Metal-organic framework derived hollow materials for electrochemical energy storage

Metal-organic frameworks (MOFs), a novel class of porous crystalline materials, have drawn enormous attention. Due to the inherent porosity and presence of both metal and organic moieties, MOF-based materials are naturally suitable as versatile precursors and sacrificial templates for a wide variety...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. A, Materials for energy and sustainability Vol. 6; no. 16; pp. 6754 - 6771
Main Authors Xie, Xing-Chen, Huang, Ke-Jing, Wu, Xu
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Metal-organic frameworks (MOFs), a novel class of porous crystalline materials, have drawn enormous attention. Due to the inherent porosity and presence of both metal and organic moieties, MOF-based materials are naturally suitable as versatile precursors and sacrificial templates for a wide variety of metal/carbon-based nanostructured materials, such as metal oxides, metal carbides, metal sulfides and their composites. Recent developments in MOF-derived hollow nanostructures with well-defined interior voids and low density have revealed their extensive capabilities and thus give enhanced performance for energy storage and conversion. In this review, we summarize the recent progress in the fabrication of MOF-derived hollow materials and their applications for energy storage, particularly for lithium-ion batteries, sodium-ion batteries, lithium-Se batteries, lithium-sulfur batteries and supercapacitors. The superiorities of MOF-derived hollow materials are highlighted, and major challenges or opportunities for future research on them for electrochemical energy storage are also discussed, with prospective solutions in the light of current progress in MOF-derived hollow nanostructures. The recent progress and major challenges/opportunities of MOF-derived hollow materials for energy storage are summarized in this review, particularly for lithium-ion batteries, sodium-ion batteries, lithium-Se batteries, lithium-sulfur batteries and supercapacitor applications.
AbstractList Metal–organic frameworks (MOFs), a novel class of porous crystalline materials, have drawn enormous attention. Due to the inherent porosity and presence of both metal and organic moieties, MOF-based materials are naturally suitable as versatile precursors and sacrificial templates for a wide variety of metal/carbon-based nanostructured materials, such as metal oxides, metal carbides, metal sulfides and their composites. Recent developments in MOF-derived hollow nanostructures with well-defined interior voids and low density have revealed their extensive capabilities and thus give enhanced performance for energy storage and conversion. In this review, we summarize the recent progress in the fabrication of MOF-derived hollow materials and their applications for energy storage, particularly for lithium-ion batteries, sodium-ion batteries, lithium–Se batteries, lithium–sulfur batteries and supercapacitors. The superiorities of MOF-derived hollow materials are highlighted, and major challenges or opportunities for future research on them for electrochemical energy storage are also discussed, with prospective solutions in the light of current progress in MOF-derived hollow nanostructures.
Metal-organic frameworks (MOFs), a novel class of porous crystalline materials, have drawn enormous attention. Due to the inherent porosity and presence of both metal and organic moieties, MOF-based materials are naturally suitable as versatile precursors and sacrificial templates for a wide variety of metal/carbon-based nanostructured materials, such as metal oxides, metal carbides, metal sulfides and their composites. Recent developments in MOF-derived hollow nanostructures with well-defined interior voids and low density have revealed their extensive capabilities and thus give enhanced performance for energy storage and conversion. In this review, we summarize the recent progress in the fabrication of MOF-derived hollow materials and their applications for energy storage, particularly for lithium-ion batteries, sodium-ion batteries, lithium-Se batteries, lithium-sulfur batteries and supercapacitors. The superiorities of MOF-derived hollow materials are highlighted, and major challenges or opportunities for future research on them for electrochemical energy storage are also discussed, with prospective solutions in the light of current progress in MOF-derived hollow nanostructures. The recent progress and major challenges/opportunities of MOF-derived hollow materials for energy storage are summarized in this review, particularly for lithium-ion batteries, sodium-ion batteries, lithium-Se batteries, lithium-sulfur batteries and supercapacitor applications.
Author Huang, Ke-Jing
Wu, Xu
Xie, Xing-Chen
AuthorAffiliation Xinyang Normal University
College of Physics and Electronic Engineering
College of Chemistry and Chemical Engineering
AuthorAffiliation_xml – name: College of Chemistry and Chemical Engineering
– name: Xinyang Normal University
– name: College of Physics and Electronic Engineering
Author_xml – sequence: 1
  givenname: Xing-Chen
  surname: Xie
  fullname: Xie, Xing-Chen
– sequence: 2
  givenname: Ke-Jing
  surname: Huang
  fullname: Huang, Ke-Jing
– sequence: 3
  givenname: Xu
  surname: Wu
  fullname: Wu, Xu
BookMark eNp90c1LwzAUAPAgE5xzF-9CxYsI1SxpPnocwy-YeHCeS5a-bp1pM5PMsf_e6GTCEHNJePxeeB_HqNPaFhA6HeDrAab5jZZBYcwHRB2gLsEMpyLLeWf3lvII9b1f4HhkhHneRS9PEJRJrZupttZJ5VQDa-vekhJc_QFlMrfG2HXSqBADyviksi4BAzo4q-fQ1FqZBFpws03ig3VqBifosIoS-j93D73e3U5GD-n4-f5xNBynmgoRUsoxKXNMqOZCsmlJszLjlMsyVi1wNWUV50QzzaXIFVBNWaaBlEJwLDOdT2kPXW7_XTr7vgIfiqb2GoxRLdiVLwihgpHYbB7pxR5d2JVrY3UFwRRTRhjlUeGt0s5676AqdB1UqG0bnKpNMcDF16CLkZwMvwc9jClXeylLVzfKbf7G51vsvN65360Vy7KK5uw_Qz8BdtuUJg
CitedBy_id crossref_primary_10_1016_j_jallcom_2023_168926
crossref_primary_10_3390_en13071547
crossref_primary_10_1021_acs_chemrev_1c00243
crossref_primary_10_1002_smll_201904252
crossref_primary_10_1039_C9TA11961B
crossref_primary_10_1002_smll_201907641
crossref_primary_10_1016_j_jechem_2021_12_006
crossref_primary_10_1002_smll_201901775
crossref_primary_10_1016_j_ica_2024_122399
crossref_primary_10_1002_slct_202305096
crossref_primary_10_1002_smll_202006424
crossref_primary_10_1016_j_jpowsour_2022_231029
crossref_primary_10_1039_C8DT03755H
crossref_primary_10_1039_D3CS01105D
crossref_primary_10_1021_acsami_3c19174
crossref_primary_10_1088_2632_959X_ad6835
crossref_primary_10_1016_j_ccr_2022_214602
crossref_primary_10_1016_j_jallcom_2023_169447
crossref_primary_10_1002_ange_202010093
crossref_primary_10_1039_C8TA11075A
crossref_primary_10_1016_j_ccr_2022_215011
crossref_primary_10_1002_adfm_202006761
crossref_primary_10_1016_j_jcis_2018_12_045
crossref_primary_10_1080_09593330_2021_1921055
crossref_primary_10_1002_aenm_202003970
crossref_primary_10_1021_acs_inorgchem_0c01768
crossref_primary_10_1007_s12274_022_4786_4
crossref_primary_10_1016_j_jcis_2021_02_108
crossref_primary_10_1016_j_jpowsour_2024_235170
crossref_primary_10_1002_asia_201801680
crossref_primary_10_1016_j_nanoen_2024_110177
crossref_primary_10_1039_D3MA00822C
crossref_primary_10_1016_j_jelechem_2019_113275
crossref_primary_10_1016_j_est_2024_112212
crossref_primary_10_1016_j_mattod_2022_04_002
crossref_primary_10_1016_j_cej_2021_134279
crossref_primary_10_1016_j_jcis_2021_08_066
crossref_primary_10_1149_2_0391906jes
crossref_primary_10_1039_C9NA00616H
crossref_primary_10_1016_j_jelechem_2020_114062
crossref_primary_10_1016_j_ceramint_2022_02_160
crossref_primary_10_1016_j_jelechem_2022_116792
crossref_primary_10_1016_j_jallcom_2020_155800
crossref_primary_10_1016_j_jallcom_2022_163618
crossref_primary_10_1021_acsaem_1c00348
crossref_primary_10_3390_electrochem2020017
crossref_primary_10_1134_S0036024422140114
crossref_primary_10_1007_s12274_024_6481_0
crossref_primary_10_1002_anie_202010093
crossref_primary_10_1002_celc_202100185
crossref_primary_10_1016_j_jcis_2021_01_109
crossref_primary_10_1016_j_ensm_2019_01_012
crossref_primary_10_1039_C8GC03261K
crossref_primary_10_1039_C9CS00871C
crossref_primary_10_1016_j_electacta_2022_140338
crossref_primary_10_3390_polym14153101
crossref_primary_10_1016_j_ensm_2020_12_005
crossref_primary_10_1016_j_jcis_2021_05_127
crossref_primary_10_1016_j_chphma_2021_09_003
crossref_primary_10_1016_j_carbpol_2021_117966
crossref_primary_10_1016_j_jallcom_2021_159576
crossref_primary_10_1016_j_poly_2023_116777
crossref_primary_10_1039_D0CC05561A
crossref_primary_10_1021_acsaem_9b02501
crossref_primary_10_1016_j_cej_2021_129827
crossref_primary_10_1016_j_colsurfa_2023_132513
crossref_primary_10_1016_j_matchemphys_2021_125584
crossref_primary_10_1002_smll_202304450
crossref_primary_10_1039_C8RA06660D
crossref_primary_10_1002_bkcs_11853
crossref_primary_10_1039_C8RA04350G
crossref_primary_10_18410_jebmh_2019_32
crossref_primary_10_1016_j_cis_2022_102732
crossref_primary_10_1039_C8TA04892D
crossref_primary_10_1002_cnma_202000125
crossref_primary_10_1016_j_est_2021_102426
crossref_primary_10_1016_j_cej_2021_130808
crossref_primary_10_2174_1385272824666200102111215
crossref_primary_10_1016_j_colsurfa_2019_05_010
crossref_primary_10_1002_smll_201907141
crossref_primary_10_1039_D3TB00766A
crossref_primary_10_1016_j_cej_2019_122701
crossref_primary_10_1016_j_jcis_2020_11_052
crossref_primary_10_1039_C8GC02312C
crossref_primary_10_1016_j_jcis_2021_06_143
crossref_primary_10_1016_j_ccr_2020_213221
crossref_primary_10_1007_s11581_024_05473_w
crossref_primary_10_1016_j_micromeso_2021_111108
crossref_primary_10_1021_acs_chemrev_9b00463
crossref_primary_10_1002_smll_202203140
crossref_primary_10_1007_s00604_020_04396_3
crossref_primary_10_1016_j_jallcom_2022_163649
crossref_primary_10_1002_smll_202308804
crossref_primary_10_1039_D1DT01904J
crossref_primary_10_1016_j_jallcom_2019_153624
crossref_primary_10_1021_acsaem_4c01792
crossref_primary_10_1016_j_carbon_2022_03_054
crossref_primary_10_1557_mrs_2020_247
crossref_primary_10_1021_acsami_9b00415
crossref_primary_10_1002_cnl2_64
crossref_primary_10_1016_j_jcis_2023_06_193
crossref_primary_10_1016_j_talanta_2018_12_084
crossref_primary_10_1038_s41598_024_81318_w
crossref_primary_10_1039_C8RA05102J
crossref_primary_10_1002_ente_202000736
crossref_primary_10_1021_acsanm_0c02088
crossref_primary_10_1016_j_carbon_2020_04_042
crossref_primary_10_1039_C9RA10467D
crossref_primary_10_1016_j_electacta_2020_135617
crossref_primary_10_1016_j_micromeso_2021_111370
crossref_primary_10_1016_j_pecs_2021_100929
crossref_primary_10_1002_elan_201900599
crossref_primary_10_1016_j_matlet_2021_130999
crossref_primary_10_1016_j_ceramint_2023_02_251
crossref_primary_10_1016_j_energy_2020_117918
crossref_primary_10_1134_S1063783424601073
crossref_primary_10_1016_j_apsusc_2020_146746
crossref_primary_10_1007_s11051_019_4522_5
crossref_primary_10_1021_acssuschemeng_1c07082
crossref_primary_10_1002_ente_202401733
crossref_primary_10_1016_j_carbon_2020_07_010
crossref_primary_10_1016_j_jallcom_2020_155293
crossref_primary_10_1016_j_cej_2019_123455
crossref_primary_10_1016_j_jallcom_2020_155299
crossref_primary_10_1016_j_jpowsour_2023_233329
crossref_primary_10_1016_j_poly_2018_08_004
crossref_primary_10_3390_polym15030730
crossref_primary_10_1039_D0NR08108F
crossref_primary_10_1016_j_jallcom_2022_165665
crossref_primary_10_1016_j_colsurfa_2023_131500
crossref_primary_10_1002_anie_202110695
crossref_primary_10_1021_acsami_1c15484
crossref_primary_10_1016_j_jcis_2018_11_080
crossref_primary_10_20964_2022_06_56
crossref_primary_10_1016_j_electacta_2020_137482
crossref_primary_10_1039_D3NJ05060B
crossref_primary_10_1016_j_cej_2021_129189
crossref_primary_10_1039_D2RA03301A
crossref_primary_10_1016_j_talanta_2024_126100
crossref_primary_10_1021_acsomega_8b03664
crossref_primary_10_1016_j_ceramint_2019_07_111
crossref_primary_10_1016_j_est_2022_104993
crossref_primary_10_1016_j_jallcom_2025_178471
crossref_primary_10_1088_2632_959X_ad0446
crossref_primary_10_1016_j_est_2021_103263
crossref_primary_10_1016_j_bioelechem_2023_108443
crossref_primary_10_1039_D0TA03356A
crossref_primary_10_1021_acs_inorgchem_0c01157
crossref_primary_10_1016_j_jallcom_2020_156288
crossref_primary_10_12677_AEPE_2023_115017
crossref_primary_10_1007_s11051_022_05604_2
crossref_primary_10_1016_j_jelechem_2023_117417
crossref_primary_10_1021_acsami_0c05369
crossref_primary_10_1016_j_est_2023_108997
crossref_primary_10_1016_j_electacta_2019_135130
crossref_primary_10_1021_acsomega_9b01405
crossref_primary_10_3389_fchem_2020_00719
crossref_primary_10_1016_j_electacta_2018_10_182
crossref_primary_10_1016_j_jallcom_2021_162191
crossref_primary_10_1039_C8TA11994E
crossref_primary_10_1016_j_jallcom_2020_154435
crossref_primary_10_1016_j_jelechem_2019_113445
crossref_primary_10_1016_j_nanoen_2018_10_060
crossref_primary_10_1039_C9RA07846K
crossref_primary_10_1007_s00604_019_3331_y
crossref_primary_10_1007_s10853_024_09591_8
crossref_primary_10_1002_elan_202300042
crossref_primary_10_1002_adma_201804903
crossref_primary_10_1016_j_jcis_2021_03_112
crossref_primary_10_3389_fchem_2021_677876
crossref_primary_10_1016_j_jallcom_2022_167630
crossref_primary_10_1016_j_compositesb_2019_107355
crossref_primary_10_1016_j_apsusc_2018_08_096
crossref_primary_10_1149_2_0431902jes
crossref_primary_10_1039_D0NJ02736G
crossref_primary_10_1016_j_cis_2023_102865
crossref_primary_10_1021_jacs_9b07383
crossref_primary_10_1088_1361_6528_ab73b8
crossref_primary_10_1002_ente_201900668
crossref_primary_10_1016_j_apsusc_2018_11_021
crossref_primary_10_1039_D1NR08284A
crossref_primary_10_1016_j_jelechem_2019_04_047
crossref_primary_10_1016_j_jpowsour_2018_10_066
crossref_primary_10_1039_C8NR06701E
crossref_primary_10_1016_j_cej_2023_142466
crossref_primary_10_1039_D0DT00251H
crossref_primary_10_1002_ente_202000008
crossref_primary_10_1039_D2NR02663E
crossref_primary_10_1088_1742_6596_2468_1_012034
crossref_primary_10_1039_D2CS00585A
crossref_primary_10_1016_j_carbon_2021_09_061
crossref_primary_10_1016_j_carbon_2022_10_010
crossref_primary_10_1002_tcr_202300006
crossref_primary_10_1016_j_ijhydene_2022_04_164
crossref_primary_10_1016_j_jechem_2020_03_014
crossref_primary_10_1016_j_jece_2021_106705
crossref_primary_10_1016_j_jpowsour_2020_227761
crossref_primary_10_1039_D0TA06348G
crossref_primary_10_1016_j_mtchem_2020_100260
crossref_primary_10_1016_j_seppur_2021_118487
crossref_primary_10_1002_celc_202100687
crossref_primary_10_1039_D1TA10531K
crossref_primary_10_1016_j_chroma_2023_464080
crossref_primary_10_1016_j_jallcom_2021_161907
crossref_primary_10_1016_j_nanoen_2018_11_051
crossref_primary_10_1149_1945_7111_abc6c6
crossref_primary_10_1016_j_nanoen_2021_106314
crossref_primary_10_1016_j_cej_2019_01_178
crossref_primary_10_1021_acs_inorgchem_9b00088
crossref_primary_10_1002_aenm_202100321
crossref_primary_10_1039_D4CE00011K
crossref_primary_10_1016_j_ijhydene_2019_10_149
crossref_primary_10_1016_j_ccr_2024_215876
crossref_primary_10_1016_j_susmat_2020_e00217
crossref_primary_10_1039_D1NR01010G
crossref_primary_10_1016_j_cej_2020_127884
