Vibrational quasi-degenerate perturbation theory: applications to fermi resonance in CO2, H2CO, and C6H6
A quasi-degenerate perturbation method with vibrational self-consistent field (VSCF) reference wavefunction is developed. It simultaneously accounts for strong anharmonic mode-mode coupling among a few states (static correlation) by a configuration interaction theory and for weak coupling with a vas...
Saved in:
Published in | Physical chemistry chemical physics : PCCP Vol. 10; no. 13; pp. 1781 - 1788 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
01.01.2008
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A quasi-degenerate perturbation method with vibrational self-consistent field (VSCF) reference wavefunction is developed. It simultaneously accounts for strong anharmonic mode-mode coupling among a few states (static correlation) by a configuration interaction theory and for weak coupling with a vast number of the other states (dynamic correlation) by a perturbation theory. A general formula is derived based on the van Vleck perturbation theory. An algorithm that selects a compact set of the most important VSCF configurations which contribute to the static correlation is proposed and a scheme to limit the number of configurations considered for dynamic correlation is also implemented. This method reproduces the vibrational frequencies of CO2 and H2CO that are subject to the strongest anharmonic mode-mode coupling within 10 cm(-1) of vibrational configuration interaction results in a computational expense reduced by a factor of one to two orders of magnitude. The method also reproduces the infrared absorption of C6H6 in the CH stretching (nu12) frequency region, in which combination tones nu13nu16 and nu2nu13nu18 appear on account of an intensity borrowing from nu12via the anharmonic coupling. |
---|---|
AbstractList | A quasi-degenerate perturbation method with vibrational self-consistent field (VSCF) reference wavefunction is developed. It simultaneously accounts for strong anharmonic mode-mode coupling among a few states (static correlation) by a configuration interaction theory and for weak coupling with a vast number of the other states (dynamic correlation) by a perturbation theory. A general formula is derived based on the van Vleck perturbation theory. An algorithm that selects a compact set of the most important VSCF configurations which contribute to the static correlation is proposed and a scheme to limit the number of configurations considered for dynamic correlation is also implemented. This method reproduces the vibrational frequencies of CO2 and H2CO that are subject to the strongest anharmonic mode-mode coupling within 10 cm(-1) of vibrational configuration interaction results in a computational expense reduced by a factor of one to two orders of magnitude. The method also reproduces the infrared absorption of C6H6 in the CH stretching (nu12) frequency region, in which combination tones nu13nu16 and nu2nu13nu18 appear on account of an intensity borrowing from nu12via the anharmonic coupling.A quasi-degenerate perturbation method with vibrational self-consistent field (VSCF) reference wavefunction is developed. It simultaneously accounts for strong anharmonic mode-mode coupling among a few states (static correlation) by a configuration interaction theory and for weak coupling with a vast number of the other states (dynamic correlation) by a perturbation theory. A general formula is derived based on the van Vleck perturbation theory. An algorithm that selects a compact set of the most important VSCF configurations which contribute to the static correlation is proposed and a scheme to limit the number of configurations considered for dynamic correlation is also implemented. This method reproduces the vibrational frequencies of CO2 and H2CO that are subject to the strongest anharmonic mode-mode coupling within 10 cm(-1) of vibrational configuration interaction results in a computational expense reduced by a factor of one to two orders of magnitude. The method also reproduces the infrared absorption of C6H6 in the CH stretching (nu12) frequency region, in which combination tones nu13nu16 and nu2nu13nu18 appear on account of an intensity borrowing from nu12via the anharmonic coupling. A quasi-degenerate perturbation method with vibrational self-consistent field (VSCF) reference wavefunction is developed. It simultaneously accounts for strong anharmonic mode-mode coupling among a few states (static correlation) by a configuration interaction theory and for weak coupling with a vast number of the other states (dynamic correlation) by a perturbation theory. A general formula is derived based on the van Vleck perturbation theory. An algorithm that selects a compact set of the most important VSCF configurations which contribute to the static correlation is proposed and a scheme to limit the number of configurations considered for dynamic correlation is also implemented. This method reproduces the vibrational frequencies of CO2 and H2CO that are subject to the strongest anharmonic mode-mode coupling within 10 cm(-1) of vibrational configuration interaction results in a computational expense reduced by a factor of one to two orders of magnitude. The method also reproduces the infrared absorption of C6H6 in the CH stretching (nu12) frequency region, in which combination tones nu13nu16 and nu2nu13nu18 appear on account of an intensity borrowing from nu12via the anharmonic coupling. |
Author | Yagi, Kiyoshi Hirata, So Hirao, Kimihiko |
Author_xml | – sequence: 1 givenname: Kiyoshi surname: Yagi fullname: Yagi, Kiyoshi – sequence: 2 givenname: So surname: Hirata fullname: Hirata, So – sequence: 3 givenname: Kimihiko surname: Hirao fullname: Hirao, Kimihiko |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20237343$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/18350183$$D View this record in MEDLINE/PubMed |
BookMark | eNplkU1PwzAMhiM0xDZA4hegXEAc1pE0_Qo3VAFDmrQLcK3cxGVBXVuS9rB_T_eJBBfbsh-_kl-PyaCqKyTkirMpZ0Le5zGXTIqvEzLiQSQ8yZJgcKzjaEjGzn0xxnjIxRkZ8kSErA8jsvwwuYXW1BWU9LsDZzyNn1hh30TaoG07m2_ntF1ibdcPFJqmNGrbc7StaYF2ZahF12tUCqmpaLrwJ3Tmp4sJhUrTNJpFF-S0gNLh5T6fk_fnp7d05s0XL6_p49xTIo5bjwuMALSWEDMMdaCDHEH6CpTSBQ_zBCSiECIpQMpcKRWpkOV-UMQy0InW4pzc7nQbW3936NpsZZzCsoQK685lMQt6E6KwB6_3YJevUGeNNSuw6-zgTQ_c7AFwCsrC9tcZd-R85otYBBvubscpWztnsfiVYtnmPdnhPT06_YMq026dbC2Y8v_CD7-xkT0 |
CitedBy_id | crossref_primary_10_1063_1_4813123 crossref_primary_10_1021_jp110043k crossref_primary_10_1021_acs_jpcb_0c08493 crossref_primary_10_1063_1_3690065 crossref_primary_10_1002_jcc_24192 crossref_primary_10_1021_acs_jpcc_6b04852 crossref_primary_10_1021_acs_jpca_6b11189 crossref_primary_10_1080_0144235X_2014_1001220 crossref_primary_10_1063_1_4936779 crossref_primary_10_1021_jp5060155 crossref_primary_10_1063_1_4934234 crossref_primary_10_1021_cr500013u crossref_primary_10_1021_ct400938a crossref_primary_10_1039_D4CP02916J crossref_primary_10_1021_acs_jpcb_9b04029 crossref_primary_10_1016_j_chemphys_2013_01_038 crossref_primary_10_1038_s41467_021_26284_x crossref_primary_10_1021_jp9035315 crossref_primary_10_1021_acs_jpcc_3c02312 crossref_primary_10_1021_acs_jpclett_4c01298 crossref_primary_10_1063_1_3040427 crossref_primary_10_3762_bjnano_2_48 crossref_primary_10_1016_j_cplett_2011_01_021 crossref_primary_10_1063_1_4753422 crossref_primary_10_1021_acs_jctc_8b01193 crossref_primary_10_1039_b817468g crossref_primary_10_1063_1_4767776 crossref_primary_10_1063_1_3243862 crossref_primary_10_1063_1_4790537 crossref_primary_10_1007_s00214_012_1282_z crossref_primary_10_1063_5_0172702 crossref_primary_10_1039_D3CP01313H crossref_primary_10_1103_PhysRevA_84_063409 crossref_primary_10_1039_D0CS01602K crossref_primary_10_1016_j_memsci_2019_117705 crossref_primary_10_1063_1_3551513 crossref_primary_10_1063_1674_0068_cjcp2201005 crossref_primary_10_1007_s00214_012_1122_1 crossref_primary_10_1002_jcc_21665 crossref_primary_10_1007_s00214_017_2177_9 crossref_primary_10_1063_1_5089460 crossref_primary_10_1021_acs_jpca_3c01843 crossref_primary_10_1063_1_3154382 crossref_primary_10_1021_acs_nanolett_4c03592 crossref_primary_10_1039_c0cp00771d crossref_primary_10_1063_1_3193708 crossref_primary_10_1007_s00214_016_1962_1 crossref_primary_10_1007_s00214_009_0535_y crossref_primary_10_1021_acs_jpca_6b01604 crossref_primary_10_1063_1_4808369 crossref_primary_10_1021_acs_jpcb_6b06672 crossref_primary_10_1063_1_3092921 crossref_primary_10_1021_ct400214b crossref_primary_10_1016_j_cplett_2008_07_087 crossref_primary_10_1002_qua_22066 crossref_primary_10_1063_1_4960600 crossref_primary_10_1063_1_2884348 crossref_primary_10_1021_acs_jctc_7b01075 crossref_primary_10_1063_1_3476468 crossref_primary_10_1021_jp807231p crossref_primary_10_1063_1_4721626 crossref_primary_10_1063_1_4830100 crossref_primary_10_1088_1674_1056_21_8_083301 crossref_primary_10_1007_s00214_009_0689_7 crossref_primary_10_1016_j_chemphys_2012_12_038 crossref_primary_10_1021_acs_jpca_6b01194 crossref_primary_10_1063_1_3391180 crossref_primary_10_1021_acs_jctc_1c00314 crossref_primary_10_1016_j_cplett_2009_10_018 crossref_primary_10_1002_cphc_200900234 crossref_primary_10_1021_acs_jpcb_7b00372 crossref_primary_10_1021_acs_jpca_1c09989 crossref_primary_10_1063_1_4953080 crossref_primary_10_1016_j_chemphys_2016_09_010 crossref_primary_10_1016_j_cplett_2015_08_063 crossref_primary_10_1063_1_3364861 crossref_primary_10_1063_5_0039793 crossref_primary_10_1016_j_cplett_2017_01_015 crossref_primary_10_1039_C6CP07284D crossref_primary_10_1063_5_0160700 crossref_primary_10_1063_5_0122268 crossref_primary_10_1007_s12039_019_1687_5 crossref_primary_10_1039_D4CP00064A crossref_primary_10_1039_C8CP02448K crossref_primary_10_1063_1_5096167 crossref_primary_10_1021_acs_jctc_1c00060 crossref_primary_10_1063_1_4894507 crossref_primary_10_1063_1_5040360 crossref_primary_10_1039_c3cp50283j crossref_primary_10_1080_00268976_2010_489519 crossref_primary_10_1039_D2CP01808J crossref_primary_10_1002_cphc_200900414 crossref_primary_10_1063_1_3158946 crossref_primary_10_1246_bcsj_20140189 crossref_primary_10_1039_c2cp40090a crossref_primary_10_1016_j_comptc_2013_08_019 crossref_primary_10_1063_1_4938280 crossref_primary_10_1063_1_3171615 crossref_primary_10_1039_c3cp50739d crossref_primary_10_1063_1_4951011 crossref_primary_10_3175_molsci_10_A0085 crossref_primary_10_1063_1_2973605 crossref_primary_10_1063_1_4866365 crossref_primary_10_3175_molsci_5_A0042 crossref_primary_10_1021_acsomega_8b03364 |
Cites_doi | 10.1063/1.435782 10.1039/b618764a 10.1063/1.2748774 10.1063/1.461371 10.1016/j.cplett.2007.06.067 10.1063/1.1863935 10.1063/1.2162168 10.1063/1.460693 10.1103/RevModPhys.35.710 10.1063/1.2178297 10.1063/1.1601593 10.1007/s00214-007-0363-x 10.1002/qua.20615 10.1063/1.1672896 10.1002/qua.20544 10.1063/1.481881 10.1016/0022-2852(79)90236-4 10.1063/1.1764501 10.1063/1.1670695 10.1063/1.453797 10.1063/1.1637578 10.1063/1.2710256 10.1063/1.465674 10.1063/1.440050 10.1016/0009-2614(92)85354-D 10.1080/00268970512331316247 10.1063/1.474210 10.1063/1.1637579 10.1007/BF01341712 10.1016/0010-4655(88)90068-9 10.1063/1.1494978 10.1021/jp056937+ 10.1063/1.470844 |
ContentType | Journal Article |
Copyright | 2008 INIST-CNRS |
Copyright_xml | – notice: 2008 INIST-CNRS |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1039/b719093j |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1463-9084 |
EndPage | 1788 |
ExternalDocumentID | 18350183 20237343 10_1039_b719093j |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -~X 0-7 0R~ 0UZ 123 1TJ 29O 2WC 4.4 53G 6TJ 705 70~ 71~ 7~J 87K 9M8 AAEMU AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP AAYXX ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACHDF ACIWK ACLDK ACNCT ACRPL ADMRA ADNMO ADSRN AEFDR AENEX AENGV AESAV AETIL AFFNX AFLYV AFOGI AFRDS AFRZK AFVBQ AGEGJ AGKEF AGQPQ AGRSR AHGCF AHGXI AKMSF ALMA_UNASSIGNED_HOLDINGS ALSGL ALUYA ANBJS ANLMG ANUXI APEMP ASKNT ASPBG AUDPV AVWKF AZFZN BBWZM BLAPV BSQNT C6K CAG CITATION COF CS3 D0L DU5 EBS ECGLT EE0 EEHRC EF- EJD F5P FEDTE GGIMP GNO H13 HVGLF HZ~ H~9 H~N IDY IDZ J3G J3H J3I L-8 M4U MVM N9A NDZJH NHB O9- P2P R56 R7B R7C RAOCF RCLXC RCNCU RIG RNS ROL RPMJG RRA RRC RSCEA SKA SKF SLH TN5 TWZ UHB VH6 WH7 XJT XOL YNT ZCG IQODW CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c377t-13e6aadd9a70e5d4d4bea92caccdf15b8a9ee3338fa99bccc6c50b24f794d8dd3 |
ISSN | 1463-9076 |
IngestDate | Fri Jul 11 16:49:13 EDT 2025 Mon Jul 21 06:05:22 EDT 2025 Mon Jul 21 09:15:55 EDT 2025 Tue Jul 01 02:06:30 EDT 2025 Thu Apr 24 22:52:56 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Keywords | Perturbation theory Vibrational interaction Correlation Mode coupling Reference Wave function Infrared absorption Theoretical study Configuration interaction Algorithm Perturbation method Dynamics Frequency Resonance SCF calculations |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c377t-13e6aadd9a70e5d4d4bea92caccdf15b8a9ee3338fa99bccc6c50b24f794d8dd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 18350183 |
PQID | 70415165 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_70415165 pubmed_primary_18350183 pascalfrancis_primary_20237343 crossref_primary_10_1039_b719093j crossref_citationtrail_10_1039_b719093j |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2008-01-01 |
PublicationDateYYYYMMDD | 2008-01-01 |
PublicationDate_xml | – month: 01 year: 2008 text: 2008-01-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge – name: England |
PublicationTitle | Physical chemistry chemical physics : PCCP |
PublicationTitleAlternate | Phys Chem Chem Phys |
PublicationYear | 2008 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Christiansen (b719093j-(cit25)/*[position()=1]) 2004; 120 Yagi (b719093j-(cit32)/*[position()=1]) 2004; 121 Hirao (b719093j-(cit5)/*[position()=1]) 1991; 190 Carter (b719093j-(cit31)/*[position()=1]) 1997; 107 Chedin (b719093j-(cit40)/*[position()=1]) 1979; 76 Christiansen (b719093j-(cit28)/*[position()=1]) 2007; 9 Sibert III (b719093j-(cit12)/*[position()=1]) 1988; 88 Yagi (b719093j-(cit35)/*[position()=1]) 2000; 113 Christiansen (b719093j-(cit27)/*[position()=1]) 2005; 104 Dawes (b719093j-(cit18)/*[position()=1]) 2005; 122 Scotoni (b719093j-(cit42)/*[position()=1]) 1991; 94 Ramesh (b719093j-(cit15)/*[position()=1]) 2005; 103 Iung (b719093j-(cit17)/*[position()=1]) 2006; 110 Taketsugu (b719093j-(cit33)/*[position()=1]) 2005; 104 Fermi (b719093j-(cit3a)/*[position()=1]) 1931; 71 Rodriguez-Garcia (b719093j-(cit34)/*[position()=1]) 2007; 126 Sibert III (b719093j-(cit13)/*[position()=1]) 1988; 51 McCoy (b719093j-(cit14)/*[position()=1]) 1991; 95 Yagi (b719093j-(cit30)/*[position()=1]) 2007; 127 Bowman (b719093j-(cit20)/*[position()=1]) 1978; 68 Sprague (b719093j-(cit16)/*[position()=1]) 2006; 124 Kirtman (b719093j-(cit10)/*[position()=1]) 1968; 49 Dawes (b719093j-(cit19)/*[position()=1]) 2006; 124 Gerber (b719093j-(cit22)/*[position()=1]) 1998; 70 Bouwens (b719093j-(cit41)/*[position()=1]) 1996; 104 Shavitt (b719093j-(cit8)/*[position()=1]) 1980; 73 Certain (b719093j-(cit11)/*[position()=1]) 1970; 52 Christiansen (b719093j-(cit24)/*[position()=1]) 2003; 119 Matsunaga (b719093j-(cit29)/*[position()=1]) 2002; 117 Fujisaki (b719093j-(cit4)/*[position()=1]) 2007; 443 Primas (b719093j-(cit9)/*[position()=1]) 1963; 35 Nakano (b719093j-(cit6)/*[position()=1]) 1993; 99 Yagi (b719093j-(cit36)/*[position()=1]) 2007; 118 Christiansen (b719093j-(cit26)/*[position()=1]) 2004; 120 |
References_xml | – volume: 68 start-page: 608 year: 1978 ident: b719093j-(cit20)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.435782 – volume: 9 start-page: 2942 year: 2007 ident: b719093j-(cit28)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b618764a – volume: 127 start-page: 034111 year: 2007 ident: b719093j-(cit30)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.2748774 – volume: 95 start-page: 7449 year: 1991 ident: b719093j-(cit14)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.461371 – volume: 443 start-page: 6 year: 2007 ident: b719093j-(cit4)/*[position()=1] publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2007.06.067 – volume: 122 start-page: 134101 year: 2005 ident: b719093j-(cit18)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.1863935 – volume: 124 start-page: 054102 year: 2006 ident: b719093j-(cit19)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.2162168 – volume: 94 start-page: 971 year: 1991 ident: b719093j-(cit42)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.460693 – volume: 35 start-page: 710 year: 1963 ident: b719093j-(cit9)/*[position()=1] publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.35.710 – volume: 124 start-page: 114307 year: 2006 ident: b719093j-(cit16)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.2178297 – volume: 119 start-page: 5773 year: 2003 ident: b719093j-(cit24)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.1601593 – volume: 70 start-page: 97 year: 1998 ident: b719093j-(cit22)/*[position()=1] publication-title: Adv. Chem. Phys. – volume: 118 start-page: 681 year: 2007 ident: b719093j-(cit36)/*[position()=1] publication-title: Theor. Chem. Acc. doi: 10.1007/s00214-007-0363-x – volume: 104 start-page: 667 year: 2005 ident: b719093j-(cit27)/*[position()=1] publication-title: Int. J. Quantum Chem. doi: 10.1002/qua.20615 – volume: 52 start-page: 5977 year: 1970 ident: b719093j-(cit11)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.1672896 – volume: 104 start-page: 758 year: 2005 ident: b719093j-(cit33)/*[position()=1] publication-title: Int. J. Quantum Chem. doi: 10.1002/qua.20544 – volume: 113 start-page: 1005 year: 2000 ident: b719093j-(cit35)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.481881 – volume: 76 start-page: 430 year: 1979 ident: b719093j-(cit40)/*[position()=1] publication-title: J. Mol. Spectrosc. doi: 10.1016/0022-2852(79)90236-4 – volume: 121 start-page: 1383 year: 2004 ident: b719093j-(cit32)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.1764501 – volume: 49 start-page: 3890 year: 1968 ident: b719093j-(cit10)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.1670695 – volume: 88 start-page: 4378 year: 1988 ident: b719093j-(cit12)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.453797 – volume: 120 start-page: 2140 year: 2004 ident: b719093j-(cit25)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.1637578 – volume: 126 start-page: 124303 year: 2007 ident: b719093j-(cit34)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.2710256 – volume: 99 start-page: 7983 year: 1993 ident: b719093j-(cit6)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.465674 – volume: 73 start-page: 5711 year: 1980 ident: b719093j-(cit8)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.440050 – volume: 190 start-page: 374 year: 1991 ident: b719093j-(cit5)/*[position()=1] publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(92)85354-D – volume: 103 start-page: 149 year: 2005 ident: b719093j-(cit15)/*[position()=1] publication-title: Mol. Phys. doi: 10.1080/00268970512331316247 – volume: 107 start-page: 10458 year: 1997 ident: b719093j-(cit31)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.474210 – volume: 120 start-page: 2149 year: 2004 ident: b719093j-(cit26)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.1637579 – volume: 71 start-page: 250 year: 1931 ident: b719093j-(cit3a)/*[position()=1] publication-title: Z. Phys. doi: 10.1007/BF01341712 – volume: 51 start-page: 149 year: 1988 ident: b719093j-(cit13)/*[position()=1] publication-title: Comput. Phys. Commun. doi: 10.1016/0010-4655(88)90068-9 – volume: 117 start-page: 3541 year: 2002 ident: b719093j-(cit29)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.1494978 – volume: 110 start-page: 5420 year: 2006 ident: b719093j-(cit17)/*[position()=1] publication-title: J. Phys. Chem. A doi: 10.1021/jp056937+ – volume: 104 start-page: 460 year: 1996 ident: b719093j-(cit41)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.470844 |
SSID | ssj0001513 |
Score | 2.2618628 |
Snippet | A quasi-degenerate perturbation method with vibrational self-consistent field (VSCF) reference wavefunction is developed. It simultaneously accounts for strong... |
SourceID | proquest pubmed pascalfrancis crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 1781 |
SubjectTerms | Absorption Benzene - analysis Carbon Dioxide - analysis Chemistry Chemistry, Physical - methods Computer Simulation Exact sciences and technology Formaldehyde - analysis General and physical chemistry Models, Statistical Molecular Structure Spectrophotometry - methods |
Title | Vibrational quasi-degenerate perturbation theory: applications to fermi resonance in CO2, H2CO, and C6H6 |
URI | https://www.ncbi.nlm.nih.gov/pubmed/18350183 https://www.proquest.com/docview/70415165 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jj9MwFLZK5wASQuyUZTASEgcmkMZJHHMbRR0VKNORaFE5RY5jT8OSDCQ9wK_n2U7SFAaxXCLLdZPI3xe_xX7vIfQ4pSCUg9R14HfpgISQDo_G0PI8xaT0mWuqlrw5DqdL_9UqWA0Gr3unljZ1-kx8Pzeu5H9QhT7AVUfJ_gOy3U2hA9qAL1wBYbj-FcbvtK3bOPO-bHiVO5k8NXmka6kTEoM4SS3AJl7RJHfq71hrxVPp0zBPweguCxM9oKMA556RSF48bw93xuE07OuxJy28oi0YZ1u6yzpLKuNsOInjLoDsPT-1Rwfyb2W1zrdOb3hdo8K-Lft9pR37OV_nH8sd50TUc07Y9dQPiQP2d7iz4Lp9YpHe8jmmtn7LL-u6S3Ra1JSC-sLIh63savfrj-fJ0XI2SxaT1eIC2vPAZvCGaO9wsng56wQzKDfEBpvZd2pzERP2vL3zjnZy-YxXMG3KVjj5vQliVJHFVXSlsSHwoSXENTSQxXV0MW6RuIHWPWLgn4mB-8TAlhgvcJ8WuC6xoQXuaIHzAgMtDrAmxQEGSmBNiZtoeTRZxFOnKanhCEJp7YyJDDmINMapK4PMz_xUcuYJLkSm4JuNOHyghJBIccZSIUQoAjf1fAXLdhZlGbmFhkVZyDsIK6qoq0iWwdfuR2BFMyH06q4Y8aUifISetFOZiCbfvC578ikx5x4IS9pJH6FH3cgzm2PlnDH7O2h0Az1QOinxyQg9bOFJYLb1thcvZLmpEqqzUIzDYIRuW9S2D4lMPkty94__vYcubel9Hw3rrxv5ALTROt1vWPYDG9OOCQ |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vibrational+quasi-degenerate+perturbation+theory%3A+applications+to+fermi+resonance+in+CO2%2C+H2CO%2C+and+C6H6&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Yagi%2C+Kiyoshi&rft.au=Hirata%2C+So&rft.au=Hirao%2C+Kimihiko&rft.date=2008-01-01&rft.issn=1463-9076&rft.volume=10&rft.issue=13&rft.spage=1781&rft_id=info:doi/10.1039%2Fb719093j&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon |