Vibrational quasi-degenerate perturbation theory: applications to fermi resonance in CO2, H2CO, and C6H6

A quasi-degenerate perturbation method with vibrational self-consistent field (VSCF) reference wavefunction is developed. It simultaneously accounts for strong anharmonic mode-mode coupling among a few states (static correlation) by a configuration interaction theory and for weak coupling with a vas...

Full description

Saved in:
Bibliographic Details
Published inPhysical chemistry chemical physics : PCCP Vol. 10; no. 13; pp. 1781 - 1788
Main Authors Yagi, Kiyoshi, Hirata, So, Hirao, Kimihiko
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 01.01.2008
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A quasi-degenerate perturbation method with vibrational self-consistent field (VSCF) reference wavefunction is developed. It simultaneously accounts for strong anharmonic mode-mode coupling among a few states (static correlation) by a configuration interaction theory and for weak coupling with a vast number of the other states (dynamic correlation) by a perturbation theory. A general formula is derived based on the van Vleck perturbation theory. An algorithm that selects a compact set of the most important VSCF configurations which contribute to the static correlation is proposed and a scheme to limit the number of configurations considered for dynamic correlation is also implemented. This method reproduces the vibrational frequencies of CO2 and H2CO that are subject to the strongest anharmonic mode-mode coupling within 10 cm(-1) of vibrational configuration interaction results in a computational expense reduced by a factor of one to two orders of magnitude. The method also reproduces the infrared absorption of C6H6 in the CH stretching (nu12) frequency region, in which combination tones nu13nu16 and nu2nu13nu18 appear on account of an intensity borrowing from nu12via the anharmonic coupling.
AbstractList A quasi-degenerate perturbation method with vibrational self-consistent field (VSCF) reference wavefunction is developed. It simultaneously accounts for strong anharmonic mode-mode coupling among a few states (static correlation) by a configuration interaction theory and for weak coupling with a vast number of the other states (dynamic correlation) by a perturbation theory. A general formula is derived based on the van Vleck perturbation theory. An algorithm that selects a compact set of the most important VSCF configurations which contribute to the static correlation is proposed and a scheme to limit the number of configurations considered for dynamic correlation is also implemented. This method reproduces the vibrational frequencies of CO2 and H2CO that are subject to the strongest anharmonic mode-mode coupling within 10 cm(-1) of vibrational configuration interaction results in a computational expense reduced by a factor of one to two orders of magnitude. The method also reproduces the infrared absorption of C6H6 in the CH stretching (nu12) frequency region, in which combination tones nu13nu16 and nu2nu13nu18 appear on account of an intensity borrowing from nu12via the anharmonic coupling.A quasi-degenerate perturbation method with vibrational self-consistent field (VSCF) reference wavefunction is developed. It simultaneously accounts for strong anharmonic mode-mode coupling among a few states (static correlation) by a configuration interaction theory and for weak coupling with a vast number of the other states (dynamic correlation) by a perturbation theory. A general formula is derived based on the van Vleck perturbation theory. An algorithm that selects a compact set of the most important VSCF configurations which contribute to the static correlation is proposed and a scheme to limit the number of configurations considered for dynamic correlation is also implemented. This method reproduces the vibrational frequencies of CO2 and H2CO that are subject to the strongest anharmonic mode-mode coupling within 10 cm(-1) of vibrational configuration interaction results in a computational expense reduced by a factor of one to two orders of magnitude. The method also reproduces the infrared absorption of C6H6 in the CH stretching (nu12) frequency region, in which combination tones nu13nu16 and nu2nu13nu18 appear on account of an intensity borrowing from nu12via the anharmonic coupling.
A quasi-degenerate perturbation method with vibrational self-consistent field (VSCF) reference wavefunction is developed. It simultaneously accounts for strong anharmonic mode-mode coupling among a few states (static correlation) by a configuration interaction theory and for weak coupling with a vast number of the other states (dynamic correlation) by a perturbation theory. A general formula is derived based on the van Vleck perturbation theory. An algorithm that selects a compact set of the most important VSCF configurations which contribute to the static correlation is proposed and a scheme to limit the number of configurations considered for dynamic correlation is also implemented. This method reproduces the vibrational frequencies of CO2 and H2CO that are subject to the strongest anharmonic mode-mode coupling within 10 cm(-1) of vibrational configuration interaction results in a computational expense reduced by a factor of one to two orders of magnitude. The method also reproduces the infrared absorption of C6H6 in the CH stretching (nu12) frequency region, in which combination tones nu13nu16 and nu2nu13nu18 appear on account of an intensity borrowing from nu12via the anharmonic coupling.
Author Yagi, Kiyoshi
Hirata, So
Hirao, Kimihiko
Author_xml – sequence: 1
  givenname: Kiyoshi
  surname: Yagi
  fullname: Yagi, Kiyoshi
– sequence: 2
  givenname: So
  surname: Hirata
  fullname: Hirata, So
– sequence: 3
  givenname: Kimihiko
  surname: Hirao
  fullname: Hirao, Kimihiko
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20237343$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/18350183$$D View this record in MEDLINE/PubMed
BookMark eNplkU1PwzAMhiM0xDZA4hegXEAc1pE0_Qo3VAFDmrQLcK3cxGVBXVuS9rB_T_eJBBfbsh-_kl-PyaCqKyTkirMpZ0Le5zGXTIqvEzLiQSQ8yZJgcKzjaEjGzn0xxnjIxRkZ8kSErA8jsvwwuYXW1BWU9LsDZzyNn1hh30TaoG07m2_ntF1ibdcPFJqmNGrbc7StaYF2ZahF12tUCqmpaLrwJ3Tmp4sJhUrTNJpFF-S0gNLh5T6fk_fnp7d05s0XL6_p49xTIo5bjwuMALSWEDMMdaCDHEH6CpTSBQ_zBCSiECIpQMpcKRWpkOV-UMQy0InW4pzc7nQbW3936NpsZZzCsoQK685lMQt6E6KwB6_3YJevUGeNNSuw6-zgTQ_c7AFwCsrC9tcZd-R85otYBBvubscpWztnsfiVYtnmPdnhPT06_YMq026dbC2Y8v_CD7-xkT0
CitedBy_id crossref_primary_10_1063_1_4813123
crossref_primary_10_1021_jp110043k
crossref_primary_10_1021_acs_jpcb_0c08493
crossref_primary_10_1063_1_3690065
crossref_primary_10_1002_jcc_24192
crossref_primary_10_1021_acs_jpcc_6b04852
crossref_primary_10_1021_acs_jpca_6b11189
crossref_primary_10_1080_0144235X_2014_1001220
crossref_primary_10_1063_1_4936779
crossref_primary_10_1021_jp5060155
crossref_primary_10_1063_1_4934234
crossref_primary_10_1021_cr500013u
crossref_primary_10_1021_ct400938a
crossref_primary_10_1039_D4CP02916J
crossref_primary_10_1021_acs_jpcb_9b04029
crossref_primary_10_1016_j_chemphys_2013_01_038
crossref_primary_10_1038_s41467_021_26284_x
crossref_primary_10_1021_jp9035315
crossref_primary_10_1021_acs_jpcc_3c02312
crossref_primary_10_1021_acs_jpclett_4c01298
crossref_primary_10_1063_1_3040427
crossref_primary_10_3762_bjnano_2_48
crossref_primary_10_1016_j_cplett_2011_01_021
crossref_primary_10_1063_1_4753422
crossref_primary_10_1021_acs_jctc_8b01193
crossref_primary_10_1039_b817468g
crossref_primary_10_1063_1_4767776
crossref_primary_10_1063_1_3243862
crossref_primary_10_1063_1_4790537
crossref_primary_10_1007_s00214_012_1282_z
crossref_primary_10_1063_5_0172702
crossref_primary_10_1039_D3CP01313H
crossref_primary_10_1103_PhysRevA_84_063409
crossref_primary_10_1039_D0CS01602K
crossref_primary_10_1016_j_memsci_2019_117705
crossref_primary_10_1063_1_3551513
crossref_primary_10_1063_1674_0068_cjcp2201005
crossref_primary_10_1007_s00214_012_1122_1
crossref_primary_10_1002_jcc_21665
crossref_primary_10_1007_s00214_017_2177_9
crossref_primary_10_1063_1_5089460
crossref_primary_10_1021_acs_jpca_3c01843
crossref_primary_10_1063_1_3154382
crossref_primary_10_1021_acs_nanolett_4c03592
crossref_primary_10_1039_c0cp00771d
crossref_primary_10_1063_1_3193708
crossref_primary_10_1007_s00214_016_1962_1
crossref_primary_10_1007_s00214_009_0535_y
crossref_primary_10_1021_acs_jpca_6b01604
crossref_primary_10_1063_1_4808369
crossref_primary_10_1021_acs_jpcb_6b06672
crossref_primary_10_1063_1_3092921
crossref_primary_10_1021_ct400214b
crossref_primary_10_1016_j_cplett_2008_07_087
crossref_primary_10_1002_qua_22066
crossref_primary_10_1063_1_4960600
crossref_primary_10_1063_1_2884348
crossref_primary_10_1021_acs_jctc_7b01075
crossref_primary_10_1063_1_3476468
crossref_primary_10_1021_jp807231p
crossref_primary_10_1063_1_4721626
crossref_primary_10_1063_1_4830100
crossref_primary_10_1088_1674_1056_21_8_083301
crossref_primary_10_1007_s00214_009_0689_7
crossref_primary_10_1016_j_chemphys_2012_12_038
crossref_primary_10_1021_acs_jpca_6b01194
crossref_primary_10_1063_1_3391180
crossref_primary_10_1021_acs_jctc_1c00314
crossref_primary_10_1016_j_cplett_2009_10_018
crossref_primary_10_1002_cphc_200900234
crossref_primary_10_1021_acs_jpcb_7b00372
crossref_primary_10_1021_acs_jpca_1c09989
crossref_primary_10_1063_1_4953080
crossref_primary_10_1016_j_chemphys_2016_09_010
crossref_primary_10_1016_j_cplett_2015_08_063
crossref_primary_10_1063_1_3364861
crossref_primary_10_1063_5_0039793
crossref_primary_10_1016_j_cplett_2017_01_015
crossref_primary_10_1039_C6CP07284D
crossref_primary_10_1063_5_0160700
crossref_primary_10_1063_5_0122268
crossref_primary_10_1007_s12039_019_1687_5
crossref_primary_10_1039_D4CP00064A
crossref_primary_10_1039_C8CP02448K
crossref_primary_10_1063_1_5096167
crossref_primary_10_1021_acs_jctc_1c00060
crossref_primary_10_1063_1_4894507
crossref_primary_10_1063_1_5040360
crossref_primary_10_1039_c3cp50283j
crossref_primary_10_1080_00268976_2010_489519
crossref_primary_10_1039_D2CP01808J
crossref_primary_10_1002_cphc_200900414
crossref_primary_10_1063_1_3158946
crossref_primary_10_1246_bcsj_20140189
crossref_primary_10_1039_c2cp40090a
crossref_primary_10_1016_j_comptc_2013_08_019
crossref_primary_10_1063_1_4938280
crossref_primary_10_1063_1_3171615
crossref_primary_10_1039_c3cp50739d
crossref_primary_10_1063_1_4951011
crossref_primary_10_3175_molsci_10_A0085
crossref_primary_10_1063_1_2973605
crossref_primary_10_1063_1_4866365
crossref_primary_10_3175_molsci_5_A0042
crossref_primary_10_1021_acsomega_8b03364
Cites_doi 10.1063/1.435782
10.1039/b618764a
10.1063/1.2748774
10.1063/1.461371
10.1016/j.cplett.2007.06.067
10.1063/1.1863935
10.1063/1.2162168
10.1063/1.460693
10.1103/RevModPhys.35.710
10.1063/1.2178297
10.1063/1.1601593
10.1007/s00214-007-0363-x
10.1002/qua.20615
10.1063/1.1672896
10.1002/qua.20544
10.1063/1.481881
10.1016/0022-2852(79)90236-4
10.1063/1.1764501
10.1063/1.1670695
10.1063/1.453797
10.1063/1.1637578
10.1063/1.2710256
10.1063/1.465674
10.1063/1.440050
10.1016/0009-2614(92)85354-D
10.1080/00268970512331316247
10.1063/1.474210
10.1063/1.1637579
10.1007/BF01341712
10.1016/0010-4655(88)90068-9
10.1063/1.1494978
10.1021/jp056937+
10.1063/1.470844
ContentType Journal Article
Copyright 2008 INIST-CNRS
Copyright_xml – notice: 2008 INIST-CNRS
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1039/b719093j
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1463-9084
EndPage 1788
ExternalDocumentID 18350183
20237343
10_1039_b719093j
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
0-7
0R~
0UZ
123
1TJ
29O
2WC
4.4
53G
6TJ
705
70~
71~
7~J
87K
9M8
AAEMU
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
AAYXX
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACHDF
ACIWK
ACLDK
ACNCT
ACRPL
ADMRA
ADNMO
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFFNX
AFLYV
AFOGI
AFRDS
AFRZK
AFVBQ
AGEGJ
AGKEF
AGQPQ
AGRSR
AHGCF
AHGXI
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALSGL
ALUYA
ANBJS
ANLMG
ANUXI
APEMP
ASKNT
ASPBG
AUDPV
AVWKF
AZFZN
BBWZM
BLAPV
BSQNT
C6K
CAG
CITATION
COF
CS3
D0L
DU5
EBS
ECGLT
EE0
EEHRC
EF-
EJD
F5P
FEDTE
GGIMP
GNO
H13
HVGLF
HZ~
H~9
H~N
IDY
IDZ
J3G
J3H
J3I
L-8
M4U
MVM
N9A
NDZJH
NHB
O9-
P2P
R56
R7B
R7C
RAOCF
RCLXC
RCNCU
RIG
RNS
ROL
RPMJG
RRA
RRC
RSCEA
SKA
SKF
SLH
TN5
TWZ
UHB
VH6
WH7
XJT
XOL
YNT
ZCG
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c377t-13e6aadd9a70e5d4d4bea92caccdf15b8a9ee3338fa99bccc6c50b24f794d8dd3
ISSN 1463-9076
IngestDate Fri Jul 11 16:49:13 EDT 2025
Mon Jul 21 06:05:22 EDT 2025
Mon Jul 21 09:15:55 EDT 2025
Tue Jul 01 02:06:30 EDT 2025
Thu Apr 24 22:52:56 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords Perturbation theory
Vibrational interaction
Correlation
Mode coupling
Reference
Wave function
Infrared absorption
Theoretical study
Configuration interaction
Algorithm
Perturbation method
Dynamics
Frequency
Resonance
SCF calculations
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c377t-13e6aadd9a70e5d4d4bea92caccdf15b8a9ee3338fa99bccc6c50b24f794d8dd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 18350183
PQID 70415165
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_70415165
pubmed_primary_18350183
pascalfrancis_primary_20237343
crossref_primary_10_1039_b719093j
crossref_citationtrail_10_1039_b719093j
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-01-01
PublicationDateYYYYMMDD 2008-01-01
PublicationDate_xml – month: 01
  year: 2008
  text: 2008-01-01
  day: 01
PublicationDecade 2000
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
– name: England
PublicationTitle Physical chemistry chemical physics : PCCP
PublicationTitleAlternate Phys Chem Chem Phys
PublicationYear 2008
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Christiansen (b719093j-(cit25)/*[position()=1]) 2004; 120
Yagi (b719093j-(cit32)/*[position()=1]) 2004; 121
Hirao (b719093j-(cit5)/*[position()=1]) 1991; 190
Carter (b719093j-(cit31)/*[position()=1]) 1997; 107
Chedin (b719093j-(cit40)/*[position()=1]) 1979; 76
Christiansen (b719093j-(cit28)/*[position()=1]) 2007; 9
Sibert III (b719093j-(cit12)/*[position()=1]) 1988; 88
Yagi (b719093j-(cit35)/*[position()=1]) 2000; 113
Christiansen (b719093j-(cit27)/*[position()=1]) 2005; 104
Dawes (b719093j-(cit18)/*[position()=1]) 2005; 122
Scotoni (b719093j-(cit42)/*[position()=1]) 1991; 94
Ramesh (b719093j-(cit15)/*[position()=1]) 2005; 103
Iung (b719093j-(cit17)/*[position()=1]) 2006; 110
Taketsugu (b719093j-(cit33)/*[position()=1]) 2005; 104
Fermi (b719093j-(cit3a)/*[position()=1]) 1931; 71
Rodriguez-Garcia (b719093j-(cit34)/*[position()=1]) 2007; 126
Sibert III (b719093j-(cit13)/*[position()=1]) 1988; 51
McCoy (b719093j-(cit14)/*[position()=1]) 1991; 95
Yagi (b719093j-(cit30)/*[position()=1]) 2007; 127
Bowman (b719093j-(cit20)/*[position()=1]) 1978; 68
Sprague (b719093j-(cit16)/*[position()=1]) 2006; 124
Kirtman (b719093j-(cit10)/*[position()=1]) 1968; 49
Dawes (b719093j-(cit19)/*[position()=1]) 2006; 124
Gerber (b719093j-(cit22)/*[position()=1]) 1998; 70
Bouwens (b719093j-(cit41)/*[position()=1]) 1996; 104
Shavitt (b719093j-(cit8)/*[position()=1]) 1980; 73
Certain (b719093j-(cit11)/*[position()=1]) 1970; 52
Christiansen (b719093j-(cit24)/*[position()=1]) 2003; 119
Matsunaga (b719093j-(cit29)/*[position()=1]) 2002; 117
Fujisaki (b719093j-(cit4)/*[position()=1]) 2007; 443
Primas (b719093j-(cit9)/*[position()=1]) 1963; 35
Nakano (b719093j-(cit6)/*[position()=1]) 1993; 99
Yagi (b719093j-(cit36)/*[position()=1]) 2007; 118
Christiansen (b719093j-(cit26)/*[position()=1]) 2004; 120
References_xml – volume: 68
  start-page: 608
  year: 1978
  ident: b719093j-(cit20)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.435782
– volume: 9
  start-page: 2942
  year: 2007
  ident: b719093j-(cit28)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b618764a
– volume: 127
  start-page: 034111
  year: 2007
  ident: b719093j-(cit30)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2748774
– volume: 95
  start-page: 7449
  year: 1991
  ident: b719093j-(cit14)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.461371
– volume: 443
  start-page: 6
  year: 2007
  ident: b719093j-(cit4)/*[position()=1]
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2007.06.067
– volume: 122
  start-page: 134101
  year: 2005
  ident: b719093j-(cit18)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1863935
– volume: 124
  start-page: 054102
  year: 2006
  ident: b719093j-(cit19)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2162168
– volume: 94
  start-page: 971
  year: 1991
  ident: b719093j-(cit42)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.460693
– volume: 35
  start-page: 710
  year: 1963
  ident: b719093j-(cit9)/*[position()=1]
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.35.710
– volume: 124
  start-page: 114307
  year: 2006
  ident: b719093j-(cit16)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2178297
– volume: 119
  start-page: 5773
  year: 2003
  ident: b719093j-(cit24)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1601593
– volume: 70
  start-page: 97
  year: 1998
  ident: b719093j-(cit22)/*[position()=1]
  publication-title: Adv. Chem. Phys.
– volume: 118
  start-page: 681
  year: 2007
  ident: b719093j-(cit36)/*[position()=1]
  publication-title: Theor. Chem. Acc.
  doi: 10.1007/s00214-007-0363-x
– volume: 104
  start-page: 667
  year: 2005
  ident: b719093j-(cit27)/*[position()=1]
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/qua.20615
– volume: 52
  start-page: 5977
  year: 1970
  ident: b719093j-(cit11)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1672896
– volume: 104
  start-page: 758
  year: 2005
  ident: b719093j-(cit33)/*[position()=1]
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/qua.20544
– volume: 113
  start-page: 1005
  year: 2000
  ident: b719093j-(cit35)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.481881
– volume: 76
  start-page: 430
  year: 1979
  ident: b719093j-(cit40)/*[position()=1]
  publication-title: J. Mol. Spectrosc.
  doi: 10.1016/0022-2852(79)90236-4
– volume: 121
  start-page: 1383
  year: 2004
  ident: b719093j-(cit32)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1764501
– volume: 49
  start-page: 3890
  year: 1968
  ident: b719093j-(cit10)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1670695
– volume: 88
  start-page: 4378
  year: 1988
  ident: b719093j-(cit12)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.453797
– volume: 120
  start-page: 2140
  year: 2004
  ident: b719093j-(cit25)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1637578
– volume: 126
  start-page: 124303
  year: 2007
  ident: b719093j-(cit34)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2710256
– volume: 99
  start-page: 7983
  year: 1993
  ident: b719093j-(cit6)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.465674
– volume: 73
  start-page: 5711
  year: 1980
  ident: b719093j-(cit8)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.440050
– volume: 190
  start-page: 374
  year: 1991
  ident: b719093j-(cit5)/*[position()=1]
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(92)85354-D
– volume: 103
  start-page: 149
  year: 2005
  ident: b719093j-(cit15)/*[position()=1]
  publication-title: Mol. Phys.
  doi: 10.1080/00268970512331316247
– volume: 107
  start-page: 10458
  year: 1997
  ident: b719093j-(cit31)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.474210
– volume: 120
  start-page: 2149
  year: 2004
  ident: b719093j-(cit26)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1637579
– volume: 71
  start-page: 250
  year: 1931
  ident: b719093j-(cit3a)/*[position()=1]
  publication-title: Z. Phys.
  doi: 10.1007/BF01341712
– volume: 51
  start-page: 149
  year: 1988
  ident: b719093j-(cit13)/*[position()=1]
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/0010-4655(88)90068-9
– volume: 117
  start-page: 3541
  year: 2002
  ident: b719093j-(cit29)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1494978
– volume: 110
  start-page: 5420
  year: 2006
  ident: b719093j-(cit17)/*[position()=1]
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp056937+
– volume: 104
  start-page: 460
  year: 1996
  ident: b719093j-(cit41)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.470844
SSID ssj0001513
Score 2.2618628
Snippet A quasi-degenerate perturbation method with vibrational self-consistent field (VSCF) reference wavefunction is developed. It simultaneously accounts for strong...
SourceID proquest
pubmed
pascalfrancis
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 1781
SubjectTerms Absorption
Benzene - analysis
Carbon Dioxide - analysis
Chemistry
Chemistry, Physical - methods
Computer Simulation
Exact sciences and technology
Formaldehyde - analysis
General and physical chemistry
Models, Statistical
Molecular Structure
Spectrophotometry - methods
Title Vibrational quasi-degenerate perturbation theory: applications to fermi resonance in CO2, H2CO, and C6H6
URI https://www.ncbi.nlm.nih.gov/pubmed/18350183
https://www.proquest.com/docview/70415165
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jj9MwFLZK5wASQuyUZTASEgcmkMZJHHMbRR0VKNORaFE5RY5jT8OSDCQ9wK_n2U7SFAaxXCLLdZPI3xe_xX7vIfQ4pSCUg9R14HfpgISQDo_G0PI8xaT0mWuqlrw5DqdL_9UqWA0Gr3unljZ1-kx8Pzeu5H9QhT7AVUfJ_gOy3U2hA9qAL1wBYbj-FcbvtK3bOPO-bHiVO5k8NXmka6kTEoM4SS3AJl7RJHfq71hrxVPp0zBPweguCxM9oKMA556RSF48bw93xuE07OuxJy28oi0YZ1u6yzpLKuNsOInjLoDsPT-1Rwfyb2W1zrdOb3hdo8K-Lft9pR37OV_nH8sd50TUc07Y9dQPiQP2d7iz4Lp9YpHe8jmmtn7LL-u6S3Ra1JSC-sLIh63savfrj-fJ0XI2SxaT1eIC2vPAZvCGaO9wsng56wQzKDfEBpvZd2pzERP2vL3zjnZy-YxXMG3KVjj5vQliVJHFVXSlsSHwoSXENTSQxXV0MW6RuIHWPWLgn4mB-8TAlhgvcJ8WuC6xoQXuaIHzAgMtDrAmxQEGSmBNiZtoeTRZxFOnKanhCEJp7YyJDDmINMapK4PMz_xUcuYJLkSm4JuNOHyghJBIccZSIUQoAjf1fAXLdhZlGbmFhkVZyDsIK6qoq0iWwdfuR2BFMyH06q4Y8aUifISetFOZiCbfvC578ikx5x4IS9pJH6FH3cgzm2PlnDH7O2h0Az1QOinxyQg9bOFJYLb1thcvZLmpEqqzUIzDYIRuW9S2D4lMPkty94__vYcubel9Hw3rrxv5ALTROt1vWPYDG9OOCQ
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vibrational+quasi-degenerate+perturbation+theory%3A+applications+to+fermi+resonance+in+CO2%2C+H2CO%2C+and+C6H6&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Yagi%2C+Kiyoshi&rft.au=Hirata%2C+So&rft.au=Hirao%2C+Kimihiko&rft.date=2008-01-01&rft.issn=1463-9076&rft.volume=10&rft.issue=13&rft.spage=1781&rft_id=info:doi/10.1039%2Fb719093j&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon