36 EDT 2025
Tue Jul 01 03:24:25 EDT 2025
Thu Apr 24 23:12:48 EDT 2025
Wed Aug 21 03:34:37 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c377t-3c3f2f2a2b3d8d894295a83855e01fe1c6faca7fc469d0e26e99b792ab272d003
Notes AAS19652
High-Energy Phenomena and Fundamental Physics
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
SC0016542
USDOE Office of Science (SC), Fusion Energy Sciences (FES)
OpenAccessLink https://www.osti.gov/servlets/purl/1803040
PQID 2434863280
PQPubID 4562441
PageCount 16
ParticipantIDs crossref_citationtrail_10_3847_1538_4357_aba622
crossref_primary_10_3847_1538_4357_aba622
proquest_journals_2434863280
iop_journals_10_3847_1538_4357_aba622
osti_scitechconnect_1803040
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-08-01
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
– name: United States
PublicationTitle The Astrophysical journal
PublicationTitleAbbrev APJ
PublicationTitleAlternate Astrophys. J
PublicationYear 2020
Publisher The American Astronomical Society
IOP Publishing
Publisher_xml – name: The American Astronomical Society
– name: IOP Publishing
References Guo (apjaba622bib11) 2014; 113
Uzdensky (apjaba622bib42) 2014; 780
Sironi (apjaba622bib37) 2014; 783
Rowan (apjaba622bib32) 2019; 873
Kagan (apjaba622bib17) 2013; 774
Petropoulou (apjaba622bib29) 2018; 481
Guo (apjaba622bib13) 2015; 806
Huang (apjaba622bib15) 2012; 109
Uzdensky (apjaba622bib40) 2010; 105
Hakobyan (apjaba622bib14) 2019; 877
Zdziarski (apjaba622bib47) 2004; 155
Zenitani (apjaba622bib49) 2007; 670
Kagan (apjaba622bib18) 2016; 833
Chatterjee (apjaba622bib9) 2019; 490
Jiang (apjaba622bib16) 2019; 880
Petropoulou (apjaba622bib30) 2019; 880
Nalewajko (apjaba622bib26) 2015; 815
Kagan (apjaba622bib19) 2018; 476
Sironi (apjaba622bib38) 2013; 771
Cerutti (apjaba622bib7) 2013; 770
Cerutti (apjaba622bib6) 2015; 448
Loureiro (apjaba622bib21) 2012; 19
Werner (apjaba622bib45) 2018; 473
Bégué (apjaba622bib2) 2017; 467
Zenitani (apjaba622bib48) 2001; 562
Kagan (apjaba622bib20) 2015; 191
Spitkovsky (apjaba622bib39) 2005
Werner (apjaba622bib46) 2016; 816
Zhdankin (apjaba622bib50) 2018; 474
Rowan (apjaba622bib31) 2017; 850
Sironi (apjaba622bib35) 2009; 698
Sironi (apjaba622bib34) 2015; 450
Cerutti (apjaba622bib8) 2014; 782
Sironi (apjaba622bib36) 2011; 726
Parfrey (apjaba622bib28) 2015; 446
Beloborodov (apjaba622bib3) 2017; 850
Lyutikov (apjaba622bib24) 2003; 589
McConnell (apjaba622bib25) 2002; 572
Belyaev (apjaba622bib4) 2015; 36
Daughton (apjaba622bib10) 2006; 13
Sironi (apjaba622bib33) 2016; 462
Werner (apjaba622bib44) 2017; 843
Nalewajko (apjaba622bib27) 2018; 84
Lyubarsky (apjaba622bib22) 2008; 682
Buneman (apjaba622bib5) 1993
Ball (apjaba622bib1) 2018; 862
Uzdensky (apjaba622bib41) 2011; 18
Guo (apjaba622bib12) 2019; 879
Werner (apjaba622bib43) 2019; 482
Lyubarsky (apjaba622bib23) 2005; 358
References_xml – volume: 879
  start-page: L23
  year: 2019
  ident: apjaba622bib12
  publication-title: ApJL
  doi: 10.3847/2041-8213/ab2a15
– volume: 726
  start-page: 75
  year: 2011
  ident: apjaba622bib36
  publication-title: ApJ
  doi: 10.1088/0004-637X/726/2/75
– volume: 843
  start-page: L27
  year: 2017
  ident: apjaba622bib44
  publication-title: ApJL
  doi: 10.3847/2041-8213/aa7892
– volume: 450
  start-page: 183
  year: 2015
  ident: apjaba622bib34
  publication-title: MNRAS
  doi: 10.1093/mnras/stv641
– volume: 774
  start-page: 41
  year: 2013
  ident: apjaba622bib17
  publication-title: ApJ
  doi: 10.1088/0004-637X/774/1/41
– volume: 358
  start-page: 113
  year: 2005
  ident: apjaba622bib23
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2005.08767.x
– volume: 476
  start-page: 3902
  year: 2018
  ident: apjaba622bib19
  publication-title: MNRAS
  doi: 10.1093/mnras/sty452
– volume: 490
  start-page: 2200
  year: 2019
  ident: apjaba622bib9
  publication-title: MNRAS
  doi: 10.1093/mnras/stz2626
– volume: 446
  start-page: L61
  year: 2015
  ident: apjaba622bib28
  publication-title: MNRAS
  doi: 10.1093/mnrasl/slu162
– volume: 562
  start-page: L63
  year: 2001
  ident: apjaba622bib48
  publication-title: ApJL
  doi: 10.1086/337972
– volume: 473
  start-page: 4840
  year: 2018
  ident: apjaba622bib45
  publication-title: MNRAS
  doi: 10.1093/mnras/stx2530
– volume: 780
  start-page: 3
  year: 2014
  ident: apjaba622bib42
  publication-title: ApJ
  doi: 10.1088/0004-637X/780/1/3
– volume: 873
  start-page: 2
  year: 2019
  ident: apjaba622bib32
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab03d7
– volume: 877
  start-page: 53
  year: 2019
  ident: apjaba622bib14
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab191b
– start-page: 345
  year: 2005
  ident: apjaba622bib39
– volume: 13
  start-page: 072101
  year: 2006
  ident: apjaba622bib10
  publication-title: PhPl
  doi: 10.1063/1.2218817
– volume: 462
  start-page: 48
  year: 2016
  ident: apjaba622bib33
  publication-title: MNRAS
  doi: 10.1093/mnras/stw1620
– volume: 670
  start-page: 702
  year: 2007
  ident: apjaba622bib49
  publication-title: ApJ
  doi: 10.1086/522226
– volume: 467
  start-page: 2594
  year: 2017
  ident: apjaba622bib2
  publication-title: MNRAS
  doi: 10.1093/mnras/stx237
– volume: 880
  start-page: 37
  year: 2019
  ident: apjaba622bib30
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab287a
– volume: 18
  start-page: 042105
  year: 2011
  ident: apjaba622bib41
  publication-title: PhPl
  doi: 10.1063/1.3571602
– volume: 481
  start-page: 5687
  year: 2018
  ident: apjaba622bib29
  publication-title: MNRAS
  doi: 10.1093/mnras/sty2702
– start-page: 67
  year: 1993
  ident: apjaba622bib5
– volume: 84
  start-page: 755840301
  year: 2018
  ident: apjaba622bib27
  publication-title: JPlPh
  doi: 10.1017/S0022377818000624
– volume: 850
  start-page: 141
  year: 2017
  ident: apjaba622bib3
  publication-title: ApJ
  doi: 10.3847/1538-4357/aa8f4f
– volume: 155
  start-page: 99
  year: 2004
  ident: apjaba622bib47
  publication-title: PThPS
  doi: 10.1143/PTPS.155.99
– volume: 448
  start-page: 606
  year: 2015
  ident: apjaba622bib6
  publication-title: MNRAS
  doi: 10.1093/mnras/stv042
– volume: 862
  start-page: 80
  year: 2018
  ident: apjaba622bib1
  publication-title: ApJ
  doi: 10.3847/1538-4357/aac820
– volume: 19
  start-page: 042303
  year: 2012
  ident: apjaba622bib21
  publication-title: PhPl
  doi: 10.1063/1.3703318
– volume: 815
  start-page: 101
  year: 2015
  ident: apjaba622bib26
  publication-title: ApJ
  doi: 10.1088/0004-637X/815/2/101
– volume: 589
  start-page: 893
  year: 2003
  ident: apjaba622bib24
  publication-title: ApJ
  doi: 10.1086/374808
– volume: 474
  start-page: 2514
  year: 2018
  ident: apjaba622bib50
  publication-title: MNRAS
  doi: 10.1093/mnras/stx2883
– volume: 880
  start-page: 67
  year: 2019
  ident: apjaba622bib16
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab29ff
– volume: 191
  start-page: 545
  year: 2015
  ident: apjaba622bib20
  publication-title: SSRv
  doi: 10.1007/s11214-014-0132-9
– volume: 771
  start-page: 54
  year: 2013
  ident: apjaba622bib38
  publication-title: ApJ
  doi: 10.1088/0004-637X/771/1/54
– volume: 572
  start-page: 984
  year: 2002
  ident: apjaba622bib25
  publication-title: ApJ
  doi: 10.1086/340436
– volume: 109
  start-page: 265002
  year: 2012
  ident: apjaba622bib15
  publication-title: PhRvL
  doi: 10.1103/PhysRevLett.109.265002
– volume: 36
  start-page: 37
  year: 2015
  ident: apjaba622bib4
  publication-title: NewA
  doi: 10.1016/j.newast.2014.09.006
– volume: 105
  start-page: 235002
  year: 2010
  ident: apjaba622bib40
  publication-title: PhRvL
  doi: 10.1103/PhysRevLett.105.235002
– volume: 113
  start-page: 155005
  year: 2014
  ident: apjaba622bib11
  publication-title: PhRvL
  doi: 10.1103/PhysRevLett.113.155005
– volume: 782
  start-page: 104
  year: 2014
  ident: apjaba622bib8
  publication-title: ApJ
  doi: 10.1088/0004-637X/782/2/104
– volume: 816
  start-page: L8
  year: 2016
  ident: apjaba622bib46
  publication-title: ApJL
  doi: 10.3847/2041-8205/816/1/L8
– volume: 850
  start-page: 29
  year: 2017
  ident: apjaba622bib31
  publication-title: ApJ
  doi: 10.3847/1538-4357/aa9380
– volume: 770
  start-page: 147
  year: 2013
  ident: apjaba622bib7
  publication-title: ApJ
  doi: 10.1088/0004-637X/770/2/147
– volume: 783
  start-page: L21
  year: 2014
  ident: apjaba622bib37
  publication-title: ApJL
  doi: 10.1088/2041-8205/783/1/L21
– volume: 833
  start-page: 155
  year: 2016
  ident: apjaba622bib18
  publication-title: ApJ
  doi: 10.3847/1538-4357/833/2/155
– volume: 698
  start-page: 1523
  year: 2009
  ident: apjaba622bib35
  publication-title: ApJ
  doi: 10.1088/0004-637X/698/2/1523
– volume: 806
  start-page: 167
  year: 2015
  ident: apjaba622bib13
  publication-title: ApJ
  doi: 10.1088/0004-637X/806/2/167
– volume: 482
  start-page: L60
  year: 2019
  ident: apjaba622bib43
  publication-title: MNRAS
  doi: 10.1093/mnrasl/sly157
– volume: 682
  start-page: 1436
  year: 2008
  ident: apjaba622bib22
  publication-title: ApJ
  doi: 10.1086/589640
SSID ssj0004299
Score 2.5856874
Snippet We perform 2D and 3D particle-in-cell simulations of reconnection in magnetically dominated e plasmas subject to strong Compton cooling. Magnetic reconnection...
We perform 2D and 3D particle-in-cell simulations of reconnection in magnetically dominated e ± plasmas subject to strong Compton cooling. Magnetic...
We perform 2D and 3D particle-in-cell simulations of reconnection in magnetically dominated e ± plasmas subject to strong Compton cooling. Magnetic...
We perform 2D and 3D particle-in-cell simulations of reconnection in magnetically dominated e± plasmas subject to strong Compton cooling. Magnetic reconnection...
SourceID osti
proquest
crossref
iop
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 52
SubjectTerms Accretion
Accretion disks
Activation
ASTRONOMY AND ASTROPHYSICS
Astrophysical black holes
Astrophysics
Black holes
Emission
Energy dissipation
Energy distribution
First principles
Hard X-rays
Magnetic reconnection
Particle in cell technique
Particle size distribution
Plasmas (physics)
Relativistic disks
Relativistic jets
Simulation
Solar magnetic reconnection
Stellar accretion disks
Stress concentration
X-ray emissions
X-rays
Title Kinetic Simulations of Radiative Magnetic Reconnection in the Coronae of Accreting Black Holes
URI https://iopscience.iop.org/article/10.3847/1538-4357/aba622
https://www.proquest.com/docview/2434863280
https://www.osti.gov/servlets/purl/1803040
Volume 899
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTxQxFG8QY-JFEDWsIOlBTTzM7kzb6Uc8bQhko0GIStyDcdJPQpQdwi4H_Ot9bzoLQQ0xXiY9tJ2Z177fe6_t-5WQl6EUyVorC2FtKoR3vLA2yKLmSvMqeOMjJjgffJCTY_FuWk9XyNvrXJj2vIf-IRQzUXAWIeo3BywddToKVl6NrLOSAf7e5xoMJ2bvHR7dJEUy0_u-opBcTfMe5V97uGWT7sF7AZ9b0LA_8LkzOvtr5Ovyc_NZk-_Dy4Ub-p-_MTn-5_-sk0e9M0rHuepjshJnG2RzPMfl8fbsir6mXTmvfsw3yIOjXHpCvr0H7xRa0U-nZ_0FYHPaJvoRqQ4QQemBPck1MMAFMO_yJ-jpjILHSXeRN8FGbDH2_qJLu6bdWiKdIMPUU3K8v_d5d1L0VzUUniu1KLjniSVmmeNBB21A-LXVXNd1LKsUKy-T9VYlD9F4KCOT0RinDLOOKRYAWZ6R1Vk7i5uEBmaRNTDGJI0QJhqhYnIyuMrGSjg_IKPlYDW-5zHH6zR-NBDPoEAbFGiDAm2yQAfkzXWL88zhcUfdVzBOTa_I8zvqbeEMaWBwkWy3F2RTadxqLgdkezlxbrpiggstOdPl8398yRZ5yDC8784bbpPVxcVlfAE-0MLtdHMdnof8yy82-f_j
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB61RSAuCAqoSwv4QJE4hE1sx4kPHFYtqy1LSwVU7Il04geqRDerZhHqr-IvMk7cVghUcenNB9tJvsm8bM9ngBc2lR4RVSIRfSJNLRJEq5JcFKXIrNHGhQLn_QM1OZLvZvlsBX5d1sI0i2j6X1OzJwruIQz6LciWDjsdJS9fDLFGxflwYX08VTl15z8pZ2vf7O2SgLc5H7_9vDNJ4rUCiRFFsUyEEZ57jrwWtrSlJoucYynKPHdp5l1mlEeDhTeUOdrUceW0rgvNseYFt6QFNO8q3MoFuTZSoA_iy1UhJtcx3paJEsWs3xf951v_4QdX6VvJJzSk1X_5hM7Rje_DvRihslGPxwNYcfN12Bi1Yc28OT1nL1nX7pdE2nW4fdi3HsLXKYWsNIp9OjmNt4K1rPHsY-A_CGaV7eO3vkfIesnCd0UV7GTOKAxlO4FMAV0YMTLmrKvFZt0CI5sE2qlHcHQjQD-GtXkzdxvALMdAJeicV1pK7bQsnK-VrTN0mazNAIYXaFYmkpuHOza-V5TkBPyrgH8V8K96_Afw6nLEoif2uKbvNgmoitrdXtNvM4iwoj84MPBGIKusDPvP6QC2LiR7NRWXQpZK8DJ98p8PeQ53DnfH1fu9g-km3OUh_e_OI27B2vLsh3tKMdKyftb9lwyOb1oRfgNa8R4E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Kinetic+Simulations+of+Radiative+Magnetic+Reconnection+in+the+Coronae+of+Accreting+Black+Holes&rft.jtitle=The+Astrophysical+journal&rft.au=Sironi%2C+Lorenzo&rft.au=Beloborodov%2C+Andrei+M&rft.date=2020-08-01&rft.pub=IOP+Publishing&rft.issn=0004-637X&rft.eissn=1538-4357&rft.volume=899&rft.issue=1&rft_id=info:doi/10.3847%2F1538-4357%2Faba622&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon