Human Rhinovirus Infection Induces Airway Epithelial Cell Production of Human β-Defensin 2 Both In Vitro and In Vivo

We hypothesized that airway epithelial cells, the primary site of human rhinovirus (HRV) infection, provide a link between the innate and specific immune response to HRV via production of human β-defensin (HBD)-2, a potent in vitro attractant and activator of immature dendritic cells. Infection of p...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of immunology (1950) Vol. 172; no. 7; pp. 4637 - 4645
Main Authors Proud, David, Sanders, Scherer P, Wiehler, Shahina
Format Journal Article
LanguageEnglish
Published United States 01.04.2004
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We hypothesized that airway epithelial cells, the primary site of human rhinovirus (HRV) infection, provide a link between the innate and specific immune response to HRV via production of human β-defensin (HBD)-2, a potent in vitro attractant and activator of immature dendritic cells. Infection of primary cultures of human epithelial cells with several HRV serotypes induced expression of HBD-2 mRNA and protein, indicating that HBD-2 production was independent of viral receptor usage or mechanisms of viral RNA internalization. Induction of HBD-2 was dependent upon viral replication and could be mimicked by transfection of cells with synthetic dsRNA, but was not dependent upon epithelial production of IL-1. Studies with stable epithelial cell lines expressing HBD-2 promoter constructs, as well as inhibitor studies in primary cells, both demonstrated that induction of HBD-2 involves activation of the transcription factor, NF-κB. Other transcription factors must also be activated by HRV infection, however, as expression of HBD-3 mRNA was also induced and there is no putative NF-κB recognition sequence in the promoter of this gene. HBD-2 showed no direct antiviral activity against HRV. In vivo infection of normal human subjects with HRV-16 induced expression of mRNA for HBD-2 in nasal epithelial scrapings. Increases in mRNA correlated with viral titer and with increased levels of HBD-2 protein in nasal lavages. This represents the first demonstration that HRV infection induces epithelial expression of HBD-2 both in vitro and in vivo, and supports the concept that HBD-2 may play a role in host defense to HRV infection.
AbstractList We hypothesized that airway epithelial cells, the primary site of human rhinovirus (HRV) infection, provide a link between the innate and specific immune response to HRV via production of human beta -defensin (HBD)-2, a potent in vitro attractant and activator of immature dendritic cells. Infection of primary cultures of human epithelial cells with several HRV serotypes induced expression of HBD-2 mRNA and protein, indicating that HBD-2 production was independent of viral receptor usage or mechanisms of viral RNA internalization. Induction of HBD-2 was dependent upon viral replication and could be mimicked by transfection of cells with synthetic dsRNA, but was not dependent upon epithelial production of IL-1. Studies with stable epithelial cell lines expressing HBD-2 promoter constructs, as well as inhibitor studies in primary cells, both demonstrated that induction of HBD-2 involves activation of the transcription factor, NF- Kappa B. Other transcription factors must also be activated by HRV infection, however, as expression of HBD-3 mRNA was also induced and there is no putative NF- Kappa B recognition sequence in the promoter of this gene. HBD-2 showed no direct antiviral activity against HRV. In vivo infection of normal human subjects with HRV-16 induced expression of mRNA for HBD-2 in nasal epithelial scrapings. Increases in mRNA correlated with viral titer and with increased levels of HBD-2 protein in nasal lavages. This represents the first demonstration that HRV infection induces epithelial expression of HBD-2 both in vitro and in vivo, and supports the concept that HBD-2 may play a role in host defense to HRV infection.
We hypothesized that airway epithelial cells, the primary site of human rhinovirus (HRV) infection, provide a link between the innate and specific immune response to HRV via production of human beta-defensin (HBD)-2, a potent in vitro attractant and activator of immature dendritic cells. Infection of primary cultures of human epithelial cells with several HRV serotypes induced expression of HBD-2 mRNA and protein, indicating that HBD-2 production was independent of viral receptor usage or mechanisms of viral RNA internalization. Induction of HBD-2 was dependent upon viral replication and could be mimicked by transfection of cells with synthetic dsRNA, but was not dependent upon epithelial production of IL-1. Studies with stable epithelial cell lines expressing HBD-2 promoter constructs, as well as inhibitor studies in primary cells, both demonstrated that induction of HBD-2 involves activation of the transcription factor, NF-kappaB. Other transcription factors must also be activated by HRV infection, however, as expression of HBD-3 mRNA was also induced and there is no putative NF-kappaB recognition sequence in the promoter of this gene. HBD-2 showed no direct antiviral activity against HRV. In vivo infection of normal human subjects with HRV-16 induced expression of mRNA for HBD-2 in nasal epithelial scrapings. Increases in mRNA correlated with viral titer and with increased levels of HBD-2 protein in nasal lavages. This represents the first demonstration that HRV infection induces epithelial expression of HBD-2 both in vitro and in vivo, and supports the concept that HBD-2 may play a role in host defense to HRV infection.
We hypothesized that airway epithelial cells, the primary site of human rhinovirus (HRV) infection, provide a link between the innate and specific immune response to HRV via production of human beta-defensin (HBD)-2, a potent in vitro attractant and activator of immature dendritic cells. Infection of primary cultures of human epithelial cells with several HRV serotypes induced expression of HBD-2 mRNA and protein, indicating that HBD-2 production was independent of viral receptor usage or mechanisms of viral RNA internalization. Induction of HBD-2 was dependent upon viral replication and could be mimicked by transfection of cells with synthetic dsRNA, but was not dependent upon epithelial production of IL-1. Studies with stable epithelial cell lines expressing HBD-2 promoter constructs, as well as inhibitor studies in primary cells, both demonstrated that induction of HBD-2 involves activation of the transcription factor, NF-kappaB. Other transcription factors must also be activated by HRV infection, however, as expression of HBD-3 mRNA was also induced and there is no putative NF-kappaB recognition sequence in the promoter of this gene. HBD-2 showed no direct antiviral activity against HRV. In vivo infection of normal human subjects with HRV-16 induced expression of mRNA for HBD-2 in nasal epithelial scrapings. Increases in mRNA correlated with viral titer and with increased levels of HBD-2 protein in nasal lavages. This represents the first demonstration that HRV infection induces epithelial expression of HBD-2 both in vitro and in vivo, and supports the concept that HBD-2 may play a role in host defense to HRV infection.We hypothesized that airway epithelial cells, the primary site of human rhinovirus (HRV) infection, provide a link between the innate and specific immune response to HRV via production of human beta-defensin (HBD)-2, a potent in vitro attractant and activator of immature dendritic cells. Infection of primary cultures of human epithelial cells with several HRV serotypes induced expression of HBD-2 mRNA and protein, indicating that HBD-2 production was independent of viral receptor usage or mechanisms of viral RNA internalization. Induction of HBD-2 was dependent upon viral replication and could be mimicked by transfection of cells with synthetic dsRNA, but was not dependent upon epithelial production of IL-1. Studies with stable epithelial cell lines expressing HBD-2 promoter constructs, as well as inhibitor studies in primary cells, both demonstrated that induction of HBD-2 involves activation of the transcription factor, NF-kappaB. Other transcription factors must also be activated by HRV infection, however, as expression of HBD-3 mRNA was also induced and there is no putative NF-kappaB recognition sequence in the promoter of this gene. HBD-2 showed no direct antiviral activity against HRV. In vivo infection of normal human subjects with HRV-16 induced expression of mRNA for HBD-2 in nasal epithelial scrapings. Increases in mRNA correlated with viral titer and with increased levels of HBD-2 protein in nasal lavages. This represents the first demonstration that HRV infection induces epithelial expression of HBD-2 both in vitro and in vivo, and supports the concept that HBD-2 may play a role in host defense to HRV infection.
We hypothesized that airway epithelial cells, the primary site of human rhinovirus (HRV) infection, provide a link between the innate and specific immune response to HRV via production of human β-defensin (HBD)-2, a potent in vitro attractant and activator of immature dendritic cells. Infection of primary cultures of human epithelial cells with several HRV serotypes induced expression of HBD-2 mRNA and protein, indicating that HBD-2 production was independent of viral receptor usage or mechanisms of viral RNA internalization. Induction of HBD-2 was dependent upon viral replication and could be mimicked by transfection of cells with synthetic dsRNA, but was not dependent upon epithelial production of IL-1. Studies with stable epithelial cell lines expressing HBD-2 promoter constructs, as well as inhibitor studies in primary cells, both demonstrated that induction of HBD-2 involves activation of the transcription factor, NF-κB. Other transcription factors must also be activated by HRV infection, however, as expression of HBD-3 mRNA was also induced and there is no putative NF-κB recognition sequence in the promoter of this gene. HBD-2 showed no direct antiviral activity against HRV. In vivo infection of normal human subjects with HRV-16 induced expression of mRNA for HBD-2 in nasal epithelial scrapings. Increases in mRNA correlated with viral titer and with increased levels of HBD-2 protein in nasal lavages. This represents the first demonstration that HRV infection induces epithelial expression of HBD-2 both in vitro and in vivo, and supports the concept that HBD-2 may play a role in host defense to HRV infection.
Author Proud, David
Wiehler, Shahina
Sanders, Scherer P
Author_xml – sequence: 1
  givenname: David
  surname: Proud
  fullname: Proud, David
– sequence: 2
  givenname: Scherer P
  surname: Sanders
  fullname: Sanders, Scherer P
– sequence: 3
  givenname: Shahina
  surname: Wiehler
  fullname: Wiehler, Shahina
BackLink https://www.ncbi.nlm.nih.gov/pubmed/15034083$$D View this record in MEDLINE/PubMed
BookMark eNqFkctKAzEYhYNUtF6eQJCs3E3NbZKZZa31AoIi6jakMwmNzCQ1man0tXwQn8nUKoILXeUP_3cOP-fsgYHzTgNwhNGIIVaePtu27Z1vRliQkRgxTsUWGOI8RxnniA_AECFCMiy42AV7MT4jhDgibAfs4hxRhgo6BP1V3yoH7-fW-aUNfYTXzuiqs96lqe4rHeHYhle1gtOF7ea6saqBE9008C74tP8kvYEbn_e37Fwb7aJ1kMAz382TC3yyXfBQuXrzWfoDsG1UE_Xh17sPHi-mD5Or7Ob28noyvskqKkSXEUaYwvWMa6aE0bP19YXRdT4jmBBqRFHWrEyLWnGBirpUOVVlbirMVMFURffBycZ3EfxLr2MnWxurdLxy2vdRihQOJ5T-C-ICMUa4SODxF9jPWl3LRbCtCiv5nWgC6Aaogo8xaPODILnuTX73JlNvUsh1b0lV_lJVtlPrbLugbPOn9gNZGKHm
CitedBy_id crossref_primary_10_1189_jlb_0209079
crossref_primary_10_2500_ajra_2016_30_4360
crossref_primary_10_4049_jimmunol_180_2_870
crossref_primary_10_1016_j_chom_2007_12_001
crossref_primary_10_1016_j_jaci_2009_03_010
crossref_primary_10_1165_rcmb_2006_0199TR
crossref_primary_10_1016_j_coi_2005_11_004
crossref_primary_10_1074_jbc_M710415200
crossref_primary_10_1016_j_vetimm_2009_10_025
crossref_primary_10_3390_ijms23020985
crossref_primary_10_1007_s11882_006_0015_6
crossref_primary_10_1586_erv_09_63
crossref_primary_10_3389_fimmu_2021_636061
crossref_primary_10_1007_s11882_020_00979_5
crossref_primary_10_1007_s00253_015_6786_8
crossref_primary_10_1146_annurev_virology_101416_041734
crossref_primary_10_1016_j_ijbiomac_2021_09_163
crossref_primary_10_1016_j_dci_2018_11_011
crossref_primary_10_1164_rccm_200805_670OC
crossref_primary_10_1189_jlb_0505280
crossref_primary_10_1007_s40259_013_0039_0
crossref_primary_10_1016_j_jaci_2007_10_041
crossref_primary_10_1038_nrmicro976
crossref_primary_10_1186_1465_9921_12_59
crossref_primary_10_3390_v12111328
crossref_primary_10_1371_journal_pone_0175963
crossref_primary_10_1016_j_jaci_2009_04_041
crossref_primary_10_1128_IAI_00353_08
crossref_primary_10_1016_j_molimm_2011_07_019
crossref_primary_10_3390_ijms10093951
crossref_primary_10_1002_jbm4_10405
crossref_primary_10_1038_s41586_018_0449_8
crossref_primary_10_1517_14728222_11_8_993
crossref_primary_10_1016_j_ejphar_2013_02_056
crossref_primary_10_1517_14712598_7_9_1449
crossref_primary_10_1038_nri1860
crossref_primary_10_1371_journal_pone_0063365
crossref_primary_10_1093_infdis_jiy608
crossref_primary_10_1146_annurev_pharmtox_010611_134535
crossref_primary_10_1111_j_1600_065X_2011_01033_x
crossref_primary_10_1097_SHK_0000000000000815
crossref_primary_10_3390_v10120682
crossref_primary_10_1378_chest_130_4_1203
crossref_primary_10_1016_j_jaci_2016_04_051
crossref_primary_10_1002_rmv_2032
crossref_primary_10_2332_allergolint_R_07_156
crossref_primary_10_1111_j_1468_3083_2008_02675_x
crossref_primary_10_1159_000442177
crossref_primary_10_1074_jbc_M511044200
crossref_primary_10_4049_jimmunol_181_5_3212
crossref_primary_10_1016_j_jmb_2013_09_038
crossref_primary_10_1189_jlb_0713413
crossref_primary_10_1002_rmv_1909
crossref_primary_10_2217_17460794_4_2_97
crossref_primary_10_1111_cei_12031
crossref_primary_10_1016_j_virol_2006_07_001
crossref_primary_10_3389_fmicb_2020_01155
crossref_primary_10_1016_j_fsi_2012_02_005
crossref_primary_10_1177_026119290803600404
crossref_primary_10_1111_j_1365_2230_2012_04305_x
crossref_primary_10_1371_journal_pone_0047743
crossref_primary_10_1080_09540100903045264
crossref_primary_10_1016_j_jdermsci_2014_12_001
crossref_primary_10_1002_jcp_22830
crossref_primary_10_4062_biomolther_2017_172
crossref_primary_10_1042_BJ20091038
crossref_primary_10_1080_21688370_2016_1206378
crossref_primary_10_1177_0968051907088275
crossref_primary_10_1124_jpet_106_118125
crossref_primary_10_1002_mnfr_201000174
crossref_primary_10_4049_jimmunol_177_10_6859
crossref_primary_10_2500_ajra_2011_25_3684
crossref_primary_10_3389_fimmu_2019_00821
crossref_primary_10_1111_cea_13766
crossref_primary_10_1016_j_peptides_2009_12_008
crossref_primary_10_1016_j_antiviral_2018_06_007
crossref_primary_10_1016_j_jaci_2020_04_064
crossref_primary_10_3389_fmicb_2018_00751
crossref_primary_10_1016_j_virol_2008_07_024
crossref_primary_10_1016_j_pupt_2007_06_004
crossref_primary_10_1016_S1081_1206_10_60379_1
crossref_primary_10_2174_0929867326666190805151654
crossref_primary_10_1517_14728222_12_3_265
crossref_primary_10_1089_vim_2009_0005
crossref_primary_10_1111_resp_12692
crossref_primary_10_1371_journal_pone_0163539
crossref_primary_10_1016_j_jaci_2008_01_067
crossref_primary_10_1128_CMR_00014_10
crossref_primary_10_1111_cea_12943
crossref_primary_10_1038_ni1206
crossref_primary_10_14814_phy2_14994
crossref_primary_10_1097_00130832_200502000_00008
crossref_primary_10_1097_MED_0000000000000108
crossref_primary_10_1016_j_jaci_2015_10_009
crossref_primary_10_1016_j_cytogfr_2015_11_002
crossref_primary_10_2217_fvl_11_9
crossref_primary_10_1111_j_1600_065X_2011_01031_x
crossref_primary_10_1371_journal_pone_0026293
crossref_primary_10_3389_fphar_2018_01270
crossref_primary_10_4049_jimmunol_174_3_1608
crossref_primary_10_1177_154405910808701011
crossref_primary_10_1152_ajplung_00066_2007
crossref_primary_10_1016_j_prrv_2008_04_001
crossref_primary_10_1016_j_molimm_2006_10_008
crossref_primary_10_1183_09031936_00110807
crossref_primary_10_1111_j_1476_5381_2011_01620_x
crossref_primary_10_1002_alr_21127
crossref_primary_10_1016_j_smim_2006_12_006
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7U9
H94
7X8
DOI 10.4049/jimmunol.172.7.4637
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Immunology Abstracts
Virology and AIDS Abstracts
AIDS and Cancer Research Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AIDS and Cancer Research Abstracts
Immunology Abstracts
Virology and AIDS Abstracts
MEDLINE - Academic
DatabaseTitleList AIDS and Cancer Research Abstracts
MEDLINE
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1550-6606
EndPage 4645
ExternalDocumentID 15034083
10_4049_jimmunol_172_7_4637
Genre Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S
Journal Article
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: HL 61011
GroupedDBID ---
-~X
.55
.GJ
0R~
18M
2WC
34G
39C
3O-
53G
5GY
5RE
5VS
5WD
79B
85S
AARDX
AAYXX
ABCQX
ABDFA
ABDPE
ABEFU
ABEJV
ABGNP
ABJNI
ABOCM
ABPPZ
ABXVV
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ADBBV
ADIPN
ADNWM
ADXHL
AENEX
AETEA
AFFNX
AFHIN
AFOSN
AFRAH
AGORE
AHMMS
AHWXS
AI.
AIZAD
ALMA_UNASSIGNED_HOLDINGS
ARBBW
BAWUL
BCRHZ
BTFSW
CITATION
D0L
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
IH2
J5H
K-O
KQ8
L7B
MVM
NEJ
OCZFY
OK1
OWPYF
P0W
P2P
PQQKQ
R.V
RHI
ROX
RZQ
SJN
SKT
TR2
TWZ
VH1
W8F
WH7
WOQ
X7M
XJT
XSW
XTH
YHG
ZE2
ZGI
ZXP
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7U9
H94
7X8
ID FETCH-LOGICAL-c377t-2424a1db6e4a7feb60248fed5b21223f789d49febda6708d9a53a95fc14a84ac3
ISSN 0022-1767
IngestDate Fri Jul 11 08:52:31 EDT 2025
Fri Jul 11 10:15:28 EDT 2025
Mon Jul 21 05:44:48 EDT 2025
Thu Apr 24 23:10:35 EDT 2025
Tue Jul 01 05:10:40 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://academic.oup.com/pages/standard-publication-reuse-rights
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c377t-2424a1db6e4a7feb60248fed5b21223f789d49febda6708d9a53a95fc14a84ac3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink http://www.jimmunol.org/content/jimmunol/172/7/4637.full.pdf
PMID 15034083
PQID 18044267
PQPubID 23462
PageCount 9
ParticipantIDs proquest_miscellaneous_71766233
proquest_miscellaneous_18044267
pubmed_primary_15034083
crossref_primary_10_4049_jimmunol_172_7_4637
crossref_citationtrail_10_4049_jimmunol_172_7_4637
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2004-04-01
2004-Apr-01
20040401
PublicationDateYYYYMMDD 2004-04-01
PublicationDate_xml – month: 04
  year: 2004
  text: 2004-04-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of immunology (1950)
PublicationTitleAlternate J Immunol
PublicationYear 2004
References (2025032708031191100_R37) 2003
(2025032708031191100_R7) 1995
(2025032708031191100_R47) 1996
(2025032708031191100_R40) 2000
(2025032708031191100_R50) 2000
(2025032708031191100_R20) 2002
(2025032708031191100_R17) 2001
(2025032708031191100_R60) 2003
(2025032708031191100_R27) 2002
(2025032708031191100_R57) 2000
(2025032708031191100_R24) 2002
(2025032708031191100_R34) 2003
(2025032708031191100_R54) 1994
(2025032708031191100_R3) 1995
(2025032708031191100_R14) 1994
(2025032708031191100_R44) 1990
(2025032708031191100_R38) 1998
(2025032708031191100_R23) 1999
(2025032708031191100_R52) 1989
(2025032708031191100_R18) 1997
(2025032708031191100_R8) 1995
(2025032708031191100_R11) 1998
(2025032708031191100_R46) 1995
(2025032708031191100_R51) 2002
(2025032708031191100_R15) 1997
(2025032708031191100_R26) 2001
(2025032708031191100_R2) 1993
(2025032708031191100_R1) 1966
(2025032708031191100_R58) 2001
(2025032708031191100_R19) 1999
(2025032708031191100_R12) 1997
(2025032708031191100_R9) 1996
(2025032708031191100_R49) 1998
(2025032708031191100_R55) 2003
(2025032708031191100_R31) 1987
(2025032708031191100_R45) 1993
(2025032708031191100_R39) 1999
(2025032708031191100_R35) 1996
(2025032708031191100_R59) 2001
(2025032708031191100_R62) 2002
(2025032708031191100_R5) 1984
(2025032708031191100_R29) 2000
(2025032708031191100_R6) 1994
(2025032708031191100_R43) 1966
(2025032708031191100_R13) 1999
(2025032708031191100_R42) 1989
(2025032708031191100_R22) 1986
(2025032708031191100_R32) 1964
(2025032708031191100_R56) 1993
(2025032708031191100_R21) 2001
(2025032708031191100_R28) 1996
(2025032708031191100_R41) 1999
(2025032708031191100_R61) 2002
(2025032708031191100_R25) 1999
(2025032708031191100_R30) 1989
(2025032708031191100_R16) 2001
(2025032708031191100_R4) 2001
(2025032708031191100_R36) 1999
(2025032708031191100_R10) 1996
(2025032708031191100_R33) 2000
(2025032708031191100_R53) 1994
(2025032708031191100_R48) 2001
References_xml – start-page: 915
  volume-title: J. Clin. Invest.
  year: 1996
  ident: 2025032708031191100_R9
– start-page: 156
  volume-title: Anal. Biochem.
  year: 1987
  ident: 2025032708031191100_R31
– start-page: 732
  volume-title: Nature
  year: 2001
  ident: 2025032708031191100_R48
– start-page: 5360
  volume-title: J. Virol.
  year: 2003
  ident: 2025032708031191100_R55
– start-page: 3713
  volume-title: J. Virol.
  year: 1994
  ident: 2025032708031191100_R54
– start-page: 309
  volume-title: Acta Otolaryngol. (Stockh.)
  year: 1984
  ident: 2025032708031191100_R5
– start-page: 6644
  volume-title: J. Immunol.
  year: 2001
  ident: 2025032708031191100_R26
– start-page: 449
  volume-title: Am. Rev. Respir. Dis.
  year: 1989
  ident: 2025032708031191100_R30
– start-page: 1344
  volume-title: Science
  year: 1964
  ident: 2025032708031191100_R32
– start-page: 6429
  volume-title: J. Immunol.
  year: 2002
  ident: 2025032708031191100_R51
– start-page: 934
  volume-title: J. Virol.
  year: 1998
  ident: 2025032708031191100_R11
– start-page: 995
  volume-title: Science
  year: 2002
  ident: 2025032708031191100_R24
– start-page: 1618
  volume-title: Am. J. Respir. Crit. Care Med.
  year: 2001
  ident: 2025032708031191100_R4
– start-page: 352
  volume-title: Am. J. Epidemiol.
  year: 1966
  ident: 2025032708031191100_R43
– start-page: 582
  volume-title: Am. J. Respir. Cell Mol. Biol.
  year: 2000
  ident: 2025032708031191100_R33
– start-page: 734
  volume-title: J. Infect. Dis.
  year: 2002
  ident: 2025032708031191100_R61
– start-page: 709
  volume-title: Annu. Rev. Physiol.
  year: 2002
  ident: 2025032708031191100_R20
– start-page: 988
  volume-title: J. Immunol.
  year: 2000
  ident: 2025032708031191100_R50
– start-page: 525
  volume-title: Science
  year: 1999
  ident: 2025032708031191100_R25
– start-page: 7461
  volume-title: J. Immunol.
  year: 1999
  ident: 2025032708031191100_R39
– start-page: 1839
  volume-title: Proc. Natl. Acad. Sci. USA
  year: 1994
  ident: 2025032708031191100_R53
– start-page: S36
  volume-title: Am. J. Respir. Crit. Care Med.
  year: 1995
  ident: 2025032708031191100_R46
– start-page: 982
  volume-title: Br. Med. J.
  year: 1993
  ident: 2025032708031191100_R2
– start-page: 1007
  volume-title: J. Infect. Dis.
  year: 1994
  ident: 2025032708031191100_R14
– start-page: 343
  volume-title: Semin. Hematol.
  year: 1997
  ident: 2025032708031191100_R18
– start-page: 59
  volume-title: FEMS Immunol. Med. Microbiol.
  year: 2003
  ident: 2025032708031191100_R60
– start-page: 1225
  volume-title: Br. Med. J.
  year: 1995
  ident: 2025032708031191100_R3
– start-page: 609
  volume-title: Fields Virology
  year: 1996
  ident: 2025032708031191100_R47
– start-page: 390
  volume-title: J. Virol.
  year: 1993
  ident: 2025032708031191100_R56
– start-page: 3384
  volume-title: J. Immunol.
  year: 2000
  ident: 2025032708031191100_R40
– start-page: 317
  volume-title: Am. J. Respir. Cell Mol. Biol.
  year: 2001
  ident: 2025032708031191100_R17
– start-page: 1025
  volume-title: Science
  year: 2002
  ident: 2025032708031191100_R27
– start-page: 180
  volume-title: Exp. Mol. Pathol.
  year: 2003
  ident: 2025032708031191100_R34
– start-page: 14961
  volume-title: Proc. Natl. Acad. Sci. USA
  year: 1998
  ident: 2025032708031191100_R38
– start-page: 1171
  volume-title: J. Virol.
  year: 1998
  ident: 2025032708031191100_R49
– start-page: 6985
  volume-title: J. Immunol.
  year: 2002
  ident: 2025032708031191100_R62
– start-page: 1329
  volume-title: J. Infect. Dis.
  year: 1995
  ident: 2025032708031191100_R7
– start-page: 1207
  volume-title: EMBO J.
  year: 2000
  ident: 2025032708031191100_R57
– start-page: 732
  volume-title: J. Allergy Clin. Immunol.
  year: 1993
  ident: 2025032708031191100_R45
– start-page: 211
  volume-title: Gene
  year: 2001
  ident: 2025032708031191100_R59
– start-page: 1220
  volume-title: Am. J. Respir. Cell Mol. Biol.
  year: 1999
  ident: 2025032708031191100_R13
– start-page: 957
  volume-title: Hum. Gene Ther.
  year: 1999
  ident: 2025032708031191100_R23
– start-page: 591
  volume-title: J. Infect. Dis.
  year: 1990
  ident: 2025032708031191100_R44
– start-page: 1605
  volume-title: J. Immunol.
  year: 1996
  ident: 2025032708031191100_R28
– start-page: 6112
  volume-title: Oncogene
  year: 1999
  ident: 2025032708031191100_R36
– start-page: 659
  volume-title: Epidemiol. Infect.
  year: 1989
  ident: 2025032708031191100_R42
– start-page: 549
  volume-title: J. Clin. Invest.
  year: 1995
  ident: 2025032708031191100_R8
– start-page: 731
  volume-title: Am. J. Respir. Cell Mol. Biol.
  year: 2003
  ident: 2025032708031191100_R37
– start-page: L749
  volume-title: Am. J. Physiol.
  year: 1997
  ident: 2025032708031191100_R12
– start-page: 207
  volume-title: Am. J. Respir. Cell Mol. Biol.
  year: 1994
  ident: 2025032708031191100_R6
– start-page: 36
  volume-title: Clin. Exp. Allergy
  year: 1997
  ident: 2025032708031191100_R15
– start-page: 6718
  volume-title: J. Immunol.
  year: 1999
  ident: 2025032708031191100_R41
– start-page: 714
  volume-title: Am. J. Respir. Cell Mol. Biol.
  year: 2000
  ident: 2025032708031191100_R29
– start-page: 1131
  volume-title: J. Allergy Clin. Immunol.
  year: 1999
  ident: 2025032708031191100_R19
– start-page: 839
  volume-title: Cell
  year: 1989
  ident: 2025032708031191100_R52
– start-page: 5707
  volume-title: J. Biol. Chem.
  year: 2001
  ident: 2025032708031191100_R58
– start-page: 421
  volume-title: J. Clin. Invest.
  year: 1996
  ident: 2025032708031191100_R10
– start-page: 339
  volume-title: Virology
  year: 1996
  ident: 2025032708031191100_R35
– start-page: 1261
  volume-title: N. Engl. J. Med.
  year: 1966
  ident: 2025032708031191100_R1
– start-page: 235
  volume-title: J. Allergy Clin. Immunol.
  year: 2001
  ident: 2025032708031191100_R16
– start-page: 1819
  volume-title: FASEB J.
  year: 2001
  ident: 2025032708031191100_R21
– start-page: 1068
  volume-title: J. Virol.
  year: 1986
  ident: 2025032708031191100_R22
SSID ssj0006024
Score 2.1872866
Snippet We hypothesized that airway epithelial cells, the primary site of human rhinovirus (HRV) infection, provide a link between the innate and specific immune...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 4637
SubjectTerms Adult
beta-Defensins - biosynthesis
beta-Defensins - genetics
beta-Defensins - metabolism
Cell Line, Tumor
Common Cold - immunology
Common Cold - metabolism
Common Cold - virology
Female
Human rhinovirus
Humans
Interleukin-1 - physiology
Male
NF-kappa B - physiology
Promoter Regions, Genetic - immunology
Respiratory Mucosa - cytology
Respiratory Mucosa - immunology
Respiratory Mucosa - metabolism
Respiratory Mucosa - virology
Rhinovirus - classification
Rhinovirus - immunology
Rhinovirus - physiology
RNA, Messenger - biosynthesis
RNA, Messenger - metabolism
RNA, Viral - biosynthesis
Serotyping - classification
Time Factors
Virus Inactivation
Virus Replication - immunology
Title Human Rhinovirus Infection Induces Airway Epithelial Cell Production of Human β-Defensin 2 Both In Vitro and In Vivo
URI https://www.ncbi.nlm.nih.gov/pubmed/15034083
https://www.proquest.com/docview/18044267
https://www.proquest.com/docview/71766233
Volume 172
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWIhAXBOXV8vIBTku2ieONkwMHxEMFVITUVvQW2bGjrlSSVZps1f56Zuy8umor4BJtEq-T9fetM57MfEPIGx7ESioJlhuLfY9rzTwVKenFypciNAJWXZgovPcj2j3k347mR5PJxTi7pFaz7OLKvJL_QRWOAa6YJfsPyPadwgH4DPjCFhCG7V9h7Dzw1fGiKFeLqhlCqzB8UTcYbCUX1Zk8n5ol5l6coHscXfUYlqWdbqy1Fm0_ytTS0ybHkPZiyqYKQER3yGpRV2Wr0gQ7q3Js0A6pZU59AtNNnKzTW_vyzB-5Gn5WZbMeSN-833f5NdYNiwwy1ZBz9mthuurM-8eyK_XdeynGwS1D1kAgXOmNfuYVbEQxMZpHeeSkYNYneA4LGpzg218zgx5mYrbeGlBa_raYg7kbct-VylnT1e5O3SK3GSwxsPrFp6_f-6d45DPeKc3jfTvFKrz-zhVXt9WdXH-XDZxrVi3Wejl4QO63CNEPjkMPycQUm-SOK0R6vknu7rUhFo_ImSUVHUhFe1LRllTUkYoOpKJIKjqQipY5taSil0hFGUVSQT_UkooC9G5nVT4mh18-H3zc9drqHF4WClFjLAGXgVaR4VLkRuGAxbnRcwXWEAtzESeaJ3BCy0j4sU7kPJTJPM8CLmMus_AJ2SjKwjwjNMqD3Aiew_MBBea4UqEyuYyFjpIsy8ItwrohTbNWuh4rqJyksIRFSNIOkhQgSUWKkGyRd_2Xlk655ebmrzusUphhcdhkYcrmNA1in4Mde0MLgSqrLIT7fOpAHi7YkmL72jPPyb3h__KCbNRVY16CnVurV5aQfwAw16sg
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Human+rhinovirus+infection+induces+airway+epithelial+cell+production+of+human+beta-defensin+2+both+in+vitro+and+in+vivo&rft.jtitle=The+Journal+of+immunology+%281950%29&rft.au=Proud%2C+David&rft.au=Sanders%2C+Scherer+P&rft.au=Wiehler%2C+Shahina&rft.date=2004-04-01&rft.issn=0022-1767&rft.volume=172&rft.issue=7&rft.spage=4637&rft_id=info:doi/10.4049%2Fjimmunol.172.7.4637&rft_id=info%3Apmid%2F15034083&rft.externalDocID=15034083
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1767&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1767&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1767&client=summon