crossref_primary_10_1016_j_matlet_2018_09_064
crossref_primary_10_1002_adsu_202400539
crossref_primary_10_1002_eom2_12283
crossref_primary_10_1002_celc_201901153
crossref_primary_10_1080_17425247_2022_2130245
crossref_primary_10_1021_acs_jpcc_8b10598
crossref_primary_10_1016_j_ensm_2022_07_027
crossref_primary_10_1016_j_jechem_2020_08_056
crossref_primary_10_1002_ange_202110695
crossref_primary_10_1016_j_jallcom_2024_175398
crossref_primary_10_1039_C9TC04146J
crossref_primary_10_1016_j_electacta_2019_06_169
crossref_primary_10_1039_D2TB00690A
crossref_primary_10_1016_j_est_2024_115093
crossref_primary_10_1016_j_jallcom_2019_153463
crossref_primary_10_1016_j_mtcomm_2023_107174
Cites_doi 10.1021/acsami.6b15000
10.1039/C6TA01510G
10.1039/C7RA00435D
10.1039/C6GC01172A
10.1002/anie.201409776
10.1039/c3ta12621h
10.1039/C7DT04660J
10.1021/jz502405h
10.1039/C5TA00524H
10.1039/c2cs35256g
10.1039/C3NR06041A
10.1002/adma.201605820
10.1039/C7EE00488E
10.1021/acsami.6b14233
10.1038/srep25556
10.1039/C6SC01659F
10.1039/C5TA09924B
10.1016/j.matlet.2014.05.148
10.1002/anie.201308589
10.1039/C5CC07621H
10.1016/j.jallcom.2017.02.215
10.1039/C6TA06314D
10.1002/chem.201503310
10.1021/acsnano.5b05610
10.1039/C6TA07032A
10.1021/ja211766q
10.1016/j.ensm.2015.12.004
10.1016/j.nantod.2015.04.011
10.1002/cssc.201701759
10.1016/j.joule.2017.08.008
10.1039/C5TA00455A
10.1016/j.electacta.2016.01.161
10.1021/acsami.6b00179
10.1039/C5TA04663G
10.1039/C6TA03491H
10.1039/C7NR00978J
10.1016/j.jpowsour.2016.05.056
10.1126/sciadv.aap9252
10.1021/acsami.5b02317
10.1038/srep13310
10.1016/j.nanoen.2015.01.019
10.1038/ncomms8872
10.1039/C6TA01377E
10.1039/C5TA06205E
10.1021/acssuschemeng.5b00556
10.1002/adma.201405115
10.1016/j.ensm.2017.12.027
10.1002/adma.201605051
10.1021/acsami.5b10280
10.1016/j.nanoen.2016.09.042
10.1002/adma.201701139
10.1016/j.nanoen.2017.02.009
10.1016/j.electacta.2015.05.131
10.1039/C6CC05699G
10.1039/C3TA14430E
10.1039/C5EE00762C
10.1002/adma.201503015
10.1007/s12274-017-1433-6
10.1021/acs.accounts.6b00480
10.1039/C7TA07890K
10.1021/ja402597g
10.1039/C4TA04277H
10.1016/j.cej.2017.09.084
10.1039/C5TA07085F
10.1016/j.carbon.2015.08.069
10.1039/C6TA07856G
10.1039/C4TA05611F
10.1038/nchem.1569
10.1039/C4NR03057E
10.1002/adma.201402728
10.1021/acs.chemrev.5b00731
10.1021/nn1030719
10.1039/C5CS00344J
10.1002/adma.201503816
10.1149/1.1806394
10.1126/science.aad3345
10.1039/C6RA23071G
10.1002/adfm.201504312
10.1039/C5CC06924F
10.1016/j.electacta.2016.08.070
10.1039/C6TA07098A
10.1039/C6RA11272B
10.1016/j.ccr.2015.09.002
10.1002/celc.201500437
10.1039/C4NR04422C
10.1002/anie.201303971
10.1016/j.ceramint.2017.05.004
10.1007/s11581-017-2160-4
10.1002/anie.201602653
10.1039/C5CC03825A
10.1039/C5TA01108F
10.1021/acsami.5b08741
10.1039/C4NR05135A
10.1002/smll.201503821
10.1002/bkcs.10638
10.1039/c4ta00257a
10.1016/j.electacta.2016.11.071
10.1039/c3nr00623a
10.1039/c3nr06409c
10.1039/C7SC00668C
10.1002/adma.201402322
10.1039/C4TA01966K
10.1039/C4TA01818D
10.1039/C4TA06914E
10.1039/C5TA00890E
10.1039/C6TA04286D
10.1002/smll.201603102
10.1016/j.matlet.2015.12.108
10.1002/anie.201605926
10.1039/C4TA00200H
10.1021/acs.nanolett.6b00057
10.1039/C7GC00506G
10.1039/C6TA01995A
10.1039/C4NR05242K
10.1039/C6TA03633C
10.1016/j.jpowsour.2014.04.027
10.1002/ange.201701604
10.1038/ncomms7694
10.1039/C4NR03631J
10.1016/j.jpowsour.2016.01.092
10.1039/C7TA00201G
10.1021/acsami.6b15110
10.1002/advs.201500286
10.1002/anie.201606776
10.1038/nenergy.2015.6
10.1007/s12274-016-1394-1
10.1016/j.cej.2017.03.033
10.1002/anie.201502117
10.1039/C5NR04416B
10.1002/ange.201709176
10.1039/C7QI00515F
10.1039/C5TA02461G
10.1016/j.carbon.2016.05.046
10.1039/C6TA05384J
10.1039/C7TA01008G
10.1007/s12274-014-0474-3
10.1039/C3TA14050D
10.1002/anie.201303147
10.1039/C6NR05480C
10.1021/acsnano.5b05041
10.1021/acsami.6b01268
10.1016/j.nantod.2014.09.005
10.1016/j.cej.2016.11.063
10.1021/acsami.6b04060
10.1016/j.matlet.2017.04.069
10.1021/ja307475c
10.1016/j.matlet.2016.02.121
10.1016/j.elecom.2015.09.002
10.1002/aenm.201401172
10.1002/aenm.201501333
10.1039/C4NR04782F
10.1021/nn501308m
10.1039/c4ee00517a
10.1039/C4TA00523F
10.1021/acsnano.5b01790
10.1038/natrevmats.2016.13
10.1039/C6EE01501H
10.1039/C4CS00442F
10.1002/adma.201501059
10.1039/C5CS00837A
10.1039/C7TA00863E
10.1021/cr500062v
10.1038/ncomms10672
10.1021/jacs.5b11986
10.1039/C4NR04505J
10.1016/j.jpowsour.2016.06.037
10.1016/j.jpowsour.2016.11.099
10.1016/j.electacta.2016.05.190
10.1021/nl5001778
10.1039/C6DT01791F
10.1039/C6TA02673G
10.1002/anie.201410376
10.1002/aenm.201602391
10.1016/j.electacta.2015.12.037
10.1039/C3TA13510A
10.1002/adma.201601621
10.1039/C5TA03665H
10.1039/C6RA19334J
10.1021/acsami.6b07989
10.1039/C3NR05676G
10.1039/C6DT03719D
10.1016/j.jpowsour.2015.10.049
10.1002/ange.201612635
10.1002/aenm.201602898
10.1039/C4TA00475B
10.1002/anie.201600133
10.1016/j.jpowsour.2015.03.106
10.1039/C5NR01443C
10.1016/j.nanoen.2017.05.064
10.1039/C5TA04009D
10.1039/C7NJ02427D
10.1002/adma.201700748
10.1002/ange.201600133
10.1002/adma.201604563
10.1016/j.jpowsour.2013.04.147
10.1039/C5TA00805K
10.1002/anie.201511632
10.1021/ja401727n
10.1007/s11434-015-0771-6
10.1007/s10854-017-6656-5
10.1016/j.jpowsour.2016.03.040
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2018
Copyright_xml – notice: Copyright Royal Society of Chemistry 2018
DBID AAYXX
CITATION
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
7S9
L.6
DOI 10.1039/c8ta00612a
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Environment Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Materials Research Database
Advanced Technologies Database with Aerospace
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Environment Abstracts
Advanced Technologies Database with Aerospace
METADEX
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Materials Research Database
AGRICOLA
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2050-7496
EndPage 6771
ExternalDocumentID 10_1039_C8TA00612A
c8ta00612a
GroupedDBID -JG
0-7
705
AAEMU
ABGFH
ACLDK
ADSRN
AEFDR
AFVBQ
AGSTE
AUDPV
BSQNT
C6K
EE0
EF-
GNO
H~N
J3I
R7C
RCNCU
RPMJG
RRC
RSCEA
SKA
SKF
SLH
0R~
AAIWI
AAJAE
AANOJ
AAWGC
AAXHV
AAYXX
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ADMRA
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFRDS
AFRZK
AGEGJ
AGRSR
AHGCF
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALUYA
ANBJS
ANUXI
APEMP
ASKNT
BLAPV
CITATION
EBS
ECGLT
EJD
GGIMP
H13
HZ~
J3G
J3H
O-G
O9-
RAOCF
RNS
ROL
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
7S9
L.6
ID FETCH-LOGICAL-c377t-3602d9023c6785bd34d46368d74970fb5f662c5c6879ae3c354ce2d776084c9b3
ISSN 2050-7488
2050-7496
IngestDate Fri Jul 11 01:59:39 EDT 2025
Mon Jun 30 11:56:15 EDT 2025
Thu Apr 24 22:52:22 EDT 2025
Tue Jul 01 03:13:49 EDT 2025
Mon Jan 28 17:15:27 EST 2019
Wed Jun 05 04:44:52 EDT 2019
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c377t-3602d9023c6785bd34d46368d74970fb5f662c5c6879ae3c354ce2d776084c9b3
Notes Xing-chen Xie is a MS candidate majoring in chemistry and chemical engineering from Xinyang Normal University, China. Her research is focused on energy storage devices based on metal-organic framework derived materials.
Xu Wu received his PhD degree from Central China Normal University in 2016. He studied at the University of California, Los Angeles as a visiting PhD candidate from 2013 to 2015. Currently he is a lecturer at Xinyang Normal University. His research focuses on nanomaterials for electrochemical energy storage, including rechargeable batteries and supercapacitors.
Ke-Jing Huang received his PhD in 2006 from Wuhan University. Presently, he is a professor at Xinyang Normal University. His research interests include 2D nanomaterial preparation, supercapacitor electrode materials and electrochemical biosensors.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9332-0497
PQID 2030352536
PQPubID 2047523
PageCount 18
ParticipantIDs crossref_citationtrail_10_1039_C8TA00612A
proquest_miscellaneous_2237520009
proquest_journals_2030352536
crossref_primary_10_1039_C8TA00612A
rsc_primary_c8ta00612a
ProviderPackageCode J3I
ACLDK
RRC
AEFDR
GNO
RCNCU
SLH
EE0
RSCEA
AFVBQ
C6K
H~N
0-7
RPMJG
SKA
-JG
AGSTE
AUDPV
EF-
BSQNT
SKF
ADSRN
ABGFH
705
AAEMU
R7C
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-00-00
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – year: 2018
  text: 2018-00-00
PublicationDecade 2010
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of materials chemistry. A, Materials for energy and sustainability
PublicationYear 2018
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Zhu (C8TA00612A-(cit94)/*[position()=1]) 2014; 2
Zhu (C8TA00612A-(cit222)/*[position()=1]) 2018; 13
Xia (C8TA00612A-(cit76)/*[position()=1]) 2016; 4
Cao (C8TA00612A-(cit185)/*[position()=1]) 2015; 174
Yu (C8TA00612A-(cit53)/*[position()=1]) 2017; 50
Huang (C8TA00612A-(cit168)/*[position()=1]) 2014; 131
Ouyang (C8TA00612A-(cit5)/*[position()=1]) 2016; 4
Guan (C8TA00612A-(cit196)/*[position()=1]) 2017
Ma (C8TA00612A-(cit209)/*[position()=1]) 2016; 8
Qi (C8TA00612A-(cit55)/*[position()=1]) 2015; 44
Cui (C8TA00612A-(cit139)/*[position()=1]) 2013; 135
Xu (C8TA00612A-(cit96)/*[position()=1]) 2017; 23
Zhong (C8TA00612A-(cit66)/*[position()=1]) 2016; 3
Li (C8TA00612A-(cit193)/*[position()=1]) 2016; 45
Choi (C8TA00612A-(cit208)/*[position()=1]) 2016; 210
Shen (C8TA00612A-(cit70)/*[position()=1]) 2015; 54
Yu (C8TA00612A-(cit116)/*[position()=1]) 2017; 9
Wang (C8TA00612A-(cit158)/*[position()=1]) 2015; 3
Jayakumar (C8TA00612A-(cit192)/*[position()=1]) 2017; 13
You (C8TA00612A-(cit100)/*[position()=1]) 2017; 6
Zhao (C8TA00612A-(cit112)/*[position()=1]) 2017; 9
Zhang (C8TA00612A-(cit89)/*[position()=1]) 2015; 7
Zhang (C8TA00612A-(cit117)/*[position()=1]) 2017; 4
Wang (C8TA00612A-(cit51)/*[position()=1]) 2016; 116
Zhang (C8TA00612A-(cit24)/*[position()=1]) 2016; 55
Shao (C8TA00612A-(cit82)/*[position()=1]) 2014; 2
Xu (C8TA00612A-(cit121)/*[position()=1]) 2014; 9
Zhang (C8TA00612A-(cit50)/*[position()=1]) 2012; 134
Liu (C8TA00612A-(cit67)/*[position()=1]) 2017; 341
Liu (C8TA00612A-(cit39)/*[position()=1]) 2016; 4
Yu (C8TA00612A-(cit49)/*[position()=1]) 2017; 29
Ramaraju (C8TA00612A-(cit166)/*[position()=1]) 2016; 52
Guo (C8TA00612A-(cit107)/*[position()=1]) 2014; 6
Hao (C8TA00612A-(cit79)/*[position()=1]) 2014; 2
Hou (C8TA00612A-(cit148)/*[position()=1]) 2017; 7
Xiao (C8TA00612A-(cit73)/*[position()=1]) 2016; 55
Yu (C8TA00612A-(cit54)/*[position()=1]) 2016; 4
Hou (C8TA00612A-(cit150)/*[position()=1]) 2015; 27
He (C8TA00612A-(cit212)/*[position()=1]) 2017; 129
Sun (C8TA00612A-(cit113)/*[position()=1]) 2015; 7
Song (C8TA00612A-(cit17)/*[position()=1]) 2017; 34
Bai (C8TA00612A-(cit21)/*[position()=1]) 2016; 45
Li (C8TA00612A-(cit105)/*[position()=1]) 2014; 7
Han (C8TA00612A-(cit84)/*[position()=1]) 2015; 3
Chen (C8TA00612A-(cit137)/*[position()=1]) 2017; 38
Huang (C8TA00612A-(cit211)/*[position()=1]) 2016; 138
Zhou (C8TA00612A-(cit124)/*[position()=1]) 2015; 12
Zhang (C8TA00612A-(cit153)/*[position()=1]) 2015; 3
Zhang (C8TA00612A-(cit126)/*[position()=1]) 2017; 10
Abouimrane (C8TA00612A-(cit140)/*[position()=1]) 2012; 134
Zhang (C8TA00612A-(cit156)/*[position()=1]) 2016; 28
Yang (C8TA00612A-(cit202)/*[position()=1]) 2016; 167
Tan (C8TA00612A-(cit74)/*[position()=1]) 2016; 52
Xia (C8TA00612A-(cit44)/*[position()=1]) 2016; 4
Shen (C8TA00612A-(cit119)/*[position()=1]) 2015; 6
Yang (C8TA00612A-(cit189)/*[position()=1]) 2016; 6
Salunkhe (C8TA00612A-(cit218)/*[position()=1]) 2014; 2
Shao (C8TA00612A-(cit83)/*[position()=1]) 2014; 2
Cai (C8TA00612A-(cit28)/*[position()=1]) 2016; 4
Guan (C8TA00612A-(cit7)/*[position()=1]) 2017; 29
Yin (C8TA00612A-(cit109)/*[position()=1]) 2017; 706
Liu (C8TA00612A-(cit32)/*[position()=1]) 2017; 5
Chen (C8TA00612A-(cit184)/*[position()=1]) 2016; 55
Sun (C8TA00612A-(cit98)/*[position()=1]) 2015; 3
Deng (C8TA00612A-(cit125)/*[position()=1]) 2017; 29
Liu (C8TA00612A-(cit143)/*[position()=1]) 2016; 8
Liang (C8TA00612A-(cit40)/*[position()=1]) 2017; 9
Zeng (C8TA00612A-(cit47)/*[position()=1]) 2016; 4
Zhang (C8TA00612A-(cit219)/*[position()=1]) 2016; 4
Li (C8TA00612A-(cit43)/*[position()=1]) 2015; 3
Zou (C8TA00612A-(cit115)/*[position()=1]) 2015; 10
Shaibani (C8TA00612A-(cit14)/*[position()=1]) 2017; 5
Zhang (C8TA00612A-(cit36)/*[position()=1]) 2017; 1
Xia (C8TA00612A-(cit8)/*[position()=1]) 2015; 8
Liu (C8TA00612A-(cit23)/*[position()=1]) 2017; 8
Klose (C8TA00612A-(cit217)/*[position()=1]) 2016; 106
Li (C8TA00612A-(cit204)/*[position()=1]) 2016; 22
Liu (C8TA00612A-(cit18)/*[position()=1]) 2016; 9
Chen (C8TA00612A-(cit29)/*[position()=1]) 2016; 128
Jiang (C8TA00612A-(cit214)/*[position()=1]) 2014; 2
Ma (C8TA00612A-(cit78)/*[position()=1]) 2015; 3
Sun (C8TA00612A-(cit22)/*[position()=1]) 2014; 7
Wu (C8TA00612A-(cit81)/*[position()=1]) 2017; 10
Chen (C8TA00612A-(cit85)/*[position()=1]) 2017; 43
Xia (C8TA00612A-(cit25)/*[position()=1]) 2016; 1
Li (C8TA00612A-(cit170)/*[position()=1]) 2016; 6
Chen (C8TA00612A-(cit11)/*[position()=1]) 2017; 10
Mikhaylik (C8TA00612A-(cit136)/*[position()=1]) 2004; 151
Wu (C8TA00612A-(cit59)/*[position()=1]) 2017; 10
Yang (C8TA00612A-(cit65)/*[position()=1]) 2015; 3
Zhang (C8TA00612A-(cit57)/*[position()=1]) 2016; 4
Guo (C8TA00612A-(cit160)/*[position()=1]) 2016; 316
Zou (C8TA00612A-(cit111)/*[position()=1]) 2014; 26
Kang (C8TA00612A-(cit114)/*[position()=1]) 2017; 9
Jiao (C8TA00612A-(cit187)/*[position()=1]) 2016; 4
Geng (C8TA00612A-(cit200)/*[position()=1]) 2016; 7
Manthiram (C8TA00612A-(cit130)/*[position()=1]) 2015; 27
Qi (C8TA00612A-(cit68)/*[position()=1]) 2015; 44
Kong (C8TA00612A-(cit93)/*[position()=1]) 2015; 3
Ji (C8TA00612A-(cit87)/*[position()=1]) 2017; 313
Wu (C8TA00612A-(cit91)/*[position()=1]) 2013; 1
Zhang (C8TA00612A-(cit180)/*[position()=1]) 2016; 191
Zheng (C8TA00612A-(cit99)/*[position()=1]) 2016; 6
Zhang (C8TA00612A-(cit155)/*[position()=1]) 2015; 95
Zhang (C8TA00612A-(cit194)/*[position()=1]) 2014; 6
Yu (C8TA00612A-(cit118)/*[position()=1]) 2015; 54
Liu (C8TA00612A-(cit26)/*[position()=1]) 2017; 129
Liu (C8TA00612A-(cit34)/*[position()=1]) 2016; 4
Tong (C8TA00612A-(cit38)/*[position()=1]) 2017; 5
Zhang (C8TA00612A-(cit191)/*[position()=1]) 2016; 188
Li (C8TA00612A-(cit215)/*[position()=1]) 2016; 6
Wu (C8TA00612A-(cit41)/*[position()=1]) 2015; 7
Wu (C8TA00612A-(cit63)/*[position()=1]) 2015; 3
Li (C8TA00612A-(cit42)/*[position()=1]) 2016; 302
Liang (C8TA00612A-(cit131)/*[position()=1]) 2014; 8
Zhang (C8TA00612A-(cit90)/*[position()=1]) 2015; 60
Liu (C8TA00612A-(cit127)/*[position()=1]) 2016; 12
Liang (C8TA00612A-(cit77)/*[position()=1]) 2017; 9
Zhang (C8TA00612A-(cit181)/*[position()=1]) 2016; 4
Yu (C8TA00612A-(cit123)/*[position()=1]) 2016; 55
Ji (C8TA00612A-(cit45)/*[position()=1]) 2016; 4
Yu (C8TA00612A-(cit52)/*[position()=1]) 2016; 6
Xia (C8TA00612A-(cit179)/*[position()=1]) 2014; 14
Jiang (C8TA00612A-(cit62)/*[position()=1]) 2015; 27
Wen (C8TA00612A-(cit31)/*[position()=1]) 2015; 3
Yang (C8TA00612A-(cit206)/*[position()=1]) 2016; 167
Ma (C8TA00612A-(cit167)/*[position()=1]) 2016; 8
Carné-Sánchez (C8TA00612A-(cit75)/*[position()=1]) 2013; 5
Hu (C8TA00612A-(cit195)/*[position()=1]) 2015; 7
Hu (C8TA00612A-(cit92)/*[position()=1]) 2013; 5
Peng (C8TA00612A-(cit183)/*[position()=1]) 2015; 5
Han (C8TA00612A-(cit141)/*[position()=1]) 2014; 263
Guan (C8TA00612A-(cit101)/*[position()=1]) 2014; 6
Zheng (C8TA00612A-(cit6)/*[position()=1]) 2017; 18
Zhang (C8TA00612A-(cit69)/*[position()=1]) 2014; 53
Wang (C8TA00612A-(cit12)/*[position()=1]) 2015; 3
Chen (C8TA00612A-(cit37)/*[position()=1]) 2016; 7
Komaba (C8TA00612A-(cit171)/*[position()=1]) 2015; 60
Xin (C8TA00612A-(cit221)/*[position()=1]) 2017; 41
Geng (C8TA00612A-(cit64)/*[position()=1]) 2014; 6
Zhang (C8TA00612A-(cit159)/*[position()=1]) 2011; 5
Ma (C8TA00612A-(cit213)/*[position()=1]) 2017; 320
Li (C8TA00612A-(cit142)/*[position()=1]) 2017; 129
Chen (C8TA00612A-(cit216)/*[position()=1]) 2014; 2
Xiong (C8TA00612A-(cit173)/*[position()=1]) 2018; 11
Guo (C8TA00612A-(cit162)/*[position()=1]) 2017; 199
Chen (C8TA00612A-(cit177)/*[position()=1]) 2017; 10
Ramaraju (C8TA00612A-(cit110)/*[position()=1]) 2016; 52
Liao (C8TA00612A-(cit133)/*[position()=1]) 2014; 2
Wang (C8TA00612A-(cit201)/*[position()=1]) 2016; 8
Lv (C8TA00612A-(cit197)/*[position()=1]) 2016; 215
Bao (C8TA00612A-(cit10)/*[position()=1]) 2016; 325
Sun (C8TA00612A-(cit205)/*[position()=1]) 2016; 309
Wu (C8TA00612A-(cit145)/*[position()=1]) 2016; 3
Yuan (C8TA00612A-(cit188)/*[position()=1]) 2014; 53
Zhang (C8TA00612A-(cit220)/*[position()=1]) 2014; 2
Chen (C8TA00612A-(cit178)/*[position()=1]) 2016; 55
Wang (C8TA00612A-(cit154)/*[position()=1]) 2017; 13
Liang (C8TA00612A-(cit35)/*[position()=1]) 2017; 29
Liu (C8TA00612A-(cit152)/*[position()=1]) 2015; 27
Li (C8TA00612A-(cit33)/*[position()=1]) 2016; 26
Yu (C8TA00612A-(cit102)/*[position()=1]) 2014; 6
Ma (C8TA00612A-(cit132)/*[position()=1]) 2015; 10
Li (C8TA00612A-(cit1)/*[position()=1]) 2015; 6
Wang (C8TA00612A-(cit122)/*[position()=1]) 2014; 26
Kang (C8TA00612A-(cit157)/*[position()=1]) 2016; 37
Wang (C8TA00612A-(cit198)/*[position()=1]) 2017; 28
Wang (C8TA00612A-(cit13)/*[position()=1]) 2016; 30
Shao (C8TA00612A-(cit46)/*[position()=1]) 2016; 324
Feng (C8TA00612A-(cit72)/*[position()=1]) 2015; 3
Wu (C8TA00612A-(cit30)/*[position()=1]) 2017; 3
Zhu (C8TA00612A-(cit207)/*[position()=1]) 2015; 7
Yang (C8TA00612A-(cit129)/*[position()=1]) 2013; 42
Zhang (C8TA00612A-(cit144)/*[position()=1]) 2016; 16
Zhang (C8TA00612A-(cit161)/*[position()=1]) 2015; 51
Tang (C8TA00612A-(cit16)/*[position()=1]) 2015; 44
Yang (C8TA00612A-(cit135)/*[position()=1]) 2015; 6
Borenstein (C8TA00612A-(cit182)/*[position()=1]) 2017; 5
Xing (C8TA00612A-(cit71)/*[position()=1]) 2018; 47
Wang (C8TA00612A-(cit9)/*[position()=1]) 2016; 307
Tang (C8TA00612A-(cit210)/*[position()=1]) 2016; 8
Yu (C8TA00612A-(cit106)/*[position()=1]) 2015; 7
Li (C8TA00612A-(cit149)/*[position()=1]) 2017; 29
Bai (C8TA00612A-(cit95)/*[position()=1]) 2014; 6
Xing (C8TA00612A-(cit175)/*[position()=1]) 2018; 332
Eftekhari (C8TA00612A-(cit172)/*[position()=1]) 2016; 9
Xu (C8TA00612A-(cit164)/*[position()=1]) 2016; 8
Kundu (C8TA00612A-(cit19)/*[position()=1]) 2015; 54
Zhang (C8TA00612A-(cit146)/*[position()=1]) 2016; 3
Xu (C8TA00612A-(cit86)/*[position()=1]) 2016; 222
Yi (C8TA00612A-(cit174)/*[position()=1]) 2015; 285
Huang (C8TA00612A-(cit80)/*[position()=1]) 2014; 2
Liu (C8TA00612A-(cit58)/*[position()=1]) 2017; 7
Zhou (C8TA00612A-(cit134)/*[position()=1]) 2015; 3
Liu (C8TA00612A-(cit151)/*[position()=1]) 2016; 172
Hu (C8TA00612A-(cit104)/*[position()=1]) 2015; 7
Tong (C8TA00612A-(cit186)/*[position()=1]) 2017; 5
Carné-Sánchez (C8TA00612A-(cit27)/*[position()=1]) 2013; 5
Yu (C8TA00612A-(cit3)/*[position()=1]) 2016; 4
Sun (C8TA00612A-(cit61)/*[position()=1]) 2015; 7
References_xml – volume: 9
  start-page: 10602
  year: 2017
  ident: C8TA00612A-(cit114)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b15000
– volume: 4
  start-page: 8233
  year: 2016
  ident: C8TA00612A-(cit47)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA01510G
– volume: 7
  start-page: 11129
  year: 2017
  ident: C8TA00612A-(cit190)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C7RA00435D
– volume: 18
  start-page: 4824
  year: 2016
  ident: C8TA00612A-(cit2)/*[position()=1]
  publication-title: Green Chem.
  doi: 10.1039/C6GC01172A
– volume: 54
  start-page: 1868
  year: 2015
  ident: C8TA00612A-(cit70)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201409776
– volume: 1
  start-page: 11126
  year: 2013
  ident: C8TA00612A-(cit91)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta12621h
– volume: 47
  start-page: 2256
  year: 2018
  ident: C8TA00612A-(cit71)/*[position()=1]
  publication-title: Dalton Trans.
  doi: 10.1039/C7DT04660J
– volume: 6
  start-page: 256
  year: 2015
  ident: C8TA00612A-(cit135)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz502405h
– volume: 3
  start-page: 8272
  year: 2015
  ident: C8TA00612A-(cit134)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA00524H
– volume: 42
  start-page: 3018
  year: 2013
  ident: C8TA00612A-(cit129)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c2cs35256g
– volume: 6
  start-page: 5509
  year: 2014
  ident: C8TA00612A-(cit48)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C3NR06041A
– volume: 29
  start-page: 1605820
  year: 2017
  ident: C8TA00612A-(cit149)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201605820
– volume: 13
  start-page: 170087
  year: 2017
  ident: C8TA00612A-(cit154)/*[position()=1]
  publication-title: Small
– volume: 10
  start-page: 1777
  year: 2017
  ident: C8TA00612A-(cit11)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE00488E
– volume: 9
  start-page: 2516
  year: 2017
  ident: C8TA00612A-(cit116)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b14233
– volume: 6
  start-page: 25556
  year: 2016
  ident: C8TA00612A-(cit170)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep25556
– volume: 7
  start-page: 6015
  year: 2016
  ident: C8TA00612A-(cit37)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C6SC01659F
– volume: 4
  start-page: 3584
  year: 2016
  ident: C8TA00612A-(cit34)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA09924B
– volume: 131
  start-page: 45
  year: 2014
  ident: C8TA00612A-(cit168)/*[position()=1]
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2014.05.148
– volume: 53
  start-page: 429
  year: 2014
  ident: C8TA00612A-(cit69)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201308589
– volume: 52
  start-page: 946
  year: 2016
  ident: C8TA00612A-(cit110)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC07621H
– volume: 706
  start-page: 97
  year: 2017
  ident: C8TA00612A-(cit109)/*[position()=1]
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2017.02.215
– volume: 4
  start-page: 16516
  year: 2016
  ident: C8TA00612A-(cit181)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA06314D
– volume: 22
  start-page: 590
  year: 2016
  ident: C8TA00612A-(cit204)/*[position()=1]
  publication-title: Chem.–Eur. J.
  doi: 10.1002/chem.201503310
– volume: 9
  start-page: 11462
  year: 2015
  ident: C8TA00612A-(cit97)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b05610
– volume: 4
  start-page: 16953
  year: 2016
  ident: C8TA00612A-(cit54)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA07032A
– volume: 134
  start-page: 4505
  year: 2012
  ident: C8TA00612A-(cit140)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja211766q
– volume: 3
  start-page: 18
  year: 2016
  ident: C8TA00612A-(cit146)/*[position()=1]
  publication-title: Energy Storage Maters
  doi: 10.1016/j.ensm.2015.12.004
– volume: 10
  start-page: 315
  year: 2015
  ident: C8TA00612A-(cit132)/*[position()=1]
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2015.04.011
– volume: 11
  start-page: 202
  year: 2018
  ident: C8TA00612A-(cit173)/*[position()=1]
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201701759
– volume: 1
  start-page: 77
  year: 2017
  ident: C8TA00612A-(cit36)/*[position()=1]
  publication-title: Joule
  doi: 10.1016/j.joule.2017.08.008
– volume: 3
  start-page: 8483
  year: 2015
  ident: C8TA00612A-(cit98)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA00455A
– volume: 191
  start-page: 795
  year: 2016
  ident: C8TA00612A-(cit180)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.01.161
– volume: 8
  start-page: 7811
  year: 2016
  ident: C8TA00612A-(cit201)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b00179
– volume: 3
  start-page: 20658
  year: 2015
  ident: C8TA00612A-(cit12)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA04663G
– volume: 4
  start-page: 12434
  year: 2016
  ident: C8TA00612A-(cit44)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA03491H
– volume: 9
  start-page: 5323
  year: 2017
  ident: C8TA00612A-(cit40)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C7NR00978J
– volume: 324
  start-page: 1
  year: 2016
  ident: C8TA00612A-(cit46)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.05.056
– volume: 3
  start-page: eaap9252
  year: 2017
  ident: C8TA00612A-(cit30)/*[position()=1]
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aap9252
– volume: 7
  start-page: 9972
  year: 2015
  ident: C8TA00612A-(cit104)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b02317
– volume: 5
  start-page: 13310
  year: 2015
  ident: C8TA00612A-(cit108)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep13310
– volume: 12
  start-page: 528
  year: 2015
  ident: C8TA00612A-(cit124)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2015.01.019
– volume: 6
  start-page: 7872
  year: 2015
  ident: C8TA00612A-(cit1)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8872
– volume: 4
  start-page: 8283
  year: 2016
  ident: C8TA00612A-(cit45)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA01377E
– volume: 3
  start-page: 22542
  year: 2015
  ident: C8TA00612A-(cit84)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA06205E
– volume: 3
  start-page: 1830
  year: 2015
  ident: C8TA00612A-(cit93)/*[position()=1]
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.5b00556
– volume: 27
  start-page: 1980
  year: 2015
  ident: C8TA00612A-(cit130)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201405115
– volume: 13
  start-page: 72
  year: 2018
  ident: C8TA00612A-(cit222)/*[position()=1]
  publication-title: Energy Storage Maters
  doi: 10.1016/j.ensm.2017.12.027
– volume: 29
  start-page: 1605051
  year: 2017
  ident: C8TA00612A-(cit7)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201605051
– volume: 8
  start-page: 1992
  year: 2016
  ident: C8TA00612A-(cit167)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b10280
– volume: 30
  start-page: 84
  year: 2016
  ident: C8TA00612A-(cit13)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.09.042
– volume: 29
  start-page: 1701139
  year: 2017
  ident: C8TA00612A-(cit35)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201701139
– volume: 34
  start-page: 47
  year: 2017
  ident: C8TA00612A-(cit17)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.02.009
– volume: 174
  start-page: 41
  year: 2015
  ident: C8TA00612A-(cit185)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2015.05.131
– volume: 52
  start-page: 11591
  year: 2016
  ident: C8TA00612A-(cit74)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C6CC05699G
– volume: 2
  start-page: 8603
  year: 2014
  ident: C8TA00612A-(cit214)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C3TA14430E
– volume: 8
  start-page: 1837
  year: 2015
  ident: C8TA00612A-(cit8)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE00762C
– volume: 27
  start-page: 6702
  year: 2015
  ident: C8TA00612A-(cit152)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201503015
– volume: 10
  start-page: 2364
  year: 2017
  ident: C8TA00612A-(cit59)/*[position()=1]
  publication-title: Nano Res.
  doi: 10.1007/s12274-017-1433-6
– volume: 50
  start-page: 293
  year: 2017
  ident: C8TA00612A-(cit53)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.6b00480
– volume: 6
  start-page: 5265
  year: 2017
  ident: C8TA00612A-(cit100)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA07890K
– volume: 135
  start-page: 8047
  year: 2013
  ident: C8TA00612A-(cit139)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja402597g
– volume: 2
  start-page: 19848
  year: 2014
  ident: C8TA00612A-(cit218)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA04277H
– volume: 332
  start-page: 253
  year: 2018
  ident: C8TA00612A-(cit175)/*[position()=1]
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.09.084
– volume: 4
  start-page: 183
  year: 2016
  ident: C8TA00612A-(cit28)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA07085F
– volume: 95
  start-page: 552
  year: 2015
  ident: C8TA00612A-(cit155)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/j.carbon.2015.08.069
– volume: 4
  start-page: 17838
  year: 2016
  ident: C8TA00612A-(cit39)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA07856G
– volume: 3
  start-page: 5648
  year: 2015
  ident: C8TA00612A-(cit65)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA05611F
– volume: 5
  start-page: 203
  year: 2013
  ident: C8TA00612A-(cit75)/*[position()=1]
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1569
– volume: 6
  start-page: 9889
  year: 2014
  ident: C8TA00612A-(cit120)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C4NR03057E
– volume: 26
  start-page: 7162
  year: 2014
  ident: C8TA00612A-(cit122)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201402728
– volume: 116
  start-page: 10983
  year: 2016
  ident: C8TA00612A-(cit51)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00731
– volume: 5
  start-page: 2013
  year: 2011
  ident: C8TA00612A-(cit159)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn1030719
– volume: 44
  start-page: 6749
  year: 2015
  ident: C8TA00612A-(cit55)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00344J
– volume: 27
  start-page: 7861
  year: 2015
  ident: C8TA00612A-(cit150)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201503816
– volume: 151
  start-page: A1969
  issue: 11
  year: 2004
  ident: C8TA00612A-(cit136)/*[position()=1]
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1806394
– volume: 351
  start-page: 691
  year: 2016
  ident: C8TA00612A-(cit176)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aad3345
– volume: 6
  start-page: 103517
  year: 2016
  ident: C8TA00612A-(cit215)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C6RA23071G
– volume: 26
  start-page: 1098
  year: 2016
  ident: C8TA00612A-(cit33)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201504312
– volume: 51
  start-page: 16413
  year: 2015
  ident: C8TA00612A-(cit161)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC06924F
– volume: 215
  start-page: 500
  year: 2016
  ident: C8TA00612A-(cit197)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.08.070
– volume: 5
  start-page: 2519
  year: 2017
  ident: C8TA00612A-(cit14)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA07098A
– volume: 6
  start-page: 61803
  year: 2016
  ident: C8TA00612A-(cit189)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C6RA11272B
– volume: 307
  start-page: 361
  year: 2016
  ident: C8TA00612A-(cit9)/*[position()=1]
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2015.09.002
– volume: 3
  start-page: 292
  year: 2016
  ident: C8TA00612A-(cit145)/*[position()=1]
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201500437
– volume: 6
  start-page: 15168
  year: 2014
  ident: C8TA00612A-(cit107)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C4NR04422C
– volume: 53
  start-page: 1488
  year: 2014
  ident: C8TA00612A-(cit188)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201303971
– volume: 43
  start-page: 9945
  year: 2017
  ident: C8TA00612A-(cit85)/*[position()=1]
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2017.05.004
– volume: 23
  start-page: 3273
  year: 2017
  ident: C8TA00612A-(cit96)/*[position()=1]
  publication-title: Ionics
  doi: 10.1007/s11581-017-2160-4
– volume: 55
  start-page: 7427
  year: 2016
  ident: C8TA00612A-(cit73)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201602653
– volume: 51
  start-page: 13205
  year: 2015
  ident: C8TA00612A-(cit203)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC03825A
– volume: 3
  start-page: 12796
  year: 2015
  ident: C8TA00612A-(cit158)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA01108F
– volume: 7
  start-page: 26751
  year: 2015
  ident: C8TA00612A-(cit106)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b08741
– volume: 7
  start-page: 965
  year: 2015
  ident: C8TA00612A-(cit41)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C4NR05135A
– volume: 12
  start-page: 2354
  year: 2016
  ident: C8TA00612A-(cit127)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201503821
– volume: 37
  start-page: 123
  year: 2016
  ident: C8TA00612A-(cit157)/*[position()=1]
  publication-title: Bull. Korean Chem. Soc.
  doi: 10.1002/bkcs.10638
– volume: 9
  start-page: 10602
  year: 2017
  ident: C8TA00612A-(cit165)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b15000
– volume: 2
  start-page: 7904
  year: 2014
  ident: C8TA00612A-(cit94)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c4ta00257a
– volume: 222
  start-page: 1021
  year: 2016
  ident: C8TA00612A-(cit86)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.11.071
– volume: 5
  start-page: 4186
  year: 2013
  ident: C8TA00612A-(cit92)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/c3nr00623a
– volume: 6
  start-page: 3889
  year: 2014
  ident: C8TA00612A-(cit64)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/c3nr06409c
– volume: 8
  start-page: 4285
  year: 2017
  ident: C8TA00612A-(cit23)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C7SC00668C
– volume: 26
  start-page: 6622
  year: 2014
  ident: C8TA00612A-(cit111)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201402322
– volume: 2
  start-page: 12194
  year: 2014
  ident: C8TA00612A-(cit82)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA01966K
– volume: 5
  start-page: 203
  year: 2013
  ident: C8TA00612A-(cit27)/*[position()=1]
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1569
– volume: 2
  start-page: 14118
  year: 2014
  ident: C8TA00612A-(cit216)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA01818D
– volume: 3
  start-page: 5585
  year: 2015
  ident: C8TA00612A-(cit43)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA06914E
– volume: 8
  start-page: 1992
  year: 2016
  ident: C8TA00612A-(cit209)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b10280
– volume: 18
  start-page: 201602733
  year: 2017
  ident: C8TA00612A-(cit6)/*[position()=1]
  publication-title: Adv. Energy Mater.
– volume: 3
  start-page: 12038
  year: 2015
  ident: C8TA00612A-(cit78)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA00890E
– volume: 4
  start-page: 10878
  year: 2016
  ident: C8TA00612A-(cit3)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA04286D
– volume: 13
  start-page: 1603102
  year: 2017
  ident: C8TA00612A-(cit192)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201603102
– volume: 167
  start-page: 102
  year: 2016
  ident: C8TA00612A-(cit202)/*[position()=1]
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2015.12.108
– volume: 55
  start-page: 13822
  year: 2016
  ident: C8TA00612A-(cit184)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201605926
– volume: 2
  start-page: 8048
  year: 2014
  ident: C8TA00612A-(cit80)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA00200H
– volume: 16
  start-page: 2054
  year: 2016
  ident: C8TA00612A-(cit144)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b00057
– volume: 19
  start-page: 2595
  year: 2017
  ident: C8TA00612A-(cit4)/*[position()=1]
  publication-title: Green Chem.
  doi: 10.1039/C7GC00506G
– volume: 4
  start-page: 6350
  year: 2016
  ident: C8TA00612A-(cit57)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA01995A
– volume: 10
  start-page: 2364
  year: 2017
  ident: C8TA00612A-(cit81)/*[position()=1]
  publication-title: Nano Res.
  doi: 10.1007/s12274-017-1433-6
– volume: 7
  start-page: 3309
  year: 2015
  ident: C8TA00612A-(cit207)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C4NR05242K
– volume: 4
  start-page: 10282
  year: 2016
  ident: C8TA00612A-(cit219)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA03633C
– volume: 263
  start-page: 85
  year: 2014
  ident: C8TA00612A-(cit141)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.04.027
– volume: 6
  start-page: 9889
  year: 2014
  ident: C8TA00612A-(cit199)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C4NR03057E
– volume: 129
  start-page: 5604
  year: 2017
  ident: C8TA00612A-(cit26)/*[position()=1]
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201701604
– volume: 6
  start-page: 6694
  year: 2015
  ident: C8TA00612A-(cit119)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7694
– volume: 6
  start-page: 10556
  year: 2014
  ident: C8TA00612A-(cit102)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C4NR03631J
– volume: 55
  start-page: 13822
  year: 2016
  ident: C8TA00612A-(cit178)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201605926
– volume: 309
  start-page: 135
  year: 2016
  ident: C8TA00612A-(cit205)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.01.092
– volume: 5
  start-page: 11781
  year: 2017
  ident: C8TA00612A-(cit32)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA00201G
– volume: 9
  start-page: 3757
  year: 2017
  ident: C8TA00612A-(cit112)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b15110
– volume: 3
  start-page: 1500286
  year: 2016
  ident: C8TA00612A-(cit66)/*[position()=1]
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201500286
– volume: 55
  start-page: 13422
  year: 2016
  ident: C8TA00612A-(cit20)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201606776
– volume: 7
  start-page: 11129
  year: 2017
  ident: C8TA00612A-(cit58)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C7RA00435D
– volume: 1
  start-page: 15006
  year: 2016
  ident: C8TA00612A-(cit25)/*[position()=1]
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2015.6
– volume: 10
  start-page: 4298
  year: 2017
  ident: C8TA00612A-(cit126)/*[position()=1]
  publication-title: Nano Res.
  doi: 10.1007/s12274-016-1394-1
– volume: 320
  start-page: 22
  year: 2017
  ident: C8TA00612A-(cit213)/*[position()=1]
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.03.033
– volume: 54
  start-page: 7395
  year: 2015
  ident: C8TA00612A-(cit118)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201502117
– volume: 7
  start-page: 20426
  year: 2015
  ident: C8TA00612A-(cit61)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C5NR04416B
– volume: 4
  start-page: 253
  year: 2015
  ident: C8TA00612A-(cit147)/*[position()=1]
  publication-title: Wiley Interdiscip. Rev.: Energy Environ.
– volume: 129
  start-page: 16219
  year: 2017
  ident: C8TA00612A-(cit142)/*[position()=1]
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201709176
– volume: 9
  start-page: 5323
  year: 2017
  ident: C8TA00612A-(cit77)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C7NR00978J
– volume: 4
  start-page: 1602
  year: 2017
  ident: C8TA00612A-(cit117)/*[position()=1]
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/C7QI00515F
– volume: 7
  start-page: 20426
  year: 2015
  ident: C8TA00612A-(cit113)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C5NR04416B
– volume: 3
  start-page: 13874
  year: 2015
  ident: C8TA00612A-(cit31)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA02461G
– volume: 106
  start-page: 306
  year: 2016
  ident: C8TA00612A-(cit217)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/j.carbon.2016.05.046
– volume: 4
  start-page: 13344
  year: 2016
  ident: C8TA00612A-(cit187)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA05384J
– volume: 5
  start-page: 9873
  year: 2017
  ident: C8TA00612A-(cit186)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA01008G
– volume: 7
  start-page: 1116
  year: 2014
  ident: C8TA00612A-(cit105)/*[position()=1]
  publication-title: Nano Res.
  doi: 10.1007/s12274-014-0474-3
– volume: 52
  start-page: 946
  year: 2016
  ident: C8TA00612A-(cit166)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC07621H
– volume: 2
  start-page: 735
  year: 2014
  ident: C8TA00612A-(cit103)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C3TA14050D
– volume: 52
  start-page: 8363
  year: 2013
  ident: C8TA00612A-(cit138)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201303147
– volume: 8
  start-page: 16761
  year: 2016
  ident: C8TA00612A-(cit164)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C6NR05480C
– volume: 10
  start-page: 377
  year: 2015
  ident: C8TA00612A-(cit115)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b05041
– volume: 8
  start-page: 9721
  year: 2016
  ident: C8TA00612A-(cit210)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b01268
– volume: 9
  start-page: 604
  year: 2014
  ident: C8TA00612A-(cit121)/*[position()=1]
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2014.09.005
– volume: 313
  start-page: 1623
  year: 2017
  ident: C8TA00612A-(cit87)/*[position()=1]
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.11.063
– volume: 8
  start-page: 16063
  year: 2016
  ident: C8TA00612A-(cit143)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b04060
– volume: 199
  start-page: 101
  year: 2017
  ident: C8TA00612A-(cit162)/*[position()=1]
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2017.04.069
– volume: 134
  start-page: 17388
  year: 2012
  ident: C8TA00612A-(cit50)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja307475c
– volume: 172
  start-page: 56
  year: 2016
  ident: C8TA00612A-(cit151)/*[position()=1]
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2016.02.121
– volume: 60
  start-page: 172
  year: 2015
  ident: C8TA00612A-(cit171)/*[position()=1]
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2015.09.002
– volume: 5
  start-page: 1401172
  year: 2015
  ident: C8TA00612A-(cit183)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201401172
– volume: 6
  start-page: 1501333
  year: 2016
  ident: C8TA00612A-(cit52)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201501333
– volume: 6
  start-page: 14354
  year: 2014
  ident: C8TA00612A-(cit194)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C4NR04782F
– volume: 8
  start-page: 5249
  year: 2014
  ident: C8TA00612A-(cit131)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn501308m
– volume: 7
  start-page: 2071
  year: 2014
  ident: C8TA00612A-(cit22)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c4ee00517a
– volume: 2
  start-page: 8854
  year: 2014
  ident: C8TA00612A-(cit133)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA00523F
– volume: 9
  start-page: 6288
  year: 2015
  ident: C8TA00612A-(cit56)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b01790
– volume: 1
  start-page: 16013
  year: 2016
  ident: C8TA00612A-(cit15)/*[position()=1]
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.13
– volume: 2
  start-page: 12194
  year: 2014
  ident: C8TA00612A-(cit83)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA01966K
– volume: 9
  start-page: 2314
  year: 2016
  ident: C8TA00612A-(cit18)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE01501H
– volume: 55
  start-page: 13422
  year: 2016
  ident: C8TA00612A-(cit123)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201606776
– volume: 4
  start-page: 12434
  year: 2016
  ident: C8TA00612A-(cit76)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA03491H
– volume: 44
  start-page: 5926
  year: 2015
  ident: C8TA00612A-(cit16)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00442F
– volume: 27
  start-page: 3687
  year: 2015
  ident: C8TA00612A-(cit62)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201501059
– volume: 45
  start-page: 2327
  year: 2016
  ident: C8TA00612A-(cit21)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00837A
– volume: 5
  start-page: 12653
  year: 2017
  ident: C8TA00612A-(cit182)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA00863E
– volume: 114
  start-page: 11751
  year: 2014
  ident: C8TA00612A-(cit128)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr500062v
– volume: 7
  start-page: 10672
  year: 2016
  ident: C8TA00612A-(cit200)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10672
– volume: 138
  start-page: 1359
  year: 2016
  ident: C8TA00612A-(cit211)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b11986
– volume: 6
  start-page: 13824
  year: 2014
  ident: C8TA00612A-(cit101)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C4NR04505J
– volume: 10
  start-page: 1777
  year: 2017
  ident: C8TA00612A-(cit177)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE00488E
– volume: 325
  start-page: 286
  year: 2016
  ident: C8TA00612A-(cit10)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.06.037
– volume: 341
  start-page: 53
  year: 2017
  ident: C8TA00612A-(cit67)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.11.099
– volume: 167
  start-page: 102
  year: 2016
  ident: C8TA00612A-(cit206)/*[position()=1]
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2015.12.108
– volume: 7
  start-page: 9972
  year: 2015
  ident: C8TA00612A-(cit195)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b02317
– volume: 210
  start-page: 588
  year: 2016
  ident: C8TA00612A-(cit208)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.05.190
– volume: 14
  start-page: 1651
  year: 2014
  ident: C8TA00612A-(cit179)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl5001778
– volume: 45
  start-page: 13311
  year: 2016
  ident: C8TA00612A-(cit193)/*[position()=1]
  publication-title: Dalton Trans.
  doi: 10.1039/C6DT01791F
– volume: 4
  start-page: 9832
  year: 2016
  ident: C8TA00612A-(cit5)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA02673G
– volume: 54
  start-page: 3431
  year: 2015
  ident: C8TA00612A-(cit19)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201410376
– start-page: 1602391
  year: 2017
  ident: C8TA00612A-(cit196)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201602391
– volume: 188
  start-page: 490
  year: 2016
  ident: C8TA00612A-(cit191)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2015.12.037
– volume: 2
  start-page: 87
  year: 2014
  ident: C8TA00612A-(cit79)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C3TA13510A
– volume: 28
  start-page: 9391
  year: 2016
  ident: C8TA00612A-(cit156)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201601621
– volume: 3
  start-page: 15274
  year: 2015
  ident: C8TA00612A-(cit72)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA03665H
– volume: 6
  start-page: 93532
  year: 2016
  ident: C8TA00612A-(cit99)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C6RA19334J
– volume: 9
  start-page: 4404
  year: 2016
  ident: C8TA00612A-(cit172)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b07989
– volume: 6
  start-page: 3268
  year: 2014
  ident: C8TA00612A-(cit95)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C3NR05676G
– volume: 45
  start-page: 17439
  year: 2016
  ident: C8TA00612A-(cit163)/*[position()=1]
  publication-title: Dalton Trans.
  doi: 10.1039/C6DT03719D
– volume: 302
  start-page: 174
  year: 2016
  ident: C8TA00612A-(cit42)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.10.049
– volume: 129
  start-page: 3955
  year: 2017
  ident: C8TA00612A-(cit212)/*[position()=1]
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201612635
– volume: 7
  start-page: 1602898
  year: 2017
  ident: C8TA00612A-(cit148)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201602898
– volume: 2
  start-page: 12873
  year: 2014
  ident: C8TA00612A-(cit220)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA00475B
– volume: 55
  start-page: 5990
  year: 2016
  ident: C8TA00612A-(cit169)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201600133
– volume: 285
  start-page: 281
  year: 2015
  ident: C8TA00612A-(cit174)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.03.106
– volume: 7
  start-page: 9411
  year: 2015
  ident: C8TA00612A-(cit89)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C5NR01443C
– volume: 38
  start-page: 239
  year: 2017
  ident: C8TA00612A-(cit137)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.05.064
– volume: 3
  start-page: 18944
  year: 2015
  ident: C8TA00612A-(cit153)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA04009D
– volume: 41
  start-page: 12835
  year: 2017
  ident: C8TA00612A-(cit221)/*[position()=1]
  publication-title: New J. Chem.
  doi: 10.1039/C7NJ02427D
– volume: 29
  start-page: 1700748
  year: 2017
  ident: C8TA00612A-(cit125)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201700748
– volume: 128
  start-page: 6094
  year: 2016
  ident: C8TA00612A-(cit29)/*[position()=1]
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201600133
– volume: 5
  start-page: 9873
  year: 2017
  ident: C8TA00612A-(cit38)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA01008G
– volume: 29
  start-page: 1604563
  year: 2017
  ident: C8TA00612A-(cit49)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201604563
– volume: 241
  start-page: 415
  year: 2013
  ident: C8TA00612A-(cit88)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.04.147
– volume: 3
  start-page: 7793
  year: 2015
  ident: C8TA00612A-(cit63)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA00805K
– volume: 55
  start-page: 3982
  year: 2016
  ident: C8TA00612A-(cit24)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201511632
– volume: 135
  start-page: 10664
  year: 2013
  ident: C8TA00612A-(cit60)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja401727n
– volume: 60
  start-page: 823
  year: 2015
  ident: C8TA00612A-(cit90)/*[position()=1]
  publication-title: Sci. Bull.
  doi: 10.1007/s11434-015-0771-6
– volume: 44
  start-page: 6749
  year: 2015
  ident: C8TA00612A-(cit68)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00344J
– volume: 28
  start-page: 9221
  year: 2017
  ident: C8TA00612A-(cit198)/*[position()=1]
  publication-title: J. Electron. Mater.
  doi: 10.1007/s10854-017-6656-5
– volume: 316
  start-page: 176
  year: 2016
  ident: C8TA00612A-(cit160)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.03.040
SSID ssj0000800699
Score 2.6114962
SecondaryResourceType review_article
Snippet Metal-organic frameworks (MOFs), a novel class of porous crystalline materials, have drawn enormous attention. Due to the inherent porosity and presence of...
Metal–organic frameworks (MOFs), a novel class of porous crystalline materials, have drawn enormous attention. Due to the inherent porosity and presence of...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6754
SubjectTerms carbides
coordination polymers
Electrochemistry
energy
Energy storage
Fabrication
Lithium
lithium batteries
Lithium-ion batteries
Metal carbides
Metal sulfides
Metal-organic frameworks
Metals
moieties
nanomaterials
Nanostructure
Nanostructured materials
Oxides
Porosity
Porous materials
Rechargeable batteries
Sodium
Storage batteries
sulfides
Sulfur
Title Metal-organic framework derived hollow materials for electrochemical energy storage
URI https://www.proquest.com/docview/2030352536
https://www.proquest.com/docview/2237520009
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1da9swFBVp-rI9jH2VueuGxvYygjNHsiX70YSUrKTdiwN5M7Ysw6AkpbM36FP_w9gf3C_Z1ZftdmFsezFGFrLQPdY9kq_uQegdIeUsrGpgbkB__bAuS19JU_p1XAFfF3Vd6rwF5xdsuQ7PNtFmNPoxiFpqm3IqbvaeK_kfq0IZ2FWdkv0Hy3aNQgHcg33hChaG61_Z-FwCdXbhCtQINIlJ7eKtJhV04iswSpjhLnffJkBOTa9Mnm8jgCNcxgBpTgGqaMniXoBQT1r7JoRTiptOUnPo507jpjG9K--OaKko3G4DfwMu05_boyGbz7Kf-P0zK7OybAvrVpXTaHXFdrhLYadUE9ikdkFcCKoOMbHd62c6EgBOeGj0_aZyWGbkbt1UzYaIHM67sOwJBz6ccaPr8pt_CKhKryriptDcbuAF3Z__i0_56Xq1yrPFJjtAhwRWH2SMDtNF9nHVbd4pms20NmnXdZf6liYf-ubvkp1-BXNw7eRlNI3JHqNH1pQ4NWB6gkZy-xQ9HGSlfIbWGlY_b79bQOEOUNgCChtA4Q4NGGyO7wEKGwxgC6jnaH26yOZL36pv-IJy3viUBaRKgNIJ4DNRWdGwUsnl4gqMwoO6jGrGiIgEi3lSSCpoFApJKs5ZEIciKekRGm93W_kC4YQBAxKcFMDVw1kgYhlFShqymEkuipp76L0bplzY1PRKIeUy1yESNMnncZbqIU099Lare2USsuytdeJGO7cf7JecgENT2X8p89Cb7jGAUf0jK7Zy10IdQrnKRBYkHjoCK3Xv6I3qoeP9D_Krqj7-84tfogfq6zB7eCdo3Fy38hWw2qZ8bTH2C58EpwA
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metal%E2%80%93organic+framework+derived+hollow+materials+for+electrochemical+energy+storage&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Xing-Chen%2C+Xie&rft.au=Ke-Jing%2C+Huang&rft.au=Wu%2C+Xu&rft.date=2018&rft.pub=Royal+Society+of+Chemistry&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=6&rft.issue=16&rft.spage=6754&rft.epage=6771&rft_id=info:doi/10.1039%2Fc8ta00612a&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon