Long-term effects of softwood biochar on soil physical properties, greenhouse gas emissions and crop nutrient uptake in two contrasting boreal soils
Biochars (BC) have tremendous potential in mitigating climate change, and offer various agricultural and environmental benefits. However, there is limited information about the long-term effects of added biochars particularly from boreal regions. We studied the effects of a single application of sof...
Saved in:
Published in | Agriculture, ecosystems & environment Vol. 316; p. 107454 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.08.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Biochars (BC) have tremendous potential in mitigating climate change, and offer various agricultural and environmental benefits. However, there is limited information about the long-term effects of added biochars particularly from boreal regions. We studied the effects of a single application of softwood biochars on two contrasting boreal agricultural soils (nutrient-poor, coarse textured Umbrisol and fertile, fine-textured Stagnosol), both with high initial soil organic carbon contents, over eight years following the application. We focused on plant nutrient contents and nutrient uptake dynamics of different field crops over these years, as well as on soil physical properties and greenhouse gas emissions during seven to nine growing seasons. We found that, added biochars had minor long-term effects on the crop biomass yield, plant nutrient contents and plant nutrient uptake in both soil types. In terms of crop biomass yields, significant biochar × fertilization interactions were observed in barley (in 2013) and peas (in 2016), three and six years after the application of biochar in Stagnosol, respectively. In both cases, the biochar combined with the normal fertilization rate (100% of the recommended value) significantly increased crop biomass yield compared to corresponding fertilization treatment without biochar. However, the biochar had no effect at a lower fertilization rate (30% of the recommended value). Similar significant biochar × fertilization interactions were observed for several plant nutrient contents for peas in 2016, and for uptake for both barley in 2013 and peas in 2016. Thus, the ability of biochar to enhance the supply of nutrients to plants and hence to improve the crop biomass yield exists in boreal conditions, although these effects were minimal and not consistent over the years. Biochar notably increased plant K content, and also increased K:Mg ratio in plant biomass, suggesting a possible antagonistic effect of K on Mg in Umbrisol. Similar K antagonism on Na was observed in Stagnosol. The applied biochar also reduced the plant content and uptake of Al and Na in several years in Stagnosol. Furthermore, we found that, increased plant Mn content with biochar in the initial years subsequently declined over the following years in Umbrisol. On the other hand, the relative plant contents of Cd and Ni in Umbrisol, and P, K, Mg, S, Al, Cu, Fe and Ni in Stagnosol increased over the years. Despite these increased plant contents, no significant improvement was observed in crop biomass yield by added biochar over the years. The enhanced plant available water and reduced bulk density previously reported during the initial years were faded in long-term, likely due to dilution of biochar concentration in topsoil. However, the potential of biochar to affect N2O emission persisted, even seven years after the application.
•Biochar (BC) effects were measured for eight years after the application.•BC had minor long-term effects on crop biomass yield.•BC increased plant K content and reduced plant Al and Na content and uptake.•BC had no long-term effects on soil physical properties.•BC had potential to affect N2O emission in long-term. |
---|---|
AbstractList | Biochars (BC) have tremendous potential in mitigating climate change, and offer various agricultural and environmental benefits. However, there is limited information about the long-term effects of added biochars particularly from boreal regions. We studied the effects of a single application of softwood biochars on two contrasting boreal agricultural soils (nutrient-poor, coarse textured Umbrisol and fertile, fine-textured Stagnosol), both with high initial soil organic carbon contents, over eight years following the application. We focused on plant nutrient contents and nutrient uptake dynamics of different field crops over these years, as well as on soil physical properties and greenhouse gas emissions during seven to nine growing seasons. We found that, added biochars had minor long-term effects on the crop biomass yield, plant nutrient contents and plant nutrient uptake in both soil types. In terms of crop biomass yields, significant biochar × fertilization interactions were observed in barley (in 2013) and peas (in 2016), three and six years after the application of biochar in Stagnosol, respectively. In both cases, the biochar combined with the normal fertilization rate (100% of the recommended value) significantly increased crop biomass yield compared to corresponding fertilization treatment without biochar. However, the biochar had no effect at a lower fertilization rate (30% of the recommended value). Similar significant biochar × fertilization interactions were observed for several plant nutrient contents for peas in 2016, and for uptake for both barley in 2013 and peas in 2016. Thus, the ability of biochar to enhance the supply of nutrients to plants and hence to improve the crop biomass yield exists in boreal conditions, although these effects were minimal and not consistent over the years. Biochar notably increased plant K content, and also increased K:Mg ratio in plant biomass, suggesting a possible antagonistic effect of K on Mg in Umbrisol. Similar K antagonism on Na was observed in Stagnosol. The applied biochar also reduced the plant content and uptake of Al and Na in several years in Stagnosol. Furthermore, we found that, increased plant Mn content with biochar in the initial years subsequently declined over the following years in Umbrisol. On the other hand, the relative plant contents of Cd and Ni in Umbrisol, and P, K, Mg, S, Al, Cu, Fe and Ni in Stagnosol increased over the years. Despite these increased plant contents, no significant improvement was observed in crop biomass yield by added biochar over the years. The enhanced plant available water and reduced bulk density previously reported during the initial years were faded in long-term, likely due to dilution of biochar concentration in topsoil. However, the potential of biochar to affect N2O emission persisted, even seven years after the application.
•Biochar (BC) effects were measured for eight years after the application.•BC had minor long-term effects on crop biomass yield.•BC increased plant K content and reduced plant Al and Na content and uptake.•BC had no long-term effects on soil physical properties.•BC had potential to affect N2O emission in long-term. Biochars (BC) have tremendous potential in mitigating climate change, and offer various agricultural and environmental benefits. However, there is limited information about the long-term effects of added biochars particularly from boreal regions. We studied the effects of a single application of softwood biochars on two contrasting boreal agricultural soils (nutrient-poor, coarse textured Umbrisol and fertile, fine-textured Stagnosol), both with high initial soil organic carbon contents, over eight years following the application. We focused on plant nutrient contents and nutrient uptake dynamics of different field crops over these years, as well as on soil physical properties and greenhouse gas emissions during seven to nine growing seasons. We found that, added biochars had minor long-term effects on the crop biomass yield, plant nutrient contents and plant nutrient uptake in both soil types. In terms of crop biomass yields, significant biochar × fertilization interactions were observed in barley (in 2013) and peas (in 2016), three and six years after the application of biochar in Stagnosol, respectively. In both cases, the biochar combined with the normal fertilization rate (100% of the recommended value) significantly increased crop biomass yield compared to corresponding fertilization treatment without biochar. However, the biochar had no effect at a lower fertilization rate (30% of the recommended value). Similar significant biochar × fertilization interactions were observed for several plant nutrient contents for peas in 2016, and for uptake for both barley in 2013 and peas in 2016. Thus, the ability of biochar to enhance the supply of nutrients to plants and hence to improve the crop biomass yield exists in boreal conditions, although these effects were minimal and not consistent over the years. Biochar notably increased plant K content, and also increased K:Mg ratio in plant biomass, suggesting a possible antagonistic effect of K on Mg in Umbrisol. Similar K antagonism on Na was observed in Stagnosol. The applied biochar also reduced the plant content and uptake of Al and Na in several years in Stagnosol. Furthermore, we found that, increased plant Mn content with biochar in the initial years subsequently declined over the following years in Umbrisol. On the other hand, the relative plant contents of Cd and Ni in Umbrisol, and P, K, Mg, S, Al, Cu, Fe and Ni in Stagnosol increased over the years. Despite these increased plant contents, no significant improvement was observed in crop biomass yield by added biochar over the years. The enhanced plant available water and reduced bulk density previously reported during the initial years were faded in long-term, likely due to dilution of biochar concentration in topsoil. However, the potential of biochar to affect N₂O emission persisted, even seven years after the application. |
ArticleNumber | 107454 |
Author | Kalu, Subin Karhu, Kristiina Tammeorg, Priit Simojoki, Asko |
Author_xml | – sequence: 1 givenname: Subin surname: Kalu fullname: Kalu, Subin email: subin.kalu@helsinki.fi organization: Department of Agricultural Sciences, University of Helsinki, Latokartanonkaari 5, P. O. Box 27, FI-00014 Helsinki, Finland – sequence: 2 givenname: Asko orcidid: 0000-0003-2397-3553 surname: Simojoki fullname: Simojoki, Asko organization: Department of Agricultural Sciences, University of Helsinki, Viikinkaari 9, P. O. Box 56, FI-00014 Helsinki, Finland – sequence: 3 givenname: Kristiina surname: Karhu fullname: Karhu, Kristiina organization: Department of Forest Sciences, University of Helsinki, Latokartanonkaari 7, P. O. Box 27, FI-00014 Helsinki, Finland – sequence: 4 givenname: Priit surname: Tammeorg fullname: Tammeorg, Priit organization: Department of Agricultural Sciences, University of Helsinki, Latokartanonkaari 5, P. O. Box 27, FI-00014 Helsinki, Finland |
BookMark | eNp9kb2OGyEUhVG0K8X78wJbUabIOMCMByyliVb5kyylSWqE4TLGGYPDxYn2PfLAuY5TpVga0NX5DhzODbvKJQNjD1IspZDjm_3STQBLJZSkgR5Wwwu2kEb3nerF6ootSKQ7Y8T6JbtB3AtaqjcL9ntT8tQ1qAcOMYJvyEvkWGL7VUrg21T8zlVeMs3SzI-7J0ze0aGWI9SWAF_zqQLkXTkh8Mkhh0NCTCUjdzlwT0KeT60myI2fjs19B54yJ3_uS27VYUt54ttSgXzPt-Adu45uRrj_t9-ybx_ef3381G2-fPz8-G7T-V7r1sk-gDLRrENYg1HaGRhHpyWIbRBxrUEaYfrRu8FI41T021GqIDW4QfQE9bfs1cWX0vw4ATZLT_cwzy4DxbFqpYdeGqMFSc1FSnkQK0TrU3Mt_U2QZiuFPRdh9_ZchD0XYS9FEKr-Q481HVx9eh56e4GA8v9MUC16-kEPIVVqyYaSnsP_AIr1p5g |
CitedBy_id | crossref_primary_10_1002_jeq2_20475 crossref_primary_10_1016_j_scitotenv_2023_169585 crossref_primary_10_3390_ma16216950 crossref_primary_10_1080_17583004_2025_2465328 crossref_primary_10_1016_j_micres_2024_127696 crossref_primary_10_1016_j_agee_2022_108265 crossref_primary_10_1007_s10705_024_10393_2 crossref_primary_10_1016_j_agwat_2024_108722 crossref_primary_10_1016_j_scitotenv_2022_159782 crossref_primary_10_3390_agronomy13041111 crossref_primary_10_1016_j_scitotenv_2023_167623 crossref_primary_10_1080_01904167_2023_2220740 crossref_primary_10_1007_s42773_024_00307_4 crossref_primary_10_1016_j_scitotenv_2023_161881 crossref_primary_10_1139_cjss_2021_0047 crossref_primary_10_1016_j_fcr_2023_109121 crossref_primary_10_1016_j_fcr_2024_109340 crossref_primary_10_1016_j_foreco_2023_120881 crossref_primary_10_1016_j_jenvman_2023_119945 crossref_primary_10_3389_fsufs_2022_951518 crossref_primary_10_1016_j_scitotenv_2021_150337 crossref_primary_10_1002_agj2_21174 crossref_primary_10_1016_j_ecofro_2024_05_005 crossref_primary_10_1016_j_jenvman_2024_123847 crossref_primary_10_1080_21655979_2021_1993536 crossref_primary_10_1016_j_agee_2025_109600 crossref_primary_10_1016_j_geoderma_2025_117237 crossref_primary_10_3390_app13137781 crossref_primary_10_1016_j_apsoil_2024_105652 crossref_primary_10_3390_agronomy13112833 crossref_primary_10_1007_s12210_023_01221_w crossref_primary_10_1016_j_agwat_2022_107806 crossref_primary_10_1016_j_agee_2022_108233 crossref_primary_10_1038_s41598_023_48996_4 crossref_primary_10_3390_su15021206 crossref_primary_10_1590_0103_8478cr20210459 crossref_primary_10_3390_su142214722 crossref_primary_10_4236_ojpchem_2024_143007 crossref_primary_10_1016_j_scitotenv_2023_163113 crossref_primary_10_3389_fenvs_2022_914766 crossref_primary_10_1016_j_biombioe_2023_106787 crossref_primary_10_3390_su151712900 crossref_primary_10_1016_j_rhisph_2024_100887 crossref_primary_10_5897_AJAR2023_16547 crossref_primary_10_1038_s41598_021_93200_0 crossref_primary_10_3390_su15129488 crossref_primary_10_1016_j_chemosphere_2021_133476 crossref_primary_10_1007_s42729_021_00678_8 |
Cites_doi | 10.1016/j.agee.2014.03.031 10.1016/j.jhazmat.2019.121265 10.1016/j.jaridenv.2012.07.012 10.1016/j.agwat.2015.04.010 10.1038/s41467-017-01123-0 10.1021/acs.est.7b00647 10.1071/CP07125 10.1088/1748-9326/aa67bd 10.1104/pp.111.175232 10.1016/j.agee.2014.01.007 10.1016/j.apsoil.2015.07.014 10.1016/j.ecoenv.2017.02.028 10.1007/s11104-012-1169-8 10.1111/gcb.12137 10.1007/s11104-010-0327-0 10.18637/jss.v067.i01 10.1002/ehs2.1202 10.1111/ejss.12071 10.1111/gcb.14613 10.2134/jeq2015.10.0529 10.1016/bs.agron.2016.10.001 10.1016/j.geoderma.2016.11.025 10.1016/j.scitotenv.2020.144533 10.3390/w12072012 10.1016/j.agee.2016.04.010 10.3846/16486897.2016.1239582 10.1111/gcbb.12665 10.1016/j.agee.2016.11.002 10.1007/BF03179980 10.1111/j.1574-6968.2009.01674.x 10.3390/su12083436 10.1016/j.orggeochem.2006.06.022 10.3390/agronomy10030449 10.1016/j.scitotenv.2020.137286 10.1111/gcbb.12037 10.1016/j.agee.2020.107286 10.1016/j.chemosphere.2012.06.002 10.1016/j.soilbio.2013.12.021 10.1038/nclimate3276 10.1016/j.jclepro.2019.118435 10.1007/s42773-020-00067-x 10.1007/s00374-020-01534-0 10.1016/j.scitotenv.2018.11.124 10.1016/j.scitotenv.2018.10.060 10.1016/j.agee.2010.12.005 10.1029/2020GB006698 10.1016/j.geoderma.2019.03.011 10.1021/ez500199t 10.1007/s13593-014-0251-4 10.1016/j.fcr.2019.02.015 10.1128/aem.61.8.3129-3135.1995 10.1016/j.scitotenv.2020.137455 10.1111/j.2517-6161.1964.tb00553.x 10.1111/gcbb.12005 10.2134/agronj2009.0083 10.1002/jpln.201700528 10.1007/s11104-013-1851-5 10.1016/j.scitotenv.2017.09.200 10.1007/s13593-012-0128-3 10.1002/jpln.201800228 10.1111/sum.12546 10.1016/j.scitotenv.2020.142430 10.1111/gcbb.12430 10.1016/j.scitotenv.2017.09.124 10.1016/j.geoderma.2016.07.019 10.3390/agriculture8110171 10.1007/s42773-019-00026-1 10.1007/s00374-021-01541-9 10.3390/agronomy3020313 10.17221/359/2018-PSE 10.2134/agronj1987.00021962007900010020x 10.1038/srep11080 10.2134/jeq2011.0070 10.1016/j.agee.2014.02.023 10.1016/j.jenvman.2016.06.063 10.1016/j.scitotenv.2020.138955 10.1016/j.soilbio.2011.11.019 10.1016/j.geoderma.2020.114178 10.1088/1748-9326/8/4/044049 10.1016/j.scitotenv.2018.06.166 10.1111/gcbb.12376 10.1016/j.scitotenv.2020.138140 10.1007/s00374-006-0152-z 10.1016/j.soilbio.2016.07.021 10.1016/j.scitotenv.2018.03.380 |
ContentType | Journal Article |
Copyright | 2021 The Authors |
Copyright_xml | – notice: 2021 The Authors |
DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.agee.2021.107454 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture Environmental Sciences |
EISSN | 1873-2305 |
ExternalDocumentID | 10_1016_j_agee_2021_107454 S0167880921001584 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6I. 7-5 71M 8P~ 9JM AABNK AABVA AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABBQC ABFNM ABFRF ABFYP ABGRD ABKYH ABLST ABLVK ABMAC ABMZM ABRWV ABYKQ ACDAQ ACGFS ACIUM ACIWK ACPRK ACRLP ADBBV ADEZE ADQTV AEBSH AEFWE AEKER AENEX AEQOU AESVU AEXOQ AFKWA AFRAH AFTJW AFXIZ AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AJRQY AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AXJTR BKOJK BLECG BLXMC BNPGV CBWCG CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM LCYCR LW9 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 QYZTP ROL RPZ SAB SCC SCU SDF SDG SDP SEN SES SNL SPCBC SSA SSH SSJ SSZ T5K Y6R ~02 ~G- ~KM 186 AAHBH AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACIEU ACMHX ACRPL ACVFH ADCNI ADMUD ADNMO ADSLC ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGHFR AGQPQ AGRNS AGWPP AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HLV HMC HVGLF HZ~ R2- RIG SEW VH1 WUQ 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c377t-13de28f89dd9e827a8e66a71e0bd0f97e180836ca4818a2fcb612d17ea4039dd3 |
IEDL.DBID | .~1 |
ISSN | 0167-8809 |
IngestDate | Tue Aug 12 03:27:48 EDT 2025 Tue Jul 01 01:28:02 EDT 2025 Thu Apr 24 23:10:19 EDT 2025 Fri Feb 23 02:46:15 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Plant nutrients Biochar Greenhouse gases Field aging Soil physical properties |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c377t-13de28f89dd9e827a8e66a71e0bd0f97e180836ca4818a2fcb612d17ea4039dd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-2397-3553 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0167880921001584 |
PQID | 2574318870 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2574318870 crossref_citationtrail_10_1016_j_agee_2021_107454 crossref_primary_10_1016_j_agee_2021_107454 elsevier_sciencedirect_doi_10_1016_j_agee_2021_107454 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-08-15 |
PublicationDateYYYYMMDD | 2021-08-15 |
PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Agriculture, ecosystems & environment |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Soinne, Keskinen, Heikkinen, Hyväluoma, Uusitalo, Peltoniemi, Velmala, Pennanen, Fritze, Kaseva, Hannula, Rasa (bib78) 2020; 731 Bornø, Müller-Stöver, Liu (bib8) 2019; 182 Heikkinen, Ketoja, Nuutinen, Regina (bib38) 2013; 19 Spokas (bib80) 2013; 5 Jeffery, Abalos, Prodana, Bastos, Groenigen, Hungate, Verheijen (bib42) 2017; 12 Blanco-Canqui, Laird, Heaton, Rathke, Acharya (bib6) 2020; 12 Meier (bib61) 2001 Mulcahy, Mulcahy, Dietz (bib67) 2013; 88 Tammeorg, Bastos, Jeffery, Rees, Kern, Graber, Ventura, Kibblewhite, Amaro, Budai, Cordovil, Domene, Gardi, Gascó, Horák, Kammann, Kondrlova, Laird, Loureiro, Martins, Panzacchi, Prasad, Prodana, Puga, Ruysschaert, Sas-Paszt, Silva, Teixeira, Tonon, Delle Vedove, Zavalloni, Glaser, Verheijen (bib82) 2017; 25 Gaskin, Speir, Harris, Das, Lee, Morris, Fisher (bib26) 2010; 102 Ye, Camps-Arbestain, Shen, Lehmann, Singh, Sabir (bib94) 2020; 36 Thers, Abolas, Dörsch, Elsgaard (bib87) 2020; 724 Llovet, Mattana, Chin-Pampillo, Otero, Carrey, Mondini, Gascó, Martí, Margalef, Alcañiz, Domene, Ribas (bib59) 2021; 755 Feng, Cheng, Qul, Yan, Li, Jian, Dong, Xian, Xu, Xi (bib22) 2018; 64 . Hammer, Forstreuter, Rillig, Kohler (bib35) 2015; 96 Giagnoni, Maienza, Baronti, Vaccari, Genesio, Taiti, Martellini, Scodellini, Cincinelli, Costa, Mancuso, Renella (bib27) 2019; 344 Hagemann, Joseph, Schmidt, Kammann, Harter, Borch, Young, Varga, Taherymoosavi, Elliott, McKenna, Albu, Mayrhofer, Obst, Conte, Dieguez-Alonso, Orsetti, Subdiaga, Behrens, Kappler (bib32) 2017; 8 Kuo, Lee, Jien (bib51) 2020; 12 Mukherjee, Lal (bib66) 2013; 3 Spokas, Novak, Masiello, Johnson, Colosky, Ippolito, Trigo (bib81) 2014; 1 Qian, Chen (bib72) 2013; 47 Griffin, Wang, Parikh, Scow (bib31) 2017; 236 Cheng, Lehmann, Thies, Burton, Engelhard (bib14) 2006; 37 Cornelissen, Jubaedah, Nurida, Hale, Martinsen, Silvani, Mulder (bib15) 2018; 634 Crane-Droesch, Abiven, Jeffery, Torn (bib16) 2013; 8 Tammeorg, Parviainen, Nuutinen, Simojoki, Vaara, Helenius (bib86) 2014; 191 Brassard, Godbout, Raghavan (bib10) 2016; 181 Graber, Tsechansky, Lew, Cohen (bib29) 2014; 65 Quan, Fan, Sun, Cui, Wang, Gao, Yan (bib73) 2020; 384 Rondon, Lehmann, Ramírez, Hurtado (bib76) 2007; 43 Bruun, Ambus, Egsgaard, Hauggaard-Nielsen (bib12) 2012; 46 Karhu, Mattila, Bergström, Regina (bib48) 2011; 140 Lenth, R., 2019. emmeans: estimated marginal means aka least-squares means. Retrieved from Peoples, Brockwell, Herridge, Rochester, Alves, Urquiaga, Boddey, Dakora, Bhattarai, Maskey, Sampet, Rerkasem, Khan, Hauggaard-Nielsen, Jensen (bib71) 2009; 48 Liu, Jiang, Shen, Zhu, Yi, Li, Wu (bib57) 2021; 311 Richardson, Hocking, Simpson, George (bib75) 2009; 60 Tammeorg, Brandstaka, Simojoki, Helenius (bib83) 2012; 103 Box, Cox (bib9) 1964; 26 Joseph, Kammann, Shepherd, Conte, Schmidt, Hagemann, Rich, Marjo, Allen, Munroe, Mitchell, Donne, Spokas, Graber (bib44) 2018; 618 Laird, Novak, Collins, Ippolito, Karlen, Lentz, Sistani, Spokas, Van Pelt (bib53) 2017; 289 Williams, Jones, Sanders, Benitez, Plante (bib91) 2019; 1 He, Zhou, Jiang, Li, Du, Zhou, Shao, Wang, Xu, Hosseini Bai, Wallace, Xu (bib37) 2017; 9 Zhang, Song, Wu, Yan, Gunina, Kuzyakov, Xiong (bib98) 2020; 242 Xu, Tian, Pan, Prior, Feng, Dnagal (bib92) 2020; 34 Ippolito, Cui, Kammann, Wrage-Mönnig, Estavillo, Fuertes-Mendizabal, Cayuela, Sigua, Novak, Spokas, Borchard (bib39) 2020; 2 (Accessed on 11.05.2020). Oram, van de Voorde, Ouwehand, Bezemer, Mommer, Jeffery, Groenigen (bib70) 2014; 191 Borchard, Schirrmann, Cayuela, Kammann, Wrage-Mönnig, Estavillo, Fuertes-Mendizábal, Sigua, Spokas, Ippolito, Novak (bib7) 2019; 651 Kloss, Zehetner, Dellantonio, Hamid, Ottner, Liedtke, Schwanninger, Gerzabek, Soja (bib50) 2012; 41 Liao, Müller, Jansen-Willems, Luo, Lindsey, Liu, Chen, Niu, Ding (bib55) 2021 Haider, Steffens, Müller, Kammann (bib33) 2016; 45 Mia, Dijkstra, Singh (bib64) 2017; 51 Glaser, Wiedner, Seelig, Schmidt, Gerber (bib28) 2015; 35 Miller (bib65) 1998 Dunfield, Knowles (bib20) 1995; 61 Yao, Gao, Zhang, Inyang, Zimmerman (bib93) 2012; 89 Bates, Maechler, Bolker, Walker (bib4) 2015; 67 Tammeorg, Simojoki, Mäkelä, Stoddard, Alakukku, Helenius (bib85) 2014; 191 Hale, Nurida, Jubaedah, Mulder, Sørmo, Silvani, Abiven, Joseph, Taherymoosavi, Cornelissen (bib34) 2020; 719 Biederman, Harpole (bib5) 2013; 5 O’Toole, Moni, Weldon, Schols, Carnol, Bosman, Rasse (bib69) 2018; 8 Mia, Singh, Dijkstra (bib63) 2017; 9 Kammann, Schmidt, Messerschmidt, Linsel, Steffens, Müller, Koyro, Conte, Joseph (bib46) 2015; 5 Zhang, Zhang, Duan, Jiang, Shen, Yan, Xiong (bib100) 2021; 769 de la Rosa, Rosado, Paneque, Miller, Knicker (bib18) 2018; 613–614 FMI, 2020. Temperature and precipitation statistics from 1961 onwards. Finnish Meteorological Institute Jakobsen (bib41) 1993; 43 Nyerges, Stein (bib68) 2009; 297 Hardy, Sleutel, Dufey, Cornelis (bib36) 2019 Zhang, Yan, Niu, Liu, van Zwieten, Chen, Bian, Cheng, Li, Joseph, Zheng, Zhang, Zheng, Crowley, Filley, Pan (bib96) 2016; 226 Viljavuuspalvelu Oy, 2000. Viljavuustutkimuksen tulkinta peltoviljelyssä. Viljavuuspalvelu Oy, Mikkeli, Finland. Zhang, Riaz, Liu, Xia, El-desouki, Jiang (bib99) 2020; 717 Major, Rondon, Molina, Riha, Lehmann (bib60) 2010; 333 Yuan, Yuan, He, Hu, Qin, Clough, Wrage-Mönnig, Luo, He, Chen, Zhou (bib95) 2021; 57 Dane, Hopmans (bib17) 2002 Tammeorg, Simojoki, Mäkelä, Stoddard, Alakukku, Helenius (bib84) 2014; 374 Kuzyakov, Bogomolova, Glaser (bib52) 2014; 70 Shen, Yuan, Zhang, Li, Bai, Chen, Zhang, Zhang (bib77) 2011; 156 Zhang, Xiao, Xue, Zhang (bib97) 2020; 12 Wang, Xue, Nie, Liu, Chen (bib89) 2018; 181 Graves, S., Piepho, H.-P., Selzer, L., Dorai-Raj, S., 2019. multcompView: Visualizations of paired comparisons. Retrieved from Song, Pan, Zhang, Zhang, Wang (bib79) 2016; 2 Bruulsema, Christie (bib11) 1987; 79 Duan, Zhang, Zhang, Wu, Xiong (bib19) 2018; 642 Ippolito, Spokas, Novak, Lentz, Cantrell (bib40) 2015 Fan, Duan, Zhang, Shen, Chen, Xiong (bib21) 2020; 364 Kalu, Oyekoya, Ambus, Tammeorg, Simojoki, Pihlatie, Karhu (bib45) 2021; 57 Weng, Van Zwieten, Singh, Tavakkoli, Joseph, Macdonald, Rose, Rose, Kimber, Morris, Cozzolino, Araujo, Archanjo, Cowie (bib90) 2017; 7 Abbas, Rizwan, Ali, Zia-ur-Rehman, Farooq Qayyum, Abbas, Hannan, Rinklebe, Sik Ok (bib1) 2017; 140 Kätterer, Roobroeck, Andrén, Kimutai, Karltun, Kirchmann, Nyberg, Vanlauwe, Röing de Nowina (bib49) 2019; 235 Burrell, Zehetner, Rampazzo, Wimmer, Soja (bib13) 2016; 282 Lin, Munroe, Joseph, Kimber, Van Zwieten (bib56) 2012; 357 Mia, Dijkstra, Singh (bib62) 2017 Gao, DeLuca, Cleveland (bib25) 2019; 654 Jeffery, Verheijen, Kammann, Abalos (bib43) 2016; 101 Karer, Wimmer, Zehetner, Kloss, Soja (bib47) 2013 R Core Team, 2018. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. Alburquerque, Salazar, Barrón, Torrent, del Campillo, Gallardo, Villar (bib3) 2013; 33 Futa, Oleszczuk, Andruszczak, Kwiecińska-Poppe, Kraska (bib24) 2020; 10 Akhtar, Andersen, Liu (bib2) 2015; 158 Liu, Liu, Zhang, Hu, Lin, Liu, Wang, Ma, Wang, Jin, Ambus, Amonette, Xie (bib58) 2019; 25 Bates (10.1016/j.agee.2021.107454_bib4) 2015; 67 Tammeorg (10.1016/j.agee.2021.107454_bib83) 2012; 103 Joseph (10.1016/j.agee.2021.107454_bib44) 2018; 618 Blanco-Canqui (10.1016/j.agee.2021.107454_bib6) 2020; 12 Hardy (10.1016/j.agee.2021.107454_bib36) 2019 Karer (10.1016/j.agee.2021.107454_bib47) 2013 Crane-Droesch (10.1016/j.agee.2021.107454_bib16) 2013; 8 Ippolito (10.1016/j.agee.2021.107454_bib39) 2020; 2 10.1016/j.agee.2021.107454_bib54 Fan (10.1016/j.agee.2021.107454_bib21) 2020; 364 Hammer (10.1016/j.agee.2021.107454_bib35) 2015; 96 Duan (10.1016/j.agee.2021.107454_bib19) 2018; 642 Giagnoni (10.1016/j.agee.2021.107454_bib27) 2019; 344 Rondon (10.1016/j.agee.2021.107454_bib76) 2007; 43 Gao (10.1016/j.agee.2021.107454_bib25) 2019; 654 Gaskin (10.1016/j.agee.2021.107454_bib26) 2010; 102 Jeffery (10.1016/j.agee.2021.107454_bib43) 2016; 101 Hagemann (10.1016/j.agee.2021.107454_bib32) 2017; 8 Williams (10.1016/j.agee.2021.107454_bib91) 2019; 1 Mulcahy (10.1016/j.agee.2021.107454_bib67) 2013; 88 Spokas (10.1016/j.agee.2021.107454_bib80) 2013; 5 Tammeorg (10.1016/j.agee.2021.107454_bib84) 2014; 374 Graber (10.1016/j.agee.2021.107454_bib29) 2014; 65 Mukherjee (10.1016/j.agee.2021.107454_bib66) 2013; 3 Brassard (10.1016/j.agee.2021.107454_bib10) 2016; 181 Kuo (10.1016/j.agee.2021.107454_bib51) 2020; 12 Box (10.1016/j.agee.2021.107454_bib9) 1964; 26 Song (10.1016/j.agee.2021.107454_bib79) 2016; 2 Tammeorg (10.1016/j.agee.2021.107454_bib82) 2017; 25 Kloss (10.1016/j.agee.2021.107454_bib50) 2012; 41 Haider (10.1016/j.agee.2021.107454_bib33) 2016; 45 10.1016/j.agee.2021.107454_bib74 Weng (10.1016/j.agee.2021.107454_bib90) 2017; 7 Richardson (10.1016/j.agee.2021.107454_bib75) 2009; 60 Meier (10.1016/j.agee.2021.107454_bib61) 2001 Kalu (10.1016/j.agee.2021.107454_bib45) 2021; 57 Bornø (10.1016/j.agee.2021.107454_bib8) 2019; 182 Cheng (10.1016/j.agee.2021.107454_bib14) 2006; 37 Jakobsen (10.1016/j.agee.2021.107454_bib41) 1993; 43 Bruun (10.1016/j.agee.2021.107454_bib12) 2012; 46 Ippolito (10.1016/j.agee.2021.107454_bib40) 2015 Heikkinen (10.1016/j.agee.2021.107454_bib38) 2013; 19 de la Rosa (10.1016/j.agee.2021.107454_bib18) 2018; 613–614 Griffin (10.1016/j.agee.2021.107454_bib31) 2017; 236 Zhang (10.1016/j.agee.2021.107454_bib98) 2020; 242 Cornelissen (10.1016/j.agee.2021.107454_bib15) 2018; 634 Mia (10.1016/j.agee.2021.107454_bib63) 2017; 9 Zhang (10.1016/j.agee.2021.107454_bib97) 2020; 12 Qian (10.1016/j.agee.2021.107454_bib72) 2013; 47 Burrell (10.1016/j.agee.2021.107454_bib13) 2016; 282 Karhu (10.1016/j.agee.2021.107454_bib48) 2011; 140 Akhtar (10.1016/j.agee.2021.107454_bib2) 2015; 158 Jeffery (10.1016/j.agee.2021.107454_bib42) 2017; 12 Liu (10.1016/j.agee.2021.107454_bib58) 2019; 25 Major (10.1016/j.agee.2021.107454_bib60) 2010; 333 Lin (10.1016/j.agee.2021.107454_bib56) 2012; 357 Laird (10.1016/j.agee.2021.107454_bib53) 2017; 289 Glaser (10.1016/j.agee.2021.107454_bib28) 2015; 35 Mia (10.1016/j.agee.2021.107454_bib64) 2017; 51 10.1016/j.agee.2021.107454_bib88 Shen (10.1016/j.agee.2021.107454_bib77) 2011; 156 Peoples (10.1016/j.agee.2021.107454_bib71) 2009; 48 O’Toole (10.1016/j.agee.2021.107454_bib69) 2018; 8 Zhang (10.1016/j.agee.2021.107454_bib100) 2021; 769 Soinne (10.1016/j.agee.2021.107454_bib78) 2020; 731 Xu (10.1016/j.agee.2021.107454_bib92) 2020; 34 Llovet (10.1016/j.agee.2021.107454_bib59) 2021; 755 Kuzyakov (10.1016/j.agee.2021.107454_bib52) 2014; 70 Hale (10.1016/j.agee.2021.107454_bib34) 2020; 719 Kätterer (10.1016/j.agee.2021.107454_bib49) 2019; 235 Oram (10.1016/j.agee.2021.107454_bib70) 2014; 191 He (10.1016/j.agee.2021.107454_bib37) 2017; 9 Abbas (10.1016/j.agee.2021.107454_bib1) 2017; 140 Nyerges (10.1016/j.agee.2021.107454_bib68) 2009; 297 Ye (10.1016/j.agee.2021.107454_bib94) 2020; 36 Tammeorg (10.1016/j.agee.2021.107454_bib85) 2014; 191 Zhang (10.1016/j.agee.2021.107454_bib96) 2016; 226 Borchard (10.1016/j.agee.2021.107454_bib7) 2019; 651 10.1016/j.agee.2021.107454_bib30 Miller (10.1016/j.agee.2021.107454_bib65) 1998 10.1016/j.agee.2021.107454_bib23 Feng (10.1016/j.agee.2021.107454_bib22) 2018; 64 Kammann (10.1016/j.agee.2021.107454_bib46) 2015; 5 Mia (10.1016/j.agee.2021.107454_bib62) 2017 Zhang (10.1016/j.agee.2021.107454_bib99) 2020; 717 Futa (10.1016/j.agee.2021.107454_bib24) 2020; 10 Wang (10.1016/j.agee.2021.107454_bib89) 2018; 181 Quan (10.1016/j.agee.2021.107454_bib73) 2020; 384 Alburquerque (10.1016/j.agee.2021.107454_bib3) 2013; 33 Dane (10.1016/j.agee.2021.107454_bib17) 2002 Yao (10.1016/j.agee.2021.107454_bib93) 2012; 89 Yuan (10.1016/j.agee.2021.107454_bib95) 2021; 57 Dunfield (10.1016/j.agee.2021.107454_bib20) 1995; 61 Thers (10.1016/j.agee.2021.107454_bib87) 2020; 724 Liao (10.1016/j.agee.2021.107454_bib55) 2021 Tammeorg (10.1016/j.agee.2021.107454_bib86) 2014; 191 Liu (10.1016/j.agee.2021.107454_bib57) 2021; 311 Spokas (10.1016/j.agee.2021.107454_bib81) 2014; 1 Biederman (10.1016/j.agee.2021.107454_bib5) 2013; 5 Bruulsema (10.1016/j.agee.2021.107454_bib11) 1987; 79 |
References_xml | – volume: 61 start-page: 3129 year: 1995 end-page: 3135 ident: bib20 article-title: Kinetics of inhibition of methane oxidation by nitrate, nitrite, and ammonium in a humisol publication-title: Appl. Environ. Microbiol. – volume: 634 start-page: 561 year: 2018 end-page: 568 ident: bib15 article-title: Fading positive effect of biochar on crop yield and soil acidity during five growth seasons in an Indonesian ultisol publication-title: Sci. Total Environ. – volume: 102 start-page: 623 year: 2010 end-page: 633 ident: bib26 article-title: Effect of peanut hull and pine chip biochar on soil nutrients, corn nutrient status, and yield publication-title: Agron. J. – volume: 654 start-page: 463 year: 2019 end-page: 472 ident: bib25 article-title: Biochar additions alter phosphorus and nitrogen availability in agricultural ecosystems: a meta-analysis publication-title: Sci. Total Environ. – volume: 2 start-page: 421 year: 2020 end-page: 438 ident: bib39 article-title: Feedstock choice, pyrolysis temperature and type influence biochar characteristics: a comprehensive meta-data analysis review publication-title: Biochar – volume: 103 start-page: 19 year: 2012 end-page: 30 ident: bib83 article-title: Nitrogen mineralisation dynamics of meat bone meal and cattle manure as affected by the application of softwood chip biochar in soil publication-title: Earth Environ. Sci. Trans. R. Soc. Edinb. – volume: 9 start-page: 743 year: 2017 end-page: 755 ident: bib37 article-title: Effects of biochar application on soil greenhouse gas fluxes: a meta-analysis publication-title: GCB Bioenergy – volume: 60 start-page: 124 year: 2009 end-page: 143 ident: bib75 article-title: Plant mechanisms to optimise access to soil phosphorus publication-title: Crop Pasture Sci. – volume: 19 start-page: 1456 year: 2013 end-page: 1469 ident: bib38 article-title: Declining trend of carbon in Finnish cropland soils in 1974–2009 publication-title: Glob. Change Biol. – volume: 89 start-page: 1467 year: 2012 end-page: 1471 ident: bib93 article-title: Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil publication-title: Chemosphere – volume: 613–614 start-page: 969 year: 2018 end-page: 976 ident: bib18 article-title: Effects of aging under field conditions on biochar structure and composition: Implications for biochar stability in soils publication-title: Sci. Total Environ. – volume: 79 start-page: 96 year: 1987 end-page: 100 ident: bib11 article-title: Nitrogen contribution to succeeding corn from alfalfa and red clover publication-title: Agron. J. – start-page: 7 year: 2019 ident: bib36 article-title: The long-term effect of biochar on soil microbial abundance, activity and community structure is overwritten by land management publication-title: Front. Environ. Sci. – volume: 311 year: 2021 ident: bib57 article-title: Contrasting effects of straw and straw-derived biochar applications on soil carbon accumulation and nitrogen use efficiency in double-rice cropping systems publication-title: Agric. Ecosyst. Environ. – volume: 717 year: 2020 ident: bib99 article-title: Two-year study of biochar: achieving excellent capability of potassium supply via alter clay mineral composition and potassium-dissolving bacteria activity publication-title: Sci. Total Environ. – volume: 43 start-page: 699 year: 2007 end-page: 708 ident: bib76 article-title: Biological nitrogen fixation by common beans ( publication-title: Biol. Fertil. Soils – start-page: 53 year: 1998 end-page: 56 ident: bib65 article-title: High-temperature oxidation: dry ashing publication-title: Handbook of Reference Methods for Plant Analysis – volume: 51 start-page: 8359 year: 2017 end-page: 8367 ident: bib64 article-title: Aging induced changes in biochar’s functionality and adsorption behavior for phosphate and ammonium publication-title: Environ. Sci. Technol. – volume: 282 start-page: 96 year: 2016 end-page: 102 ident: bib13 article-title: Long-term effects of biochar on soil physical properties publication-title: Geoderma – volume: 5 start-page: 202 year: 2013 end-page: 214 ident: bib5 article-title: Biochar and its effects on plant productivity and nutrient cycling: a meta-analysis publication-title: GCB Bioenergy – volume: 47 start-page: 8759 year: 2013 end-page: 8768 ident: bib72 article-title: Dual role of biochars as adsorbents for aluminum: the effects of oxygen-containing organic components and the scattering of silicate particles publication-title: Environ. Sci. Technol. – volume: 3 start-page: 313 year: 2013 end-page: 339 ident: bib66 article-title: Biochar impacts on soil physical properties and greenhouse gas emissions publication-title: Agronomy – volume: 45 start-page: 1196 year: 2016 end-page: 1204 ident: bib33 article-title: Standard extraction methods may underestimate nitrate stocks captured by field-aged biochar publication-title: J. Environ. Qual. – start-page: 671 year: 2002 end-page: 796 ident: bib17 article-title: Water retention and storage publication-title: Methods of Soil Analysis. Part 4 – volume: 236 start-page: 21 year: 2017 end-page: 29 ident: bib31 article-title: Short-lived effects of walnut shell biochar on soils and crop yields in a long-term field experiment publication-title: Agric. Ecosyst. Environ. – volume: 651 start-page: 2354 year: 2019 end-page: 2364 ident: bib7 article-title: Biochar, soil and land-use interactions that reduce nitrate leaching and N publication-title: Sci. Total Environ. – volume: 191 start-page: 108 year: 2014 end-page: 116 ident: bib85 article-title: Short-term effects of biochar on soil properties and wheat yield formation with meat bone meal and inorganic fertiliser on a boreal loamy sand publication-title: Agric. Ecosyst. Environ. – volume: 10 start-page: 449 year: 2020 ident: bib24 article-title: Effect of natural aging of biochar on soil enzymatic activity and physicochemical properties in long-term field experiment publication-title: Agronomy – reference: (Accessed on 11.05.2020). – reference: FMI, 2020. Temperature and precipitation statistics from 1961 onwards. Finnish Meteorological Institute – volume: 8 year: 2013 ident: bib16 article-title: Heterogeneous global crop yield response to biochar: a meta-regression analysis publication-title: Environ. Res. Lett. – volume: 12 start-page: 2012 year: 2020 ident: bib51 article-title: Reduction of nutrient leaching potential in coarse-textured soil by using biochar publication-title: Water – volume: 70 start-page: 229 year: 2014 end-page: 236 ident: bib52 article-title: Biochar stability in soil: decomposition during eight years and transformation as assessed by compound-specific publication-title: Soil Biol. Biochem. – volume: 12 year: 2017 ident: bib42 article-title: Biochar boosts tropical but not temperate crop yields publication-title: Environ. Res. Lett. – volume: 724 year: 2020 ident: bib87 article-title: Nitrous oxide emissions from oilseed rape cultivation were unaffected by flash pyrolysis biochar of different type, rate and field ageing publication-title: Sci. Total Environ. – volume: 2 year: 2016 ident: bib79 article-title: Effects of biochar application on fluxes of three biogenic greenhouse gases: a meta‐analysis publication-title: Ecosyst. Health Sustain. – year: 2001 ident: bib61 article-title: Growth Stages of Mono- and Dicotyledonous Plants. BBCH-Monograph. Federal Biological Research Centre for Agriculture and Forestry – start-page: 139 year: 2015 end-page: 163 ident: bib40 article-title: Biochar elemental composition and factors influencing nutrient retention publication-title: Biochar for Environmental Management. Science, Technology and Implementation – volume: 88 start-page: 222 year: 2013 end-page: 225 ident: bib67 article-title: Biochar soil amendment increases tomato seedling resistance to drought in sandy soils publication-title: J. Arid Environ. – reference: R Core Team, 2018. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. – volume: 719 year: 2020 ident: bib34 article-title: The effect of biochar, lime and ash on maize yield in a long-term field trial in a ultisol in the humid tropics publication-title: Sci. Total Environ. – volume: 26 start-page: 211 year: 1964 end-page: 243 ident: bib9 article-title: An analysis of transformations publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol. – reference: Graves, S., Piepho, H.-P., Selzer, L., Dorai-Raj, S., 2019. multcompView: Visualizations of paired comparisons. Retrieved from – volume: 5 start-page: 11080 year: 2015 ident: bib46 article-title: Plant growth improvement mediated by nitrate capture in co-composted biochar publication-title: Sci. Rep. – start-page: 01542 year: 2021 ident: bib55 article-title: Field-aged biochar decreased N publication-title: Biol. Fertil. Soils – volume: 642 start-page: 1303 year: 2018 end-page: 1310 ident: bib19 article-title: Field-aged biochar stimulated N publication-title: Sci. Total Environ. – volume: 140 start-page: 309 year: 2011 end-page: 313 ident: bib48 article-title: Biochar addition to agricultural soil increased CH4 uptake and water holding capacity – results from a short-term pilot field study publication-title: Agric. Ecosyst. Environ. – volume: 96 start-page: 114 year: 2015 end-page: 121 ident: bib35 article-title: Biochar increases arbuscular mycorrhizal plant growth enhancement and ameliorates salinity stress publication-title: Appl. Soil Ecol. – volume: 226 start-page: 25 year: 2016 end-page: 32 ident: bib96 article-title: Is current biochar research addressing global soil constraints for sustainable agriculture? publication-title: Agric. Ecosyst. Environ. – volume: 140 start-page: 37 year: 2017 end-page: 47 ident: bib1 article-title: Effect of biochar on cadmium bioavailability and uptake in wheat ( publication-title: Ecotoxicol. Environ. Saf. – volume: 7 start-page: 371 year: 2017 end-page: 376 ident: bib90 article-title: Biochar built soil carbon over a decade by stabilizing rhizodeposits publication-title: Nat. Clim. Change – volume: 289 start-page: 46 year: 2017 end-page: 53 ident: bib53 article-title: Multi-year and multi-location soil quality and crop biomass yield responses to hardwood fast pyrolysis biochar publication-title: Geoderma – volume: 33 start-page: 475 year: 2013 end-page: 484 ident: bib3 article-title: Enhanced wheat yield by biochar addition under different mineral fertilization levels publication-title: Agron. Sustain. Dev. – volume: 181 start-page: 484 year: 2016 end-page: 497 ident: bib10 article-title: Soil biochar amendment as a climate change mitigation tool: key parameters and mechanisms involved publication-title: J. Environ. Manag. – reference: Lenth, R., 2019. emmeans: estimated marginal means aka least-squares means. Retrieved from – volume: 158 start-page: 61 year: 2015 end-page: 68 ident: bib2 article-title: Residual effects of biochar on improving growth, physiology and yield of wheat under salt stress publication-title: Agric. Water Manag. – volume: 35 start-page: 667 year: 2015 end-page: 678 ident: bib28 article-title: Biochar organic fertilizers from natural resources as substitute for mineral fertilizers publication-title: Agron. Sustain. Dev. – volume: 67 start-page: 1 year: 2015 end-page: 48 ident: bib4 article-title: Fitting linear mixed-effects models using lme4 publication-title: J. Stat. Softw. – volume: 182 start-page: 149 year: 2019 end-page: 158 ident: bib8 article-title: Biochar properties and soil type drive the uptake of macro- and micronutrients in maize ( publication-title: J. Plant Nutr. Soil Sci. – volume: 101 start-page: 251 year: 2016 end-page: 258 ident: bib43 article-title: Biochar effects on methane emissions from soils: a meta-analysis publication-title: Soil Biol. Biochem. – volume: 9 start-page: 1196 year: 2017 end-page: 1206 ident: bib63 article-title: Aged biochar affects gross nitrogen mineralization and recovery: a publication-title: GCB Bioenergy – volume: 12 start-page: 3436 year: 2020 ident: bib97 article-title: Quantifying the effects of biochar application on greenhouse gas emissions from agricultural soils: a global meta-analysis publication-title: Sustainability – volume: 57 start-page: 457 year: 2021 end-page: 470 ident: bib45 article-title: Effects of two wood-based biochars on the fate of added fertilizer nitrogen – a publication-title: Biol. Fertil. Soils – volume: 297 start-page: 131 year: 2009 end-page: 136 ident: bib68 article-title: Ammonia cometabolism and product inhibition vary considerably among species of methanotrophic bacteria publication-title: FEMS Microbiol. Lett. – volume: 41 start-page: 990 year: 2012 end-page: 1000 ident: bib50 article-title: Characterization of slow pyrolysis biochars: effects of feedstocks and pyrolysis temperature on biochar properties publication-title: J. Environ. Qual. – volume: 36 start-page: 2 year: 2020 end-page: 18 ident: bib94 article-title: Biochar effects on crop yields with and without fertilizer: a meta-analysis of field studies using separate controls publication-title: Soil Use Manag. – volume: 357 start-page: 369 year: 2012 end-page: 380 ident: bib56 article-title: Nanoscale organo-mineral reactions of biochars in ferrosol: an investigation using microscopy publication-title: Plant Soil – volume: 191 start-page: 92 year: 2014 end-page: 98 ident: bib70 article-title: Soil amendment with biochar increases the competitive ability of legumes via increased potassium availability publication-title: Agric. Ecosyst. Environ. – volume: 156 start-page: 997 year: 2011 end-page: 1005 ident: bib77 article-title: Phosphorus dynamics: from soil to plant publication-title: Plant Physiol. – volume: 48 start-page: 1 year: 2009 end-page: 17 ident: bib71 article-title: The contributions of nitrogen-fixing crop legumes to the productivity of agricultural systems publication-title: Symbiosis – volume: 374 start-page: 89 year: 2014 end-page: 107 ident: bib84 article-title: Biochar application to a fertile sandy clay loam in boreal conditions: effects on soil properties and yield formation of wheat, turnip rape and faba bean publication-title: Plant Soil – volume: 364 year: 2020 ident: bib21 article-title: Mechanisms underlying the mitigation of both N publication-title: Geoderma – volume: 64 start-page: 612 year: 2018 end-page: 618 ident: bib22 article-title: Effects of biochar on sodium ion accumulation, yield and quality of rice in saline-sodic soil of the west of Songnen plain, northeast China publication-title: Plant Soil Environ. – volume: 191 start-page: 150 year: 2014 end-page: 157 ident: bib86 article-title: Effects of biochar on earthworms in arable soil: avoidance test and field trial in boreal loamy sand publication-title: Agric. Ecosyst. Environ. – volume: 181 start-page: 635 year: 2018 end-page: 643 ident: bib89 article-title: Effects of biochar application on soil potassium dynamics and crop uptake publication-title: J. Soil Sci. Plant Nutr. – volume: 46 start-page: 73 year: 2012 end-page: 79 ident: bib12 article-title: Effects of slow and fast pyrolysis biochar on soil C and N turnover dynamics publication-title: Soil Biol. Biochem. – volume: 5 start-page: 165 year: 2013 end-page: 176 ident: bib80 article-title: Impact of biochar field aging on laboratory greenhouse gas production potentials publication-title: GCB Bioenergy – reference: Viljavuuspalvelu Oy, 2000. Viljavuustutkimuksen tulkinta peltoviljelyssä. Viljavuuspalvelu Oy, Mikkeli, Finland. – volume: 8 start-page: 1089 year: 2017 ident: bib32 article-title: Organic coating on biochar explains its nutrient retention and stimulation of soil fertility publication-title: Nat. Commun. – volume: 37 start-page: 1477 year: 2006 end-page: 1488 ident: bib14 article-title: Oxidation of black carbon by biotic and abiotic processes publication-title: Org. Geochem. – volume: 769 year: 2021 ident: bib100 article-title: The effect of long-term biochar amendment on N publication-title: Sci. Total Environ. – volume: 25 start-page: 2077 year: 2019 end-page: 2093 ident: bib58 article-title: Biochar application as a tool to decrease soil nitrogen losses (NH publication-title: Glob. Change Biol. – volume: 8 start-page: 171 year: 2018 ident: bib69 article-title: Miscanthus biochar had limited effects on soil physical properties, microbial biomass, and grain yield in a four-year field experiment in Norway publication-title: Agriculture – volume: 12 start-page: 240 year: 2020 end-page: 251 ident: bib6 article-title: Soil carbon increased by twice the amount of biochar carbon applied after 6 years: field evidence of negative priming publication-title: GCB Bioenergy – start-page: 22 year: 2013 ident: bib47 article-title: Biochar application to temperate soils: effects on nutrient uptake and crop yield under field conditions publication-title: Agric. Food Sci. – volume: 57 start-page: 447 year: 2021 end-page: 456 ident: bib95 article-title: Identification and verification of key functional groups of biochar influencing soil N publication-title: Biol. Fertil. Soils – volume: 43 start-page: 1 year: 1993 end-page: 5 ident: bib41 article-title: Interaction between Plant Nutrients: III. Antagonism between potassium, magnesium and calcium publication-title: Acta Agric. Scand. Sect. B Soil Plant Sci. – volume: 235 start-page: 18 year: 2019 end-page: 26 ident: bib49 article-title: Biochar addition persistently increased soil fertility and yields in maize-soybean rotations over 10 years in sub-humid regions of Kenya publication-title: Field Crops Res. – volume: 1 start-page: 326 year: 2014 end-page: 332 ident: bib81 article-title: Physical disintegration of biochar: an overlooked process publication-title: Environ. Sci. Technol. Lett. – reference: . – volume: 731 year: 2020 ident: bib78 article-title: Are there environmental or agricultural benefits in using forest residue biochar in boreal agricultural clay soil? publication-title: Sci. Total Environ. – volume: 34 year: 2020 ident: bib92 article-title: Global N publication-title: Glob. Biogeochem. Cycles – volume: 65 start-page: 162 year: 2014 end-page: 172 ident: bib29 article-title: Reducing capacity of water extracts of biochars and their solubilization of soil Mn and Fe publication-title: Eur. J. Soil Sci. – volume: 1 start-page: 237 year: 2019 end-page: 248 ident: bib91 article-title: Effects of 7 years of field weathering on biochar recalcitrance and solubility publication-title: Biochar – volume: 344 start-page: 127 year: 2019 end-page: 136 ident: bib27 article-title: Long-term soil biological fertility, volatile organic compounds and chemical properties in a vineyard soil after biochar amendment publication-title: Geoderma – volume: 755 year: 2021 ident: bib59 article-title: Fresh biochar application provokes a reduction of nitrate which is unexplained by conventional mechanisms publication-title: Sci. Total Environ. – volume: 618 start-page: 1210 year: 2018 end-page: 1223 ident: bib44 article-title: Microstructural and associated chemical changes during the composting of a high temperature biochar: mechanisms for nitrate, phosphate and other nutrient retention and release publication-title: Sci. Total Environ. – volume: 25 start-page: 192 year: 2017 end-page: 207 ident: bib82 article-title: Biochars in soils: towards the required level of scientific understanding publication-title: J. Environ. Eng. Landsc. Manag. – volume: 384 year: 2020 ident: bib73 article-title: Characteristics of organo-mineral complexes in contaminated soils with long-term biochar application publication-title: J. Hazard. Mater. – volume: 333 start-page: 117 year: 2010 end-page: 128 ident: bib60 article-title: Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol publication-title: Plant Soil – volume: 242 year: 2020 ident: bib98 article-title: Effects of six-year biochar amendment on soil aggregation, crop growth, and nitrogen and phosphorus use efficiencies in a rice-wheat rotation publication-title: J. Clean. Prod. – start-page: 1 year: 2017 end-page: 51 ident: bib62 article-title: Long-term aging of biochar: a molecular understanding with agricultural and environmental implications publication-title: Advances in Agronomy – volume: 191 start-page: 92 year: 2014 ident: 10.1016/j.agee.2021.107454_bib70 article-title: Soil amendment with biochar increases the competitive ability of legumes via increased potassium availability publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2014.03.031 – volume: 384 year: 2020 ident: 10.1016/j.agee.2021.107454_bib73 article-title: Characteristics of organo-mineral complexes in contaminated soils with long-term biochar application publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2019.121265 – volume: 88 start-page: 222 year: 2013 ident: 10.1016/j.agee.2021.107454_bib67 article-title: Biochar soil amendment increases tomato seedling resistance to drought in sandy soils publication-title: J. Arid Environ. doi: 10.1016/j.jaridenv.2012.07.012 – volume: 158 start-page: 61 year: 2015 ident: 10.1016/j.agee.2021.107454_bib2 article-title: Residual effects of biochar on improving growth, physiology and yield of wheat under salt stress publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2015.04.010 – volume: 8 start-page: 1089 year: 2017 ident: 10.1016/j.agee.2021.107454_bib32 article-title: Organic coating on biochar explains its nutrient retention and stimulation of soil fertility publication-title: Nat. Commun. doi: 10.1038/s41467-017-01123-0 – volume: 51 start-page: 8359 year: 2017 ident: 10.1016/j.agee.2021.107454_bib64 article-title: Aging induced changes in biochar’s functionality and adsorption behavior for phosphate and ammonium publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b00647 – volume: 60 start-page: 124 year: 2009 ident: 10.1016/j.agee.2021.107454_bib75 article-title: Plant mechanisms to optimise access to soil phosphorus publication-title: Crop Pasture Sci. doi: 10.1071/CP07125 – volume: 12 year: 2017 ident: 10.1016/j.agee.2021.107454_bib42 article-title: Biochar boosts tropical but not temperate crop yields publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/aa67bd – volume: 156 start-page: 997 year: 2011 ident: 10.1016/j.agee.2021.107454_bib77 article-title: Phosphorus dynamics: from soil to plant publication-title: Plant Physiol. doi: 10.1104/pp.111.175232 – volume: 191 start-page: 108 year: 2014 ident: 10.1016/j.agee.2021.107454_bib85 article-title: Short-term effects of biochar on soil properties and wheat yield formation with meat bone meal and inorganic fertiliser on a boreal loamy sand publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2014.01.007 – start-page: 139 year: 2015 ident: 10.1016/j.agee.2021.107454_bib40 article-title: Biochar elemental composition and factors influencing nutrient retention – ident: 10.1016/j.agee.2021.107454_bib23 – volume: 103 start-page: 19 year: 2012 ident: 10.1016/j.agee.2021.107454_bib83 article-title: Nitrogen mineralisation dynamics of meat bone meal and cattle manure as affected by the application of softwood chip biochar in soil publication-title: Earth Environ. Sci. Trans. R. Soc. Edinb. – volume: 96 start-page: 114 year: 2015 ident: 10.1016/j.agee.2021.107454_bib35 article-title: Biochar increases arbuscular mycorrhizal plant growth enhancement and ameliorates salinity stress publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2015.07.014 – volume: 140 start-page: 37 year: 2017 ident: 10.1016/j.agee.2021.107454_bib1 article-title: Effect of biochar on cadmium bioavailability and uptake in wheat (Triticum aestivum L.) grown in a soil with aged contamination publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2017.02.028 – volume: 357 start-page: 369 year: 2012 ident: 10.1016/j.agee.2021.107454_bib56 article-title: Nanoscale organo-mineral reactions of biochars in ferrosol: an investigation using microscopy publication-title: Plant Soil doi: 10.1007/s11104-012-1169-8 – volume: 19 start-page: 1456 year: 2013 ident: 10.1016/j.agee.2021.107454_bib38 article-title: Declining trend of carbon in Finnish cropland soils in 1974–2009 publication-title: Glob. Change Biol. doi: 10.1111/gcb.12137 – volume: 333 start-page: 117 year: 2010 ident: 10.1016/j.agee.2021.107454_bib60 article-title: Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol publication-title: Plant Soil doi: 10.1007/s11104-010-0327-0 – volume: 67 start-page: 1 year: 2015 ident: 10.1016/j.agee.2021.107454_bib4 article-title: Fitting linear mixed-effects models using lme4 publication-title: J. Stat. Softw. doi: 10.18637/jss.v067.i01 – volume: 2 year: 2016 ident: 10.1016/j.agee.2021.107454_bib79 article-title: Effects of biochar application on fluxes of three biogenic greenhouse gases: a meta‐analysis publication-title: Ecosyst. Health Sustain. doi: 10.1002/ehs2.1202 – volume: 65 start-page: 162 year: 2014 ident: 10.1016/j.agee.2021.107454_bib29 article-title: Reducing capacity of water extracts of biochars and their solubilization of soil Mn and Fe publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.12071 – volume: 25 start-page: 2077 year: 2019 ident: 10.1016/j.agee.2021.107454_bib58 article-title: Biochar application as a tool to decrease soil nitrogen losses (NH3 volatilization, N2O emissions, and N leaching) from croplands; options and mitigation strength in a global perspective publication-title: Glob. Change Biol. doi: 10.1111/gcb.14613 – volume: 45 start-page: 1196 year: 2016 ident: 10.1016/j.agee.2021.107454_bib33 article-title: Standard extraction methods may underestimate nitrate stocks captured by field-aged biochar publication-title: J. Environ. Qual. doi: 10.2134/jeq2015.10.0529 – year: 2001 ident: 10.1016/j.agee.2021.107454_bib61 – start-page: 1 year: 2017 ident: 10.1016/j.agee.2021.107454_bib62 article-title: Long-term aging of biochar: a molecular understanding with agricultural and environmental implications doi: 10.1016/bs.agron.2016.10.001 – volume: 289 start-page: 46 year: 2017 ident: 10.1016/j.agee.2021.107454_bib53 article-title: Multi-year and multi-location soil quality and crop biomass yield responses to hardwood fast pyrolysis biochar publication-title: Geoderma doi: 10.1016/j.geoderma.2016.11.025 – start-page: 671 year: 2002 ident: 10.1016/j.agee.2021.107454_bib17 article-title: Water retention and storage – start-page: 53 year: 1998 ident: 10.1016/j.agee.2021.107454_bib65 article-title: High-temperature oxidation: dry ashing – volume: 47 start-page: 8759 year: 2013 ident: 10.1016/j.agee.2021.107454_bib72 article-title: Dual role of biochars as adsorbents for aluminum: the effects of oxygen-containing organic components and the scattering of silicate particles publication-title: Environ. Sci. Technol. – volume: 769 year: 2021 ident: 10.1016/j.agee.2021.107454_bib100 article-title: The effect of long-term biochar amendment on N2O emissions: experiments with N15 –O18 isotopes combined with specific inhibition approaches publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.144533 – ident: 10.1016/j.agee.2021.107454_bib54 – volume: 12 start-page: 2012 year: 2020 ident: 10.1016/j.agee.2021.107454_bib51 article-title: Reduction of nutrient leaching potential in coarse-textured soil by using biochar publication-title: Water doi: 10.3390/w12072012 – volume: 226 start-page: 25 year: 2016 ident: 10.1016/j.agee.2021.107454_bib96 article-title: Is current biochar research addressing global soil constraints for sustainable agriculture? publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2016.04.010 – volume: 25 start-page: 192 year: 2017 ident: 10.1016/j.agee.2021.107454_bib82 article-title: Biochars in soils: towards the required level of scientific understanding publication-title: J. Environ. Eng. Landsc. Manag. doi: 10.3846/16486897.2016.1239582 – volume: 12 start-page: 240 year: 2020 ident: 10.1016/j.agee.2021.107454_bib6 article-title: Soil carbon increased by twice the amount of biochar carbon applied after 6 years: field evidence of negative priming publication-title: GCB Bioenergy doi: 10.1111/gcbb.12665 – volume: 236 start-page: 21 year: 2017 ident: 10.1016/j.agee.2021.107454_bib31 article-title: Short-lived effects of walnut shell biochar on soils and crop yields in a long-term field experiment publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2016.11.002 – volume: 48 start-page: 1 year: 2009 ident: 10.1016/j.agee.2021.107454_bib71 article-title: The contributions of nitrogen-fixing crop legumes to the productivity of agricultural systems publication-title: Symbiosis doi: 10.1007/BF03179980 – volume: 297 start-page: 131 year: 2009 ident: 10.1016/j.agee.2021.107454_bib68 article-title: Ammonia cometabolism and product inhibition vary considerably among species of methanotrophic bacteria publication-title: FEMS Microbiol. Lett. doi: 10.1111/j.1574-6968.2009.01674.x – ident: 10.1016/j.agee.2021.107454_bib74 – volume: 12 start-page: 3436 year: 2020 ident: 10.1016/j.agee.2021.107454_bib97 article-title: Quantifying the effects of biochar application on greenhouse gas emissions from agricultural soils: a global meta-analysis publication-title: Sustainability doi: 10.3390/su12083436 – volume: 37 start-page: 1477 year: 2006 ident: 10.1016/j.agee.2021.107454_bib14 article-title: Oxidation of black carbon by biotic and abiotic processes publication-title: Org. Geochem. doi: 10.1016/j.orggeochem.2006.06.022 – volume: 10 start-page: 449 year: 2020 ident: 10.1016/j.agee.2021.107454_bib24 article-title: Effect of natural aging of biochar on soil enzymatic activity and physicochemical properties in long-term field experiment publication-title: Agronomy doi: 10.3390/agronomy10030449 – volume: 717 year: 2020 ident: 10.1016/j.agee.2021.107454_bib99 article-title: Two-year study of biochar: achieving excellent capability of potassium supply via alter clay mineral composition and potassium-dissolving bacteria activity publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.137286 – volume: 5 start-page: 202 year: 2013 ident: 10.1016/j.agee.2021.107454_bib5 article-title: Biochar and its effects on plant productivity and nutrient cycling: a meta-analysis publication-title: GCB Bioenergy doi: 10.1111/gcbb.12037 – ident: 10.1016/j.agee.2021.107454_bib88 – volume: 311 year: 2021 ident: 10.1016/j.agee.2021.107454_bib57 article-title: Contrasting effects of straw and straw-derived biochar applications on soil carbon accumulation and nitrogen use efficiency in double-rice cropping systems publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2020.107286 – volume: 89 start-page: 1467 year: 2012 ident: 10.1016/j.agee.2021.107454_bib93 article-title: Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil publication-title: Chemosphere doi: 10.1016/j.chemosphere.2012.06.002 – start-page: 22 year: 2013 ident: 10.1016/j.agee.2021.107454_bib47 article-title: Biochar application to temperate soils: effects on nutrient uptake and crop yield under field conditions publication-title: Agric. Food Sci. – volume: 70 start-page: 229 year: 2014 ident: 10.1016/j.agee.2021.107454_bib52 article-title: Biochar stability in soil: decomposition during eight years and transformation as assessed by compound-specific 14C analysis publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2013.12.021 – volume: 7 start-page: 371 year: 2017 ident: 10.1016/j.agee.2021.107454_bib90 article-title: Biochar built soil carbon over a decade by stabilizing rhizodeposits publication-title: Nat. Clim. Change doi: 10.1038/nclimate3276 – volume: 242 year: 2020 ident: 10.1016/j.agee.2021.107454_bib98 article-title: Effects of six-year biochar amendment on soil aggregation, crop growth, and nitrogen and phosphorus use efficiencies in a rice-wheat rotation publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.118435 – volume: 2 start-page: 421 year: 2020 ident: 10.1016/j.agee.2021.107454_bib39 article-title: Feedstock choice, pyrolysis temperature and type influence biochar characteristics: a comprehensive meta-data analysis review publication-title: Biochar doi: 10.1007/s42773-020-00067-x – volume: 57 start-page: 457 year: 2021 ident: 10.1016/j.agee.2021.107454_bib45 article-title: Effects of two wood-based biochars on the fate of added fertilizer nitrogen – a 15N tracing study publication-title: Biol. Fertil. Soils doi: 10.1007/s00374-020-01534-0 – volume: 654 start-page: 463 year: 2019 ident: 10.1016/j.agee.2021.107454_bib25 article-title: Biochar additions alter phosphorus and nitrogen availability in agricultural ecosystems: a meta-analysis publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.11.124 – volume: 651 start-page: 2354 year: 2019 ident: 10.1016/j.agee.2021.107454_bib7 article-title: Biochar, soil and land-use interactions that reduce nitrate leaching and N2O emissions: a meta-analysis publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.10.060 – volume: 140 start-page: 309 year: 2011 ident: 10.1016/j.agee.2021.107454_bib48 article-title: Biochar addition to agricultural soil increased CH4 uptake and water holding capacity – results from a short-term pilot field study publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2010.12.005 – volume: 34 year: 2020 ident: 10.1016/j.agee.2021.107454_bib92 article-title: Global N2O emissions from cropland driven by nitrogen addition and environmental factors: comparison and uncertainty analysis publication-title: Glob. Biogeochem. Cycles doi: 10.1029/2020GB006698 – volume: 344 start-page: 127 year: 2019 ident: 10.1016/j.agee.2021.107454_bib27 article-title: Long-term soil biological fertility, volatile organic compounds and chemical properties in a vineyard soil after biochar amendment publication-title: Geoderma doi: 10.1016/j.geoderma.2019.03.011 – volume: 1 start-page: 326 year: 2014 ident: 10.1016/j.agee.2021.107454_bib81 article-title: Physical disintegration of biochar: an overlooked process publication-title: Environ. Sci. Technol. Lett. doi: 10.1021/ez500199t – volume: 35 start-page: 667 year: 2015 ident: 10.1016/j.agee.2021.107454_bib28 article-title: Biochar organic fertilizers from natural resources as substitute for mineral fertilizers publication-title: Agron. Sustain. Dev. doi: 10.1007/s13593-014-0251-4 – volume: 235 start-page: 18 year: 2019 ident: 10.1016/j.agee.2021.107454_bib49 article-title: Biochar addition persistently increased soil fertility and yields in maize-soybean rotations over 10 years in sub-humid regions of Kenya publication-title: Field Crops Res. doi: 10.1016/j.fcr.2019.02.015 – volume: 61 start-page: 3129 year: 1995 ident: 10.1016/j.agee.2021.107454_bib20 article-title: Kinetics of inhibition of methane oxidation by nitrate, nitrite, and ammonium in a humisol publication-title: Appl. Environ. Microbiol. doi: 10.1128/aem.61.8.3129-3135.1995 – volume: 43 start-page: 1 year: 1993 ident: 10.1016/j.agee.2021.107454_bib41 article-title: Interaction between Plant Nutrients: III. Antagonism between potassium, magnesium and calcium publication-title: Acta Agric. Scand. Sect. B Soil Plant Sci. – volume: 719 year: 2020 ident: 10.1016/j.agee.2021.107454_bib34 article-title: The effect of biochar, lime and ash on maize yield in a long-term field trial in a ultisol in the humid tropics publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.137455 – volume: 26 start-page: 211 year: 1964 ident: 10.1016/j.agee.2021.107454_bib9 article-title: An analysis of transformations publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol. doi: 10.1111/j.2517-6161.1964.tb00553.x – start-page: 7 year: 2019 ident: 10.1016/j.agee.2021.107454_bib36 article-title: The long-term effect of biochar on soil microbial abundance, activity and community structure is overwritten by land management publication-title: Front. Environ. Sci. – volume: 5 start-page: 165 year: 2013 ident: 10.1016/j.agee.2021.107454_bib80 article-title: Impact of biochar field aging on laboratory greenhouse gas production potentials publication-title: GCB Bioenergy doi: 10.1111/gcbb.12005 – volume: 102 start-page: 623 year: 2010 ident: 10.1016/j.agee.2021.107454_bib26 article-title: Effect of peanut hull and pine chip biochar on soil nutrients, corn nutrient status, and yield publication-title: Agron. J. doi: 10.2134/agronj2009.0083 – volume: 181 start-page: 635 year: 2018 ident: 10.1016/j.agee.2021.107454_bib89 article-title: Effects of biochar application on soil potassium dynamics and crop uptake publication-title: J. Soil Sci. Plant Nutr. doi: 10.1002/jpln.201700528 – ident: 10.1016/j.agee.2021.107454_bib30 – volume: 374 start-page: 89 year: 2014 ident: 10.1016/j.agee.2021.107454_bib84 article-title: Biochar application to a fertile sandy clay loam in boreal conditions: effects on soil properties and yield formation of wheat, turnip rape and faba bean publication-title: Plant Soil doi: 10.1007/s11104-013-1851-5 – volume: 618 start-page: 1210 year: 2018 ident: 10.1016/j.agee.2021.107454_bib44 article-title: Microstructural and associated chemical changes during the composting of a high temperature biochar: mechanisms for nitrate, phosphate and other nutrient retention and release publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.09.200 – volume: 33 start-page: 475 year: 2013 ident: 10.1016/j.agee.2021.107454_bib3 article-title: Enhanced wheat yield by biochar addition under different mineral fertilization levels publication-title: Agron. Sustain. Dev. doi: 10.1007/s13593-012-0128-3 – volume: 182 start-page: 149 year: 2019 ident: 10.1016/j.agee.2021.107454_bib8 article-title: Biochar properties and soil type drive the uptake of macro- and micronutrients in maize (Zea mays L.) publication-title: J. Plant Nutr. Soil Sci. doi: 10.1002/jpln.201800228 – volume: 36 start-page: 2 year: 2020 ident: 10.1016/j.agee.2021.107454_bib94 article-title: Biochar effects on crop yields with and without fertilizer: a meta-analysis of field studies using separate controls publication-title: Soil Use Manag. doi: 10.1111/sum.12546 – volume: 755 year: 2021 ident: 10.1016/j.agee.2021.107454_bib59 article-title: Fresh biochar application provokes a reduction of nitrate which is unexplained by conventional mechanisms publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.142430 – volume: 9 start-page: 1196 year: 2017 ident: 10.1016/j.agee.2021.107454_bib63 article-title: Aged biochar affects gross nitrogen mineralization and recovery: a 15N study in two contrasting soils publication-title: GCB Bioenergy doi: 10.1111/gcbb.12430 – volume: 613–614 start-page: 969 year: 2018 ident: 10.1016/j.agee.2021.107454_bib18 article-title: Effects of aging under field conditions on biochar structure and composition: Implications for biochar stability in soils publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.09.124 – volume: 282 start-page: 96 year: 2016 ident: 10.1016/j.agee.2021.107454_bib13 article-title: Long-term effects of biochar on soil physical properties publication-title: Geoderma doi: 10.1016/j.geoderma.2016.07.019 – volume: 8 start-page: 171 year: 2018 ident: 10.1016/j.agee.2021.107454_bib69 article-title: Miscanthus biochar had limited effects on soil physical properties, microbial biomass, and grain yield in a four-year field experiment in Norway publication-title: Agriculture doi: 10.3390/agriculture8110171 – volume: 1 start-page: 237 year: 2019 ident: 10.1016/j.agee.2021.107454_bib91 article-title: Effects of 7 years of field weathering on biochar recalcitrance and solubility publication-title: Biochar doi: 10.1007/s42773-019-00026-1 – volume: 57 start-page: 447 year: 2021 ident: 10.1016/j.agee.2021.107454_bib95 article-title: Identification and verification of key functional groups of biochar influencing soil N2O emission publication-title: Biol. Fertil. Soils doi: 10.1007/s00374-021-01541-9 – volume: 3 start-page: 313 year: 2013 ident: 10.1016/j.agee.2021.107454_bib66 article-title: Biochar impacts on soil physical properties and greenhouse gas emissions publication-title: Agronomy doi: 10.3390/agronomy3020313 – volume: 64 start-page: 612 year: 2018 ident: 10.1016/j.agee.2021.107454_bib22 article-title: Effects of biochar on sodium ion accumulation, yield and quality of rice in saline-sodic soil of the west of Songnen plain, northeast China publication-title: Plant Soil Environ. doi: 10.17221/359/2018-PSE – volume: 79 start-page: 96 year: 1987 ident: 10.1016/j.agee.2021.107454_bib11 article-title: Nitrogen contribution to succeeding corn from alfalfa and red clover publication-title: Agron. J. doi: 10.2134/agronj1987.00021962007900010020x – volume: 5 start-page: 11080 year: 2015 ident: 10.1016/j.agee.2021.107454_bib46 article-title: Plant growth improvement mediated by nitrate capture in co-composted biochar publication-title: Sci. Rep. doi: 10.1038/srep11080 – volume: 41 start-page: 990 year: 2012 ident: 10.1016/j.agee.2021.107454_bib50 article-title: Characterization of slow pyrolysis biochars: effects of feedstocks and pyrolysis temperature on biochar properties publication-title: J. Environ. Qual. doi: 10.2134/jeq2011.0070 – start-page: 01542 year: 2021 ident: 10.1016/j.agee.2021.107454_bib55 article-title: Field-aged biochar decreased N2O emissions by reducing autotrophic nitrification in a sandy loam soil publication-title: Biol. Fertil. Soils – volume: 191 start-page: 150 year: 2014 ident: 10.1016/j.agee.2021.107454_bib86 article-title: Effects of biochar on earthworms in arable soil: avoidance test and field trial in boreal loamy sand publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2014.02.023 – volume: 181 start-page: 484 year: 2016 ident: 10.1016/j.agee.2021.107454_bib10 article-title: Soil biochar amendment as a climate change mitigation tool: key parameters and mechanisms involved publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2016.06.063 – volume: 731 year: 2020 ident: 10.1016/j.agee.2021.107454_bib78 article-title: Are there environmental or agricultural benefits in using forest residue biochar in boreal agricultural clay soil? publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.138955 – volume: 46 start-page: 73 year: 2012 ident: 10.1016/j.agee.2021.107454_bib12 article-title: Effects of slow and fast pyrolysis biochar on soil C and N turnover dynamics publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2011.11.019 – volume: 364 year: 2020 ident: 10.1016/j.agee.2021.107454_bib21 article-title: Mechanisms underlying the mitigation of both N2O and NO emissions with field-aged biochar in an anthrosol publication-title: Geoderma doi: 10.1016/j.geoderma.2020.114178 – volume: 8 year: 2013 ident: 10.1016/j.agee.2021.107454_bib16 article-title: Heterogeneous global crop yield response to biochar: a meta-regression analysis publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/8/4/044049 – volume: 642 start-page: 1303 year: 2018 ident: 10.1016/j.agee.2021.107454_bib19 article-title: Field-aged biochar stimulated N2O production from greenhouse vegetable production soils by nitrification and denitrification publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.06.166 – volume: 9 start-page: 743 year: 2017 ident: 10.1016/j.agee.2021.107454_bib37 article-title: Effects of biochar application on soil greenhouse gas fluxes: a meta-analysis publication-title: GCB Bioenergy doi: 10.1111/gcbb.12376 – volume: 724 year: 2020 ident: 10.1016/j.agee.2021.107454_bib87 article-title: Nitrous oxide emissions from oilseed rape cultivation were unaffected by flash pyrolysis biochar of different type, rate and field ageing publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.138140 – volume: 43 start-page: 699 year: 2007 ident: 10.1016/j.agee.2021.107454_bib76 article-title: Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with bio-char additions publication-title: Biol. Fertil. Soils doi: 10.1007/s00374-006-0152-z – volume: 101 start-page: 251 year: 2016 ident: 10.1016/j.agee.2021.107454_bib43 article-title: Biochar effects on methane emissions from soils: a meta-analysis publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2016.07.021 – volume: 634 start-page: 561 year: 2018 ident: 10.1016/j.agee.2021.107454_bib15 article-title: Fading positive effect of biochar on crop yield and soil acidity during five growth seasons in an Indonesian ultisol publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.03.380 |
SSID | ssj0000238 |
Score | 2.5341945 |
Snippet | Biochars (BC) have tremendous potential in mitigating climate change, and offer various agricultural and environmental benefits. However, there is limited... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 107454 |
SubjectTerms | agriculture antagonism barley Biochar biomass production bulk density climate change environment Field aging Greenhouse gases nutrient uptake phytomass plant available water Plant nutrients softwood soil organic carbon Soil physical properties Stagnosols topsoil Umbrisols |
Title | Long-term effects of softwood biochar on soil physical properties, greenhouse gas emissions and crop nutrient uptake in two contrasting boreal soils |
URI | https://dx.doi.org/10.1016/j.agee.2021.107454 https://www.proquest.com/docview/2574318870 |
Volume | 316 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BTtwwELUQXMqhKrQI2rIapN7asHE2iZPjCi1a2JZDWwQ3y0km27TIiTa7135FP7gziQOiEhx6ihLZTuQZz4ydN2-E-ICyRN83tL5j2umQwUOP9iETL4iLAEOp8rBLFP5yFc-vw8vb6HZLnA25MAyrdLa_t-mdtXZPxm42x01Vjb8xgJ60Lw2YRoj8KGewh4q1_PT3A8yDfdLA782tXeJMj_GiJctUmYE8ZVxiFD7lnP4x053vOX8lXrqgEab9d-2JLbT7Yne6XDniDNwXB7OHjDVq6pZs-1r8-VzbpccGGBx2A-oSWrK-jLaBrKo58QpqS8-qO2ic3KDhU_oV061-giWDc37UmxZhaVrgEnF8yNaCsQVwDTCwTOpPr4ZNsza_ECoLND50QHjTMrQaSNkoKO3e0r4R1-ez72dzz5Vi8PKJUlywvsAgKZO0KFJMAmUSjGOjJPpZ4ZepQpkwzTVTpMvEBGWeUeRUSIUm9CfUaXIgtm1t8VBAGkUmM0mmDMVieUA7NuWzvoSISa6MORJykIHOHU85l8u40wMg7admuWmWm-7ldiQ-3vdpepaOZ1tHg2j1I13T5Eae7Xcy6IGmieY_K8YiTb4mu0eBGNlr_-1_jv1OvOA7Pq2W0XuxvV5t8JjCnXU26vR5JHamF4v5FV8XX28WfwHWawOc |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9RADLZKOQAHBIWK8jQSN0g3k00yybGqWi2w7YVW6m00SZwlUE2ize6VX8EPxk4mVCDRA9dkHtHYY3smnz8DvCNVUxha3t8pn3TY4FHA55B5EKVVRLHSZTwkCp-dp4vL-NNVcrUDx1MujMAqve0fbfpgrf2TmV_NWdc0sy8CoGftyyOhEWI_egfuxrx9pYzB4Y8bnIc4pYngW5r7zJkR5MV7VrgyI3UowMQk_pd3-stOD87n9BE89FEjHo0f9hh2yO3Bg6PV2jNn0B7sn9ykrHFTv2f7J_Bz2bpVIBYYPXgD2xp7Nr8Ct8GiaSXzClvHz5pr7LzgsJNr-rXwrX7AlaBzvrbbnnBle5QacXLL1qN1FUoRMHTC6s9T47bb2O-EjUMeHwckvO0FW42sbRyVDrP0T-Hy9OTieBH4WgxBOddaKtZXFGV1lldVTlmkbUZparWisKjCOtekMuG5Fo50ldmoLgsOnSqlycbhnDvN92HXtY6eAeZJYgubFdpyMFZGfGTToShMTJSV2toDUJMMTOmJyqVexrWZEGnfjMjNiNzMKLcDeP-7TzfSdNzaOplEa_5QNsN-5NZ-byc9MLzQ8mvFOuLFN2z4OBJjgx0-_8-x38C9xcXZ0iw_nn9-AffljVxdq-Ql7G7WW3rFsc-meD3o9i-SFwOH |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Long-term+effects+of+softwood+biochar+on+soil+physical+properties%2C+greenhouse+gas+emissions+and+crop+nutrient+uptake+in+two+contrasting+boreal+soils&rft.jtitle=Agriculture%2C+ecosystems+%26+environment&rft.au=Kalu%2C+Subin&rft.au=Simojoki%2C+Asko&rft.au=Karhu%2C+Kristiina&rft.au=Tammeorg%2C+Priit&rft.date=2021-08-15&rft.issn=0167-8809&rft.volume=316&rft.spage=107454&rft_id=info:doi/10.1016%2Fj.agee.2021.107454&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_agee_2021_107454 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-8809&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-8809&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-8809&client=summon |