Metal-organic framework derived hollow materials for electrochemical energy storage
Metal-organic frameworks (MOFs), a novel class of porous crystalline materials, have drawn enormous attention. Due to the inherent porosity and presence of both metal and organic moieties, MOF-based materials are naturally suitable as versatile precursors and sacrificial templates for a wide variety...
Saved in:
Published in | Journal of materials chemistry. A, Materials for energy and sustainability Vol. 6; no. 16; pp. 6754 - 6771 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Metal-organic frameworks (MOFs), a novel class of porous crystalline materials, have drawn enormous attention. Due to the inherent porosity and presence of both metal and organic moieties, MOF-based materials are naturally suitable as versatile precursors and sacrificial templates for a wide variety of metal/carbon-based nanostructured materials, such as metal oxides, metal carbides, metal sulfides and their composites. Recent developments in MOF-derived hollow nanostructures with well-defined interior voids and low density have revealed their extensive capabilities and thus give enhanced performance for energy storage and conversion. In this review, we summarize the recent progress in the fabrication of MOF-derived hollow materials and their applications for energy storage, particularly for lithium-ion batteries, sodium-ion batteries, lithium-Se batteries, lithium-sulfur batteries and supercapacitors. The superiorities of MOF-derived hollow materials are highlighted, and major challenges or opportunities for future research on them for electrochemical energy storage are also discussed, with prospective solutions in the light of current progress in MOF-derived hollow nanostructures.
The recent progress and major challenges/opportunities of MOF-derived hollow materials for energy storage are summarized in this review, particularly for lithium-ion batteries, sodium-ion batteries, lithium-Se batteries, lithium-sulfur batteries and supercapacitor applications. |
---|---|
AbstractList | Metal–organic frameworks (MOFs), a novel class of porous crystalline materials, have drawn enormous attention. Due to the inherent porosity and presence of both metal and organic moieties, MOF-based materials are naturally suitable as versatile precursors and sacrificial templates for a wide variety of metal/carbon-based nanostructured materials, such as metal oxides, metal carbides, metal sulfides and their composites. Recent developments in MOF-derived hollow nanostructures with well-defined interior voids and low density have revealed their extensive capabilities and thus give enhanced performance for energy storage and conversion. In this review, we summarize the recent progress in the fabrication of MOF-derived hollow materials and their applications for energy storage, particularly for lithium-ion batteries, sodium-ion batteries, lithium–Se batteries, lithium–sulfur batteries and supercapacitors. The superiorities of MOF-derived hollow materials are highlighted, and major challenges or opportunities for future research on them for electrochemical energy storage are also discussed, with prospective solutions in the light of current progress in MOF-derived hollow nanostructures. Metal-organic frameworks (MOFs), a novel class of porous crystalline materials, have drawn enormous attention. Due to the inherent porosity and presence of both metal and organic moieties, MOF-based materials are naturally suitable as versatile precursors and sacrificial templates for a wide variety of metal/carbon-based nanostructured materials, such as metal oxides, metal carbides, metal sulfides and their composites. Recent developments in MOF-derived hollow nanostructures with well-defined interior voids and low density have revealed their extensive capabilities and thus give enhanced performance for energy storage and conversion. In this review, we summarize the recent progress in the fabrication of MOF-derived hollow materials and their applications for energy storage, particularly for lithium-ion batteries, sodium-ion batteries, lithium-Se batteries, lithium-sulfur batteries and supercapacitors. The superiorities of MOF-derived hollow materials are highlighted, and major challenges or opportunities for future research on them for electrochemical energy storage are also discussed, with prospective solutions in the light of current progress in MOF-derived hollow nanostructures. The recent progress and major challenges/opportunities of MOF-derived hollow materials for energy storage are summarized in this review, particularly for lithium-ion batteries, sodium-ion batteries, lithium-Se batteries, lithium-sulfur batteries and supercapacitor applications. |
Author | Huang, Ke-Jing Wu, Xu Xie, Xing-Chen |
AuthorAffiliation | Xinyang Normal University College of Physics and Electronic Engineering College of Chemistry and Chemical Engineering |
AuthorAffiliation_xml | – name: College of Chemistry and Chemical Engineering – name: Xinyang Normal University – name: College of Physics and Electronic Engineering |
Author_xml | – sequence: 1 givenname: Xing-Chen surname: Xie fullname: Xie, Xing-Chen – sequence: 2 givenname: Ke-Jing surname: Huang fullname: Huang, Ke-Jing – sequence: 3 givenname: Xu surname: Wu fullname: Wu, Xu |
BookMark | eNp90c1LwzAUAPAgE5xzF-9CxYsI1SxpPnocwy-YeHCeS5a-bp1pM5PMsf_e6GTCEHNJePxeeB_HqNPaFhA6HeDrAab5jZZBYcwHRB2gLsEMpyLLeWf3lvII9b1f4HhkhHneRS9PEJRJrZupttZJ5VQDa-vekhJc_QFlMrfG2HXSqBADyviksi4BAzo4q-fQ1FqZBFpws03ig3VqBifosIoS-j93D73e3U5GD-n4-f5xNBynmgoRUsoxKXNMqOZCsmlJszLjlMsyVi1wNWUV50QzzaXIFVBNWaaBlEJwLDOdT2kPXW7_XTr7vgIfiqb2GoxRLdiVLwihgpHYbB7pxR5d2JVrY3UFwRRTRhjlUeGt0s5676AqdB1UqG0bnKpNMcDF16CLkZwMvwc9jClXeylLVzfKbf7G51vsvN65360Vy7KK5uw_Qz8BdtuUJg |
CitedBy_id | crossref_primary_10_1016_j_jallcom_2023_168926 crossref_primary_10_3390_en13071547 crossref_primary_10_1021_acs_chemrev_1c00243 crossref_primary_10_1002_smll_201904252 crossref_primary_10_1039_C9TA11961B crossref_primary_10_1002_smll_201907641 crossref_primary_10_1016_j_jechem_2021_12_006 crossref_primary_10_1002_smll_201901775 crossref_primary_10_1016_j_ica_2024_122399 crossref_primary_10_1002_slct_202305096 crossref_primary_10_1002_smll_202006424 crossref_primary_10_1016_j_jpowsour_2022_231029 crossref_primary_10_1039_C8DT03755H crossref_primary_10_1039_D3CS01105D crossref_primary_10_1021_acsami_3c19174 crossref_primary_10_1088_2632_959X_ad6835 crossref_primary_10_1016_j_ccr_2022_214602 crossref_primary_10_1016_j_jallcom_2023_169447 crossref_primary_10_1002_ange_202010093 crossref_primary_10_1039_C8TA11075A crossref_primary_10_1016_j_ccr_2022_215011 crossref_primary_10_1002_adfm_202006761 crossref_primary_10_1016_j_jcis_2018_12_045 crossref_primary_10_1080_09593330_2021_1921055 crossref_primary_10_1002_aenm_202003970 crossref_primary_10_1021_acs_inorgchem_0c01768 crossref_primary_10_1007_s12274_022_4786_4 crossref_primary_10_1016_j_jcis_2021_02_108 crossref_primary_10_1016_j_jpowsour_2024_235170 crossref_primary_10_1002_asia_201801680 crossref_primary_10_1016_j_nanoen_2024_110177 crossref_primary_10_1039_D3MA00822C crossref_primary_10_1016_j_jelechem_2019_113275 crossref_primary_10_1016_j_est_2024_112212 crossref_primary_10_1016_j_mattod_2022_04_002 crossref_primary_10_1016_j_cej_2021_134279 crossref_primary_10_1016_j_jcis_2021_08_066 crossref_primary_10_1149_2_0391906jes crossref_primary_10_1039_C9NA00616H crossref_primary_10_1016_j_jelechem_2020_114062 crossref_primary_10_1016_j_ceramint_2022_02_160 crossref_primary_10_1016_j_jelechem_2022_116792 crossref_primary_10_1016_j_jallcom_2020_155800 crossref_primary_10_1016_j_jallcom_2022_163618 crossref_primary_10_1021_acsaem_1c00348 crossref_primary_10_3390_electrochem2020017 crossref_primary_10_1134_S0036024422140114 crossref_primary_10_1007_s12274_024_6481_0 crossref_primary_10_1002_anie_202010093 crossref_primary_10_1002_celc_202100185 crossref_primary_10_1016_j_jcis_2021_01_109 crossref_primary_10_1016_j_ensm_2019_01_012 crossref_primary_10_1039_C8GC03261K crossref_primary_10_1039_C9CS00871C crossref_primary_10_1016_j_electacta_2022_140338 crossref_primary_10_3390_polym14153101 crossref_primary_10_1016_j_ensm_2020_12_005 crossref_primary_10_1016_j_jcis_2021_05_127 crossref_primary_10_1016_j_chphma_2021_09_003 crossref_primary_10_1016_j_carbpol_2021_117966 crossref_primary_10_1016_j_jallcom_2021_159576 crossref_primary_10_1016_j_poly_2023_116777 crossref_primary_10_1039_D0CC05561A crossref_primary_10_1021_acsaem_9b02501 crossref_primary_10_1016_j_cej_2021_129827 crossref_primary_10_1016_j_colsurfa_2023_132513 crossref_primary_10_1016_j_matchemphys_2021_125584 crossref_primary_10_1002_smll_202304450 crossref_primary_10_1039_C8RA06660D crossref_primary_10_1002_bkcs_11853 crossref_primary_10_1039_C8RA04350G crossref_primary_10_18410_jebmh_2019_32 crossref_primary_10_1016_j_cis_2022_102732 crossref_primary_10_1039_C8TA04892D crossref_primary_10_1002_cnma_202000125 crossref_primary_10_1016_j_est_2021_102426 crossref_primary_10_1016_j_cej_2021_130808 crossref_primary_10_2174_1385272824666200102111215 crossref_primary_10_1016_j_colsurfa_2019_05_010 crossref_primary_10_1002_smll_201907141 crossref_primary_10_1039_D3TB00766A crossref_primary_10_1016_j_cej_2019_122701 crossref_primary_10_1016_j_jcis_2020_11_052 crossref_primary_10_1039_C8GC02312C crossref_primary_10_1016_j_jcis_2021_06_143 crossref_primary_10_1016_j_ccr_2020_213221 crossref_primary_10_1007_s11581_024_05473_w crossref_primary_10_1016_j_micromeso_2021_111108 crossref_primary_10_1021_acs_chemrev_9b00463 crossref_primary_10_1002_smll_202203140 crossref_primary_10_1007_s00604_020_04396_3 crossref_primary_10_1016_j_jallcom_2022_163649 crossref_primary_10_1002_smll_202308804 crossref_primary_10_1039_D1DT01904J crossref_primary_10_1016_j_jallcom_2019_153624 crossref_primary_10_1021_acsaem_4c01792 crossref_primary_10_1016_j_carbon_2022_03_054 crossref_primary_10_1557_mrs_2020_247 crossref_primary_10_1021_acsami_9b00415 crossref_primary_10_1002_cnl2_64 crossref_primary_10_1016_j_jcis_2023_06_193 crossref_primary_10_1016_j_talanta_2018_12_084 crossref_primary_10_1038_s41598_024_81318_w crossref_primary_10_1039_C8RA05102J crossref_primary_10_1002_ente_202000736 crossref_primary_10_1021_acsanm_0c02088 crossref_primary_10_1016_j_carbon_2020_04_042 crossref_primary_10_1039_C9RA10467D crossref_primary_10_1016_j_electacta_2020_135617 crossref_primary_10_1016_j_micromeso_2021_111370 crossref_primary_10_1016_j_pecs_2021_100929 crossref_primary_10_1002_elan_201900599 crossref_primary_10_1016_j_matlet_2021_130999 crossref_primary_10_1016_j_ceramint_2023_02_251 crossref_primary_10_1016_j_energy_2020_117918 crossref_primary_10_1134_S1063783424601073 crossref_primary_10_1016_j_apsusc_2020_146746 crossref_primary_10_1007_s11051_019_4522_5 crossref_primary_10_1021_acssuschemeng_1c07082 crossref_primary_10_1002_ente_202401733 crossref_primary_10_1016_j_carbon_2020_07_010 crossref_primary_10_1016_j_jallcom_2020_155293 crossref_primary_10_1016_j_cej_2019_123455 crossref_primary_10_1016_j_jallcom_2020_155299 crossref_primary_10_1016_j_jpowsour_2023_233329 crossref_primary_10_1016_j_poly_2018_08_004 crossref_primary_10_3390_polym15030730 crossref_primary_10_1039_D0NR08108F crossref_primary_10_1016_j_jallcom_2022_165665 crossref_primary_10_1016_j_colsurfa_2023_131500 crossref_primary_10_1002_anie_202110695 crossref_primary_10_1021_acsami_1c15484 crossref_primary_10_1016_j_jcis_2018_11_080 crossref_primary_10_20964_2022_06_56 crossref_primary_10_1016_j_electacta_2020_137482 crossref_primary_10_1039_D3NJ05060B crossref_primary_10_1016_j_cej_2021_129189 crossref_primary_10_1039_D2RA03301A crossref_primary_10_1016_j_talanta_2024_126100 crossref_primary_10_1021_acsomega_8b03664 crossref_primary_10_1016_j_ceramint_2019_07_111 crossref_primary_10_1016_j_est_2022_104993 crossref_primary_10_1016_j_jallcom_2025_178471 crossref_primary_10_1088_2632_959X_ad0446 crossref_primary_10_1016_j_est_2021_103263 crossref_primary_10_1016_j_bioelechem_2023_108443 crossref_primary_10_1039_D0TA03356A crossref_primary_10_1021_acs_inorgchem_0c01157 crossref_primary_10_1016_j_jallcom_2020_156288 crossref_primary_10_12677_AEPE_2023_115017 crossref_primary_10_1007_s11051_022_05604_2 crossref_primary_10_1016_j_jelechem_2023_117417 crossref_primary_10_1021_acsami_0c05369 crossref_primary_10_1016_j_est_2023_108997 crossref_primary_10_1016_j_electacta_2019_135130 crossref_primary_10_1021_acsomega_9b01405 crossref_primary_10_3389_fchem_2020_00719 crossref_primary_10_1016_j_electacta_2018_10_182 crossref_primary_10_1016_j_jallcom_2021_162191 crossref_primary_10_1039_C8TA11994E crossref_primary_10_1016_j_jallcom_2020_154435 crossref_primary_10_1016_j_jelechem_2019_113445 crossref_primary_10_1016_j_nanoen_2018_10_060 crossref_primary_10_1039_C9RA07846K crossref_primary_10_1007_s00604_019_3331_y crossref_primary_10_1007_s10853_024_09591_8 crossref_primary_10_1002_elan_202300042 crossref_primary_10_1002_adma_201804903 crossref_primary_10_1016_j_jcis_2021_03_112 crossref_primary_10_3389_fchem_2021_677876 crossref_primary_10_1016_j_jallcom_2022_167630 crossref_primary_10_1016_j_compositesb_2019_107355 crossref_primary_10_1016_j_apsusc_2018_08_096 crossref_primary_10_1149_2_0431902jes crossref_primary_10_1039_D0NJ02736G crossref_primary_10_1016_j_cis_2023_102865 crossref_primary_10_1021_jacs_9b07383 crossref_primary_10_1088_1361_6528_ab73b8 crossref_primary_10_1002_ente_201900668 crossref_primary_10_1016_j_apsusc_2018_11_021 crossref_primary_10_1039_D1NR08284A crossref_primary_10_1016_j_jelechem_2019_04_047 crossref_primary_10_1016_j_jpowsour_2018_10_066 crossref_primary_10_1039_C8NR06701E crossref_primary_10_1016_j_cej_2023_142466 crossref_primary_10_1039_D0DT00251H crossref_primary_10_1002_ente_202000008 crossref_primary_10_1039_D2NR02663E crossref_primary_10_1088_1742_6596_2468_1_012034 crossref_primary_10_1039_D2CS00585A crossref_primary_10_1016_j_carbon_2021_09_061 crossref_primary_10_1016_j_carbon_2022_10_010 crossref_primary_10_1002_tcr_202300006 crossref_primary_10_1016_j_ijhydene_2022_04_164 crossref_primary_10_1016_j_jechem_2020_03_014 crossref_primary_10_1016_j_jece_2021_106705 crossref_primary_10_1016_j_jpowsour_2020_227761 crossref_primary_10_1039_D0TA06348G crossref_primary_10_1016_j_mtchem_2020_100260 crossref_primary_10_1016_j_seppur_2021_118487 crossref_primary_10_1002_celc_202100687 crossref_primary_10_1039_D1TA10531K crossref_primary_10_1016_j_chroma_2023_464080 crossref_primary_10_1016_j_jallcom_2021_161907 crossref_primary_10_1016_j_nanoen_2018_11_051 crossref_primary_10_1149_1945_7111_abc6c6 crossref_primary_10_1016_j_nanoen_2021_106314 crossref_primary_10_1016_j_cej_2019_01_178 crossref_primary_10_1021_acs_inorgchem_9b00088 crossref_primary_10_1002_aenm_202100321 crossref_primary_10_1039_D4CE00011K crossref_primary_10_1016_j_ijhydene_2019_10_149 crossref_primary_10_1016_j_ccr_2024_215876 crossref_primary_10_1016_j_susmat_2020_e00217 crossref_primary_10_1039_D1NR01010G crossref_primary_10_1016_j_cej_2020_127884 crossref_primary_10_1016_j_matlet_2018_09_064 crossref_primary_10_1002_adsu_202400539 crossref_primary_10_1002_eom2_12283 crossref_primary_10_1002_celc_201901153 crossref_primary_10_1080_17425247_2022_2130245 crossref_primary_10_1021_acs_jpcc_8b10598 crossref_primary_10_1016_j_ensm_2022_07_027 crossref_primary_10_1016_j_jechem_2020_08_056 crossref_primary_10_1002_ange_202110695 crossref_primary_10_1016_j_jallcom_2024_175398 crossref_primary_10_1039_C9TC04146J crossref_primary_10_1016_j_electacta_2019_06_169 crossref_primary_10_1039_D2TB00690A crossref_primary_10_1016_j_est_2024_115093 crossref_primary_10_1016_j_jallcom_2019_153463 crossref_primary_10_1016_j_mtcomm_2023_107174 |
Cites_doi | 10.1021/acsami.6b15000 10.1039/C6TA01510G 10.1039/C7RA00435D 10.1039/C6GC01172A 10.1002/anie.201409776 10.1039/c3ta12621h 10.1039/C7DT04660J 10.1021/jz502405h 10.1039/C5TA00524H 10.1039/c2cs35256g 10.1039/C3NR06041A 10.1002/adma.201605820 10.1039/C7EE00488E 10.1021/acsami.6b14233 10.1038/srep25556 10.1039/C6SC01659F 10.1039/C5TA09924B 10.1016/j.matlet.2014.05.148 10.1002/anie.201308589 10.1039/C5CC07621H 10.1016/j.jallcom.2017.02.215 10.1039/C6TA06314D 10.1002/chem.201503310 10.1021/acsnano.5b05610 10.1039/C6TA07032A 10.1021/ja211766q 10.1016/j.ensm.2015.12.004 10.1016/j.nantod.2015.04.011 10.1002/cssc.201701759 10.1016/j.joule.2017.08.008 10.1039/C5TA00455A 10.1016/j.electacta.2016.01.161 10.1021/acsami.6b00179 10.1039/C5TA04663G 10.1039/C6TA03491H 10.1039/C7NR00978J 10.1016/j.jpowsour.2016.05.056 10.1126/sciadv.aap9252 10.1021/acsami.5b02317 10.1038/srep13310 10.1016/j.nanoen.2015.01.019 10.1038/ncomms8872 10.1039/C6TA01377E 10.1039/C5TA06205E 10.1021/acssuschemeng.5b00556 10.1002/adma.201405115 10.1016/j.ensm.2017.12.027 10.1002/adma.201605051 10.1021/acsami.5b10280 10.1016/j.nanoen.2016.09.042 10.1002/adma.201701139 10.1016/j.nanoen.2017.02.009 10.1016/j.electacta.2015.05.131 10.1039/C6CC05699G 10.1039/C3TA14430E 10.1039/C5EE00762C 10.1002/adma.201503015 10.1007/s12274-017-1433-6 10.1021/acs.accounts.6b00480 10.1039/C7TA07890K 10.1021/ja402597g 10.1039/C4TA04277H 10.1016/j.cej.2017.09.084 10.1039/C5TA07085F 10.1016/j.carbon.2015.08.069 10.1039/C6TA07856G 10.1039/C4TA05611F 10.1038/nchem.1569 10.1039/C4NR03057E 10.1002/adma.201402728 10.1021/acs.chemrev.5b00731 10.1021/nn1030719 10.1039/C5CS00344J 10.1002/adma.201503816 10.1149/1.1806394 10.1126/science.aad3345 10.1039/C6RA23071G 10.1002/adfm.201504312 10.1039/C5CC06924F 10.1016/j.electacta.2016.08.070 10.1039/C6TA07098A 10.1039/C6RA11272B 10.1016/j.ccr.2015.09.002 10.1002/celc.201500437 10.1039/C4NR04422C 10.1002/anie.201303971 10.1016/j.ceramint.2017.05.004 10.1007/s11581-017-2160-4 10.1002/anie.201602653 10.1039/C5CC03825A 10.1039/C5TA01108F 10.1021/acsami.5b08741 10.1039/C4NR05135A 10.1002/smll.201503821 10.1002/bkcs.10638 10.1039/c4ta00257a 10.1016/j.electacta.2016.11.071 10.1039/c3nr00623a 10.1039/c3nr06409c 10.1039/C7SC00668C 10.1002/adma.201402322 10.1039/C4TA01966K 10.1039/C4TA01818D 10.1039/C4TA06914E 10.1039/C5TA00890E 10.1039/C6TA04286D 10.1002/smll.201603102 10.1016/j.matlet.2015.12.108 10.1002/anie.201605926 10.1039/C4TA00200H 10.1021/acs.nanolett.6b00057 10.1039/C7GC00506G 10.1039/C6TA01995A 10.1039/C4NR05242K 10.1039/C6TA03633C 10.1016/j.jpowsour.2014.04.027 10.1002/ange.201701604 10.1038/ncomms7694 10.1039/C4NR03631J 10.1016/j.jpowsour.2016.01.092 10.1039/C7TA00201G 10.1021/acsami.6b15110 10.1002/advs.201500286 10.1002/anie.201606776 10.1038/nenergy.2015.6 10.1007/s12274-016-1394-1 10.1016/j.cej.2017.03.033 10.1002/anie.201502117 10.1039/C5NR04416B 10.1002/ange.201709176 10.1039/C7QI00515F 10.1039/C5TA02461G 10.1016/j.carbon.2016.05.046 10.1039/C6TA05384J 10.1039/C7TA01008G 10.1007/s12274-014-0474-3 10.1039/C3TA14050D 10.1002/anie.201303147 10.1039/C6NR05480C 10.1021/acsnano.5b05041 10.1021/acsami.6b01268 10.1016/j.nantod.2014.09.005 10.1016/j.cej.2016.11.063 10.1021/acsami.6b04060 10.1016/j.matlet.2017.04.069 10.1021/ja307475c 10.1016/j.matlet.2016.02.121 10.1016/j.elecom.2015.09.002 10.1002/aenm.201401172 10.1002/aenm.201501333 10.1039/C4NR04782F 10.1021/nn501308m 10.1039/c4ee00517a 10.1039/C4TA00523F 10.1021/acsnano.5b01790 10.1038/natrevmats.2016.13 10.1039/C6EE01501H 10.1039/C4CS00442F 10.1002/adma.201501059 10.1039/C5CS00837A 10.1039/C7TA00863E 10.1021/cr500062v 10.1038/ncomms10672 10.1021/jacs.5b11986 10.1039/C4NR04505J 10.1016/j.jpowsour.2016.06.037 10.1016/j.jpowsour.2016.11.099 10.1016/j.electacta.2016.05.190 10.1021/nl5001778 10.1039/C6DT01791F 10.1039/C6TA02673G 10.1002/anie.201410376 10.1002/aenm.201602391 10.1016/j.electacta.2015.12.037 10.1039/C3TA13510A 10.1002/adma.201601621 10.1039/C5TA03665H 10.1039/C6RA19334J 10.1021/acsami.6b07989 10.1039/C3NR05676G 10.1039/C6DT03719D 10.1016/j.jpowsour.2015.10.049 10.1002/ange.201612635 10.1002/aenm.201602898 10.1039/C4TA00475B 10.1002/anie.201600133 10.1016/j.jpowsour.2015.03.106 10.1039/C5NR01443C 10.1016/j.nanoen.2017.05.064 10.1039/C5TA04009D 10.1039/C7NJ02427D 10.1002/adma.201700748 10.1002/ange.201600133 10.1002/adma.201604563 10.1016/j.jpowsour.2013.04.147 10.1039/C5TA00805K 10.1002/anie.201511632 10.1021/ja401727n 10.1007/s11434-015-0771-6 10.1007/s10854-017-6656-5 10.1016/j.jpowsour.2016.03.040 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2018 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2018 |
DBID | AAYXX CITATION 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI 7S9 L.6 |
DOI | 10.1039/c8ta00612a |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Environment Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Materials Research Database Advanced Technologies Database with Aerospace Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Environment Abstracts Advanced Technologies Database with Aerospace METADEX Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Materials Research Database AGRICOLA CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2050-7496 |
EndPage | 6771 |
ExternalDocumentID | 10_1039_C8TA00612A c8ta00612a |
GroupedDBID | -JG 0-7 705 AAEMU ABGFH ACLDK ADSRN AEFDR AFVBQ AGSTE AUDPV BSQNT C6K EE0 EF- GNO H~N J3I R7C RCNCU RPMJG RRC RSCEA SKA SKF SLH 0R~ AAIWI AAJAE AANOJ AAWGC AAXHV AAYXX ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ADMRA AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFRDS AFRZK AGEGJ AGRSR AHGCF AKMSF ALMA_UNASSIGNED_HOLDINGS ALUYA ANBJS ANUXI APEMP ASKNT BLAPV CITATION EBS ECGLT EJD GGIMP H13 HZ~ J3G J3H O-G O9- RAOCF RNS ROL 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c377t-3602d9023c6785bd34d46368d74970fb5f662c5c6879ae3c354ce2d776084c9b3 |
ISSN | 2050-7488 2050-7496 |
IngestDate | Fri Jul 11 01:59:39 EDT 2025 Mon Jun 30 11:56:15 EDT 2025 Thu Apr 24 22:52:22 EDT 2025 Tue Jul 01 03:13:49 EDT 2025 Mon Jan 28 17:15:27 EST 2019 Wed Jun 05 04:44:52 EDT 2019 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c377t-3602d9023c6785bd34d46368d74970fb5f662c5c6879ae3c354ce2d776084c9b3 |
Notes | Xing-chen Xie is a MS candidate majoring in chemistry and chemical engineering from Xinyang Normal University, China. Her research is focused on energy storage devices based on metal-organic framework derived materials. Xu Wu received his PhD degree from Central China Normal University in 2016. He studied at the University of California, Los Angeles as a visiting PhD candidate from 2013 to 2015. Currently he is a lecturer at Xinyang Normal University. His research focuses on nanomaterials for electrochemical energy storage, including rechargeable batteries and supercapacitors. Ke-Jing Huang received his PhD in 2006 from Wuhan University. Presently, he is a professor at Xinyang Normal University. His research interests include 2D nanomaterial preparation, supercapacitor electrode materials and electrochemical biosensors. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9332-0497 |
PQID | 2030352536 |
PQPubID | 2047523 |
PageCount | 18 |
ParticipantIDs | crossref_citationtrail_10_1039_C8TA00612A proquest_miscellaneous_2237520009 proquest_journals_2030352536 crossref_primary_10_1039_C8TA00612A rsc_primary_c8ta00612a |
ProviderPackageCode | J3I ACLDK RRC AEFDR GNO RCNCU SLH EE0 RSCEA AFVBQ C6K H~N 0-7 RPMJG SKA -JG AGSTE AUDPV EF- BSQNT SKF ADSRN ABGFH 705 AAEMU R7C CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-00-00 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – year: 2018 text: 2018-00-00 |
PublicationDecade | 2010 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Journal of materials chemistry. A, Materials for energy and sustainability |
PublicationYear | 2018 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Zhu (C8TA00612A-(cit94)/*[position()=1]) 2014; 2 Zhu (C8TA00612A-(cit222)/*[position()=1]) 2018; 13 Xia (C8TA00612A-(cit76)/*[position()=1]) 2016; 4 Cao (C8TA00612A-(cit185)/*[position()=1]) 2015; 174 Yu (C8TA00612A-(cit53)/*[position()=1]) 2017; 50 Huang (C8TA00612A-(cit168)/*[position()=1]) 2014; 131 Ouyang (C8TA00612A-(cit5)/*[position()=1]) 2016; 4 Guan (C8TA00612A-(cit196)/*[position()=1]) 2017 Ma (C8TA00612A-(cit209)/*[position()=1]) 2016; 8 Qi (C8TA00612A-(cit55)/*[position()=1]) 2015; 44 Cui (C8TA00612A-(cit139)/*[position()=1]) 2013; 135 Xu (C8TA00612A-(cit96)/*[position()=1]) 2017; 23 Zhong (C8TA00612A-(cit66)/*[position()=1]) 2016; 3 Li (C8TA00612A-(cit193)/*[position()=1]) 2016; 45 Choi (C8TA00612A-(cit208)/*[position()=1]) 2016; 210 Shen (C8TA00612A-(cit70)/*[position()=1]) 2015; 54 Yu (C8TA00612A-(cit116)/*[position()=1]) 2017; 9 Wang (C8TA00612A-(cit158)/*[position()=1]) 2015; 3 Jayakumar (C8TA00612A-(cit192)/*[position()=1]) 2017; 13 You (C8TA00612A-(cit100)/*[position()=1]) 2017; 6 Zhao (C8TA00612A-(cit112)/*[position()=1]) 2017; 9 Zhang (C8TA00612A-(cit89)/*[position()=1]) 2015; 7 Zhang (C8TA00612A-(cit117)/*[position()=1]) 2017; 4 Wang (C8TA00612A-(cit51)/*[position()=1]) 2016; 116 Zhang (C8TA00612A-(cit24)/*[position()=1]) 2016; 55 Shao (C8TA00612A-(cit82)/*[position()=1]) 2014; 2 Xu (C8TA00612A-(cit121)/*[position()=1]) 2014; 9 Zhang (C8TA00612A-(cit50)/*[position()=1]) 2012; 134 Liu (C8TA00612A-(cit67)/*[position()=1]) 2017; 341 Liu (C8TA00612A-(cit39)/*[position()=1]) 2016; 4 Yu (C8TA00612A-(cit49)/*[position()=1]) 2017; 29 Ramaraju (C8TA00612A-(cit166)/*[position()=1]) 2016; 52 Guo (C8TA00612A-(cit107)/*[position()=1]) 2014; 6 Hao (C8TA00612A-(cit79)/*[position()=1]) 2014; 2 Hou (C8TA00612A-(cit148)/*[position()=1]) 2017; 7 Xiao (C8TA00612A-(cit73)/*[position()=1]) 2016; 55 Yu (C8TA00612A-(cit54)/*[position()=1]) 2016; 4 Hou (C8TA00612A-(cit150)/*[position()=1]) 2015; 27 He (C8TA00612A-(cit212)/*[position()=1]) 2017; 129 Sun (C8TA00612A-(cit113)/*[position()=1]) 2015; 7 Song (C8TA00612A-(cit17)/*[position()=1]) 2017; 34 Bai (C8TA00612A-(cit21)/*[position()=1]) 2016; 45 Li (C8TA00612A-(cit105)/*[position()=1]) 2014; 7 Han (C8TA00612A-(cit84)/*[position()=1]) 2015; 3 Chen (C8TA00612A-(cit137)/*[position()=1]) 2017; 38 Huang (C8TA00612A-(cit211)/*[position()=1]) 2016; 138 Zhou (C8TA00612A-(cit124)/*[position()=1]) 2015; 12 Zhang (C8TA00612A-(cit153)/*[position()=1]) 2015; 3 Zhang (C8TA00612A-(cit126)/*[position()=1]) 2017; 10 Abouimrane (C8TA00612A-(cit140)/*[position()=1]) 2012; 134 Zhang (C8TA00612A-(cit156)/*[position()=1]) 2016; 28 Yang (C8TA00612A-(cit202)/*[position()=1]) 2016; 167 Tan (C8TA00612A-(cit74)/*[position()=1]) 2016; 52 Xia (C8TA00612A-(cit44)/*[position()=1]) 2016; 4 Shen (C8TA00612A-(cit119)/*[position()=1]) 2015; 6 Yang (C8TA00612A-(cit189)/*[position()=1]) 2016; 6 Salunkhe (C8TA00612A-(cit218)/*[position()=1]) 2014; 2 Shao (C8TA00612A-(cit83)/*[position()=1]) 2014; 2 Cai (C8TA00612A-(cit28)/*[position()=1]) 2016; 4 Guan (C8TA00612A-(cit7)/*[position()=1]) 2017; 29 Yin (C8TA00612A-(cit109)/*[position()=1]) 2017; 706 Liu (C8TA00612A-(cit32)/*[position()=1]) 2017; 5 Chen (C8TA00612A-(cit184)/*[position()=1]) 2016; 55 Sun (C8TA00612A-(cit98)/*[position()=1]) 2015; 3 Deng (C8TA00612A-(cit125)/*[position()=1]) 2017; 29 Liu (C8TA00612A-(cit143)/*[position()=1]) 2016; 8 Liang (C8TA00612A-(cit40)/*[position()=1]) 2017; 9 Zeng (C8TA00612A-(cit47)/*[position()=1]) 2016; 4 Zhang (C8TA00612A-(cit219)/*[position()=1]) 2016; 4 Li (C8TA00612A-(cit43)/*[position()=1]) 2015; 3 Zou (C8TA00612A-(cit115)/*[position()=1]) 2015; 10 Shaibani (C8TA00612A-(cit14)/*[position()=1]) 2017; 5 Zhang (C8TA00612A-(cit36)/*[position()=1]) 2017; 1 Xia (C8TA00612A-(cit8)/*[position()=1]) 2015; 8 Liu (C8TA00612A-(cit23)/*[position()=1]) 2017; 8 Klose (C8TA00612A-(cit217)/*[position()=1]) 2016; 106 Li (C8TA00612A-(cit204)/*[position()=1]) 2016; 22 Liu (C8TA00612A-(cit18)/*[position()=1]) 2016; 9 Chen (C8TA00612A-(cit29)/*[position()=1]) 2016; 128 Jiang (C8TA00612A-(cit214)/*[position()=1]) 2014; 2 Ma (C8TA00612A-(cit78)/*[position()=1]) 2015; 3 Sun (C8TA00612A-(cit22)/*[position()=1]) 2014; 7 Wu (C8TA00612A-(cit81)/*[position()=1]) 2017; 10 Chen (C8TA00612A-(cit85)/*[position()=1]) 2017; 43 Xia (C8TA00612A-(cit25)/*[position()=1]) 2016; 1 Li (C8TA00612A-(cit170)/*[position()=1]) 2016; 6 Chen (C8TA00612A-(cit11)/*[position()=1]) 2017; 10 Mikhaylik (C8TA00612A-(cit136)/*[position()=1]) 2004; 151 Wu (C8TA00612A-(cit59)/*[position()=1]) 2017; 10 Yang (C8TA00612A-(cit65)/*[position()=1]) 2015; 3 Zhang (C8TA00612A-(cit57)/*[position()=1]) 2016; 4 Guo (C8TA00612A-(cit160)/*[position()=1]) 2016; 316 Zou (C8TA00612A-(cit111)/*[position()=1]) 2014; 26 Kang (C8TA00612A-(cit114)/*[position()=1]) 2017; 9 Jiao (C8TA00612A-(cit187)/*[position()=1]) 2016; 4 Geng (C8TA00612A-(cit200)/*[position()=1]) 2016; 7 Manthiram (C8TA00612A-(cit130)/*[position()=1]) 2015; 27 Qi (C8TA00612A-(cit68)/*[position()=1]) 2015; 44 Kong (C8TA00612A-(cit93)/*[position()=1]) 2015; 3 Ji (C8TA00612A-(cit87)/*[position()=1]) 2017; 313 Wu (C8TA00612A-(cit91)/*[position()=1]) 2013; 1 Zhang (C8TA00612A-(cit180)/*[position()=1]) 2016; 191 Zheng (C8TA00612A-(cit99)/*[position()=1]) 2016; 6 Zhang (C8TA00612A-(cit155)/*[position()=1]) 2015; 95 Zhang (C8TA00612A-(cit194)/*[position()=1]) 2014; 6 Yu (C8TA00612A-(cit118)/*[position()=1]) 2015; 54 Liu (C8TA00612A-(cit26)/*[position()=1]) 2017; 129 Liu (C8TA00612A-(cit34)/*[position()=1]) 2016; 4 Tong (C8TA00612A-(cit38)/*[position()=1]) 2017; 5 Zhang (C8TA00612A-(cit191)/*[position()=1]) 2016; 188 Li (C8TA00612A-(cit215)/*[position()=1]) 2016; 6 Wu (C8TA00612A-(cit41)/*[position()=1]) 2015; 7 Wu (C8TA00612A-(cit63)/*[position()=1]) 2015; 3 Li (C8TA00612A-(cit42)/*[position()=1]) 2016; 302 Liang (C8TA00612A-(cit131)/*[position()=1]) 2014; 8 Zhang (C8TA00612A-(cit90)/*[position()=1]) 2015; 60 Liu (C8TA00612A-(cit127)/*[position()=1]) 2016; 12 Liang (C8TA00612A-(cit77)/*[position()=1]) 2017; 9 Zhang (C8TA00612A-(cit181)/*[position()=1]) 2016; 4 Yu (C8TA00612A-(cit123)/*[position()=1]) 2016; 55 Ji (C8TA00612A-(cit45)/*[position()=1]) 2016; 4 Yu (C8TA00612A-(cit52)/*[position()=1]) 2016; 6 Xia (C8TA00612A-(cit179)/*[position()=1]) 2014; 14 Jiang (C8TA00612A-(cit62)/*[position()=1]) 2015; 27 Wen (C8TA00612A-(cit31)/*[position()=1]) 2015; 3 Yang (C8TA00612A-(cit206)/*[position()=1]) 2016; 167 Ma (C8TA00612A-(cit167)/*[position()=1]) 2016; 8 Carné-Sánchez (C8TA00612A-(cit75)/*[position()=1]) 2013; 5 Hu (C8TA00612A-(cit195)/*[position()=1]) 2015; 7 Hu (C8TA00612A-(cit92)/*[position()=1]) 2013; 5 Peng (C8TA00612A-(cit183)/*[position()=1]) 2015; 5 Han (C8TA00612A-(cit141)/*[position()=1]) 2014; 263 Guan (C8TA00612A-(cit101)/*[position()=1]) 2014; 6 Zheng (C8TA00612A-(cit6)/*[position()=1]) 2017; 18 Zhang (C8TA00612A-(cit69)/*[position()=1]) 2014; 53 Wang (C8TA00612A-(cit12)/*[position()=1]) 2015; 3 Chen (C8TA00612A-(cit37)/*[position()=1]) 2016; 7 Komaba (C8TA00612A-(cit171)/*[position()=1]) 2015; 60 Xin (C8TA00612A-(cit221)/*[position()=1]) 2017; 41 Geng (C8TA00612A-(cit64)/*[position()=1]) 2014; 6 Zhang (C8TA00612A-(cit159)/*[position()=1]) 2011; 5 Ma (C8TA00612A-(cit213)/*[position()=1]) 2017; 320 Li (C8TA00612A-(cit142)/*[position()=1]) 2017; 129 Chen (C8TA00612A-(cit216)/*[position()=1]) 2014; 2 Xiong (C8TA00612A-(cit173)/*[position()=1]) 2018; 11 Guo (C8TA00612A-(cit162)/*[position()=1]) 2017; 199 Chen (C8TA00612A-(cit177)/*[position()=1]) 2017; 10 Ramaraju (C8TA00612A-(cit110)/*[position()=1]) 2016; 52 Liao (C8TA00612A-(cit133)/*[position()=1]) 2014; 2 Wang (C8TA00612A-(cit201)/*[position()=1]) 2016; 8 Lv (C8TA00612A-(cit197)/*[position()=1]) 2016; 215 Bao (C8TA00612A-(cit10)/*[position()=1]) 2016; 325 Sun (C8TA00612A-(cit205)/*[position()=1]) 2016; 309 Wu (C8TA00612A-(cit145)/*[position()=1]) 2016; 3 Yuan (C8TA00612A-(cit188)/*[position()=1]) 2014; 53 Zhang (C8TA00612A-(cit220)/*[position()=1]) 2014; 2 Chen (C8TA00612A-(cit178)/*[position()=1]) 2016; 55 Wang (C8TA00612A-(cit154)/*[position()=1]) 2017; 13 Liang (C8TA00612A-(cit35)/*[position()=1]) 2017; 29 Liu (C8TA00612A-(cit152)/*[position()=1]) 2015; 27 Li (C8TA00612A-(cit33)/*[position()=1]) 2016; 26 Yu (C8TA00612A-(cit102)/*[position()=1]) 2014; 6 Ma (C8TA00612A-(cit132)/*[position()=1]) 2015; 10 Li (C8TA00612A-(cit1)/*[position()=1]) 2015; 6 Wang (C8TA00612A-(cit122)/*[position()=1]) 2014; 26 Kang (C8TA00612A-(cit157)/*[position()=1]) 2016; 37 Wang (C8TA00612A-(cit198)/*[position()=1]) 2017; 28 Wang (C8TA00612A-(cit13)/*[position()=1]) 2016; 30 Shao (C8TA00612A-(cit46)/*[position()=1]) 2016; 324 Feng (C8TA00612A-(cit72)/*[position()=1]) 2015; 3 Wu (C8TA00612A-(cit30)/*[position()=1]) 2017; 3 Zhu (C8TA00612A-(cit207)/*[position()=1]) 2015; 7 Yang (C8TA00612A-(cit129)/*[position()=1]) 2013; 42 Zhang (C8TA00612A-(cit144)/*[position()=1]) 2016; 16 Zhang (C8TA00612A-(cit161)/*[position()=1]) 2015; 51 Tang (C8TA00612A-(cit16)/*[position()=1]) 2015; 44 Yang (C8TA00612A-(cit135)/*[position()=1]) 2015; 6 Borenstein (C8TA00612A-(cit182)/*[position()=1]) 2017; 5 Xing (C8TA00612A-(cit71)/*[position()=1]) 2018; 47 Wang (C8TA00612A-(cit9)/*[position()=1]) 2016; 307 Tang (C8TA00612A-(cit210)/*[position()=1]) 2016; 8 Yu (C8TA00612A-(cit106)/*[position()=1]) 2015; 7 Li (C8TA00612A-(cit149)/*[position()=1]) 2017; 29 Bai (C8TA00612A-(cit95)/*[position()=1]) 2014; 6 Xing (C8TA00612A-(cit175)/*[position()=1]) 2018; 332 Eftekhari (C8TA00612A-(cit172)/*[position()=1]) 2016; 9 Xu (C8TA00612A-(cit164)/*[position()=1]) 2016; 8 Kundu (C8TA00612A-(cit19)/*[position()=1]) 2015; 54 Zhang (C8TA00612A-(cit146)/*[position()=1]) 2016; 3 Xu (C8TA00612A-(cit86)/*[position()=1]) 2016; 222 Yi (C8TA00612A-(cit174)/*[position()=1]) 2015; 285 Huang (C8TA00612A-(cit80)/*[position()=1]) 2014; 2 Liu (C8TA00612A-(cit58)/*[position()=1]) 2017; 7 Zhou (C8TA00612A-(cit134)/*[position()=1]) 2015; 3 Liu (C8TA00612A-(cit151)/*[position()=1]) 2016; 172 Hu (C8TA00612A-(cit104)/*[position()=1]) 2015; 7 Tong (C8TA00612A-(cit186)/*[position()=1]) 2017; 5 Carné-Sánchez (C8TA00612A-(cit27)/*[position()=1]) 2013; 5 Yu (C8TA00612A-(cit3)/*[position()=1]) 2016; 4 Sun (C8TA00612A-(cit61)/*[position()=1]) 2015; 7 |
References_xml | – volume: 9 start-page: 10602 year: 2017 ident: C8TA00612A-(cit114)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b15000 – volume: 4 start-page: 8233 year: 2016 ident: C8TA00612A-(cit47)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C6TA01510G – volume: 7 start-page: 11129 year: 2017 ident: C8TA00612A-(cit190)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C7RA00435D – volume: 18 start-page: 4824 year: 2016 ident: C8TA00612A-(cit2)/*[position()=1] publication-title: Green Chem. doi: 10.1039/C6GC01172A – volume: 54 start-page: 1868 year: 2015 ident: C8TA00612A-(cit70)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201409776 – volume: 1 start-page: 11126 year: 2013 ident: C8TA00612A-(cit91)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/c3ta12621h – volume: 47 start-page: 2256 year: 2018 ident: C8TA00612A-(cit71)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/C7DT04660J – volume: 6 start-page: 256 year: 2015 ident: C8TA00612A-(cit135)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz502405h – volume: 3 start-page: 8272 year: 2015 ident: C8TA00612A-(cit134)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C5TA00524H – volume: 42 start-page: 3018 year: 2013 ident: C8TA00612A-(cit129)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/c2cs35256g – volume: 6 start-page: 5509 year: 2014 ident: C8TA00612A-(cit48)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C3NR06041A – volume: 29 start-page: 1605820 year: 2017 ident: C8TA00612A-(cit149)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201605820 – volume: 13 start-page: 170087 year: 2017 ident: C8TA00612A-(cit154)/*[position()=1] publication-title: Small – volume: 10 start-page: 1777 year: 2017 ident: C8TA00612A-(cit11)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C7EE00488E – volume: 9 start-page: 2516 year: 2017 ident: C8TA00612A-(cit116)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b14233 – volume: 6 start-page: 25556 year: 2016 ident: C8TA00612A-(cit170)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep25556 – volume: 7 start-page: 6015 year: 2016 ident: C8TA00612A-(cit37)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C6SC01659F – volume: 4 start-page: 3584 year: 2016 ident: C8TA00612A-(cit34)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C5TA09924B – volume: 131 start-page: 45 year: 2014 ident: C8TA00612A-(cit168)/*[position()=1] publication-title: Mater. Lett. doi: 10.1016/j.matlet.2014.05.148 – volume: 53 start-page: 429 year: 2014 ident: C8TA00612A-(cit69)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201308589 – volume: 52 start-page: 946 year: 2016 ident: C8TA00612A-(cit110)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C5CC07621H – volume: 706 start-page: 97 year: 2017 ident: C8TA00612A-(cit109)/*[position()=1] publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2017.02.215 – volume: 4 start-page: 16516 year: 2016 ident: C8TA00612A-(cit181)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C6TA06314D – volume: 22 start-page: 590 year: 2016 ident: C8TA00612A-(cit204)/*[position()=1] publication-title: Chem.–Eur. J. doi: 10.1002/chem.201503310 – volume: 9 start-page: 11462 year: 2015 ident: C8TA00612A-(cit97)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.5b05610 – volume: 4 start-page: 16953 year: 2016 ident: C8TA00612A-(cit54)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C6TA07032A – volume: 134 start-page: 4505 year: 2012 ident: C8TA00612A-(cit140)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja211766q – volume: 3 start-page: 18 year: 2016 ident: C8TA00612A-(cit146)/*[position()=1] publication-title: Energy Storage Maters doi: 10.1016/j.ensm.2015.12.004 – volume: 10 start-page: 315 year: 2015 ident: C8TA00612A-(cit132)/*[position()=1] publication-title: Nano Today doi: 10.1016/j.nantod.2015.04.011 – volume: 11 start-page: 202 year: 2018 ident: C8TA00612A-(cit173)/*[position()=1] publication-title: ChemSusChem doi: 10.1002/cssc.201701759 – volume: 1 start-page: 77 year: 2017 ident: C8TA00612A-(cit36)/*[position()=1] publication-title: Joule doi: 10.1016/j.joule.2017.08.008 – volume: 3 start-page: 8483 year: 2015 ident: C8TA00612A-(cit98)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C5TA00455A – volume: 191 start-page: 795 year: 2016 ident: C8TA00612A-(cit180)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.01.161 – volume: 8 start-page: 7811 year: 2016 ident: C8TA00612A-(cit201)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b00179 – volume: 3 start-page: 20658 year: 2015 ident: C8TA00612A-(cit12)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C5TA04663G – volume: 4 start-page: 12434 year: 2016 ident: C8TA00612A-(cit44)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C6TA03491H – volume: 9 start-page: 5323 year: 2017 ident: C8TA00612A-(cit40)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C7NR00978J – volume: 324 start-page: 1 year: 2016 ident: C8TA00612A-(cit46)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.05.056 – volume: 3 start-page: eaap9252 year: 2017 ident: C8TA00612A-(cit30)/*[position()=1] publication-title: Sci. Adv. doi: 10.1126/sciadv.aap9252 – volume: 7 start-page: 9972 year: 2015 ident: C8TA00612A-(cit104)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b02317 – volume: 5 start-page: 13310 year: 2015 ident: C8TA00612A-(cit108)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep13310 – volume: 12 start-page: 528 year: 2015 ident: C8TA00612A-(cit124)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2015.01.019 – volume: 6 start-page: 7872 year: 2015 ident: C8TA00612A-(cit1)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms8872 – volume: 4 start-page: 8283 year: 2016 ident: C8TA00612A-(cit45)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C6TA01377E – volume: 3 start-page: 22542 year: 2015 ident: C8TA00612A-(cit84)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C5TA06205E – volume: 3 start-page: 1830 year: 2015 ident: C8TA00612A-(cit93)/*[position()=1] publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.5b00556 – volume: 27 start-page: 1980 year: 2015 ident: C8TA00612A-(cit130)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201405115 – volume: 13 start-page: 72 year: 2018 ident: C8TA00612A-(cit222)/*[position()=1] publication-title: Energy Storage Maters doi: 10.1016/j.ensm.2017.12.027 – volume: 29 start-page: 1605051 year: 2017 ident: C8TA00612A-(cit7)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201605051 – volume: 8 start-page: 1992 year: 2016 ident: C8TA00612A-(cit167)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b10280 – volume: 30 start-page: 84 year: 2016 ident: C8TA00612A-(cit13)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.09.042 – volume: 29 start-page: 1701139 year: 2017 ident: C8TA00612A-(cit35)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201701139 – volume: 34 start-page: 47 year: 2017 ident: C8TA00612A-(cit17)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.02.009 – volume: 174 start-page: 41 year: 2015 ident: C8TA00612A-(cit185)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2015.05.131 – volume: 52 start-page: 11591 year: 2016 ident: C8TA00612A-(cit74)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C6CC05699G – volume: 2 start-page: 8603 year: 2014 ident: C8TA00612A-(cit214)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C3TA14430E – volume: 8 start-page: 1837 year: 2015 ident: C8TA00612A-(cit8)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C5EE00762C – volume: 27 start-page: 6702 year: 2015 ident: C8TA00612A-(cit152)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201503015 – volume: 10 start-page: 2364 year: 2017 ident: C8TA00612A-(cit59)/*[position()=1] publication-title: Nano Res. doi: 10.1007/s12274-017-1433-6 – volume: 50 start-page: 293 year: 2017 ident: C8TA00612A-(cit53)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.6b00480 – volume: 6 start-page: 5265 year: 2017 ident: C8TA00612A-(cit100)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C7TA07890K – volume: 135 start-page: 8047 year: 2013 ident: C8TA00612A-(cit139)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja402597g – volume: 2 start-page: 19848 year: 2014 ident: C8TA00612A-(cit218)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C4TA04277H – volume: 332 start-page: 253 year: 2018 ident: C8TA00612A-(cit175)/*[position()=1] publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.09.084 – volume: 4 start-page: 183 year: 2016 ident: C8TA00612A-(cit28)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C5TA07085F – volume: 95 start-page: 552 year: 2015 ident: C8TA00612A-(cit155)/*[position()=1] publication-title: Carbon doi: 10.1016/j.carbon.2015.08.069 – volume: 4 start-page: 17838 year: 2016 ident: C8TA00612A-(cit39)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C6TA07856G – volume: 3 start-page: 5648 year: 2015 ident: C8TA00612A-(cit65)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C4TA05611F – volume: 5 start-page: 203 year: 2013 ident: C8TA00612A-(cit75)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/nchem.1569 – volume: 6 start-page: 9889 year: 2014 ident: C8TA00612A-(cit120)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C4NR03057E – volume: 26 start-page: 7162 year: 2014 ident: C8TA00612A-(cit122)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201402728 – volume: 116 start-page: 10983 year: 2016 ident: C8TA00612A-(cit51)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00731 – volume: 5 start-page: 2013 year: 2011 ident: C8TA00612A-(cit159)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn1030719 – volume: 44 start-page: 6749 year: 2015 ident: C8TA00612A-(cit55)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00344J – volume: 27 start-page: 7861 year: 2015 ident: C8TA00612A-(cit150)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201503816 – volume: 151 start-page: A1969 issue: 11 year: 2004 ident: C8TA00612A-(cit136)/*[position()=1] publication-title: J. Electrochem. Soc. doi: 10.1149/1.1806394 – volume: 351 start-page: 691 year: 2016 ident: C8TA00612A-(cit176)/*[position()=1] publication-title: Science doi: 10.1126/science.aad3345 – volume: 6 start-page: 103517 year: 2016 ident: C8TA00612A-(cit215)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C6RA23071G – volume: 26 start-page: 1098 year: 2016 ident: C8TA00612A-(cit33)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201504312 – volume: 51 start-page: 16413 year: 2015 ident: C8TA00612A-(cit161)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C5CC06924F – volume: 215 start-page: 500 year: 2016 ident: C8TA00612A-(cit197)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.08.070 – volume: 5 start-page: 2519 year: 2017 ident: C8TA00612A-(cit14)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C6TA07098A – volume: 6 start-page: 61803 year: 2016 ident: C8TA00612A-(cit189)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C6RA11272B – volume: 307 start-page: 361 year: 2016 ident: C8TA00612A-(cit9)/*[position()=1] publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2015.09.002 – volume: 3 start-page: 292 year: 2016 ident: C8TA00612A-(cit145)/*[position()=1] publication-title: ChemElectroChem doi: 10.1002/celc.201500437 – volume: 6 start-page: 15168 year: 2014 ident: C8TA00612A-(cit107)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C4NR04422C – volume: 53 start-page: 1488 year: 2014 ident: C8TA00612A-(cit188)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201303971 – volume: 43 start-page: 9945 year: 2017 ident: C8TA00612A-(cit85)/*[position()=1] publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2017.05.004 – volume: 23 start-page: 3273 year: 2017 ident: C8TA00612A-(cit96)/*[position()=1] publication-title: Ionics doi: 10.1007/s11581-017-2160-4 – volume: 55 start-page: 7427 year: 2016 ident: C8TA00612A-(cit73)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201602653 – volume: 51 start-page: 13205 year: 2015 ident: C8TA00612A-(cit203)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C5CC03825A – volume: 3 start-page: 12796 year: 2015 ident: C8TA00612A-(cit158)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C5TA01108F – volume: 7 start-page: 26751 year: 2015 ident: C8TA00612A-(cit106)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b08741 – volume: 7 start-page: 965 year: 2015 ident: C8TA00612A-(cit41)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C4NR05135A – volume: 12 start-page: 2354 year: 2016 ident: C8TA00612A-(cit127)/*[position()=1] publication-title: Small doi: 10.1002/smll.201503821 – volume: 37 start-page: 123 year: 2016 ident: C8TA00612A-(cit157)/*[position()=1] publication-title: Bull. Korean Chem. Soc. doi: 10.1002/bkcs.10638 – volume: 9 start-page: 10602 year: 2017 ident: C8TA00612A-(cit165)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b15000 – volume: 2 start-page: 7904 year: 2014 ident: C8TA00612A-(cit94)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/c4ta00257a – volume: 222 start-page: 1021 year: 2016 ident: C8TA00612A-(cit86)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.11.071 – volume: 5 start-page: 4186 year: 2013 ident: C8TA00612A-(cit92)/*[position()=1] publication-title: Nanoscale doi: 10.1039/c3nr00623a – volume: 6 start-page: 3889 year: 2014 ident: C8TA00612A-(cit64)/*[position()=1] publication-title: Nanoscale doi: 10.1039/c3nr06409c – volume: 8 start-page: 4285 year: 2017 ident: C8TA00612A-(cit23)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C7SC00668C – volume: 26 start-page: 6622 year: 2014 ident: C8TA00612A-(cit111)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201402322 – volume: 2 start-page: 12194 year: 2014 ident: C8TA00612A-(cit82)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C4TA01966K – volume: 5 start-page: 203 year: 2013 ident: C8TA00612A-(cit27)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/nchem.1569 – volume: 2 start-page: 14118 year: 2014 ident: C8TA00612A-(cit216)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C4TA01818D – volume: 3 start-page: 5585 year: 2015 ident: C8TA00612A-(cit43)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C4TA06914E – volume: 8 start-page: 1992 year: 2016 ident: C8TA00612A-(cit209)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b10280 – volume: 18 start-page: 201602733 year: 2017 ident: C8TA00612A-(cit6)/*[position()=1] publication-title: Adv. Energy Mater. – volume: 3 start-page: 12038 year: 2015 ident: C8TA00612A-(cit78)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C5TA00890E – volume: 4 start-page: 10878 year: 2016 ident: C8TA00612A-(cit3)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C6TA04286D – volume: 13 start-page: 1603102 year: 2017 ident: C8TA00612A-(cit192)/*[position()=1] publication-title: Small doi: 10.1002/smll.201603102 – volume: 167 start-page: 102 year: 2016 ident: C8TA00612A-(cit202)/*[position()=1] publication-title: Mater. Lett. doi: 10.1016/j.matlet.2015.12.108 – volume: 55 start-page: 13822 year: 2016 ident: C8TA00612A-(cit184)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201605926 – volume: 2 start-page: 8048 year: 2014 ident: C8TA00612A-(cit80)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C4TA00200H – volume: 16 start-page: 2054 year: 2016 ident: C8TA00612A-(cit144)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b00057 – volume: 19 start-page: 2595 year: 2017 ident: C8TA00612A-(cit4)/*[position()=1] publication-title: Green Chem. doi: 10.1039/C7GC00506G – volume: 4 start-page: 6350 year: 2016 ident: C8TA00612A-(cit57)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C6TA01995A – volume: 10 start-page: 2364 year: 2017 ident: C8TA00612A-(cit81)/*[position()=1] publication-title: Nano Res. doi: 10.1007/s12274-017-1433-6 – volume: 7 start-page: 3309 year: 2015 ident: C8TA00612A-(cit207)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C4NR05242K – volume: 4 start-page: 10282 year: 2016 ident: C8TA00612A-(cit219)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C6TA03633C – volume: 263 start-page: 85 year: 2014 ident: C8TA00612A-(cit141)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.04.027 – volume: 6 start-page: 9889 year: 2014 ident: C8TA00612A-(cit199)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C4NR03057E – volume: 129 start-page: 5604 year: 2017 ident: C8TA00612A-(cit26)/*[position()=1] publication-title: Angew. Chem. doi: 10.1002/ange.201701604 – volume: 6 start-page: 6694 year: 2015 ident: C8TA00612A-(cit119)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms7694 – volume: 6 start-page: 10556 year: 2014 ident: C8TA00612A-(cit102)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C4NR03631J – volume: 55 start-page: 13822 year: 2016 ident: C8TA00612A-(cit178)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201605926 – volume: 309 start-page: 135 year: 2016 ident: C8TA00612A-(cit205)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.01.092 – volume: 5 start-page: 11781 year: 2017 ident: C8TA00612A-(cit32)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C7TA00201G – volume: 9 start-page: 3757 year: 2017 ident: C8TA00612A-(cit112)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b15110 – volume: 3 start-page: 1500286 year: 2016 ident: C8TA00612A-(cit66)/*[position()=1] publication-title: Adv. Sci. doi: 10.1002/advs.201500286 – volume: 55 start-page: 13422 year: 2016 ident: C8TA00612A-(cit20)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201606776 – volume: 7 start-page: 11129 year: 2017 ident: C8TA00612A-(cit58)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C7RA00435D – volume: 1 start-page: 15006 year: 2016 ident: C8TA00612A-(cit25)/*[position()=1] publication-title: Nat. Energy doi: 10.1038/nenergy.2015.6 – volume: 10 start-page: 4298 year: 2017 ident: C8TA00612A-(cit126)/*[position()=1] publication-title: Nano Res. doi: 10.1007/s12274-016-1394-1 – volume: 320 start-page: 22 year: 2017 ident: C8TA00612A-(cit213)/*[position()=1] publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.03.033 – volume: 54 start-page: 7395 year: 2015 ident: C8TA00612A-(cit118)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201502117 – volume: 7 start-page: 20426 year: 2015 ident: C8TA00612A-(cit61)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C5NR04416B – volume: 4 start-page: 253 year: 2015 ident: C8TA00612A-(cit147)/*[position()=1] publication-title: Wiley Interdiscip. Rev.: Energy Environ. – volume: 129 start-page: 16219 year: 2017 ident: C8TA00612A-(cit142)/*[position()=1] publication-title: Angew. Chem. doi: 10.1002/ange.201709176 – volume: 9 start-page: 5323 year: 2017 ident: C8TA00612A-(cit77)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C7NR00978J – volume: 4 start-page: 1602 year: 2017 ident: C8TA00612A-(cit117)/*[position()=1] publication-title: Inorg. Chem. Front. doi: 10.1039/C7QI00515F – volume: 7 start-page: 20426 year: 2015 ident: C8TA00612A-(cit113)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C5NR04416B – volume: 3 start-page: 13874 year: 2015 ident: C8TA00612A-(cit31)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C5TA02461G – volume: 106 start-page: 306 year: 2016 ident: C8TA00612A-(cit217)/*[position()=1] publication-title: Carbon doi: 10.1016/j.carbon.2016.05.046 – volume: 4 start-page: 13344 year: 2016 ident: C8TA00612A-(cit187)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C6TA05384J – volume: 5 start-page: 9873 year: 2017 ident: C8TA00612A-(cit186)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C7TA01008G – volume: 7 start-page: 1116 year: 2014 ident: C8TA00612A-(cit105)/*[position()=1] publication-title: Nano Res. doi: 10.1007/s12274-014-0474-3 – volume: 52 start-page: 946 year: 2016 ident: C8TA00612A-(cit166)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C5CC07621H – volume: 2 start-page: 735 year: 2014 ident: C8TA00612A-(cit103)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C3TA14050D – volume: 52 start-page: 8363 year: 2013 ident: C8TA00612A-(cit138)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201303147 – volume: 8 start-page: 16761 year: 2016 ident: C8TA00612A-(cit164)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C6NR05480C – volume: 10 start-page: 377 year: 2015 ident: C8TA00612A-(cit115)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.5b05041 – volume: 8 start-page: 9721 year: 2016 ident: C8TA00612A-(cit210)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b01268 – volume: 9 start-page: 604 year: 2014 ident: C8TA00612A-(cit121)/*[position()=1] publication-title: Nano Today doi: 10.1016/j.nantod.2014.09.005 – volume: 313 start-page: 1623 year: 2017 ident: C8TA00612A-(cit87)/*[position()=1] publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.11.063 – volume: 8 start-page: 16063 year: 2016 ident: C8TA00612A-(cit143)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b04060 – volume: 199 start-page: 101 year: 2017 ident: C8TA00612A-(cit162)/*[position()=1] publication-title: Mater. Lett. doi: 10.1016/j.matlet.2017.04.069 – volume: 134 start-page: 17388 year: 2012 ident: C8TA00612A-(cit50)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja307475c – volume: 172 start-page: 56 year: 2016 ident: C8TA00612A-(cit151)/*[position()=1] publication-title: Mater. Lett. doi: 10.1016/j.matlet.2016.02.121 – volume: 60 start-page: 172 year: 2015 ident: C8TA00612A-(cit171)/*[position()=1] publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2015.09.002 – volume: 5 start-page: 1401172 year: 2015 ident: C8TA00612A-(cit183)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201401172 – volume: 6 start-page: 1501333 year: 2016 ident: C8TA00612A-(cit52)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201501333 – volume: 6 start-page: 14354 year: 2014 ident: C8TA00612A-(cit194)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C4NR04782F – volume: 8 start-page: 5249 year: 2014 ident: C8TA00612A-(cit131)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn501308m – volume: 7 start-page: 2071 year: 2014 ident: C8TA00612A-(cit22)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/c4ee00517a – volume: 2 start-page: 8854 year: 2014 ident: C8TA00612A-(cit133)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C4TA00523F – volume: 9 start-page: 6288 year: 2015 ident: C8TA00612A-(cit56)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.5b01790 – volume: 1 start-page: 16013 year: 2016 ident: C8TA00612A-(cit15)/*[position()=1] publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.13 – volume: 2 start-page: 12194 year: 2014 ident: C8TA00612A-(cit83)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C4TA01966K – volume: 9 start-page: 2314 year: 2016 ident: C8TA00612A-(cit18)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C6EE01501H – volume: 55 start-page: 13422 year: 2016 ident: C8TA00612A-(cit123)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201606776 – volume: 4 start-page: 12434 year: 2016 ident: C8TA00612A-(cit76)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C6TA03491H – volume: 44 start-page: 5926 year: 2015 ident: C8TA00612A-(cit16)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00442F – volume: 27 start-page: 3687 year: 2015 ident: C8TA00612A-(cit62)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201501059 – volume: 45 start-page: 2327 year: 2016 ident: C8TA00612A-(cit21)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00837A – volume: 5 start-page: 12653 year: 2017 ident: C8TA00612A-(cit182)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C7TA00863E – volume: 114 start-page: 11751 year: 2014 ident: C8TA00612A-(cit128)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr500062v – volume: 7 start-page: 10672 year: 2016 ident: C8TA00612A-(cit200)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms10672 – volume: 138 start-page: 1359 year: 2016 ident: C8TA00612A-(cit211)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b11986 – volume: 6 start-page: 13824 year: 2014 ident: C8TA00612A-(cit101)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C4NR04505J – volume: 10 start-page: 1777 year: 2017 ident: C8TA00612A-(cit177)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C7EE00488E – volume: 325 start-page: 286 year: 2016 ident: C8TA00612A-(cit10)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.06.037 – volume: 341 start-page: 53 year: 2017 ident: C8TA00612A-(cit67)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.11.099 – volume: 167 start-page: 102 year: 2016 ident: C8TA00612A-(cit206)/*[position()=1] publication-title: Mater. Lett. doi: 10.1016/j.matlet.2015.12.108 – volume: 7 start-page: 9972 year: 2015 ident: C8TA00612A-(cit195)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b02317 – volume: 210 start-page: 588 year: 2016 ident: C8TA00612A-(cit208)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.05.190 – volume: 14 start-page: 1651 year: 2014 ident: C8TA00612A-(cit179)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl5001778 – volume: 45 start-page: 13311 year: 2016 ident: C8TA00612A-(cit193)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/C6DT01791F – volume: 4 start-page: 9832 year: 2016 ident: C8TA00612A-(cit5)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C6TA02673G – volume: 54 start-page: 3431 year: 2015 ident: C8TA00612A-(cit19)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201410376 – start-page: 1602391 year: 2017 ident: C8TA00612A-(cit196)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201602391 – volume: 188 start-page: 490 year: 2016 ident: C8TA00612A-(cit191)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2015.12.037 – volume: 2 start-page: 87 year: 2014 ident: C8TA00612A-(cit79)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C3TA13510A – volume: 28 start-page: 9391 year: 2016 ident: C8TA00612A-(cit156)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201601621 – volume: 3 start-page: 15274 year: 2015 ident: C8TA00612A-(cit72)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C5TA03665H – volume: 6 start-page: 93532 year: 2016 ident: C8TA00612A-(cit99)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C6RA19334J – volume: 9 start-page: 4404 year: 2016 ident: C8TA00612A-(cit172)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b07989 – volume: 6 start-page: 3268 year: 2014 ident: C8TA00612A-(cit95)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C3NR05676G – volume: 45 start-page: 17439 year: 2016 ident: C8TA00612A-(cit163)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/C6DT03719D – volume: 302 start-page: 174 year: 2016 ident: C8TA00612A-(cit42)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.10.049 – volume: 129 start-page: 3955 year: 2017 ident: C8TA00612A-(cit212)/*[position()=1] publication-title: Angew. Chem. doi: 10.1002/ange.201612635 – volume: 7 start-page: 1602898 year: 2017 ident: C8TA00612A-(cit148)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201602898 – volume: 2 start-page: 12873 year: 2014 ident: C8TA00612A-(cit220)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C4TA00475B – volume: 55 start-page: 5990 year: 2016 ident: C8TA00612A-(cit169)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201600133 – volume: 285 start-page: 281 year: 2015 ident: C8TA00612A-(cit174)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.03.106 – volume: 7 start-page: 9411 year: 2015 ident: C8TA00612A-(cit89)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C5NR01443C – volume: 38 start-page: 239 year: 2017 ident: C8TA00612A-(cit137)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.05.064 – volume: 3 start-page: 18944 year: 2015 ident: C8TA00612A-(cit153)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C5TA04009D – volume: 41 start-page: 12835 year: 2017 ident: C8TA00612A-(cit221)/*[position()=1] publication-title: New J. Chem. doi: 10.1039/C7NJ02427D – volume: 29 start-page: 1700748 year: 2017 ident: C8TA00612A-(cit125)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201700748 – volume: 128 start-page: 6094 year: 2016 ident: C8TA00612A-(cit29)/*[position()=1] publication-title: Angew. Chem. doi: 10.1002/ange.201600133 – volume: 5 start-page: 9873 year: 2017 ident: C8TA00612A-(cit38)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C7TA01008G – volume: 29 start-page: 1604563 year: 2017 ident: C8TA00612A-(cit49)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201604563 – volume: 241 start-page: 415 year: 2013 ident: C8TA00612A-(cit88)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.04.147 – volume: 3 start-page: 7793 year: 2015 ident: C8TA00612A-(cit63)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C5TA00805K – volume: 55 start-page: 3982 year: 2016 ident: C8TA00612A-(cit24)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201511632 – volume: 135 start-page: 10664 year: 2013 ident: C8TA00612A-(cit60)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja401727n – volume: 60 start-page: 823 year: 2015 ident: C8TA00612A-(cit90)/*[position()=1] publication-title: Sci. Bull. doi: 10.1007/s11434-015-0771-6 – volume: 44 start-page: 6749 year: 2015 ident: C8TA00612A-(cit68)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00344J – volume: 28 start-page: 9221 year: 2017 ident: C8TA00612A-(cit198)/*[position()=1] publication-title: J. Electron. Mater. doi: 10.1007/s10854-017-6656-5 – volume: 316 start-page: 176 year: 2016 ident: C8TA00612A-(cit160)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.03.040 |
SSID | ssj0000800699 |
Score | 2.6114962 |
SecondaryResourceType | review_article |
Snippet | Metal-organic frameworks (MOFs), a novel class of porous crystalline materials, have drawn enormous attention. Due to the inherent porosity and presence of... Metal–organic frameworks (MOFs), a novel class of porous crystalline materials, have drawn enormous attention. Due to the inherent porosity and presence of... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 6754 |
SubjectTerms | carbides coordination polymers Electrochemistry energy Energy storage Fabrication Lithium lithium batteries Lithium-ion batteries Metal carbides Metal sulfides Metal-organic frameworks Metals moieties nanomaterials Nanostructure Nanostructured materials Oxides Porosity Porous materials Rechargeable batteries Sodium Storage batteries sulfides Sulfur |
Title | Metal-organic framework derived hollow materials for electrochemical energy storage |
URI | https://www.proquest.com/docview/2030352536 https://www.proquest.com/docview/2237520009 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1da9swFBVp-rI9jH2VueuGxvYygjNHsiX70YSUrKTdiwN5M7Ysw6AkpbM36FP_w9gf3C_Z1ZftdmFsezFGFrLQPdY9kq_uQegdIeUsrGpgbkB__bAuS19JU_p1XAFfF3Vd6rwF5xdsuQ7PNtFmNPoxiFpqm3IqbvaeK_kfq0IZ2FWdkv0Hy3aNQgHcg33hChaG61_Z-FwCdXbhCtQINIlJ7eKtJhV04iswSpjhLnffJkBOTa9Mnm8jgCNcxgBpTgGqaMniXoBQT1r7JoRTiptOUnPo507jpjG9K--OaKko3G4DfwMu05_boyGbz7Kf-P0zK7OybAvrVpXTaHXFdrhLYadUE9ikdkFcCKoOMbHd62c6EgBOeGj0_aZyWGbkbt1UzYaIHM67sOwJBz6ccaPr8pt_CKhKryriptDcbuAF3Z__i0_56Xq1yrPFJjtAhwRWH2SMDtNF9nHVbd4pms20NmnXdZf6liYf-ubvkp1-BXNw7eRlNI3JHqNH1pQ4NWB6gkZy-xQ9HGSlfIbWGlY_b79bQOEOUNgCChtA4Q4NGGyO7wEKGwxgC6jnaH26yOZL36pv-IJy3viUBaRKgNIJ4DNRWdGwUsnl4gqMwoO6jGrGiIgEi3lSSCpoFApJKs5ZEIciKekRGm93W_kC4YQBAxKcFMDVw1kgYhlFShqymEkuipp76L0bplzY1PRKIeUy1yESNMnncZbqIU099Lare2USsuytdeJGO7cf7JecgENT2X8p89Cb7jGAUf0jK7Zy10IdQrnKRBYkHjoCK3Xv6I3qoeP9D_Krqj7-84tfogfq6zB7eCdo3Fy38hWw2qZ8bTH2C58EpwA |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metal%E2%80%93organic+framework+derived+hollow+materials+for+electrochemical+energy+storage&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Xing-Chen%2C+Xie&rft.au=Ke-Jing%2C+Huang&rft.au=Wu%2C+Xu&rft.date=2018&rft.pub=Royal+Society+of+Chemistry&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=6&rft.issue=16&rft.spage=6754&rft.epage=6771&rft_id=info:doi/10.1039%2Fc8ta00612a&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon |