Long-term effects of softwood biochar on soil physical properties, greenhouse gas emissions and crop nutrient uptake in two contrasting boreal soils

Biochars (BC) have tremendous potential in mitigating climate change, and offer various agricultural and environmental benefits. However, there is limited information about the long-term effects of added biochars particularly from boreal regions. We studied the effects of a single application of sof...

Full description

Saved in:
Bibliographic Details
Published inAgriculture, ecosystems & environment Vol. 316; p. 107454
Main Authors Kalu, Subin, Simojoki, Asko, Karhu, Kristiina, Tammeorg, Priit
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.08.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Biochars (BC) have tremendous potential in mitigating climate change, and offer various agricultural and environmental benefits. However, there is limited information about the long-term effects of added biochars particularly from boreal regions. We studied the effects of a single application of softwood biochars on two contrasting boreal agricultural soils (nutrient-poor, coarse textured Umbrisol and fertile, fine-textured Stagnosol), both with high initial soil organic carbon contents, over eight years following the application. We focused on plant nutrient contents and nutrient uptake dynamics of different field crops over these years, as well as on soil physical properties and greenhouse gas emissions during seven to nine growing seasons. We found that, added biochars had minor long-term effects on the crop biomass yield, plant nutrient contents and plant nutrient uptake in both soil types. In terms of crop biomass yields, significant biochar × fertilization interactions were observed in barley (in 2013) and peas (in 2016), three and six years after the application of biochar in Stagnosol, respectively. In both cases, the biochar combined with the normal fertilization rate (100% of the recommended value) significantly increased crop biomass yield compared to corresponding fertilization treatment without biochar. However, the biochar had no effect at a lower fertilization rate (30% of the recommended value). Similar significant biochar × fertilization interactions were observed for several plant nutrient contents for peas in 2016, and for uptake for both barley in 2013 and peas in 2016. Thus, the ability of biochar to enhance the supply of nutrients to plants and hence to improve the crop biomass yield exists in boreal conditions, although these effects were minimal and not consistent over the years. Biochar notably increased plant K content, and also increased K:Mg ratio in plant biomass, suggesting a possible antagonistic effect of K on Mg in Umbrisol. Similar K antagonism on Na was observed in Stagnosol. The applied biochar also reduced the plant content and uptake of Al and Na in several years in Stagnosol. Furthermore, we found that, increased plant Mn content with biochar in the initial years subsequently declined over the following years in Umbrisol. On the other hand, the relative plant contents of Cd and Ni in Umbrisol, and P, K, Mg, S, Al, Cu, Fe and Ni in Stagnosol increased over the years. Despite these increased plant contents, no significant improvement was observed in crop biomass yield by added biochar over the years. The enhanced plant available water and reduced bulk density previously reported during the initial years were faded in long-term, likely due to dilution of biochar concentration in topsoil. However, the potential of biochar to affect N2O emission persisted, even seven years after the application. •Biochar (BC) effects were measured for eight years after the application.•BC had minor long-term effects on crop biomass yield.•BC increased plant K content and reduced plant Al and Na content and uptake.•BC had no long-term effects on soil physical properties.•BC had potential to affect N2O emission in long-term.
AbstractList Biochars (BC) have tremendous potential in mitigating climate change, and offer various agricultural and environmental benefits. However, there is limited information about the long-term effects of added biochars particularly from boreal regions. We studied the effects of a single application of softwood biochars on two contrasting boreal agricultural soils (nutrient-poor, coarse textured Umbrisol and fertile, fine-textured Stagnosol), both with high initial soil organic carbon contents, over eight years following the application. We focused on plant nutrient contents and nutrient uptake dynamics of different field crops over these years, as well as on soil physical properties and greenhouse gas emissions during seven to nine growing seasons. We found that, added biochars had minor long-term effects on the crop biomass yield, plant nutrient contents and plant nutrient uptake in both soil types. In terms of crop biomass yields, significant biochar × fertilization interactions were observed in barley (in 2013) and peas (in 2016), three and six years after the application of biochar in Stagnosol, respectively. In both cases, the biochar combined with the normal fertilization rate (100% of the recommended value) significantly increased crop biomass yield compared to corresponding fertilization treatment without biochar. However, the biochar had no effect at a lower fertilization rate (30% of the recommended value). Similar significant biochar × fertilization interactions were observed for several plant nutrient contents for peas in 2016, and for uptake for both barley in 2013 and peas in 2016. Thus, the ability of biochar to enhance the supply of nutrients to plants and hence to improve the crop biomass yield exists in boreal conditions, although these effects were minimal and not consistent over the years. Biochar notably increased plant K content, and also increased K:Mg ratio in plant biomass, suggesting a possible antagonistic effect of K on Mg in Umbrisol. Similar K antagonism on Na was observed in Stagnosol. The applied biochar also reduced the plant content and uptake of Al and Na in several years in Stagnosol. Furthermore, we found that, increased plant Mn content with biochar in the initial years subsequently declined over the following years in Umbrisol. On the other hand, the relative plant contents of Cd and Ni in Umbrisol, and P, K, Mg, S, Al, Cu, Fe and Ni in Stagnosol increased over the years. Despite these increased plant contents, no significant improvement was observed in crop biomass yield by added biochar over the years. The enhanced plant available water and reduced bulk density previously reported during the initial years were faded in long-term, likely due to dilution of biochar concentration in topsoil. However, the potential of biochar to affect N2O emission persisted, even seven years after the application. •Biochar (BC) effects were measured for eight years after the application.•BC had minor long-term effects on crop biomass yield.•BC increased plant K content and reduced plant Al and Na content and uptake.•BC had no long-term effects on soil physical properties.•BC had potential to affect N2O emission in long-term.
Biochars (BC) have tremendous potential in mitigating climate change, and offer various agricultural and environmental benefits. However, there is limited information about the long-term effects of added biochars particularly from boreal regions. We studied the effects of a single application of softwood biochars on two contrasting boreal agricultural soils (nutrient-poor, coarse textured Umbrisol and fertile, fine-textured Stagnosol), both with high initial soil organic carbon contents, over eight years following the application. We focused on plant nutrient contents and nutrient uptake dynamics of different field crops over these years, as well as on soil physical properties and greenhouse gas emissions during seven to nine growing seasons. We found that, added biochars had minor long-term effects on the crop biomass yield, plant nutrient contents and plant nutrient uptake in both soil types. In terms of crop biomass yields, significant biochar × fertilization interactions were observed in barley (in 2013) and peas (in 2016), three and six years after the application of biochar in Stagnosol, respectively. In both cases, the biochar combined with the normal fertilization rate (100% of the recommended value) significantly increased crop biomass yield compared to corresponding fertilization treatment without biochar. However, the biochar had no effect at a lower fertilization rate (30% of the recommended value). Similar significant biochar × fertilization interactions were observed for several plant nutrient contents for peas in 2016, and for uptake for both barley in 2013 and peas in 2016. Thus, the ability of biochar to enhance the supply of nutrients to plants and hence to improve the crop biomass yield exists in boreal conditions, although these effects were minimal and not consistent over the years. Biochar notably increased plant K content, and also increased K:Mg ratio in plant biomass, suggesting a possible antagonistic effect of K on Mg in Umbrisol. Similar K antagonism on Na was observed in Stagnosol. The applied biochar also reduced the plant content and uptake of Al and Na in several years in Stagnosol. Furthermore, we found that, increased plant Mn content with biochar in the initial years subsequently declined over the following years in Umbrisol. On the other hand, the relative plant contents of Cd and Ni in Umbrisol, and P, K, Mg, S, Al, Cu, Fe and Ni in Stagnosol increased over the years. Despite these increased plant contents, no significant improvement was observed in crop biomass yield by added biochar over the years. The enhanced plant available water and reduced bulk density previously reported during the initial years were faded in long-term, likely due to dilution of biochar concentration in topsoil. However, the potential of biochar to affect N₂O emission persisted, even seven years after the application.
ArticleNumber 107454
Author Kalu, Subin
Karhu, Kristiina
Tammeorg, Priit
Simojoki, Asko
Author_xml – sequence: 1
  givenname: Subin
  surname: Kalu
  fullname: Kalu, Subin
  email: subin.kalu@helsinki.fi
  organization: Department of Agricultural Sciences, University of Helsinki, Latokartanonkaari 5, P. O. Box 27, FI-00014 Helsinki, Finland
– sequence: 2
  givenname: Asko
  orcidid: 0000-0003-2397-3553
  surname: Simojoki
  fullname: Simojoki, Asko
  organization: Department of Agricultural Sciences, University of Helsinki, Viikinkaari 9, P. O. Box 56, FI-00014 Helsinki, Finland
– sequence: 3
  givenname: Kristiina
  surname: Karhu
  fullname: Karhu, Kristiina
  organization: Department of Forest Sciences, University of Helsinki, Latokartanonkaari 7, P. O. Box 27, FI-00014 Helsinki, Finland
– sequence: 4
  givenname: Priit
  surname: Tammeorg
  fullname: Tammeorg, Priit
  organization: Department of Agricultural Sciences, University of Helsinki, Latokartanonkaari 5, P. O. Box 27, FI-00014 Helsinki, Finland
BookMark eNp9kb2OGyEUhVG0K8X78wJbUabIOMCMByyliVb5kyylSWqE4TLGGYPDxYn2PfLAuY5TpVga0NX5DhzODbvKJQNjD1IspZDjm_3STQBLJZSkgR5Wwwu2kEb3nerF6ootSKQ7Y8T6JbtB3AtaqjcL9ntT8tQ1qAcOMYJvyEvkWGL7VUrg21T8zlVeMs3SzI-7J0ze0aGWI9SWAF_zqQLkXTkh8Mkhh0NCTCUjdzlwT0KeT60myI2fjs19B54yJ3_uS27VYUt54ttSgXzPt-Adu45uRrj_t9-ybx_ef3381G2-fPz8-G7T-V7r1sk-gDLRrENYg1HaGRhHpyWIbRBxrUEaYfrRu8FI41T021GqIDW4QfQE9bfs1cWX0vw4ATZLT_cwzy4DxbFqpYdeGqMFSc1FSnkQK0TrU3Mt_U2QZiuFPRdh9_ZchD0XYS9FEKr-Q481HVx9eh56e4GA8v9MUC16-kEPIVVqyYaSnsP_AIr1p5g
CitedBy_id crossref_primary_10_1002_jeq2_20475
crossref_primary_10_1016_j_scitotenv_2023_169585
crossref_primary_10_3390_ma16216950
crossref_primary_10_1080_17583004_2025_2465328
crossref_primary_10_1016_j_micres_2024_127696
crossref_primary_10_1016_j_agee_2022_108265
crossref_primary_10_1007_s10705_024_10393_2
crossref_primary_10_1016_j_agwat_2024_108722
crossref_primary_10_1016_j_scitotenv_2022_159782
crossref_primary_10_3390_agronomy13041111
crossref_primary_10_1016_j_scitotenv_2023_167623
crossref_primary_10_1080_01904167_2023_2220740
crossref_primary_10_1007_s42773_024_00307_4
crossref_primary_10_1016_j_scitotenv_2023_161881
crossref_primary_10_1139_cjss_2021_0047
crossref_primary_10_1016_j_fcr_2023_109121
crossref_primary_10_1016_j_fcr_2024_109340
crossref_primary_10_1016_j_foreco_2023_120881
crossref_primary_10_1016_j_jenvman_2023_119945
crossref_primary_10_3389_fsufs_2022_951518
crossref_primary_10_1016_j_scitotenv_2021_150337
crossref_primary_10_1002_agj2_21174
crossref_primary_10_1016_j_ecofro_2024_05_005
crossref_primary_10_1016_j_jenvman_2024_123847
crossref_primary_10_1080_21655979_2021_1993536
crossref_primary_10_1016_j_agee_2025_109600
crossref_primary_10_1016_j_geoderma_2025_117237
crossref_primary_10_3390_app13137781
crossref_primary_10_1016_j_apsoil_2024_105652
crossref_primary_10_3390_agronomy13112833
crossref_primary_10_1007_s12210_023_01221_w
crossref_primary_10_1016_j_agwat_2022_107806
crossref_primary_10_1016_j_agee_2022_108233
crossref_primary_10_1038_s41598_023_48996_4
crossref_primary_10_3390_su15021206
crossref_primary_10_1590_0103_8478cr20210459
crossref_primary_10_3390_su142214722
crossref_primary_10_4236_ojpchem_2024_143007
crossref_primary_10_1016_j_scitotenv_2023_163113
crossref_primary_10_3389_fenvs_2022_914766
crossref_primary_10_1016_j_biombioe_2023_106787
crossref_primary_10_3390_su151712900
crossref_primary_10_1016_j_rhisph_2024_100887
crossref_primary_10_5897_AJAR2023_16547
crossref_primary_10_1038_s41598_021_93200_0
crossref_primary_10_3390_su15129488
crossref_primary_10_1016_j_chemosphere_2021_133476
crossref_primary_10_1007_s42729_021_00678_8
Cites_doi 10.1016/j.agee.2014.03.031
10.1016/j.jhazmat.2019.121265
10.1016/j.jaridenv.2012.07.012
10.1016/j.agwat.2015.04.010
10.1038/s41467-017-01123-0
10.1021/acs.est.7b00647
10.1071/CP07125
10.1088/1748-9326/aa67bd
10.1104/pp.111.175232
10.1016/j.agee.2014.01.007
10.1016/j.apsoil.2015.07.014
10.1016/j.ecoenv.2017.02.028
10.1007/s11104-012-1169-8
10.1111/gcb.12137
10.1007/s11104-010-0327-0
10.18637/jss.v067.i01
10.1002/ehs2.1202
10.1111/ejss.12071
10.1111/gcb.14613
10.2134/jeq2015.10.0529
10.1016/bs.agron.2016.10.001
10.1016/j.geoderma.2016.11.025
10.1016/j.scitotenv.2020.144533
10.3390/w12072012
10.1016/j.agee.2016.04.010
10.3846/16486897.2016.1239582
10.1111/gcbb.12665
10.1016/j.agee.2016.11.002
10.1007/BF03179980
10.1111/j.1574-6968.2009.01674.x
10.3390/su12083436
10.1016/j.orggeochem.2006.06.022
10.3390/agronomy10030449
10.1016/j.scitotenv.2020.137286
10.1111/gcbb.12037
10.1016/j.agee.2020.107286
10.1016/j.chemosphere.2012.06.002
10.1016/j.soilbio.2013.12.021
10.1038/nclimate3276
10.1016/j.jclepro.2019.118435
10.1007/s42773-020-00067-x
10.1007/s00374-020-01534-0
10.1016/j.scitotenv.2018.11.124
10.1016/j.scitotenv.2018.10.060
10.1016/j.agee.2010.12.005
10.1029/2020GB006698
10.1016/j.geoderma.2019.03.011
10.1021/ez500199t
10.1007/s13593-014-0251-4
10.1016/j.fcr.2019.02.015
10.1128/aem.61.8.3129-3135.1995
10.1016/j.scitotenv.2020.137455
10.1111/j.2517-6161.1964.tb00553.x
10.1111/gcbb.12005
10.2134/agronj2009.0083
10.1002/jpln.201700528
10.1007/s11104-013-1851-5
10.1016/j.scitotenv.2017.09.200
10.1007/s13593-012-0128-3
10.1002/jpln.201800228
10.1111/sum.12546
10.1016/j.scitotenv.2020.142430
10.1111/gcbb.12430
10.1016/j.scitotenv.2017.09.124
10.1016/j.geoderma.2016.07.019
10.3390/agriculture8110171
10.1007/s42773-019-00026-1
10.1007/s00374-021-01541-9
10.3390/agronomy3020313
10.17221/359/2018-PSE
10.2134/agronj1987.00021962007900010020x
10.1038/srep11080
10.2134/jeq2011.0070
10.1016/j.agee.2014.02.023
10.1016/j.jenvman.2016.06.063
10.1016/j.scitotenv.2020.138955
10.1016/j.soilbio.2011.11.019
10.1016/j.geoderma.2020.114178
10.1088/1748-9326/8/4/044049
10.1016/j.scitotenv.2018.06.166
10.1111/gcbb.12376
10.1016/j.scitotenv.2020.138140
10.1007/s00374-006-0152-z
10.1016/j.soilbio.2016.07.021
10.1016/j.scitotenv.2018.03.380
ContentType Journal Article
Copyright 2021 The Authors
Copyright_xml – notice: 2021 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.agee.2021.107454
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Environmental Sciences
EISSN 1873-2305
ExternalDocumentID 10_1016_j_agee_2021_107454
S0167880921001584
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6I.
7-5
71M
8P~
9JM
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABBQC
ABFNM
ABFRF
ABFYP
ABGRD
ABKYH
ABLST
ABLVK
ABMAC
ABMZM
ABRWV
ABYKQ
ACDAQ
ACGFS
ACIUM
ACIWK
ACPRK
ACRLP
ADBBV
ADEZE
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AESVU
AEXOQ
AFKWA
AFRAH
AFTJW
AFXIZ
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AJRQY
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AXJTR
BKOJK
BLECG
BLXMC
BNPGV
CBWCG
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KCYFY
KOM
LCYCR
LW9
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
QYZTP
ROL
RPZ
SAB
SCC
SCU
SDF
SDG
SDP
SEN
SES
SNL
SPCBC
SSA
SSH
SSJ
SSZ
T5K
Y6R
~02
~G-
~KM
186
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACIEU
ACMHX
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADSLC
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGHFR
AGQPQ
AGRNS
AGWPP
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HLV
HMC
HVGLF
HZ~
R2-
RIG
SEW
VH1
WUQ
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c377t-13de28f89dd9e827a8e66a71e0bd0f97e180836ca4818a2fcb612d17ea4039dd3
IEDL.DBID .~1
ISSN 0167-8809
IngestDate Tue Aug 12 03:27:48 EDT 2025
Tue Jul 01 01:28:02 EDT 2025
Thu Apr 24 23:10:19 EDT 2025
Fri Feb 23 02:46:15 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Plant nutrients
Biochar
Greenhouse gases
Field aging
Soil physical properties
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c377t-13de28f89dd9e827a8e66a71e0bd0f97e180836ca4818a2fcb612d17ea4039dd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2397-3553
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0167880921001584
PQID 2574318870
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2574318870
crossref_citationtrail_10_1016_j_agee_2021_107454
crossref_primary_10_1016_j_agee_2021_107454
elsevier_sciencedirect_doi_10_1016_j_agee_2021_107454
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-08-15
PublicationDateYYYYMMDD 2021-08-15
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-15
  day: 15
PublicationDecade 2020
PublicationTitle Agriculture, ecosystems & environment
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Soinne, Keskinen, Heikkinen, Hyväluoma, Uusitalo, Peltoniemi, Velmala, Pennanen, Fritze, Kaseva, Hannula, Rasa (bib78) 2020; 731
Bornø, Müller-Stöver, Liu (bib8) 2019; 182
Heikkinen, Ketoja, Nuutinen, Regina (bib38) 2013; 19
Spokas (bib80) 2013; 5
Jeffery, Abalos, Prodana, Bastos, Groenigen, Hungate, Verheijen (bib42) 2017; 12
Blanco-Canqui, Laird, Heaton, Rathke, Acharya (bib6) 2020; 12
Meier (bib61) 2001
Mulcahy, Mulcahy, Dietz (bib67) 2013; 88
Tammeorg, Bastos, Jeffery, Rees, Kern, Graber, Ventura, Kibblewhite, Amaro, Budai, Cordovil, Domene, Gardi, Gascó, Horák, Kammann, Kondrlova, Laird, Loureiro, Martins, Panzacchi, Prasad, Prodana, Puga, Ruysschaert, Sas-Paszt, Silva, Teixeira, Tonon, Delle Vedove, Zavalloni, Glaser, Verheijen (bib82) 2017; 25
Gaskin, Speir, Harris, Das, Lee, Morris, Fisher (bib26) 2010; 102
Ye, Camps-Arbestain, Shen, Lehmann, Singh, Sabir (bib94) 2020; 36
Thers, Abolas, Dörsch, Elsgaard (bib87) 2020; 724
Llovet, Mattana, Chin-Pampillo, Otero, Carrey, Mondini, Gascó, Martí, Margalef, Alcañiz, Domene, Ribas (bib59) 2021; 755
Feng, Cheng, Qul, Yan, Li, Jian, Dong, Xian, Xu, Xi (bib22) 2018; 64
.
Hammer, Forstreuter, Rillig, Kohler (bib35) 2015; 96
Giagnoni, Maienza, Baronti, Vaccari, Genesio, Taiti, Martellini, Scodellini, Cincinelli, Costa, Mancuso, Renella (bib27) 2019; 344
Hagemann, Joseph, Schmidt, Kammann, Harter, Borch, Young, Varga, Taherymoosavi, Elliott, McKenna, Albu, Mayrhofer, Obst, Conte, Dieguez-Alonso, Orsetti, Subdiaga, Behrens, Kappler (bib32) 2017; 8
Kuo, Lee, Jien (bib51) 2020; 12
Mukherjee, Lal (bib66) 2013; 3
Spokas, Novak, Masiello, Johnson, Colosky, Ippolito, Trigo (bib81) 2014; 1
Qian, Chen (bib72) 2013; 47
Griffin, Wang, Parikh, Scow (bib31) 2017; 236
Cheng, Lehmann, Thies, Burton, Engelhard (bib14) 2006; 37
Cornelissen, Jubaedah, Nurida, Hale, Martinsen, Silvani, Mulder (bib15) 2018; 634
Crane-Droesch, Abiven, Jeffery, Torn (bib16) 2013; 8
Tammeorg, Parviainen, Nuutinen, Simojoki, Vaara, Helenius (bib86) 2014; 191
Brassard, Godbout, Raghavan (bib10) 2016; 181
Graber, Tsechansky, Lew, Cohen (bib29) 2014; 65
Quan, Fan, Sun, Cui, Wang, Gao, Yan (bib73) 2020; 384
Rondon, Lehmann, Ramírez, Hurtado (bib76) 2007; 43
Bruun, Ambus, Egsgaard, Hauggaard-Nielsen (bib12) 2012; 46
Karhu, Mattila, Bergström, Regina (bib48) 2011; 140
Lenth, R., 2019. emmeans: estimated marginal means aka least-squares means. Retrieved from
Peoples, Brockwell, Herridge, Rochester, Alves, Urquiaga, Boddey, Dakora, Bhattarai, Maskey, Sampet, Rerkasem, Khan, Hauggaard-Nielsen, Jensen (bib71) 2009; 48
Liu, Jiang, Shen, Zhu, Yi, Li, Wu (bib57) 2021; 311
Richardson, Hocking, Simpson, George (bib75) 2009; 60
Tammeorg, Brandstaka, Simojoki, Helenius (bib83) 2012; 103
Box, Cox (bib9) 1964; 26
Joseph, Kammann, Shepherd, Conte, Schmidt, Hagemann, Rich, Marjo, Allen, Munroe, Mitchell, Donne, Spokas, Graber (bib44) 2018; 618
Laird, Novak, Collins, Ippolito, Karlen, Lentz, Sistani, Spokas, Van Pelt (bib53) 2017; 289
Williams, Jones, Sanders, Benitez, Plante (bib91) 2019; 1
He, Zhou, Jiang, Li, Du, Zhou, Shao, Wang, Xu, Hosseini Bai, Wallace, Xu (bib37) 2017; 9
Zhang, Song, Wu, Yan, Gunina, Kuzyakov, Xiong (bib98) 2020; 242
Xu, Tian, Pan, Prior, Feng, Dnagal (bib92) 2020; 34
Ippolito, Cui, Kammann, Wrage-Mönnig, Estavillo, Fuertes-Mendizabal, Cayuela, Sigua, Novak, Spokas, Borchard (bib39) 2020; 2
(Accessed on 11.05.2020).
Oram, van de Voorde, Ouwehand, Bezemer, Mommer, Jeffery, Groenigen (bib70) 2014; 191
Borchard, Schirrmann, Cayuela, Kammann, Wrage-Mönnig, Estavillo, Fuertes-Mendizábal, Sigua, Spokas, Ippolito, Novak (bib7) 2019; 651
Kloss, Zehetner, Dellantonio, Hamid, Ottner, Liedtke, Schwanninger, Gerzabek, Soja (bib50) 2012; 41
Liao, Müller, Jansen-Willems, Luo, Lindsey, Liu, Chen, Niu, Ding (bib55) 2021
Haider, Steffens, Müller, Kammann (bib33) 2016; 45
Mia, Dijkstra, Singh (bib64) 2017; 51
Glaser, Wiedner, Seelig, Schmidt, Gerber (bib28) 2015; 35
Miller (bib65) 1998
Dunfield, Knowles (bib20) 1995; 61
Yao, Gao, Zhang, Inyang, Zimmerman (bib93) 2012; 89
Bates, Maechler, Bolker, Walker (bib4) 2015; 67
Tammeorg, Simojoki, Mäkelä, Stoddard, Alakukku, Helenius (bib85) 2014; 191
Hale, Nurida, Jubaedah, Mulder, Sørmo, Silvani, Abiven, Joseph, Taherymoosavi, Cornelissen (bib34) 2020; 719
Biederman, Harpole (bib5) 2013; 5
O’Toole, Moni, Weldon, Schols, Carnol, Bosman, Rasse (bib69) 2018; 8
Mia, Singh, Dijkstra (bib63) 2017; 9
Kammann, Schmidt, Messerschmidt, Linsel, Steffens, Müller, Koyro, Conte, Joseph (bib46) 2015; 5
Zhang, Zhang, Duan, Jiang, Shen, Yan, Xiong (bib100) 2021; 769
de la Rosa, Rosado, Paneque, Miller, Knicker (bib18) 2018; 613–614
FMI, 2020. Temperature and precipitation statistics from 1961 onwards. Finnish Meteorological Institute
Jakobsen (bib41) 1993; 43
Nyerges, Stein (bib68) 2009; 297
Hardy, Sleutel, Dufey, Cornelis (bib36) 2019
Zhang, Yan, Niu, Liu, van Zwieten, Chen, Bian, Cheng, Li, Joseph, Zheng, Zhang, Zheng, Crowley, Filley, Pan (bib96) 2016; 226
Viljavuuspalvelu Oy, 2000. Viljavuustutkimuksen tulkinta peltoviljelyssä. Viljavuuspalvelu Oy, Mikkeli, Finland.
Zhang, Riaz, Liu, Xia, El-desouki, Jiang (bib99) 2020; 717
Major, Rondon, Molina, Riha, Lehmann (bib60) 2010; 333
Yuan, Yuan, He, Hu, Qin, Clough, Wrage-Mönnig, Luo, He, Chen, Zhou (bib95) 2021; 57
Dane, Hopmans (bib17) 2002
Tammeorg, Simojoki, Mäkelä, Stoddard, Alakukku, Helenius (bib84) 2014; 374
Kuzyakov, Bogomolova, Glaser (bib52) 2014; 70
Shen, Yuan, Zhang, Li, Bai, Chen, Zhang, Zhang (bib77) 2011; 156
Zhang, Xiao, Xue, Zhang (bib97) 2020; 12
Wang, Xue, Nie, Liu, Chen (bib89) 2018; 181
Graves, S., Piepho, H.-P., Selzer, L., Dorai-Raj, S., 2019. multcompView: Visualizations of paired comparisons. Retrieved from
Song, Pan, Zhang, Zhang, Wang (bib79) 2016; 2
Bruulsema, Christie (bib11) 1987; 79
Duan, Zhang, Zhang, Wu, Xiong (bib19) 2018; 642
Ippolito, Spokas, Novak, Lentz, Cantrell (bib40) 2015
Fan, Duan, Zhang, Shen, Chen, Xiong (bib21) 2020; 364
Kalu, Oyekoya, Ambus, Tammeorg, Simojoki, Pihlatie, Karhu (bib45) 2021; 57
Weng, Van Zwieten, Singh, Tavakkoli, Joseph, Macdonald, Rose, Rose, Kimber, Morris, Cozzolino, Araujo, Archanjo, Cowie (bib90) 2017; 7
Abbas, Rizwan, Ali, Zia-ur-Rehman, Farooq Qayyum, Abbas, Hannan, Rinklebe, Sik Ok (bib1) 2017; 140
Kätterer, Roobroeck, Andrén, Kimutai, Karltun, Kirchmann, Nyberg, Vanlauwe, Röing de Nowina (bib49) 2019; 235
Burrell, Zehetner, Rampazzo, Wimmer, Soja (bib13) 2016; 282
Lin, Munroe, Joseph, Kimber, Van Zwieten (bib56) 2012; 357
Mia, Dijkstra, Singh (bib62) 2017
Gao, DeLuca, Cleveland (bib25) 2019; 654
Jeffery, Verheijen, Kammann, Abalos (bib43) 2016; 101
Karer, Wimmer, Zehetner, Kloss, Soja (bib47) 2013
R Core Team, 2018. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria.
Alburquerque, Salazar, Barrón, Torrent, del Campillo, Gallardo, Villar (bib3) 2013; 33
Futa, Oleszczuk, Andruszczak, Kwiecińska-Poppe, Kraska (bib24) 2020; 10
Akhtar, Andersen, Liu (bib2) 2015; 158
Liu, Liu, Zhang, Hu, Lin, Liu, Wang, Ma, Wang, Jin, Ambus, Amonette, Xie (bib58) 2019; 25
Bates (10.1016/j.agee.2021.107454_bib4) 2015; 67
Tammeorg (10.1016/j.agee.2021.107454_bib83) 2012; 103
Joseph (10.1016/j.agee.2021.107454_bib44) 2018; 618
Blanco-Canqui (10.1016/j.agee.2021.107454_bib6) 2020; 12
Hardy (10.1016/j.agee.2021.107454_bib36) 2019
Karer (10.1016/j.agee.2021.107454_bib47) 2013
Crane-Droesch (10.1016/j.agee.2021.107454_bib16) 2013; 8
Ippolito (10.1016/j.agee.2021.107454_bib39) 2020; 2
10.1016/j.agee.2021.107454_bib54
Fan (10.1016/j.agee.2021.107454_bib21) 2020; 364
Hammer (10.1016/j.agee.2021.107454_bib35) 2015; 96
Duan (10.1016/j.agee.2021.107454_bib19) 2018; 642
Giagnoni (10.1016/j.agee.2021.107454_bib27) 2019; 344
Rondon (10.1016/j.agee.2021.107454_bib76) 2007; 43
Gao (10.1016/j.agee.2021.107454_bib25) 2019; 654
Gaskin (10.1016/j.agee.2021.107454_bib26) 2010; 102
Jeffery (10.1016/j.agee.2021.107454_bib43) 2016; 101
Hagemann (10.1016/j.agee.2021.107454_bib32) 2017; 8
Williams (10.1016/j.agee.2021.107454_bib91) 2019; 1
Mulcahy (10.1016/j.agee.2021.107454_bib67) 2013; 88
Spokas (10.1016/j.agee.2021.107454_bib80) 2013; 5
Tammeorg (10.1016/j.agee.2021.107454_bib84) 2014; 374
Graber (10.1016/j.agee.2021.107454_bib29) 2014; 65
Mukherjee (10.1016/j.agee.2021.107454_bib66) 2013; 3
Brassard (10.1016/j.agee.2021.107454_bib10) 2016; 181
Kuo (10.1016/j.agee.2021.107454_bib51) 2020; 12
Box (10.1016/j.agee.2021.107454_bib9) 1964; 26
Song (10.1016/j.agee.2021.107454_bib79) 2016; 2
Tammeorg (10.1016/j.agee.2021.107454_bib82) 2017; 25
Kloss (10.1016/j.agee.2021.107454_bib50) 2012; 41
Haider (10.1016/j.agee.2021.107454_bib33) 2016; 45
10.1016/j.agee.2021.107454_bib74
Weng (10.1016/j.agee.2021.107454_bib90) 2017; 7
Richardson (10.1016/j.agee.2021.107454_bib75) 2009; 60
Meier (10.1016/j.agee.2021.107454_bib61) 2001
Kalu (10.1016/j.agee.2021.107454_bib45) 2021; 57
Bornø (10.1016/j.agee.2021.107454_bib8) 2019; 182
Cheng (10.1016/j.agee.2021.107454_bib14) 2006; 37
Jakobsen (10.1016/j.agee.2021.107454_bib41) 1993; 43
Bruun (10.1016/j.agee.2021.107454_bib12) 2012; 46
Ippolito (10.1016/j.agee.2021.107454_bib40) 2015
Heikkinen (10.1016/j.agee.2021.107454_bib38) 2013; 19
de la Rosa (10.1016/j.agee.2021.107454_bib18) 2018; 613–614
Griffin (10.1016/j.agee.2021.107454_bib31) 2017; 236
Zhang (10.1016/j.agee.2021.107454_bib98) 2020; 242
Cornelissen (10.1016/j.agee.2021.107454_bib15) 2018; 634
Mia (10.1016/j.agee.2021.107454_bib63) 2017; 9
Zhang (10.1016/j.agee.2021.107454_bib97) 2020; 12
Qian (10.1016/j.agee.2021.107454_bib72) 2013; 47
Burrell (10.1016/j.agee.2021.107454_bib13) 2016; 282
Karhu (10.1016/j.agee.2021.107454_bib48) 2011; 140
Akhtar (10.1016/j.agee.2021.107454_bib2) 2015; 158
Jeffery (10.1016/j.agee.2021.107454_bib42) 2017; 12
Liu (10.1016/j.agee.2021.107454_bib58) 2019; 25
Major (10.1016/j.agee.2021.107454_bib60) 2010; 333
Lin (10.1016/j.agee.2021.107454_bib56) 2012; 357
Laird (10.1016/j.agee.2021.107454_bib53) 2017; 289
Glaser (10.1016/j.agee.2021.107454_bib28) 2015; 35
Mia (10.1016/j.agee.2021.107454_bib64) 2017; 51
10.1016/j.agee.2021.107454_bib88
Shen (10.1016/j.agee.2021.107454_bib77) 2011; 156
Peoples (10.1016/j.agee.2021.107454_bib71) 2009; 48
O’Toole (10.1016/j.agee.2021.107454_bib69) 2018; 8
Zhang (10.1016/j.agee.2021.107454_bib100) 2021; 769
Soinne (10.1016/j.agee.2021.107454_bib78) 2020; 731
Xu (10.1016/j.agee.2021.107454_bib92) 2020; 34
Llovet (10.1016/j.agee.2021.107454_bib59) 2021; 755
Kuzyakov (10.1016/j.agee.2021.107454_bib52) 2014; 70
Hale (10.1016/j.agee.2021.107454_bib34) 2020; 719
Kätterer (10.1016/j.agee.2021.107454_bib49) 2019; 235
Oram (10.1016/j.agee.2021.107454_bib70) 2014; 191
He (10.1016/j.agee.2021.107454_bib37) 2017; 9
Abbas (10.1016/j.agee.2021.107454_bib1) 2017; 140
Nyerges (10.1016/j.agee.2021.107454_bib68) 2009; 297
Ye (10.1016/j.agee.2021.107454_bib94) 2020; 36
Tammeorg (10.1016/j.agee.2021.107454_bib85) 2014; 191
Zhang (10.1016/j.agee.2021.107454_bib96) 2016; 226
Borchard (10.1016/j.agee.2021.107454_bib7) 2019; 651
10.1016/j.agee.2021.107454_bib30
Miller (10.1016/j.agee.2021.107454_bib65) 1998
10.1016/j.agee.2021.107454_bib23
Feng (10.1016/j.agee.2021.107454_bib22) 2018; 64
Kammann (10.1016/j.agee.2021.107454_bib46) 2015; 5
Mia (10.1016/j.agee.2021.107454_bib62) 2017
Zhang (10.1016/j.agee.2021.107454_bib99) 2020; 717
Futa (10.1016/j.agee.2021.107454_bib24) 2020; 10
Wang (10.1016/j.agee.2021.107454_bib89) 2018; 181
Quan (10.1016/j.agee.2021.107454_bib73) 2020; 384
Alburquerque (10.1016/j.agee.2021.107454_bib3) 2013; 33
Dane (10.1016/j.agee.2021.107454_bib17) 2002
Yao (10.1016/j.agee.2021.107454_bib93) 2012; 89
Yuan (10.1016/j.agee.2021.107454_bib95) 2021; 57
Dunfield (10.1016/j.agee.2021.107454_bib20) 1995; 61
Thers (10.1016/j.agee.2021.107454_bib87) 2020; 724
Liao (10.1016/j.agee.2021.107454_bib55) 2021
Tammeorg (10.1016/j.agee.2021.107454_bib86) 2014; 191
Liu (10.1016/j.agee.2021.107454_bib57) 2021; 311
Spokas (10.1016/j.agee.2021.107454_bib81) 2014; 1
Biederman (10.1016/j.agee.2021.107454_bib5) 2013; 5
Bruulsema (10.1016/j.agee.2021.107454_bib11) 1987; 79
References_xml – volume: 61
  start-page: 3129
  year: 1995
  end-page: 3135
  ident: bib20
  article-title: Kinetics of inhibition of methane oxidation by nitrate, nitrite, and ammonium in a humisol
  publication-title: Appl. Environ. Microbiol.
– volume: 634
  start-page: 561
  year: 2018
  end-page: 568
  ident: bib15
  article-title: Fading positive effect of biochar on crop yield and soil acidity during five growth seasons in an Indonesian ultisol
  publication-title: Sci. Total Environ.
– volume: 102
  start-page: 623
  year: 2010
  end-page: 633
  ident: bib26
  article-title: Effect of peanut hull and pine chip biochar on soil nutrients, corn nutrient status, and yield
  publication-title: Agron. J.
– volume: 654
  start-page: 463
  year: 2019
  end-page: 472
  ident: bib25
  article-title: Biochar additions alter phosphorus and nitrogen availability in agricultural ecosystems: a meta-analysis
  publication-title: Sci. Total Environ.
– volume: 2
  start-page: 421
  year: 2020
  end-page: 438
  ident: bib39
  article-title: Feedstock choice, pyrolysis temperature and type influence biochar characteristics: a comprehensive meta-data analysis review
  publication-title: Biochar
– volume: 103
  start-page: 19
  year: 2012
  end-page: 30
  ident: bib83
  article-title: Nitrogen mineralisation dynamics of meat bone meal and cattle manure as affected by the application of softwood chip biochar in soil
  publication-title: Earth Environ. Sci. Trans. R. Soc. Edinb.
– volume: 9
  start-page: 743
  year: 2017
  end-page: 755
  ident: bib37
  article-title: Effects of biochar application on soil greenhouse gas fluxes: a meta-analysis
  publication-title: GCB Bioenergy
– volume: 60
  start-page: 124
  year: 2009
  end-page: 143
  ident: bib75
  article-title: Plant mechanisms to optimise access to soil phosphorus
  publication-title: Crop Pasture Sci.
– volume: 19
  start-page: 1456
  year: 2013
  end-page: 1469
  ident: bib38
  article-title: Declining trend of carbon in Finnish cropland soils in 1974–2009
  publication-title: Glob. Change Biol.
– volume: 89
  start-page: 1467
  year: 2012
  end-page: 1471
  ident: bib93
  article-title: Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil
  publication-title: Chemosphere
– volume: 613–614
  start-page: 969
  year: 2018
  end-page: 976
  ident: bib18
  article-title: Effects of aging under field conditions on biochar structure and composition: Implications for biochar stability in soils
  publication-title: Sci. Total Environ.
– volume: 79
  start-page: 96
  year: 1987
  end-page: 100
  ident: bib11
  article-title: Nitrogen contribution to succeeding corn from alfalfa and red clover
  publication-title: Agron. J.
– start-page: 7
  year: 2019
  ident: bib36
  article-title: The long-term effect of biochar on soil microbial abundance, activity and community structure is overwritten by land management
  publication-title: Front. Environ. Sci.
– volume: 311
  year: 2021
  ident: bib57
  article-title: Contrasting effects of straw and straw-derived biochar applications on soil carbon accumulation and nitrogen use efficiency in double-rice cropping systems
  publication-title: Agric. Ecosyst. Environ.
– volume: 717
  year: 2020
  ident: bib99
  article-title: Two-year study of biochar: achieving excellent capability of potassium supply via alter clay mineral composition and potassium-dissolving bacteria activity
  publication-title: Sci. Total Environ.
– volume: 43
  start-page: 699
  year: 2007
  end-page: 708
  ident: bib76
  article-title: Biological nitrogen fixation by common beans (
  publication-title: Biol. Fertil. Soils
– start-page: 53
  year: 1998
  end-page: 56
  ident: bib65
  article-title: High-temperature oxidation: dry ashing
  publication-title: Handbook of Reference Methods for Plant Analysis
– volume: 51
  start-page: 8359
  year: 2017
  end-page: 8367
  ident: bib64
  article-title: Aging induced changes in biochar’s functionality and adsorption behavior for phosphate and ammonium
  publication-title: Environ. Sci. Technol.
– volume: 282
  start-page: 96
  year: 2016
  end-page: 102
  ident: bib13
  article-title: Long-term effects of biochar on soil physical properties
  publication-title: Geoderma
– volume: 5
  start-page: 202
  year: 2013
  end-page: 214
  ident: bib5
  article-title: Biochar and its effects on plant productivity and nutrient cycling: a meta-analysis
  publication-title: GCB Bioenergy
– volume: 47
  start-page: 8759
  year: 2013
  end-page: 8768
  ident: bib72
  article-title: Dual role of biochars as adsorbents for aluminum: the effects of oxygen-containing organic components and the scattering of silicate particles
  publication-title: Environ. Sci. Technol.
– volume: 3
  start-page: 313
  year: 2013
  end-page: 339
  ident: bib66
  article-title: Biochar impacts on soil physical properties and greenhouse gas emissions
  publication-title: Agronomy
– volume: 45
  start-page: 1196
  year: 2016
  end-page: 1204
  ident: bib33
  article-title: Standard extraction methods may underestimate nitrate stocks captured by field-aged biochar
  publication-title: J. Environ. Qual.
– start-page: 671
  year: 2002
  end-page: 796
  ident: bib17
  article-title: Water retention and storage
  publication-title: Methods of Soil Analysis. Part 4
– volume: 236
  start-page: 21
  year: 2017
  end-page: 29
  ident: bib31
  article-title: Short-lived effects of walnut shell biochar on soils and crop yields in a long-term field experiment
  publication-title: Agric. Ecosyst. Environ.
– volume: 651
  start-page: 2354
  year: 2019
  end-page: 2364
  ident: bib7
  article-title: Biochar, soil and land-use interactions that reduce nitrate leaching and N
  publication-title: Sci. Total Environ.
– volume: 191
  start-page: 108
  year: 2014
  end-page: 116
  ident: bib85
  article-title: Short-term effects of biochar on soil properties and wheat yield formation with meat bone meal and inorganic fertiliser on a boreal loamy sand
  publication-title: Agric. Ecosyst. Environ.
– volume: 10
  start-page: 449
  year: 2020
  ident: bib24
  article-title: Effect of natural aging of biochar on soil enzymatic activity and physicochemical properties in long-term field experiment
  publication-title: Agronomy
– reference: (Accessed on 11.05.2020).
– reference: FMI, 2020. Temperature and precipitation statistics from 1961 onwards. Finnish Meteorological Institute
– volume: 8
  year: 2013
  ident: bib16
  article-title: Heterogeneous global crop yield response to biochar: a meta-regression analysis
  publication-title: Environ. Res. Lett.
– volume: 12
  start-page: 2012
  year: 2020
  ident: bib51
  article-title: Reduction of nutrient leaching potential in coarse-textured soil by using biochar
  publication-title: Water
– volume: 70
  start-page: 229
  year: 2014
  end-page: 236
  ident: bib52
  article-title: Biochar stability in soil: decomposition during eight years and transformation as assessed by compound-specific
  publication-title: Soil Biol. Biochem.
– volume: 12
  year: 2017
  ident: bib42
  article-title: Biochar boosts tropical but not temperate crop yields
  publication-title: Environ. Res. Lett.
– volume: 724
  year: 2020
  ident: bib87
  article-title: Nitrous oxide emissions from oilseed rape cultivation were unaffected by flash pyrolysis biochar of different type, rate and field ageing
  publication-title: Sci. Total Environ.
– volume: 2
  year: 2016
  ident: bib79
  article-title: Effects of biochar application on fluxes of three biogenic greenhouse gases: a meta‐analysis
  publication-title: Ecosyst. Health Sustain.
– year: 2001
  ident: bib61
  article-title: Growth Stages of Mono- and Dicotyledonous Plants. BBCH-Monograph. Federal Biological Research Centre for Agriculture and Forestry
– start-page: 139
  year: 2015
  end-page: 163
  ident: bib40
  article-title: Biochar elemental composition and factors influencing nutrient retention
  publication-title: Biochar for Environmental Management. Science, Technology and Implementation
– volume: 88
  start-page: 222
  year: 2013
  end-page: 225
  ident: bib67
  article-title: Biochar soil amendment increases tomato seedling resistance to drought in sandy soils
  publication-title: J. Arid Environ.
– reference: R Core Team, 2018. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria.
– volume: 719
  year: 2020
  ident: bib34
  article-title: The effect of biochar, lime and ash on maize yield in a long-term field trial in a ultisol in the humid tropics
  publication-title: Sci. Total Environ.
– volume: 26
  start-page: 211
  year: 1964
  end-page: 243
  ident: bib9
  article-title: An analysis of transformations
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
– reference: Graves, S., Piepho, H.-P., Selzer, L., Dorai-Raj, S., 2019. multcompView: Visualizations of paired comparisons. Retrieved from
– volume: 5
  start-page: 11080
  year: 2015
  ident: bib46
  article-title: Plant growth improvement mediated by nitrate capture in co-composted biochar
  publication-title: Sci. Rep.
– start-page: 01542
  year: 2021
  ident: bib55
  article-title: Field-aged biochar decreased N
  publication-title: Biol. Fertil. Soils
– volume: 642
  start-page: 1303
  year: 2018
  end-page: 1310
  ident: bib19
  article-title: Field-aged biochar stimulated N
  publication-title: Sci. Total Environ.
– volume: 140
  start-page: 309
  year: 2011
  end-page: 313
  ident: bib48
  article-title: Biochar addition to agricultural soil increased CH4 uptake and water holding capacity – results from a short-term pilot field study
  publication-title: Agric. Ecosyst. Environ.
– volume: 96
  start-page: 114
  year: 2015
  end-page: 121
  ident: bib35
  article-title: Biochar increases arbuscular mycorrhizal plant growth enhancement and ameliorates salinity stress
  publication-title: Appl. Soil Ecol.
– volume: 226
  start-page: 25
  year: 2016
  end-page: 32
  ident: bib96
  article-title: Is current biochar research addressing global soil constraints for sustainable agriculture?
  publication-title: Agric. Ecosyst. Environ.
– volume: 140
  start-page: 37
  year: 2017
  end-page: 47
  ident: bib1
  article-title: Effect of biochar on cadmium bioavailability and uptake in wheat (
  publication-title: Ecotoxicol. Environ. Saf.
– volume: 7
  start-page: 371
  year: 2017
  end-page: 376
  ident: bib90
  article-title: Biochar built soil carbon over a decade by stabilizing rhizodeposits
  publication-title: Nat. Clim. Change
– volume: 289
  start-page: 46
  year: 2017
  end-page: 53
  ident: bib53
  article-title: Multi-year and multi-location soil quality and crop biomass yield responses to hardwood fast pyrolysis biochar
  publication-title: Geoderma
– volume: 33
  start-page: 475
  year: 2013
  end-page: 484
  ident: bib3
  article-title: Enhanced wheat yield by biochar addition under different mineral fertilization levels
  publication-title: Agron. Sustain. Dev.
– volume: 181
  start-page: 484
  year: 2016
  end-page: 497
  ident: bib10
  article-title: Soil biochar amendment as a climate change mitigation tool: key parameters and mechanisms involved
  publication-title: J. Environ. Manag.
– reference: Lenth, R., 2019. emmeans: estimated marginal means aka least-squares means. Retrieved from
– volume: 158
  start-page: 61
  year: 2015
  end-page: 68
  ident: bib2
  article-title: Residual effects of biochar on improving growth, physiology and yield of wheat under salt stress
  publication-title: Agric. Water Manag.
– volume: 35
  start-page: 667
  year: 2015
  end-page: 678
  ident: bib28
  article-title: Biochar organic fertilizers from natural resources as substitute for mineral fertilizers
  publication-title: Agron. Sustain. Dev.
– volume: 67
  start-page: 1
  year: 2015
  end-page: 48
  ident: bib4
  article-title: Fitting linear mixed-effects models using lme4
  publication-title: J. Stat. Softw.
– volume: 182
  start-page: 149
  year: 2019
  end-page: 158
  ident: bib8
  article-title: Biochar properties and soil type drive the uptake of macro- and micronutrients in maize (
  publication-title: J. Plant Nutr. Soil Sci.
– volume: 101
  start-page: 251
  year: 2016
  end-page: 258
  ident: bib43
  article-title: Biochar effects on methane emissions from soils: a meta-analysis
  publication-title: Soil Biol. Biochem.
– volume: 9
  start-page: 1196
  year: 2017
  end-page: 1206
  ident: bib63
  article-title: Aged biochar affects gross nitrogen mineralization and recovery: a
  publication-title: GCB Bioenergy
– volume: 12
  start-page: 3436
  year: 2020
  ident: bib97
  article-title: Quantifying the effects of biochar application on greenhouse gas emissions from agricultural soils: a global meta-analysis
  publication-title: Sustainability
– volume: 57
  start-page: 457
  year: 2021
  end-page: 470
  ident: bib45
  article-title: Effects of two wood-based biochars on the fate of added fertilizer nitrogen – a
  publication-title: Biol. Fertil. Soils
– volume: 297
  start-page: 131
  year: 2009
  end-page: 136
  ident: bib68
  article-title: Ammonia cometabolism and product inhibition vary considerably among species of methanotrophic bacteria
  publication-title: FEMS Microbiol. Lett.
– volume: 41
  start-page: 990
  year: 2012
  end-page: 1000
  ident: bib50
  article-title: Characterization of slow pyrolysis biochars: effects of feedstocks and pyrolysis temperature on biochar properties
  publication-title: J. Environ. Qual.
– volume: 36
  start-page: 2
  year: 2020
  end-page: 18
  ident: bib94
  article-title: Biochar effects on crop yields with and without fertilizer: a meta-analysis of field studies using separate controls
  publication-title: Soil Use Manag.
– volume: 357
  start-page: 369
  year: 2012
  end-page: 380
  ident: bib56
  article-title: Nanoscale organo-mineral reactions of biochars in ferrosol: an investigation using microscopy
  publication-title: Plant Soil
– volume: 191
  start-page: 92
  year: 2014
  end-page: 98
  ident: bib70
  article-title: Soil amendment with biochar increases the competitive ability of legumes via increased potassium availability
  publication-title: Agric. Ecosyst. Environ.
– volume: 156
  start-page: 997
  year: 2011
  end-page: 1005
  ident: bib77
  article-title: Phosphorus dynamics: from soil to plant
  publication-title: Plant Physiol.
– volume: 48
  start-page: 1
  year: 2009
  end-page: 17
  ident: bib71
  article-title: The contributions of nitrogen-fixing crop legumes to the productivity of agricultural systems
  publication-title: Symbiosis
– volume: 374
  start-page: 89
  year: 2014
  end-page: 107
  ident: bib84
  article-title: Biochar application to a fertile sandy clay loam in boreal conditions: effects on soil properties and yield formation of wheat, turnip rape and faba bean
  publication-title: Plant Soil
– volume: 364
  year: 2020
  ident: bib21
  article-title: Mechanisms underlying the mitigation of both N
  publication-title: Geoderma
– volume: 64
  start-page: 612
  year: 2018
  end-page: 618
  ident: bib22
  article-title: Effects of biochar on sodium ion accumulation, yield and quality of rice in saline-sodic soil of the west of Songnen plain, northeast China
  publication-title: Plant Soil Environ.
– volume: 191
  start-page: 150
  year: 2014
  end-page: 157
  ident: bib86
  article-title: Effects of biochar on earthworms in arable soil: avoidance test and field trial in boreal loamy sand
  publication-title: Agric. Ecosyst. Environ.
– volume: 181
  start-page: 635
  year: 2018
  end-page: 643
  ident: bib89
  article-title: Effects of biochar application on soil potassium dynamics and crop uptake
  publication-title: J. Soil Sci. Plant Nutr.
– volume: 46
  start-page: 73
  year: 2012
  end-page: 79
  ident: bib12
  article-title: Effects of slow and fast pyrolysis biochar on soil C and N turnover dynamics
  publication-title: Soil Biol. Biochem.
– volume: 5
  start-page: 165
  year: 2013
  end-page: 176
  ident: bib80
  article-title: Impact of biochar field aging on laboratory greenhouse gas production potentials
  publication-title: GCB Bioenergy
– reference: Viljavuuspalvelu Oy, 2000. Viljavuustutkimuksen tulkinta peltoviljelyssä. Viljavuuspalvelu Oy, Mikkeli, Finland.
– volume: 8
  start-page: 1089
  year: 2017
  ident: bib32
  article-title: Organic coating on biochar explains its nutrient retention and stimulation of soil fertility
  publication-title: Nat. Commun.
– volume: 37
  start-page: 1477
  year: 2006
  end-page: 1488
  ident: bib14
  article-title: Oxidation of black carbon by biotic and abiotic processes
  publication-title: Org. Geochem.
– volume: 769
  year: 2021
  ident: bib100
  article-title: The effect of long-term biochar amendment on N
  publication-title: Sci. Total Environ.
– volume: 25
  start-page: 2077
  year: 2019
  end-page: 2093
  ident: bib58
  article-title: Biochar application as a tool to decrease soil nitrogen losses (NH
  publication-title: Glob. Change Biol.
– volume: 8
  start-page: 171
  year: 2018
  ident: bib69
  article-title: Miscanthus biochar had limited effects on soil physical properties, microbial biomass, and grain yield in a four-year field experiment in Norway
  publication-title: Agriculture
– volume: 12
  start-page: 240
  year: 2020
  end-page: 251
  ident: bib6
  article-title: Soil carbon increased by twice the amount of biochar carbon applied after 6 years: field evidence of negative priming
  publication-title: GCB Bioenergy
– start-page: 22
  year: 2013
  ident: bib47
  article-title: Biochar application to temperate soils: effects on nutrient uptake and crop yield under field conditions
  publication-title: Agric. Food Sci.
– volume: 57
  start-page: 447
  year: 2021
  end-page: 456
  ident: bib95
  article-title: Identification and verification of key functional groups of biochar influencing soil N
  publication-title: Biol. Fertil. Soils
– volume: 43
  start-page: 1
  year: 1993
  end-page: 5
  ident: bib41
  article-title: Interaction between Plant Nutrients: III. Antagonism between potassium, magnesium and calcium
  publication-title: Acta Agric. Scand. Sect. B Soil Plant Sci.
– volume: 235
  start-page: 18
  year: 2019
  end-page: 26
  ident: bib49
  article-title: Biochar addition persistently increased soil fertility and yields in maize-soybean rotations over 10 years in sub-humid regions of Kenya
  publication-title: Field Crops Res.
– volume: 1
  start-page: 326
  year: 2014
  end-page: 332
  ident: bib81
  article-title: Physical disintegration of biochar: an overlooked process
  publication-title: Environ. Sci. Technol. Lett.
– reference: .
– volume: 731
  year: 2020
  ident: bib78
  article-title: Are there environmental or agricultural benefits in using forest residue biochar in boreal agricultural clay soil?
  publication-title: Sci. Total Environ.
– volume: 34
  year: 2020
  ident: bib92
  article-title: Global N
  publication-title: Glob. Biogeochem. Cycles
– volume: 65
  start-page: 162
  year: 2014
  end-page: 172
  ident: bib29
  article-title: Reducing capacity of water extracts of biochars and their solubilization of soil Mn and Fe
  publication-title: Eur. J. Soil Sci.
– volume: 1
  start-page: 237
  year: 2019
  end-page: 248
  ident: bib91
  article-title: Effects of 7 years of field weathering on biochar recalcitrance and solubility
  publication-title: Biochar
– volume: 344
  start-page: 127
  year: 2019
  end-page: 136
  ident: bib27
  article-title: Long-term soil biological fertility, volatile organic compounds and chemical properties in a vineyard soil after biochar amendment
  publication-title: Geoderma
– volume: 755
  year: 2021
  ident: bib59
  article-title: Fresh biochar application provokes a reduction of nitrate which is unexplained by conventional mechanisms
  publication-title: Sci. Total Environ.
– volume: 618
  start-page: 1210
  year: 2018
  end-page: 1223
  ident: bib44
  article-title: Microstructural and associated chemical changes during the composting of a high temperature biochar: mechanisms for nitrate, phosphate and other nutrient retention and release
  publication-title: Sci. Total Environ.
– volume: 25
  start-page: 192
  year: 2017
  end-page: 207
  ident: bib82
  article-title: Biochars in soils: towards the required level of scientific understanding
  publication-title: J. Environ. Eng. Landsc. Manag.
– volume: 384
  year: 2020
  ident: bib73
  article-title: Characteristics of organo-mineral complexes in contaminated soils with long-term biochar application
  publication-title: J. Hazard. Mater.
– volume: 333
  start-page: 117
  year: 2010
  end-page: 128
  ident: bib60
  article-title: Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol
  publication-title: Plant Soil
– volume: 242
  year: 2020
  ident: bib98
  article-title: Effects of six-year biochar amendment on soil aggregation, crop growth, and nitrogen and phosphorus use efficiencies in a rice-wheat rotation
  publication-title: J. Clean. Prod.
– start-page: 1
  year: 2017
  end-page: 51
  ident: bib62
  article-title: Long-term aging of biochar: a molecular understanding with agricultural and environmental implications
  publication-title: Advances in Agronomy
– volume: 191
  start-page: 92
  year: 2014
  ident: 10.1016/j.agee.2021.107454_bib70
  article-title: Soil amendment with biochar increases the competitive ability of legumes via increased potassium availability
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2014.03.031
– volume: 384
  year: 2020
  ident: 10.1016/j.agee.2021.107454_bib73
  article-title: Characteristics of organo-mineral complexes in contaminated soils with long-term biochar application
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2019.121265
– volume: 88
  start-page: 222
  year: 2013
  ident: 10.1016/j.agee.2021.107454_bib67
  article-title: Biochar soil amendment increases tomato seedling resistance to drought in sandy soils
  publication-title: J. Arid Environ.
  doi: 10.1016/j.jaridenv.2012.07.012
– volume: 158
  start-page: 61
  year: 2015
  ident: 10.1016/j.agee.2021.107454_bib2
  article-title: Residual effects of biochar on improving growth, physiology and yield of wheat under salt stress
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2015.04.010
– volume: 8
  start-page: 1089
  year: 2017
  ident: 10.1016/j.agee.2021.107454_bib32
  article-title: Organic coating on biochar explains its nutrient retention and stimulation of soil fertility
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01123-0
– volume: 51
  start-page: 8359
  year: 2017
  ident: 10.1016/j.agee.2021.107454_bib64
  article-title: Aging induced changes in biochar’s functionality and adsorption behavior for phosphate and ammonium
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b00647
– volume: 60
  start-page: 124
  year: 2009
  ident: 10.1016/j.agee.2021.107454_bib75
  article-title: Plant mechanisms to optimise access to soil phosphorus
  publication-title: Crop Pasture Sci.
  doi: 10.1071/CP07125
– volume: 12
  year: 2017
  ident: 10.1016/j.agee.2021.107454_bib42
  article-title: Biochar boosts tropical but not temperate crop yields
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/aa67bd
– volume: 156
  start-page: 997
  year: 2011
  ident: 10.1016/j.agee.2021.107454_bib77
  article-title: Phosphorus dynamics: from soil to plant
  publication-title: Plant Physiol.
  doi: 10.1104/pp.111.175232
– volume: 191
  start-page: 108
  year: 2014
  ident: 10.1016/j.agee.2021.107454_bib85
  article-title: Short-term effects of biochar on soil properties and wheat yield formation with meat bone meal and inorganic fertiliser on a boreal loamy sand
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2014.01.007
– start-page: 139
  year: 2015
  ident: 10.1016/j.agee.2021.107454_bib40
  article-title: Biochar elemental composition and factors influencing nutrient retention
– ident: 10.1016/j.agee.2021.107454_bib23
– volume: 103
  start-page: 19
  year: 2012
  ident: 10.1016/j.agee.2021.107454_bib83
  article-title: Nitrogen mineralisation dynamics of meat bone meal and cattle manure as affected by the application of softwood chip biochar in soil
  publication-title: Earth Environ. Sci. Trans. R. Soc. Edinb.
– volume: 96
  start-page: 114
  year: 2015
  ident: 10.1016/j.agee.2021.107454_bib35
  article-title: Biochar increases arbuscular mycorrhizal plant growth enhancement and ameliorates salinity stress
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/j.apsoil.2015.07.014
– volume: 140
  start-page: 37
  year: 2017
  ident: 10.1016/j.agee.2021.107454_bib1
  article-title: Effect of biochar on cadmium bioavailability and uptake in wheat (Triticum aestivum L.) grown in a soil with aged contamination
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2017.02.028
– volume: 357
  start-page: 369
  year: 2012
  ident: 10.1016/j.agee.2021.107454_bib56
  article-title: Nanoscale organo-mineral reactions of biochars in ferrosol: an investigation using microscopy
  publication-title: Plant Soil
  doi: 10.1007/s11104-012-1169-8
– volume: 19
  start-page: 1456
  year: 2013
  ident: 10.1016/j.agee.2021.107454_bib38
  article-title: Declining trend of carbon in Finnish cropland soils in 1974–2009
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.12137
– volume: 333
  start-page: 117
  year: 2010
  ident: 10.1016/j.agee.2021.107454_bib60
  article-title: Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol
  publication-title: Plant Soil
  doi: 10.1007/s11104-010-0327-0
– volume: 67
  start-page: 1
  year: 2015
  ident: 10.1016/j.agee.2021.107454_bib4
  article-title: Fitting linear mixed-effects models using lme4
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v067.i01
– volume: 2
  year: 2016
  ident: 10.1016/j.agee.2021.107454_bib79
  article-title: Effects of biochar application on fluxes of three biogenic greenhouse gases: a meta‐analysis
  publication-title: Ecosyst. Health Sustain.
  doi: 10.1002/ehs2.1202
– volume: 65
  start-page: 162
  year: 2014
  ident: 10.1016/j.agee.2021.107454_bib29
  article-title: Reducing capacity of water extracts of biochars and their solubilization of soil Mn and Fe
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/ejss.12071
– volume: 25
  start-page: 2077
  year: 2019
  ident: 10.1016/j.agee.2021.107454_bib58
  article-title: Biochar application as a tool to decrease soil nitrogen losses (NH3 volatilization, N2O emissions, and N leaching) from croplands; options and mitigation strength in a global perspective
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.14613
– volume: 45
  start-page: 1196
  year: 2016
  ident: 10.1016/j.agee.2021.107454_bib33
  article-title: Standard extraction methods may underestimate nitrate stocks captured by field-aged biochar
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2015.10.0529
– year: 2001
  ident: 10.1016/j.agee.2021.107454_bib61
– start-page: 1
  year: 2017
  ident: 10.1016/j.agee.2021.107454_bib62
  article-title: Long-term aging of biochar: a molecular understanding with agricultural and environmental implications
  doi: 10.1016/bs.agron.2016.10.001
– volume: 289
  start-page: 46
  year: 2017
  ident: 10.1016/j.agee.2021.107454_bib53
  article-title: Multi-year and multi-location soil quality and crop biomass yield responses to hardwood fast pyrolysis biochar
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2016.11.025
– start-page: 671
  year: 2002
  ident: 10.1016/j.agee.2021.107454_bib17
  article-title: Water retention and storage
– start-page: 53
  year: 1998
  ident: 10.1016/j.agee.2021.107454_bib65
  article-title: High-temperature oxidation: dry ashing
– volume: 47
  start-page: 8759
  year: 2013
  ident: 10.1016/j.agee.2021.107454_bib72
  article-title: Dual role of biochars as adsorbents for aluminum: the effects of oxygen-containing organic components and the scattering of silicate particles
  publication-title: Environ. Sci. Technol.
– volume: 769
  year: 2021
  ident: 10.1016/j.agee.2021.107454_bib100
  article-title: The effect of long-term biochar amendment on N2O emissions: experiments with N15 –O18 isotopes combined with specific inhibition approaches
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.144533
– ident: 10.1016/j.agee.2021.107454_bib54
– volume: 12
  start-page: 2012
  year: 2020
  ident: 10.1016/j.agee.2021.107454_bib51
  article-title: Reduction of nutrient leaching potential in coarse-textured soil by using biochar
  publication-title: Water
  doi: 10.3390/w12072012
– volume: 226
  start-page: 25
  year: 2016
  ident: 10.1016/j.agee.2021.107454_bib96
  article-title: Is current biochar research addressing global soil constraints for sustainable agriculture?
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2016.04.010
– volume: 25
  start-page: 192
  year: 2017
  ident: 10.1016/j.agee.2021.107454_bib82
  article-title: Biochars in soils: towards the required level of scientific understanding
  publication-title: J. Environ. Eng. Landsc. Manag.
  doi: 10.3846/16486897.2016.1239582
– volume: 12
  start-page: 240
  year: 2020
  ident: 10.1016/j.agee.2021.107454_bib6
  article-title: Soil carbon increased by twice the amount of biochar carbon applied after 6 years: field evidence of negative priming
  publication-title: GCB Bioenergy
  doi: 10.1111/gcbb.12665
– volume: 236
  start-page: 21
  year: 2017
  ident: 10.1016/j.agee.2021.107454_bib31
  article-title: Short-lived effects of walnut shell biochar on soils and crop yields in a long-term field experiment
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2016.11.002
– volume: 48
  start-page: 1
  year: 2009
  ident: 10.1016/j.agee.2021.107454_bib71
  article-title: The contributions of nitrogen-fixing crop legumes to the productivity of agricultural systems
  publication-title: Symbiosis
  doi: 10.1007/BF03179980
– volume: 297
  start-page: 131
  year: 2009
  ident: 10.1016/j.agee.2021.107454_bib68
  article-title: Ammonia cometabolism and product inhibition vary considerably among species of methanotrophic bacteria
  publication-title: FEMS Microbiol. Lett.
  doi: 10.1111/j.1574-6968.2009.01674.x
– ident: 10.1016/j.agee.2021.107454_bib74
– volume: 12
  start-page: 3436
  year: 2020
  ident: 10.1016/j.agee.2021.107454_bib97
  article-title: Quantifying the effects of biochar application on greenhouse gas emissions from agricultural soils: a global meta-analysis
  publication-title: Sustainability
  doi: 10.3390/su12083436
– volume: 37
  start-page: 1477
  year: 2006
  ident: 10.1016/j.agee.2021.107454_bib14
  article-title: Oxidation of black carbon by biotic and abiotic processes
  publication-title: Org. Geochem.
  doi: 10.1016/j.orggeochem.2006.06.022
– volume: 10
  start-page: 449
  year: 2020
  ident: 10.1016/j.agee.2021.107454_bib24
  article-title: Effect of natural aging of biochar on soil enzymatic activity and physicochemical properties in long-term field experiment
  publication-title: Agronomy
  doi: 10.3390/agronomy10030449
– volume: 717
  year: 2020
  ident: 10.1016/j.agee.2021.107454_bib99
  article-title: Two-year study of biochar: achieving excellent capability of potassium supply via alter clay mineral composition and potassium-dissolving bacteria activity
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.137286
– volume: 5
  start-page: 202
  year: 2013
  ident: 10.1016/j.agee.2021.107454_bib5
  article-title: Biochar and its effects on plant productivity and nutrient cycling: a meta-analysis
  publication-title: GCB Bioenergy
  doi: 10.1111/gcbb.12037
– ident: 10.1016/j.agee.2021.107454_bib88
– volume: 311
  year: 2021
  ident: 10.1016/j.agee.2021.107454_bib57
  article-title: Contrasting effects of straw and straw-derived biochar applications on soil carbon accumulation and nitrogen use efficiency in double-rice cropping systems
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2020.107286
– volume: 89
  start-page: 1467
  year: 2012
  ident: 10.1016/j.agee.2021.107454_bib93
  article-title: Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2012.06.002
– start-page: 22
  year: 2013
  ident: 10.1016/j.agee.2021.107454_bib47
  article-title: Biochar application to temperate soils: effects on nutrient uptake and crop yield under field conditions
  publication-title: Agric. Food Sci.
– volume: 70
  start-page: 229
  year: 2014
  ident: 10.1016/j.agee.2021.107454_bib52
  article-title: Biochar stability in soil: decomposition during eight years and transformation as assessed by compound-specific 14C analysis
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2013.12.021
– volume: 7
  start-page: 371
  year: 2017
  ident: 10.1016/j.agee.2021.107454_bib90
  article-title: Biochar built soil carbon over a decade by stabilizing rhizodeposits
  publication-title: Nat. Clim. Change
  doi: 10.1038/nclimate3276
– volume: 242
  year: 2020
  ident: 10.1016/j.agee.2021.107454_bib98
  article-title: Effects of six-year biochar amendment on soil aggregation, crop growth, and nitrogen and phosphorus use efficiencies in a rice-wheat rotation
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.118435
– volume: 2
  start-page: 421
  year: 2020
  ident: 10.1016/j.agee.2021.107454_bib39
  article-title: Feedstock choice, pyrolysis temperature and type influence biochar characteristics: a comprehensive meta-data analysis review
  publication-title: Biochar
  doi: 10.1007/s42773-020-00067-x
– volume: 57
  start-page: 457
  year: 2021
  ident: 10.1016/j.agee.2021.107454_bib45
  article-title: Effects of two wood-based biochars on the fate of added fertilizer nitrogen – a 15N tracing study
  publication-title: Biol. Fertil. Soils
  doi: 10.1007/s00374-020-01534-0
– volume: 654
  start-page: 463
  year: 2019
  ident: 10.1016/j.agee.2021.107454_bib25
  article-title: Biochar additions alter phosphorus and nitrogen availability in agricultural ecosystems: a meta-analysis
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.11.124
– volume: 651
  start-page: 2354
  year: 2019
  ident: 10.1016/j.agee.2021.107454_bib7
  article-title: Biochar, soil and land-use interactions that reduce nitrate leaching and N2O emissions: a meta-analysis
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.10.060
– volume: 140
  start-page: 309
  year: 2011
  ident: 10.1016/j.agee.2021.107454_bib48
  article-title: Biochar addition to agricultural soil increased CH4 uptake and water holding capacity – results from a short-term pilot field study
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2010.12.005
– volume: 34
  year: 2020
  ident: 10.1016/j.agee.2021.107454_bib92
  article-title: Global N2O emissions from cropland driven by nitrogen addition and environmental factors: comparison and uncertainty analysis
  publication-title: Glob. Biogeochem. Cycles
  doi: 10.1029/2020GB006698
– volume: 344
  start-page: 127
  year: 2019
  ident: 10.1016/j.agee.2021.107454_bib27
  article-title: Long-term soil biological fertility, volatile organic compounds and chemical properties in a vineyard soil after biochar amendment
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.03.011
– volume: 1
  start-page: 326
  year: 2014
  ident: 10.1016/j.agee.2021.107454_bib81
  article-title: Physical disintegration of biochar: an overlooked process
  publication-title: Environ. Sci. Technol. Lett.
  doi: 10.1021/ez500199t
– volume: 35
  start-page: 667
  year: 2015
  ident: 10.1016/j.agee.2021.107454_bib28
  article-title: Biochar organic fertilizers from natural resources as substitute for mineral fertilizers
  publication-title: Agron. Sustain. Dev.
  doi: 10.1007/s13593-014-0251-4
– volume: 235
  start-page: 18
  year: 2019
  ident: 10.1016/j.agee.2021.107454_bib49
  article-title: Biochar addition persistently increased soil fertility and yields in maize-soybean rotations over 10 years in sub-humid regions of Kenya
  publication-title: Field Crops Res.
  doi: 10.1016/j.fcr.2019.02.015
– volume: 61
  start-page: 3129
  year: 1995
  ident: 10.1016/j.agee.2021.107454_bib20
  article-title: Kinetics of inhibition of methane oxidation by nitrate, nitrite, and ammonium in a humisol
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/aem.61.8.3129-3135.1995
– volume: 43
  start-page: 1
  year: 1993
  ident: 10.1016/j.agee.2021.107454_bib41
  article-title: Interaction between Plant Nutrients: III. Antagonism between potassium, magnesium and calcium
  publication-title: Acta Agric. Scand. Sect. B Soil Plant Sci.
– volume: 719
  year: 2020
  ident: 10.1016/j.agee.2021.107454_bib34
  article-title: The effect of biochar, lime and ash on maize yield in a long-term field trial in a ultisol in the humid tropics
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.137455
– volume: 26
  start-page: 211
  year: 1964
  ident: 10.1016/j.agee.2021.107454_bib9
  article-title: An analysis of transformations
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
  doi: 10.1111/j.2517-6161.1964.tb00553.x
– start-page: 7
  year: 2019
  ident: 10.1016/j.agee.2021.107454_bib36
  article-title: The long-term effect of biochar on soil microbial abundance, activity and community structure is overwritten by land management
  publication-title: Front. Environ. Sci.
– volume: 5
  start-page: 165
  year: 2013
  ident: 10.1016/j.agee.2021.107454_bib80
  article-title: Impact of biochar field aging on laboratory greenhouse gas production potentials
  publication-title: GCB Bioenergy
  doi: 10.1111/gcbb.12005
– volume: 102
  start-page: 623
  year: 2010
  ident: 10.1016/j.agee.2021.107454_bib26
  article-title: Effect of peanut hull and pine chip biochar on soil nutrients, corn nutrient status, and yield
  publication-title: Agron. J.
  doi: 10.2134/agronj2009.0083
– volume: 181
  start-page: 635
  year: 2018
  ident: 10.1016/j.agee.2021.107454_bib89
  article-title: Effects of biochar application on soil potassium dynamics and crop uptake
  publication-title: J. Soil Sci. Plant Nutr.
  doi: 10.1002/jpln.201700528
– ident: 10.1016/j.agee.2021.107454_bib30
– volume: 374
  start-page: 89
  year: 2014
  ident: 10.1016/j.agee.2021.107454_bib84
  article-title: Biochar application to a fertile sandy clay loam in boreal conditions: effects on soil properties and yield formation of wheat, turnip rape and faba bean
  publication-title: Plant Soil
  doi: 10.1007/s11104-013-1851-5
– volume: 618
  start-page: 1210
  year: 2018
  ident: 10.1016/j.agee.2021.107454_bib44
  article-title: Microstructural and associated chemical changes during the composting of a high temperature biochar: mechanisms for nitrate, phosphate and other nutrient retention and release
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.09.200
– volume: 33
  start-page: 475
  year: 2013
  ident: 10.1016/j.agee.2021.107454_bib3
  article-title: Enhanced wheat yield by biochar addition under different mineral fertilization levels
  publication-title: Agron. Sustain. Dev.
  doi: 10.1007/s13593-012-0128-3
– volume: 182
  start-page: 149
  year: 2019
  ident: 10.1016/j.agee.2021.107454_bib8
  article-title: Biochar properties and soil type drive the uptake of macro- and micronutrients in maize (Zea mays L.)
  publication-title: J. Plant Nutr. Soil Sci.
  doi: 10.1002/jpln.201800228
– volume: 36
  start-page: 2
  year: 2020
  ident: 10.1016/j.agee.2021.107454_bib94
  article-title: Biochar effects on crop yields with and without fertilizer: a meta-analysis of field studies using separate controls
  publication-title: Soil Use Manag.
  doi: 10.1111/sum.12546
– volume: 755
  year: 2021
  ident: 10.1016/j.agee.2021.107454_bib59
  article-title: Fresh biochar application provokes a reduction of nitrate which is unexplained by conventional mechanisms
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.142430
– volume: 9
  start-page: 1196
  year: 2017
  ident: 10.1016/j.agee.2021.107454_bib63
  article-title: Aged biochar affects gross nitrogen mineralization and recovery: a 15N study in two contrasting soils
  publication-title: GCB Bioenergy
  doi: 10.1111/gcbb.12430
– volume: 613–614
  start-page: 969
  year: 2018
  ident: 10.1016/j.agee.2021.107454_bib18
  article-title: Effects of aging under field conditions on biochar structure and composition: Implications for biochar stability in soils
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.09.124
– volume: 282
  start-page: 96
  year: 2016
  ident: 10.1016/j.agee.2021.107454_bib13
  article-title: Long-term effects of biochar on soil physical properties
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2016.07.019
– volume: 8
  start-page: 171
  year: 2018
  ident: 10.1016/j.agee.2021.107454_bib69
  article-title: Miscanthus biochar had limited effects on soil physical properties, microbial biomass, and grain yield in a four-year field experiment in Norway
  publication-title: Agriculture
  doi: 10.3390/agriculture8110171
– volume: 1
  start-page: 237
  year: 2019
  ident: 10.1016/j.agee.2021.107454_bib91
  article-title: Effects of 7 years of field weathering on biochar recalcitrance and solubility
  publication-title: Biochar
  doi: 10.1007/s42773-019-00026-1
– volume: 57
  start-page: 447
  year: 2021
  ident: 10.1016/j.agee.2021.107454_bib95
  article-title: Identification and verification of key functional groups of biochar influencing soil N2O emission
  publication-title: Biol. Fertil. Soils
  doi: 10.1007/s00374-021-01541-9
– volume: 3
  start-page: 313
  year: 2013
  ident: 10.1016/j.agee.2021.107454_bib66
  article-title: Biochar impacts on soil physical properties and greenhouse gas emissions
  publication-title: Agronomy
  doi: 10.3390/agronomy3020313
– volume: 64
  start-page: 612
  year: 2018
  ident: 10.1016/j.agee.2021.107454_bib22
  article-title: Effects of biochar on sodium ion accumulation, yield and quality of rice in saline-sodic soil of the west of Songnen plain, northeast China
  publication-title: Plant Soil Environ.
  doi: 10.17221/359/2018-PSE
– volume: 79
  start-page: 96
  year: 1987
  ident: 10.1016/j.agee.2021.107454_bib11
  article-title: Nitrogen contribution to succeeding corn from alfalfa and red clover
  publication-title: Agron. J.
  doi: 10.2134/agronj1987.00021962007900010020x
– volume: 5
  start-page: 11080
  year: 2015
  ident: 10.1016/j.agee.2021.107454_bib46
  article-title: Plant growth improvement mediated by nitrate capture in co-composted biochar
  publication-title: Sci. Rep.
  doi: 10.1038/srep11080
– volume: 41
  start-page: 990
  year: 2012
  ident: 10.1016/j.agee.2021.107454_bib50
  article-title: Characterization of slow pyrolysis biochars: effects of feedstocks and pyrolysis temperature on biochar properties
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2011.0070
– start-page: 01542
  year: 2021
  ident: 10.1016/j.agee.2021.107454_bib55
  article-title: Field-aged biochar decreased N2O emissions by reducing autotrophic nitrification in a sandy loam soil
  publication-title: Biol. Fertil. Soils
– volume: 191
  start-page: 150
  year: 2014
  ident: 10.1016/j.agee.2021.107454_bib86
  article-title: Effects of biochar on earthworms in arable soil: avoidance test and field trial in boreal loamy sand
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2014.02.023
– volume: 181
  start-page: 484
  year: 2016
  ident: 10.1016/j.agee.2021.107454_bib10
  article-title: Soil biochar amendment as a climate change mitigation tool: key parameters and mechanisms involved
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2016.06.063
– volume: 731
  year: 2020
  ident: 10.1016/j.agee.2021.107454_bib78
  article-title: Are there environmental or agricultural benefits in using forest residue biochar in boreal agricultural clay soil?
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.138955
– volume: 46
  start-page: 73
  year: 2012
  ident: 10.1016/j.agee.2021.107454_bib12
  article-title: Effects of slow and fast pyrolysis biochar on soil C and N turnover dynamics
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2011.11.019
– volume: 364
  year: 2020
  ident: 10.1016/j.agee.2021.107454_bib21
  article-title: Mechanisms underlying the mitigation of both N2O and NO emissions with field-aged biochar in an anthrosol
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2020.114178
– volume: 8
  year: 2013
  ident: 10.1016/j.agee.2021.107454_bib16
  article-title: Heterogeneous global crop yield response to biochar: a meta-regression analysis
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/8/4/044049
– volume: 642
  start-page: 1303
  year: 2018
  ident: 10.1016/j.agee.2021.107454_bib19
  article-title: Field-aged biochar stimulated N2O production from greenhouse vegetable production soils by nitrification and denitrification
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.06.166
– volume: 9
  start-page: 743
  year: 2017
  ident: 10.1016/j.agee.2021.107454_bib37
  article-title: Effects of biochar application on soil greenhouse gas fluxes: a meta-analysis
  publication-title: GCB Bioenergy
  doi: 10.1111/gcbb.12376
– volume: 724
  year: 2020
  ident: 10.1016/j.agee.2021.107454_bib87
  article-title: Nitrous oxide emissions from oilseed rape cultivation were unaffected by flash pyrolysis biochar of different type, rate and field ageing
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.138140
– volume: 43
  start-page: 699
  year: 2007
  ident: 10.1016/j.agee.2021.107454_bib76
  article-title: Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with bio-char additions
  publication-title: Biol. Fertil. Soils
  doi: 10.1007/s00374-006-0152-z
– volume: 101
  start-page: 251
  year: 2016
  ident: 10.1016/j.agee.2021.107454_bib43
  article-title: Biochar effects on methane emissions from soils: a meta-analysis
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2016.07.021
– volume: 634
  start-page: 561
  year: 2018
  ident: 10.1016/j.agee.2021.107454_bib15
  article-title: Fading positive effect of biochar on crop yield and soil acidity during five growth seasons in an Indonesian ultisol
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.03.380
SSID ssj0000238
Score 2.5341945
Snippet Biochars (BC) have tremendous potential in mitigating climate change, and offer various agricultural and environmental benefits. However, there is limited...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 107454
SubjectTerms agriculture
antagonism
barley
Biochar
biomass production
bulk density
climate change
environment
Field aging
Greenhouse gases
nutrient uptake
phytomass
plant available water
Plant nutrients
softwood
soil organic carbon
Soil physical properties
Stagnosols
topsoil
Umbrisols
Title Long-term effects of softwood biochar on soil physical properties, greenhouse gas emissions and crop nutrient uptake in two contrasting boreal soils
URI https://dx.doi.org/10.1016/j.agee.2021.107454
https://www.proquest.com/docview/2574318870
Volume 316
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BTtwwELUQXMqhKrQI2rIapN7asHE2iZPjCi1a2JZDWwQ3y0km27TIiTa7135FP7gziQOiEhx6ihLZTuQZz4ydN2-E-ICyRN83tL5j2umQwUOP9iETL4iLAEOp8rBLFP5yFc-vw8vb6HZLnA25MAyrdLa_t-mdtXZPxm42x01Vjb8xgJ60Lw2YRoj8KGewh4q1_PT3A8yDfdLA782tXeJMj_GiJctUmYE8ZVxiFD7lnP4x053vOX8lXrqgEab9d-2JLbT7Yne6XDniDNwXB7OHjDVq6pZs-1r8-VzbpccGGBx2A-oSWrK-jLaBrKo58QpqS8-qO2ic3KDhU_oV061-giWDc37UmxZhaVrgEnF8yNaCsQVwDTCwTOpPr4ZNsza_ECoLND50QHjTMrQaSNkoKO3e0r4R1-ez72dzz5Vi8PKJUlywvsAgKZO0KFJMAmUSjGOjJPpZ4ZepQpkwzTVTpMvEBGWeUeRUSIUm9CfUaXIgtm1t8VBAGkUmM0mmDMVieUA7NuWzvoSISa6MORJykIHOHU85l8u40wMg7admuWmWm-7ldiQ-3vdpepaOZ1tHg2j1I13T5Eae7Xcy6IGmieY_K8YiTb4mu0eBGNlr_-1_jv1OvOA7Pq2W0XuxvV5t8JjCnXU26vR5JHamF4v5FV8XX28WfwHWawOc
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9RADLZKOQAHBIWK8jQSN0g3k00yybGqWi2w7YVW6m00SZwlUE2ize6VX8EPxk4mVCDRA9dkHtHYY3smnz8DvCNVUxha3t8pn3TY4FHA55B5EKVVRLHSZTwkCp-dp4vL-NNVcrUDx1MujMAqve0fbfpgrf2TmV_NWdc0sy8CoGftyyOhEWI_egfuxrx9pYzB4Y8bnIc4pYngW5r7zJkR5MV7VrgyI3UowMQk_pd3-stOD87n9BE89FEjHo0f9hh2yO3Bg6PV2jNn0B7sn9ykrHFTv2f7J_Bz2bpVIBYYPXgD2xp7Nr8Ct8GiaSXzClvHz5pr7LzgsJNr-rXwrX7AlaBzvrbbnnBle5QacXLL1qN1FUoRMHTC6s9T47bb2O-EjUMeHwckvO0FW42sbRyVDrP0T-Hy9OTieBH4WgxBOddaKtZXFGV1lldVTlmkbUZparWisKjCOtekMuG5Fo50ldmoLgsOnSqlycbhnDvN92HXtY6eAeZJYgubFdpyMFZGfGTToShMTJSV2toDUJMMTOmJyqVexrWZEGnfjMjNiNzMKLcDeP-7TzfSdNzaOplEa_5QNsN-5NZ-byc9MLzQ8mvFOuLFN2z4OBJjgx0-_8-x38C9xcXZ0iw_nn9-AffljVxdq-Ql7G7WW3rFsc-meD3o9i-SFwOH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Long-term+effects+of+softwood+biochar+on+soil+physical+properties%2C+greenhouse+gas+emissions+and+crop+nutrient+uptake+in+two+contrasting+boreal+soils&rft.jtitle=Agriculture%2C+ecosystems+%26+environment&rft.au=Kalu%2C+Subin&rft.au=Simojoki%2C+Asko&rft.au=Karhu%2C+Kristiina&rft.au=Tammeorg%2C+Priit&rft.date=2021-08-15&rft.issn=0167-8809&rft.volume=316&rft.spage=107454&rft_id=info:doi/10.1016%2Fj.agee.2021.107454&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_agee_2021_107454
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-8809&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-8809&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-8809&client=summon