Recent Advance on Mesoporous Silica Nanoparticles-Based Controlled Release System: Intelligent Switches Open up New Horizon
Mesoporous silica nanoparticle (MSN)-based intelligent transport systems have attracted many researchers’ attention due to the characteristics of uniform pore and particle size distribution, good biocompatibility, high surface area, and versatile functionalization, which have led to their widespread...
Saved in:
Published in | Nanomaterials (Basel, Switzerland) Vol. 5; no. 4; pp. 2019 - 2053 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI
25.11.2015
MDPI AG |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Mesoporous silica nanoparticle (MSN)-based intelligent transport systems have attracted many researchers’ attention due to the characteristics of uniform pore and particle size distribution, good biocompatibility, high surface area, and versatile functionalization, which have led to their widespread application in diverse areas. In the past two decades, many kinds of smart controlled release systems were prepared with the development of brilliant nano-switches. This article reviews and discusses the advantages of MSN-based controlled release systems. Meanwhile, the switching mechanisms based on different types of stimulus response are systematically analyzed and summarized. Additionally, the application fields of these devices are further discussed. Obviously, the recent evolution of smart nano-switches promoted the upgrading of the controlled release system from the simple “separated” switch to the reversible, multifunctional, complicated logical switches and selective switches. Especially the free-blockage switches, which are based on hydrophobic/hydrophilic conversion, have been proposed and designed in the last two years. The prospects and directions of this research field are also briefly addressed, which could be better used to promote the further development of this field to meet the needs of mankind. |
---|---|
AbstractList | Mesoporous silica nanoparticle (MSN)-based intelligent transport systems have attracted many researchers’ attention due to the characteristics of uniform pore and particle size distribution, good biocompatibility, high surface area, and versatile functionalization, which have led to their widespread application in diverse areas. In the past two decades, many kinds of smart controlled release systems were prepared with the development of brilliant nano-switches. This article reviews and discusses the advantages of MSN-based controlled release systems. Meanwhile, the switching mechanisms based on different types of stimulus response are systematically analyzed and summarized. Additionally, the application fields of these devices are further discussed. Obviously, the recent evolution of smart nano-switches promoted the upgrading of the controlled release system from the simple “separated” switch to the reversible, multifunctional, complicated logical switches and selective switches. Especially the free-blockage switches, which are based on hydrophobic/hydrophilic conversion, have been proposed and designed in the last two years. The prospects and directions of this research field are also briefly addressed, which could be better used to promote the further development of this field to meet the needs of mankind. Mesoporous silica nanoparticle (MSN)-based intelligent transport systems have attracted many researchers' attention due to the characteristics of uniform pore and particle size distribution, good biocompatibility, high surface area, and versatile functionalization, which have led to their widespread application in diverse areas. In the past two decades, many kinds of smart controlled release systems were prepared with the development of brilliant nano-switches. This article reviews and discusses the advantages of MSN-based controlled release systems. Meanwhile, the switching mechanisms based on different types of stimulus response are systematically analyzed and summarized. Additionally, the application fields of these devices are further discussed. Obviously, the recent evolution of smart nano-switches promoted the upgrading of the controlled release system from the simple "separated" switch to the reversible, multifunctional, complicated logical switches and selective switches. Especially the free-blockage switches, which are based on hydrophobic/hydrophilic conversion, have been proposed and designed in the last two years. The prospects and directions of this research field are also briefly addressed, which could be better used to promote the further development of this field to meet the needs of mankind.Mesoporous silica nanoparticle (MSN)-based intelligent transport systems have attracted many researchers' attention due to the characteristics of uniform pore and particle size distribution, good biocompatibility, high surface area, and versatile functionalization, which have led to their widespread application in diverse areas. In the past two decades, many kinds of smart controlled release systems were prepared with the development of brilliant nano-switches. This article reviews and discusses the advantages of MSN-based controlled release systems. Meanwhile, the switching mechanisms based on different types of stimulus response are systematically analyzed and summarized. Additionally, the application fields of these devices are further discussed. Obviously, the recent evolution of smart nano-switches promoted the upgrading of the controlled release system from the simple "separated" switch to the reversible, multifunctional, complicated logical switches and selective switches. Especially the free-blockage switches, which are based on hydrophobic/hydrophilic conversion, have been proposed and designed in the last two years. The prospects and directions of this research field are also briefly addressed, which could be better used to promote the further development of this field to meet the needs of mankind. |
Author | Zhang, Xueji Sun, Ruijuan Wang, Wenqian Wen, Yongqiang |
AuthorAffiliation | Research Center for Bioengineering & Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; E-Mails: srj020322@163.com (R.S.); wang_8876@sina.com (W.W.); zhangxueji@ustb.edu.cn (X.Z.) |
AuthorAffiliation_xml | – name: Research Center for Bioengineering & Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; E-Mails: srj020322@163.com (R.S.); wang_8876@sina.com (W.W.); zhangxueji@ustb.edu.cn (X.Z.) |
Author_xml | – sequence: 1 givenname: Ruijuan surname: Sun fullname: Sun, Ruijuan – sequence: 2 givenname: Wenqian surname: Wang fullname: Wang, Wenqian – sequence: 3 givenname: Yongqiang surname: Wen fullname: Wen, Yongqiang – sequence: 4 givenname: Xueji surname: Zhang fullname: Zhang, Xueji |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28347110$$D View this record in MEDLINE/PubMed |
BookMark | eNptkt9rFDEQxxep2Fr75LvkUZDVZJP9ER-Eeqg9qC309DnMZifXlFyyJnst1X_enHeVq5g8ZJj5zmeYyTwvDnzwWBQvGX3LuaTvPPhQU1FRJp8URxVtZSmkZAd79mFxktINzUcy3tX8WXFYdVy0jNGj4tcVavQTOR1uwWskwZOvmMIYYlgnsrDOaiAXucgIcbLaYSo_QsKBzIKfYnAum1foMPvI4j5NuHpP5n5C5-xyw13c2UlfYyKXI3qyHskF3pGzEO3P4F8UTw24hCe797j4_vnTt9lZeX75ZT47PS81b9upZFxLxgyYpkLZgqS650IIHPLNjcsGe8NqqI3J8boD0LRB0zWsp4b3_cCPi_mWOwS4UWO0K4j3KoBVfxwhLtWuOdUD9AaHpgNshKAdyFqYSjKZ-XzgLLM-bFnjul_hsJldBPcI-jji7bVahltVcyraps6A1ztADD_WmCa1sknneYHHPHLFuo61LZNNl6Wv9mv9LfLwe1nAtgIdQ0oRjdJ2gsluvgasU4yqzZKovSXJOW_-yXnA_k_9G4W7wLo |
CitedBy_id | crossref_primary_10_1021_acs_chemrev_7b00422 crossref_primary_10_1016_j_cej_2018_11_156 crossref_primary_10_3390_nano13081384 crossref_primary_10_1039_C7TB02429K crossref_primary_10_1039_C9TB00946A crossref_primary_10_1016_j_nano_2019_03_004 crossref_primary_10_1016_j_clay_2024_107547 crossref_primary_10_1039_C7DT04232A crossref_primary_10_1002_cphc_201700117 crossref_primary_10_3390_pharmaceutics15020447 crossref_primary_10_1097_ACI_0000000000000782 crossref_primary_10_1002_adhm_202001117 crossref_primary_10_1002_slct_202400450 crossref_primary_10_1016_j_mseb_2021_115232 crossref_primary_10_1002_adbi_201800020 crossref_primary_10_1016_j_ijpharm_2018_07_047 crossref_primary_10_1016_j_jddst_2019_101176 crossref_primary_10_3390_ijms20061311 crossref_primary_10_1016_j_cis_2018_11_004 crossref_primary_10_1208_s12249_017_0740_2 crossref_primary_10_3390_nano6010015 crossref_primary_10_1016_j_ijpharm_2018_08_004 crossref_primary_10_1016_j_ijpharm_2024_124314 crossref_primary_10_1039_c8pp00143j crossref_primary_10_1080_1061186X_2020_1812614 crossref_primary_10_1016_j_colsurfa_2021_126302 crossref_primary_10_1016_j_jddst_2017_06_015 crossref_primary_10_3390_pharmaceutics15010227 crossref_primary_10_1002_adfm_201703814 crossref_primary_10_1016_j_ejmech_2024_116699 crossref_primary_10_1016_j_jddst_2024_105504 crossref_primary_10_1007_s11051_017_4077_2 crossref_primary_10_1111_ijac_13376 crossref_primary_10_1016_j_colsurfa_2019_124074 crossref_primary_10_1002_pat_4505 crossref_primary_10_1002_slct_202200884 crossref_primary_10_1016_j_chemosphere_2024_143596 crossref_primary_10_1016_j_vacuum_2018_03_034 crossref_primary_10_1002_jbm_a_36770 crossref_primary_10_1039_C7NR05762H crossref_primary_10_1002_chem_201704161 crossref_primary_10_1039_C8RA05939J crossref_primary_10_3390_nano6070126 crossref_primary_10_1002_masy_202000336 crossref_primary_10_1002_ps_5348 crossref_primary_10_1002_adfm_202208316 crossref_primary_10_1002_slct_202204332 crossref_primary_10_1177_0885328220977605 crossref_primary_10_1002_cphc_201800388 crossref_primary_10_1007_s10971_022_05747_7 crossref_primary_10_1080_17425247_2019_1598375 crossref_primary_10_2174_0115733947242447231003035334 crossref_primary_10_1016_j_bioadv_2024_213998 |
Cites_doi | 10.1016/j.micromeso.2013.02.012 10.1002/anie.201300183 10.1002/adma.201104797 10.1021/ja9010157 10.1021/la2047504 10.1002/anie.200460675 10.1088/0957-4484/22/41/415101 10.1039/c2cc34290a 10.1039/C5CS00243E 10.1021/ja907838s 10.1021/ja206998x 10.1021/am300878z 10.1021/cm203000u 10.1002/ange.200705211 10.1021/ja900025f 10.1039/c2nr31101a 10.1002/chem.201405222 10.1021/ja1022267 10.1021/cm061682d 10.1093/nar/gkq893 10.1002/anie.200900880 10.1038/nrm2216 10.1021/ja0772086 10.1021/jp201053d 10.1002/smll.201201916 10.1021/cm0011559 10.1021/ja028650l 10.1002/anie.201001847 10.1039/c0jm02590a 10.1002/smll.200700903 10.1021/la104973j 10.1021/ja904982j 10.1021/ja046572r 10.1021/cm703363w 10.1016/j.jconrel.2008.05.003 10.1039/b907978e 10.1021/ja807798g 10.1002/anie.201005471 10.1016/j.jiec.2013.09.045 10.1039/c2cc34501c 10.1039/c3ra47166g 10.1002/ange.200501500 10.1021/bp060348j 10.1039/c3cc43221a 10.1126/science.269.5228.1242 10.1021/la302767b 10.1021/ja058345a 10.1002/adma.200305165 10.1002/adfm.201402339 10.1016/j.reactfunctpolym.2012.03.007 10.1002/anie.201308920 10.1002/anie.200603404 10.1002/anie.200905115 10.1021/ja905288m 10.1039/c3cp44614j 10.1039/c1jm12203g 10.1021/ja110094g 10.1002/adfm.201101960 10.1002/adma.201001417 10.1021/ja901831u 10.1021/ja810011p 10.1002/anie.201000827 10.1039/c3cs35405a 10.1002/app.40477 10.1126/science.279.5350.548 10.1016/j.nano.2004.11.009 10.1016/j.biomaterials.2011.06.066 10.1039/C4NJ00579A 10.1039/c0cc04765a 10.1002/marc.201100876 10.1021/ja0756772 10.1021/ja9042752 10.1073/pnas.0504109102 10.1021/nn800072t 10.1021/ja8060886 10.1021/ja9061085 10.1038/359710a0 10.1039/b701744h 10.1016/j.colsurfb.2014.10.013 10.1021/nn405398d 10.1002/1097-4636(200111)57:2<313::AID-JBM1173>3.0.CO;2-E 10.1021/nl048774r 10.1002/adma.201104714 10.1021/ja200328s 10.1021/ja104501a 10.1016/j.micromeso.2011.12.015 10.1021/tx300166u 10.1111/j.1742-481X.2007.00424.x 10.1002/anie.201005061 10.1016/j.micromeso.2011.07.023 10.1002/pola.26928 10.1021/ja301880x 10.1002/anie.200501819 10.1021/ja065485r 10.1021/am403092m 10.1021/ja2080168 10.1039/c2nr33417h 10.1016/j.colsurfb.2012.03.012 10.1016/j.biomaterials.2012.06.059 10.1021/am3005225 10.1021/nn1029229 10.1038/nature01362 10.1038/nnano.2007.108 10.1021/cm051198v 10.1002/cplu.201100026 10.1088/0957-4484/26/2/025102 10.1039/C4CC04383A 10.1039/c39930000680 10.1002/anie.201203993 10.1039/c2jm32137h 10.1039/c3nr02594b 10.1016/j.colsurfa.2012.03.017 10.1021/ja039424u 10.1021/ar3000986 10.1002/anie.200805818 10.1021/am400604d 10.1042/bj20031253 10.1021/jp070721l 10.1039/c2tb00223j 10.1021/ja105371u 10.1002/adfm.201102746 10.1002/chem.201402334 |
ContentType | Journal Article |
Copyright | 2015 by the authors; licensee MDPI, Basel, Switzerland. 2015 |
Copyright_xml | – notice: 2015 by the authors; licensee MDPI, Basel, Switzerland. 2015 |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3390/nano5042019 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2079-4991 |
EndPage | 2053 |
ExternalDocumentID | oai_doaj_org_article_baabfed68ae64408a954f29195a53d31 PMC5304765 28347110 10_3390_nano5042019 |
Genre | Journal Article Review |
GroupedDBID | 53G 5VS 8FE 8FG 8FH AADQD AAFWJ AAHBH AAYXX ABJCF ADBBV ADMLS AENEX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BGLVJ BHPHI CCPQU CITATION D1I GROUPED_DOAJ HCIFZ HYE I-F IPNFZ KB. KQ8 LK8 M7P MODMG M~E OK1 PDBOC PGMZT PHGZM PHGZT PIMPY PROAC RIG RPM NPM 7X8 PQGLB 5PM PUEGO |
ID | FETCH-LOGICAL-c377t-13c911faf62e97a90cb3444edede42096ebf15a5ff2e958aac06ef861b0f3bbd3 |
IEDL.DBID | DOA |
ISSN | 2079-4991 |
IngestDate | Wed Aug 27 01:29:36 EDT 2025 Thu Aug 21 14:07:22 EDT 2025 Fri Jul 11 11:42:55 EDT 2025 Wed Feb 19 02:14:27 EST 2025 Tue Jul 01 02:04:42 EDT 2025 Thu Apr 24 22:55:00 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | free-blockage switch controlled release nano-switch smart materials mesoporous materials stimulus response |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c377t-13c911faf62e97a90cb3444edede42096ebf15a5ff2e958aac06ef861b0f3bbd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 These authors contributed equally to this work. |
OpenAccessLink | https://doaj.org/article/baabfed68ae64408a954f29195a53d31 |
PMID | 28347110 |
PQID | 1881771968 |
PQPubID | 23479 |
PageCount | 35 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_baabfed68ae64408a954f29195a53d31 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5304765 proquest_miscellaneous_1881771968 pubmed_primary_28347110 crossref_citationtrail_10_3390_nano5042019 crossref_primary_10_3390_nano5042019 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20151125 |
PublicationDateYYYYMMDD | 2015-11-25 |
PublicationDate_xml | – month: 11 year: 2015 text: 20151125 day: 25 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Nanomaterials (Basel, Switzerland) |
PublicationTitleAlternate | Nanomaterials (Basel) |
PublicationYear | 2015 |
Publisher | MDPI MDPI AG |
Publisher_xml | – name: MDPI – name: MDPI AG |
References | Lu (ref_60) 2008; 4 Trewyn (ref_18) 2007; 31 Angelos (ref_44) 2008; 120 Sun (ref_68) 2012; 33 He (ref_55) 2011; 32 Kresge (ref_1) 1992; 359 Yan (ref_106) 2012; 51 Schlossbauer (ref_83) 2010; 49 Sundararaju (ref_64) 2009; 48 Climent (ref_95) 2008; 130 Asefa (ref_6) 2012; 25 Liu (ref_52) 2011; 27 Mayor (ref_14) 2007; 8 Liu (ref_62) 2013; 52 Inagaki (ref_4) 1993; 8 Angelos (ref_97) 2009; 131 Liong (ref_122) 2008; 2 Chen (ref_87) 2013; 9 Wang (ref_119) 2011; 22 Song (ref_9) 2015; 44 Liu (ref_29) 2008; 130 Aznar (ref_96) 2009; 131 Bernardos (ref_77) 2009; 48 Singh (ref_78) 2011; 133 Ramila (ref_15) 2001; 13 Mei (ref_54) 2012; 152 He (ref_89) 2012; 28 Wan (ref_20) 2012; 4 Giri (ref_23) 2005; 44 Wu (ref_5) 2013; 42 Fang (ref_117) 2012; 22 Leung (ref_94) 2006; 18 Chen (ref_19) 2012; 95 Ferris (ref_61) 2009; 131 Verma (ref_21) 2004; 126 Jin (ref_11) 2007; 23 Zhao (ref_79) 2009; 131 Lee (ref_118) 2012; 22 Chen (ref_85) 2011; 47 Zhao (ref_2) 1998; 279 Chen (ref_84) 2011; 39 Chen (ref_47) 2013; 49 Hu (ref_99) 2013; 1 Zhu (ref_56) 2005; 117 Baeza (ref_73) 2011; 5 Tarn (ref_7) 2013; 46 Chen (ref_82) 2011; 50 Muhammad (ref_38) 2011; 133 Chen (ref_53) 2012; 150 Meng (ref_43) 2010; 132 Xing (ref_50) 2012; 403 Chen (ref_71) 2011; 21 Cui (ref_33) 2012; 4 Zhao (ref_42) 2010; 132 Mal (ref_16) 2003; 421 He (ref_58) 2012; 28 Trewyn (ref_17) 2004; 4 Chen (ref_116) 2012; 33 Patel (ref_74) 2008; 130 Wu (ref_114) 2015; 26 Wen (ref_90) 2012; 48 Zhu (ref_92) 2011; 133 Chen (ref_109) 2014; 8 Sun (ref_25) 2011; 133 Luo (ref_91) 2011; 50 Nadrah (ref_32) 2013; 5 Yang (ref_48) 2005; 17 Wu (ref_70) 2013; 5 Hughes (ref_12) 2005; 1 Zhu (ref_30) 2009; 19 Torney (ref_24) 2007; 2 Samart (ref_51) 2014; 20 Yuan (ref_49) 2011; 115 Slowing (ref_63) 2009; 131 Hakeem (ref_102) 2014; 50 Rejman (ref_13) 2004; 377 Chen (ref_88) 2011; 21 Nguyen (ref_28) 2007; 129 Lagona (ref_45) 2005; 44 Climent (ref_81) 2010; 49 Chen (ref_101) 2014; 24 Kang (ref_115) 2012; 22 Zhang (ref_112) 2012; 24 Wen (ref_86) 2012; 4 Angelos (ref_59) 2007; 111 Chen (ref_80) 2012; 48 Croissant (ref_105) 2012; 134 Lai (ref_22) 2003; 125 Nadrah (ref_34) 2013; 15 Lai (ref_113) 2013; 5 You (ref_67) 2008; 20 Liu (ref_37) 2010; 132 Tomatsu (ref_39) 2006; 128 Park (ref_76) 2009; 131 Kim (ref_31) 2010; 22 Yu (ref_57) 2013; 173 Fu (ref_66) 2003; 15 Bagshaw (ref_3) 1995; 269 Lee (ref_35) 2008; 132 Schlossbauer (ref_75) 2009; 48 Slowing (ref_121) 2012; 77 Radin (ref_10) 2001; 57 Park (ref_40) 2007; 46 Yang (ref_111) 2012; 24 Tao (ref_8) 2014; 4 Nguyen (ref_27) 2005; 102 Wang (ref_98) 2014; 20 Liu (ref_100) 2014; 38 Wu (ref_120) 2012; 72 ref_108 Lin (ref_65) 2013; 5 Wang (ref_110) 2015; 21 Karesoja (ref_69) 2013; 51 Zhao (ref_103) 2014; 123 Gethin (ref_36) 2008; 5 Baeza (ref_107) 2012; 24 Zhang (ref_93) 2014; 53 Hernandez (ref_26) 2004; 126 Du (ref_41) 2009; 131 Thomas (ref_72) 2010; 132 Liu (ref_104) 2009; 131 Angelos (ref_46) 2009; 131 20681678 - J Am Chem Soc. 2010 Aug 11;132(31):10623-5 23581883 - ACS Appl Mater Interfaces. 2013 May;5(9):3908-15 22789722 - Biomaterials. 2012 Oct;33(29):7126-37 19746981 - J Am Chem Soc. 2009 Oct 28;131(42):15128-9 18654287 - Nat Nanotechnol. 2007 May;2(5):295-300 22488562 - Macromol Rapid Commun. 2012 May 14;33(9):811-8 12683815 - J Am Chem Soc. 2003 Apr 16;125(15):4451-9 17221893 - Angew Chem Int Ed Engl. 2007;46(9):1455-7 20718462 - J Am Chem Soc. 2010 Sep 15;132(36):12690-7 22850329 - ACS Appl Mater Interfaces. 2012 Aug;4(8):4113-22 23760403 - Chem Commun (Camb). 2013 Jul 25;49(58):6555-7 16052668 - Angew Chem Int Ed Engl. 2005 Aug 5;44(31):4844-70 21981330 - J Am Chem Soc. 2011 Dec 14;133(49):19582-5 18841893 - J Am Chem Soc. 2008 Nov 5;130(44):14418-9 22903226 - Chem Commun (Camb). 2012 Oct 4;48(76):9522-4 19476380 - J Am Chem Soc. 2009 Jun 24;131(24):8398-400 25904466 - Chem Soc Rev. 2015 Jun 7;44(11):3474-504 22823891 - Chem Res Toxicol. 2012 Nov 19;25(11):2265-84 25456989 - Colloids Surf B Biointerfaces. 2014 Nov 1;123:657-63 21574653 - J Am Chem Soc. 2011 Jun 15;133(23):8778-81 18383576 - Small. 2008 Apr;4(4):421-6 17227026 - J Am Chem Soc. 2007 Jan 24;129(3):626-34 24863388 - Chemistry. 2014 Jun 16;20(25):7796-802 17732109 - Science. 1995 Sep 1;269(5228):1242-4 24383581 - ACS Nano. 2014 Jan 28;8(1):744-51 22318874 - Adv Mater. 2012 Mar 15;24(11):1418-23 22777795 - Angew Chem Int Ed Engl. 2012 Aug 13;51(33):8373-7 15025433 - J Am Chem Soc. 2004 Mar 24;126(11):3370-1 16038000 - Angew Chem Int Ed Engl. 2005 Aug 12;44(32):5038-44 25504676 - Chemistry. 2015 Feb 2;21(6):2680-5 22751906 - Nanoscale. 2012 Aug 7;4(15):4473-6 17668088 - Chem Commun (Camb). 2007 Aug 21;(31):3236-45 18494624 - Int Wound J. 2008 Jun;5(2):185-94 18232687 - J Am Chem Soc. 2008 Feb 27;130(8):2382-3 21246683 - Angew Chem Int Ed Engl. 2011 Jan 24;50(4):882-6 22801748 - Chem Commun (Camb). 2012 Aug 28;48(67):8410-2 21914934 - Nanotechnology. 2011 Oct 14;22(41):415101 20737526 - Angew Chem Int Ed Engl. 2010 Sep 24;49(40):7281-3 18211068 - J Am Chem Soc. 2008 Feb 13;130(6):1903-17 16006520 - Proc Natl Acad Sci U S A. 2005 Jul 19;102(29):10029-34 23958787 - Nanoscale. 2013 Oct 7;5(19):9412-8 23689395 - Phys Chem Chem Phys. 2013 Jul 14;15(26):10740-8 24127854 - ACS Appl Mater Interfaces. 2013 Nov 13;5(21):10895-903 23495013 - Angew Chem Int Ed Engl. 2013 Apr 15;52(16):4375-9 22007786 - J Am Chem Soc. 2011 Nov 23;133(46):18554-7 19937629 - Angew Chem Int Ed Engl. 2009;48(52):9962-5 22540671 - J Am Chem Soc. 2012 May 9;134(18):7628-31 19624127 - J Am Chem Soc. 2009 Aug 19;131(32):11344-6 9438845 - Science. 1998 Jan 23;279(5350):548-52 16015668 - Angew Chem Int Ed Engl. 2005 Aug 12;44(32):5083-7 18571265 - J Control Release. 2008 Dec 18;132(3):164-70 20799689 - J Am Chem Soc. 2010 Sep 22;132(37):13016-25 12540896 - Nature. 2003 Jan 23;421(6921):350-3 20803535 - Adv Mater. 2010 Oct 8;22(38):4280-3 21314163 - Langmuir. 2011 Mar 15;27(6):3095-9 11484196 - J Biomed Mater Res. 2001 Nov;57(2):313-20 23341257 - Small. 2013 Aug 26;9(16):2793-800, 2653 24470397 - Angew Chem Int Ed Engl. 2014 Feb 24;53(9):2371-5 19275256 - J Am Chem Soc. 2009 Mar 18;131(10):3462-3 17609668 - Nat Rev Mol Cell Biol. 2007 Aug;8(8):603-12 25237679 - Chem Commun (Camb). 2014 Nov 11;50(87):13268-71 20085351 - J Am Chem Soc. 2010 Feb 10;132(5):1500-1 19799420 - J Am Chem Soc. 2009 Oct 28;131(42):15136-42 19159224 - J Am Chem Soc. 2009 Feb 11;131(5):1686-8 15506760 - J Am Chem Soc. 2004 Nov 3;126(43):13987-91 23543911 - J Mater Chem B Mater Biol Med. 2013;1(8):1109-1118 20540129 - Angew Chem Int Ed Engl. 2010 Jun 28;49(28):4734-7 21816467 - Biomaterials. 2011 Oct;32(30):7711-20 19575431 - Angew Chem Int Ed Engl. 2009;48(32):5884-7 20965972 - Nucleic Acids Res. 2011 Mar;39(4):1638-44 23403864 - Chem Soc Rev. 2013 May 7;42(9):3862-75 22309360 - Langmuir. 2012 Feb 28;28(8):4003-8 17269667 - Biotechnol Prog. 2007 Jan-Feb;23(1):32-41 23387478 - Acc Chem Res. 2013 Mar 19;46(3):792-801 21214180 - J Am Chem Soc. 2011 Feb 9;133(5):1278-81 22494670 - Colloids Surf B Biointerfaces. 2012 Jun 15;95:274-8 22889263 - Langmuir. 2012 Sep 4;28(35):12909-15 23322330 - Nanoscale. 2013 Feb 21;5(4):1544-51 19309022 - Angew Chem Int Ed Engl. 2009;48(17):3092-5 21253628 - Chem Commun (Camb). 2011 Mar 14;47(10):2850-2 21250653 - ACS Nano. 2011 Feb 22;5(2):1259-66 16478172 - J Am Chem Soc. 2006 Feb 22;128(7):2226-7 19402643 - J Am Chem Soc. 2009 May 20;131(19):6833-43 19705840 - J Am Chem Soc. 2009 Sep 16;131(36):12912-4 22539076 - Adv Mater. 2012 Jun 5;24(21):2890-5 25517859 - Nanotechnology. 2015 Jan 16;26(2):025102 19919132 - J Am Chem Soc. 2009 Nov 25;131(46):16614-5 21226142 - Angew Chem Int Ed Engl. 2011 Jan 17;50(3):640-3 19206485 - ACS Nano. 2008 May;2(5):889-96 17292054 - Nanomedicine. 2005 Mar;1(1):22-30 14505488 - Biochem J. 2004 Jan 1;377(Pt 1):159-69 22646097 - ACS Appl Mater Interfaces. 2012 Jun 27;4(6):3177-83 |
References_xml | – volume: 173 start-page: 64 year: 2013 ident: ref_57 article-title: Facile synthesis of PDMAEMA-coated hollow mesoporous silica nanoparticles and their pH-responsive controlled release publication-title: Micropor. Mesopor. Mater. doi: 10.1016/j.micromeso.2013.02.012 – volume: 52 start-page: 4375 year: 2013 ident: ref_62 article-title: Nir-triggered anticancer drug delivery by upconverting nanoparticles with integrated azobenzene-modified mesoporous silica publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201300183 – volume: 24 start-page: 2890 year: 2012 ident: ref_111 article-title: Near-infrared light-triggered, targeted drug delivery to cancer cells by aptamer gated nanovehicles publication-title: Adv. Mater. doi: 10.1002/adma.201104797 – volume: 131 start-page: 12912 year: 2009 ident: ref_46 article-title: pH clock-operated mechanized nanoparticles publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9010157 – volume: 28 start-page: 4003 year: 2012 ident: ref_58 article-title: A light-responsive reversible molecule-gated system using thymine-modified mesoporous silica nanoparticles publication-title: Langmuir doi: 10.1021/la2047504 – volume: 44 start-page: 4844 year: 2005 ident: ref_45 article-title: The cucurbit[n]uril family publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200460675 – volume: 22 start-page: 415101 year: 2011 ident: ref_119 article-title: A smart multifunctional nanocomposite for intracellular targeted drug delivery and self-release publication-title: Nanotechnology doi: 10.1088/0957-4484/22/41/415101 – volume: 48 start-page: 9522 year: 2012 ident: ref_80 article-title: A glucose-responsive controlled release system using glucose oxidase-gated mesoporous silica nanocontainers publication-title: Chem. Commum. doi: 10.1039/c2cc34290a – volume: 44 start-page: 3474 year: 2015 ident: ref_9 article-title: Molecular and supramolecular switches on mesoporous silica nanoparticles publication-title: Chem. Soc. doi: 10.1039/C5CS00243E – volume: 132 start-page: 1500 year: 2010 ident: ref_37 article-title: pH-responsive nanogated ensemble based on gold-capped mesoporous silica through an acid-labile acetal linker publication-title: J. Am. Chem. Soc. doi: 10.1021/ja907838s – volume: 133 start-page: 19582 year: 2011 ident: ref_78 article-title: Bioresponsive mesoporous silica nanoparticles for triggered drug release publication-title: J. Am. Chem. Soc. doi: 10.1021/ja206998x – volume: 4 start-page: 4113 year: 2012 ident: ref_20 article-title: Sustained release of heparin on enlarged-pore and functionalized MCM-41 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am300878z – volume: 24 start-page: 517 year: 2012 ident: ref_107 article-title: Magnetically triggered multidrug release by hybrid mesoporous silica nanoparticles publication-title: Chem. Mater. doi: 10.1021/cm203000u – volume: 120 start-page: 2254 year: 2008 ident: ref_44 article-title: pH-responsive supramolecular nanovalves based on cucurbit[6]uril pseudorotaxanes publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.200705211 – volume: 131 start-page: 3462 year: 2009 ident: ref_63 article-title: Photoinduced intracellular controlled release drug delivery in human cells by gold-capped mesoporous silica nanosphere publication-title: J. Am. Chem. Soc. doi: 10.1021/ja900025f – volume: 4 start-page: 4473 year: 2012 ident: ref_86 article-title: Highly efficient remote controlled release system based on light-driven DNA nanomachine functionalized mesoporous silica publication-title: Nanoscale doi: 10.1039/c2nr31101a – volume: 21 start-page: 2680 year: 2015 ident: ref_110 article-title: A free-blockage controlled release system based on the hydrophobic/hydrophilic conversion of mesoporous silica nanopores publication-title: Chem. Eur. J. doi: 10.1002/chem.201405222 – volume: 132 start-page: 10623 year: 2010 ident: ref_72 article-title: Noninvasive remote-controlled release of drug molecules in vitro using magnetic actuation of mechanized nanoparticles publication-title: J. Am. Chem. Soc. doi: 10.1021/ja1022267 – volume: 18 start-page: 5919 year: 2006 ident: ref_94 article-title: Supramolecular nanovalves controlled by proton abstraction and competitive binding publication-title: Chem. Mater. doi: 10.1021/cm061682d – volume: 39 start-page: 1638 year: 2011 ident: ref_84 article-title: Stimuli-responsive controlled-release system using quadruplex DNA-capped silica nanocontainers publication-title: Nucl. Acids. Res. doi: 10.1093/nar/gkq893 – volume: 48 start-page: 5884 year: 2009 ident: ref_77 article-title: Enzyme-responsive controlled release using mesoporous silica supports capped with lactose publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200900880 – volume: 8 start-page: 603 year: 2007 ident: ref_14 article-title: Pathways of clathrin-independent endocytosis publication-title: Nat. Rev. Mol. Cell. Biol. doi: 10.1038/nrm2216 – volume: 130 start-page: 2382 year: 2008 ident: ref_74 article-title: Enzyme-responsive snap-top covered silica nanocontainers publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0772086 – volume: 115 start-page: 9926 year: 2011 ident: ref_49 article-title: Preparation of pH-responsive mesoporous silica nanoparticles and their application in controlled drug delivery publication-title: J. Phys. Chem. C doi: 10.1021/jp201053d – volume: 9 start-page: 2793 year: 2013 ident: ref_87 article-title: Photosensitizer-incorporated quadruplex DNA-gated nanovechicles for light-triggered, targeted dual drug delivery to cancer cells publication-title: Small doi: 10.1002/smll.201201916 – volume: 13 start-page: 308 year: 2001 ident: ref_15 article-title: A new property of MCM-41: Drug delivery system publication-title: Chem. Mater. doi: 10.1021/cm0011559 – volume: 125 start-page: 4451 year: 2003 ident: ref_22 article-title: A Mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug mlecules publication-title: J. Am. Chem. Soc. doi: 10.1021/ja028650l – volume: 49 start-page: 7281 year: 2010 ident: ref_81 article-title: Controlled delivery using oligonucleotide-capped mesoporous silica nanoparticles publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201001847 – volume: 21 start-page: 2535 year: 2011 ident: ref_71 article-title: Multifunctional magnetically removable nanogated lids of Fe3O4-capped mesoporous silica nanoparticles for intracellular controlled release and MR imaging publication-title: J. Mater. Chem. doi: 10.1039/c0jm02590a – volume: 4 start-page: 421 year: 2008 ident: ref_60 article-title: Light-activated nanoimpeller-controlled drug release in cancer cells publication-title: Small doi: 10.1002/smll.200700903 – volume: 27 start-page: 3095 year: 2011 ident: ref_52 article-title: Responsive polymer-coated mesoporous silica as a pH-sensitive nanocarrier for controlled release publication-title: Langmuir doi: 10.1021/la104973j – volume: 131 start-page: 15136 year: 2009 ident: ref_41 article-title: Controlled-access hollow mechanized silica nanocontainers publication-title: J. Am. Chem. Soc. doi: 10.1021/ja904982j – volume: 126 start-page: 13987 year: 2004 ident: ref_21 article-title: Tunable reactivation of nanoparticle-inhibited β-galactosidase by glutathione at intracellular concentrations publication-title: J. Am. Chem. Soc. doi: 10.1021/ja046572r – volume: 20 start-page: 3354 year: 2008 ident: ref_67 article-title: Temperature-controlled uptake and release in PNIPAM-modified porous silica nanoparticles publication-title: Chem. Mater. doi: 10.1021/cm703363w – volume: 132 start-page: 164 year: 2008 ident: ref_35 article-title: Recent progress in tumor pH targeting nanotechnology publication-title: J. Control. Release doi: 10.1016/j.jconrel.2008.05.003 – volume: 19 start-page: 7765 year: 2009 ident: ref_30 article-title: An efficient cell-targeting and intracellular controlled-release drug delivery system based on MSN-PEM-aptamer conjugates publication-title: J. Mater. Chem. doi: 10.1039/b907978e – volume: 131 start-page: 1686 year: 2009 ident: ref_61 article-title: Light-operated mechanized nanoparticles publication-title: J. Am. Chem. Soc. doi: 10.1021/ja807798g – volume: 50 start-page: 882 year: 2011 ident: ref_82 article-title: Polyvalent nucleic acid/mesoporous silica nanoparticle conjugates: Dual stimuli-responsive vehicles for intracellular drug delivery publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201005471 – volume: 20 start-page: 2153 year: 2014 ident: ref_51 article-title: Preparation of poly acrylic acid grafted-mesoporous silica as pH responsive releasing material publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2013.09.045 – volume: 48 start-page: 8410 year: 2012 ident: ref_90 article-title: DNA-based intelligent logic controlled release systems publication-title: Chem. Commun. doi: 10.1039/c2cc34501c – volume: 4 start-page: 18961 year: 2014 ident: ref_8 article-title: Mesoporous silica-based nanodevices for biological applications publication-title: RSC Adv. doi: 10.1039/c3ra47166g – volume: 117 start-page: 5213 year: 2005 ident: ref_56 article-title: Stimuli-responsive controlled drug release from a hollow mesoporous silica sphere/polyelectrolyte multilayer core-shell structure publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.200501500 – volume: 23 start-page: 32 year: 2007 ident: ref_11 article-title: Nanoparticle-mediated drug delivery and gene therapy publication-title: Biotechnol. Prog. doi: 10.1021/bp060348j – volume: 49 start-page: 6555 year: 2013 ident: ref_47 article-title: Controlled release of cargo molecules from hollow mesoporous silica nanoparticles based on acid and base dual-responsive cucurbit[7]uril pseudorotaxanes publication-title: Chem. Commun. doi: 10.1039/c3cc43221a – volume: 269 start-page: 1242 year: 1995 ident: ref_3 article-title: Templating of mesoporous molecular sieves by nonionic polyethylene oxide surfactants publication-title: Science doi: 10.1126/science.269.5228.1242 – volume: 28 start-page: 12909 year: 2012 ident: ref_89 article-title: ATP-responsive controlled release system using aptamer-functionalized mesoporous silica nanoparticles publication-title: Langmuir doi: 10.1021/la302767b – volume: 128 start-page: 2226 year: 2006 ident: ref_39 article-title: Contrast viscosity changes upon photoirradiation for mixtures of poly(acrylic acid)-based α-cyclodextrin and azobenzene polymers publication-title: J. Am. Chem. Soc. doi: 10.1021/ja058345a – volume: 15 start-page: 1262 year: 2003 ident: ref_66 article-title: Control of molecular transport through stimuli-responsive ordered mesoporous materials publication-title: Adv. Mater. doi: 10.1002/adma.200305165 – volume: 24 start-page: 6999 year: 2014 ident: ref_101 article-title: Dual bioresponsive mesoporous silica nanocarrier as an “And” logic gate for targeted drug delivery cancer cells publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201402339 – volume: 72 start-page: 329 year: 2012 ident: ref_120 article-title: pH-responsive magnetic mesoporous silica nanospheres for magnetic resonance imaging and drug delivery publication-title: React. Funct. Polym. doi: 10.1016/j.reactfunctpolym.2012.03.007 – volume: 53 start-page: 2371 year: 2014 ident: ref_93 article-title: DNA-hybrid-gated multifunctional mesoporous silica nanocarriers for dual-targeted and microRNA-responsive controlled drug delivery publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201308920 – volume: 46 start-page: 1455 year: 2007 ident: ref_40 article-title: Controlled release of guest molecules from mesoporous silica particles based on a pH-responsive polypseudorotaxane motif publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200603404 – volume: 48 start-page: 9962 year: 2009 ident: ref_64 article-title: Light-driven hydrogen generation: Efficient iron-based water reduction catalysts publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200905115 – volume: 131 start-page: 15128 year: 2009 ident: ref_104 article-title: Multiresponsive supramolecular nanogated ensembles publication-title: J. Am. Chem. Soc. doi: 10.1021/ja905288m – volume: 15 start-page: 10740 year: 2013 ident: ref_34 article-title: Poly(propylene imine) dendrimer caps on mesoporous silica nanoparticles for redox-responsive release. Smaller is better publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c3cp44614j – volume: 21 start-page: 13811 year: 2011 ident: ref_88 article-title: Programmable DNA switch for bioresponsive controlled release publication-title: J. Mater. Chem. doi: 10.1039/c1jm12203g – volume: 133 start-page: 1278 year: 2011 ident: ref_92 article-title: Bioresponsive controlled release using mesoporous silica nanoparticles capped with aptamer-based molecular gate publication-title: J. Am. Chem. Soc. doi: 10.1021/ja110094g – volume: 22 start-page: 842 year: 2012 ident: ref_117 article-title: Photo- and pH-triggered release of anticancer drugs from mesoporous silica-coated Pd@Ag nanoparticles publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201101960 – volume: 22 start-page: 4280 year: 2010 ident: ref_31 article-title: Glutathione-induced intracellular release of guests from mesoporous silica nanocontainers with cyclodextrin gatekeepers publication-title: Adv. Mater. doi: 10.1002/adma.201001417 – volume: 131 start-page: 8398 year: 2009 ident: ref_79 article-title: Mesoporous silica nanoparticle-based double drug delivery system for glucose-responsive controlled release of insulin and cyclic AMP publication-title: J. Am. Chem. Soc. doi: 10.1021/ja901831u – volume: 131 start-page: 6833 year: 2009 ident: ref_96 article-title: pH- and photo-switched release of guest molecules from mesoporous silica supports publication-title: J. Am. Chem. Soc. doi: 10.1021/ja810011p – volume: 49 start-page: 4734 year: 2010 ident: ref_83 article-title: A programmable DNA-based molecular valve for colloidal mesoporous silica publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201000827 – volume: 42 start-page: 3862 year: 2013 ident: ref_5 article-title: Synthesis of mesoporous silica nanoparticles publication-title: Chem. Soc. Rev. doi: 10.1039/c3cs35405a – ident: ref_108 doi: 10.1002/app.40477 – volume: 279 start-page: 548 year: 1998 ident: ref_2 article-title: Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores publication-title: Science doi: 10.1126/science.279.5350.548 – volume: 1 start-page: 22 year: 2005 ident: ref_12 article-title: Nanostructure-mediated drug delivery publication-title: Nanomedicine doi: 10.1016/j.nano.2004.11.009 – volume: 32 start-page: 7711 year: 2011 ident: ref_55 article-title: A pH-responsive mesoporous silica nanoparticles-based multi-drug delivery system for overcoming multi-drug resistance publication-title: Biomaterials doi: 10.1016/j.biomaterials.2011.06.066 – volume: 38 start-page: 4830 year: 2014 ident: ref_100 article-title: A dual responsive targeted drug delivery system based on smart polymer coated mesoporous silica for laryngeal carcinoma treatment publication-title: New J. Chem. doi: 10.1039/C4NJ00579A – volume: 47 start-page: 2850 year: 2011 ident: ref_85 article-title: A pH-driven DNA nanoswitch for responsive controlled release publication-title: Chem. Commun. doi: 10.1039/c0cc04765a – volume: 33 start-page: 811 year: 2012 ident: ref_68 article-title: Biocompatible zwitterionic sulfobetaine copolymer-coated mesoporous silica nanoparticles for temperature-responsive drug release publication-title: Macromol. Rapid. Commun. doi: 10.1002/marc.201100876 – volume: 130 start-page: 1903 year: 2008 ident: ref_95 article-title: Dual aperture control on pH- and anion-driven supramolecular nanoscopic hybrid gate-like ensembles publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0756772 – volume: 131 start-page: 11344 year: 2009 ident: ref_97 article-title: Dual-controlled nanoparticles exhibiting and logic publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9042752 – volume: 102 start-page: 10029 year: 2005 ident: ref_27 article-title: A reversible molecular valve publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0504109102 – volume: 2 start-page: 889 year: 2008 ident: ref_122 article-title: Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery publication-title: ACS Nano doi: 10.1021/nn800072t – volume: 130 start-page: 14418 year: 2008 ident: ref_29 article-title: Tunable redox-responsive hybrid nanogated ensembles publication-title: J. Am. Chem. Soc. doi: 10.1021/ja8060886 – volume: 131 start-page: 16614 year: 2009 ident: ref_76 article-title: Enzyme responsive nanocontainers with cyclodextrin gatekeepers and synergistic effects in release of guests publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9061085 – volume: 359 start-page: 710 year: 1992 ident: ref_1 article-title: Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism publication-title: Nature doi: 10.1038/359710a0 – volume: 31 start-page: 3236 year: 2007 ident: ref_18 article-title: Mesoporous silica nanoparticle based controlled release, drug delivery, and biosensor systems publication-title: Chem. Commun. doi: 10.1039/b701744h – volume: 123 start-page: 657 year: 2014 ident: ref_103 article-title: A study of chitosan hydrogel with embedded mesoporous silica nanoparticles loaded by ibuprofen as a dual stimuli-responsive drug release system for surface coating of titanium implants publication-title: Biointerfaces doi: 10.1016/j.colsurfb.2014.10.013 – volume: 8 start-page: 744 year: 2014 ident: ref_109 article-title: A light-responsive release platform by controlling the wetting behavior of hydrophobic surface publication-title: ACS Nano doi: 10.1021/nn405398d – volume: 57 start-page: 313 year: 2001 ident: ref_10 article-title: Silica sol-gel for the controlled release of antibiotics. I. Synthesis, characterization, and in vitro release publication-title: J. Biomed. Mater. Res. doi: 10.1002/1097-4636(200111)57:2<313::AID-JBM1173>3.0.CO;2-E – volume: 4 start-page: 2139 year: 2004 ident: ref_17 article-title: Morphological control of room-temperature ionic liquid templated mesoporous silica nanoparticles for controlled release of antibacterial agents publication-title: Nano Lett. doi: 10.1021/nl048774r – volume: 24 start-page: 1418 year: 2012 ident: ref_112 article-title: Mesoporous silica-coated gold nanorods as a light-mediated multifunctional theranostic platform for cancer treatment publication-title: Adv. Mater. doi: 10.1002/adma.201104714 – volume: 133 start-page: 8778 year: 2011 ident: ref_38 article-title: pH-Triggered controlled drug release from mesoporous silica nanoparticles via intracelluar dissolution of ZnO nanolids publication-title: J. Am. Chem. Soc. doi: 10.1021/ja200328s – volume: 132 start-page: 12690 year: 2010 ident: ref_43 article-title: Autonomous in vitro anticancer drug release from mesoporous silica nanoparticles by pH-sensitive nanovalves publication-title: J. Am. Chem. Soc. doi: 10.1021/ja104501a – volume: 152 start-page: 16 year: 2012 ident: ref_54 article-title: Hollow mesoporous silica nanoparticles conjugated with pH-sensitive amphiphilic diblock polymer for controlled drug release publication-title: Micropor. Mesopor. Mater. doi: 10.1016/j.micromeso.2011.12.015 – volume: 25 start-page: 2265 year: 2012 ident: ref_6 article-title: Biocompatibility of mesoporous silica nanoparticles publication-title: Chem. Res. Toxicol. doi: 10.1021/tx300166u – volume: 5 start-page: 185 year: 2008 ident: ref_36 article-title: The impact of Manuka honey dressings on the surface pH of chronic wounds publication-title: Int. Wound. J. doi: 10.1111/j.1742-481X.2007.00424.x – volume: 50 start-page: 640 year: 2011 ident: ref_91 article-title: Mesoporous silica nanoparticles end-capped with collagen: Redox-responsive nanoreservoirs for targeted drug delivery publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201005061 – volume: 150 start-page: 83 year: 2012 ident: ref_53 article-title: Chitosan enclosed mesoporous silica nanoparticles as drug nano-carriers: Sensitive response to the narrow pH range publication-title: Micropor. Mesopor. Mater. doi: 10.1016/j.micromeso.2011.07.023 – volume: 51 start-page: 5012 year: 2013 ident: ref_69 article-title: Mesoporous silica particles grafted with poly(ethyleneoxide-block-N-vinylcaprolactam) publication-title: J. Polym. Sci. Pol. Chem. doi: 10.1002/pola.26928 – volume: 134 start-page: 7628 year: 2012 ident: ref_105 article-title: Nanovalve-controlled cargo release activated by plasmonic heating publication-title: J. Am. Chem. Soc. doi: 10.1021/ja301880x – volume: 44 start-page: 5038 year: 2005 ident: ref_23 article-title: Stimuli-responsive controlled-release delivery system based on mesoporous silica nanorods capped with magnetic nanoparticles publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200501819 – volume: 129 start-page: 626 year: 2007 ident: ref_28 article-title: Design and optimization of molecular nanovalves based on redox-switchable bistable rotaxanes publication-title: J. Am. Chem. Soc. doi: 10.1021/ja065485r – volume: 5 start-page: 10895 year: 2013 ident: ref_70 article-title: pH and thermo dual-stimuli-responsive drug carrier based on mesoporous silica nanoparticles encapsulated in a copolymer-lipid bilayer publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am403092m – volume: 133 start-page: 18554 year: 2011 ident: ref_25 article-title: Luciferase and luciferin co-immobilized mesoporous silica nanoparticle materials for intracellular biocatalysis publication-title: J. Am. Chem. Soc. doi: 10.1021/ja2080168 – volume: 5 start-page: 1544 year: 2013 ident: ref_65 article-title: A magnetic mesoporous silica nanoparticle-based drug delivery system for photosensitive cooperative treatment of cancer with a mesopore-capping agent and mesopore-loaded drug publication-title: Nanoscale doi: 10.1039/c2nr33417h – volume: 95 start-page: 274 year: 2012 ident: ref_19 article-title: Mesoporous silica nanoparticles with manipulated microstructures for drug delivery publication-title: Biointerfaces doi: 10.1016/j.colsurfb.2012.03.012 – volume: 33 start-page: 7126 year: 2012 ident: ref_116 article-title: Manganese oxide-based multifunctionalized mesoporous silica nanoparticles for pH-responsive MRI, ultrasonography and circumvention of MDR in cancer cells publication-title: Biomaterials doi: 10.1016/j.biomaterials.2012.06.059 – volume: 4 start-page: 3177 year: 2012 ident: ref_33 article-title: Mesoporous silica nanoparticles capped with disulfide-linked PEG gatekeepers for glutathione-mediated controlled release publication-title: ACS Appl. Mater. Interface doi: 10.1021/am3005225 – volume: 5 start-page: 1259 year: 2011 ident: ref_73 article-title: Smart drug delivery through DNA/magnetic nanoparticle gates publication-title: ACS Nano doi: 10.1021/nn1029229 – volume: 421 start-page: 350 year: 2003 ident: ref_16 article-title: Photocontrolled reversible release of guest molecules from coumarin-modified mesoporous silica publication-title: Nature doi: 10.1038/nature01362 – volume: 2 start-page: 295 year: 2007 ident: ref_24 article-title: Mesoporous silica nanoparticles deliver DNA and chemicals into plants publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2007.108 – volume: 17 start-page: 5999 year: 2005 ident: ref_48 article-title: pH-responsive carrier system based on carboxylic acid modified mesoporous silica and polyelectrolyte for drug delivery publication-title: Chem. Mater. doi: 10.1021/cm051198v – volume: 77 start-page: 48 year: 2012 ident: ref_121 article-title: Tuning the release of anticancer drugs from magnetic iron oxide/mesoporous silica core/shell nanoparticles publication-title: ChemPlusChem doi: 10.1002/cplu.201100026 – volume: 26 start-page: 025102 year: 2015 ident: ref_114 article-title: Multifunctional PEG modified Dox loaded mesoporous silica nanoparticle@CuS nanohybrids as photo-thermal agent and thermal-triggered drug release vehicle for hepatocellular carcinoma treatment publication-title: Nanotechnology doi: 10.1088/0957-4484/26/2/025102 – volume: 50 start-page: 13268 year: 2014 ident: ref_102 article-title: Dual stimuli-responsive nano-vehicles for controlled drug delivery: Mesoporous silica nanoparticles end-capped with natural chitosan publication-title: Chem. Commun. doi: 10.1039/C4CC04383A – volume: 8 start-page: 680 year: 1993 ident: ref_4 article-title: Synthesis of highly ordered mesoporous materials from a layered polysilicate publication-title: Chem. Commun. doi: 10.1039/c39930000680 – volume: 51 start-page: 8373 year: 2012 ident: ref_106 article-title: Functional mesoporous silica nanoparticles for photothermal-controlled drug delivery in vivo publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201203993 – volume: 22 start-page: 14061 year: 2012 ident: ref_118 article-title: A multifunctional mesoporous nanocontainer with an iron oxide core and a cyclodextrin gatekeeper for an efficient theranostic platform publication-title: J. Mater. Chem. doi: 10.1039/c2jm32137h – volume: 5 start-page: 9412 year: 2013 ident: ref_113 article-title: Trivalent galactosyl-functionalized mesoporous silica nanoparticles as a target-specific delivery system for boron neutron capture therapy publication-title: Nanoscale doi: 10.1039/c3nr02594b – volume: 403 start-page: 7 year: 2012 ident: ref_50 article-title: Biofunctional mesoporous silica nanoparticles for magnetically oriented target and pH-responsive controlled release of ibuprofen publication-title: Colloids Surf. A doi: 10.1016/j.colsurfa.2012.03.017 – volume: 126 start-page: 3370 year: 2004 ident: ref_26 article-title: An operational supramolecular nanovalve publication-title: J. Am. Chem. Soc. doi: 10.1021/ja039424u – volume: 46 start-page: 792 year: 2013 ident: ref_7 article-title: Mesoporous silica nanoparticle nanocarriers: Biofunctionality and biocompatibility publication-title: Acc. Chem. Res. doi: 10.1021/ar3000986 – volume: 48 start-page: 3092 year: 2009 ident: ref_75 article-title: Biotin-avidin as a protease-responsive cap system for controlled guest release from colloidal mesoporous silica publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200805818 – volume: 5 start-page: 3908 year: 2013 ident: ref_32 article-title: Hindered disulfide bonds to regulate release rate of model drug from mesoporous silica publication-title: ACS Appl. Mater. Interface doi: 10.1021/am400604d – volume: 377 start-page: 159 year: 2004 ident: ref_13 article-title: Size-dependent internalization of particles via the pathways of clathrinand caveolae-mediated endocytosis publication-title: Biochem. J. doi: 10.1042/bj20031253 – volume: 111 start-page: 6589 year: 2007 ident: ref_59 article-title: Photo-driven expulsion of molecules from mesostructured silica nanoparticles publication-title: J. Phys. Chem. C doi: 10.1021/jp070721l – volume: 1 start-page: 1109 year: 2013 ident: ref_99 article-title: Multifunctional hybrid silica nanoparticles for controlled doxorubicin loading and release with thermal and pH dual response publication-title: J. Mater. Chem. B. doi: 10.1039/c2tb00223j – volume: 132 start-page: 13016 year: 2010 ident: ref_42 article-title: pH-operated nanopistons on the surfaces of mesoporous silica nanoparticles publication-title: J. Am. Chem. Soc. doi: 10.1021/ja105371u – volume: 22 start-page: 1470 year: 2012 ident: ref_115 article-title: Design and synthesis of multifunctional drug carriers based on luminescent rattle-type mesoporous silica microspheres with a thermosensitive hydrogel as a controlled switch publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201102746 – volume: 20 start-page: 7796 year: 2014 ident: ref_98 article-title: A selective release system based on dual-drug-loaded mesoporous silica for nanoparticle-assisted combination therapy publication-title: Chem. Eur. J. doi: 10.1002/chem.201402334 – reference: 22751906 - Nanoscale. 2012 Aug 7;4(15):4473-6 – reference: 15025433 - J Am Chem Soc. 2004 Mar 24;126(11):3370-1 – reference: 22646097 - ACS Appl Mater Interfaces. 2012 Jun 27;4(6):3177-83 – reference: 19937629 - Angew Chem Int Ed Engl. 2009;48(52):9962-5 – reference: 17269667 - Biotechnol Prog. 2007 Jan-Feb;23(1):32-41 – reference: 23689395 - Phys Chem Chem Phys. 2013 Jul 14;15(26):10740-8 – reference: 22801748 - Chem Commun (Camb). 2012 Aug 28;48(67):8410-2 – reference: 23387478 - Acc Chem Res. 2013 Mar 19;46(3):792-801 – reference: 18841893 - J Am Chem Soc. 2008 Nov 5;130(44):14418-9 – reference: 18232687 - J Am Chem Soc. 2008 Feb 27;130(8):2382-3 – reference: 19799420 - J Am Chem Soc. 2009 Oct 28;131(42):15136-42 – reference: 25504676 - Chemistry. 2015 Feb 2;21(6):2680-5 – reference: 20803535 - Adv Mater. 2010 Oct 8;22(38):4280-3 – reference: 16006520 - Proc Natl Acad Sci U S A. 2005 Jul 19;102(29):10029-34 – reference: 22889263 - Langmuir. 2012 Sep 4;28(35):12909-15 – reference: 21314163 - Langmuir. 2011 Mar 15;27(6):3095-9 – reference: 19476380 - J Am Chem Soc. 2009 Jun 24;131(24):8398-400 – reference: 20540129 - Angew Chem Int Ed Engl. 2010 Jun 28;49(28):4734-7 – reference: 23322330 - Nanoscale. 2013 Feb 21;5(4):1544-51 – reference: 15506760 - J Am Chem Soc. 2004 Nov 3;126(43):13987-91 – reference: 24470397 - Angew Chem Int Ed Engl. 2014 Feb 24;53(9):2371-5 – reference: 19705840 - J Am Chem Soc. 2009 Sep 16;131(36):12912-4 – reference: 21214180 - J Am Chem Soc. 2011 Feb 9;133(5):1278-81 – reference: 23341257 - Small. 2013 Aug 26;9(16):2793-800, 2653 – reference: 18494624 - Int Wound J. 2008 Jun;5(2):185-94 – reference: 24383581 - ACS Nano. 2014 Jan 28;8(1):744-51 – reference: 18383576 - Small. 2008 Apr;4(4):421-6 – reference: 9438845 - Science. 1998 Jan 23;279(5350):548-52 – reference: 17732109 - Science. 1995 Sep 1;269(5228):1242-4 – reference: 21914934 - Nanotechnology. 2011 Oct 14;22(41):415101 – reference: 17668088 - Chem Commun (Camb). 2007 Aug 21;(31):3236-45 – reference: 20799689 - J Am Chem Soc. 2010 Sep 22;132(37):13016-25 – reference: 23495013 - Angew Chem Int Ed Engl. 2013 Apr 15;52(16):4375-9 – reference: 16038000 - Angew Chem Int Ed Engl. 2005 Aug 12;44(32):5038-44 – reference: 22850329 - ACS Appl Mater Interfaces. 2012 Aug;4(8):4113-22 – reference: 19159224 - J Am Chem Soc. 2009 Feb 11;131(5):1686-8 – reference: 21981330 - J Am Chem Soc. 2011 Dec 14;133(49):19582-5 – reference: 22494670 - Colloids Surf B Biointerfaces. 2012 Jun 15;95:274-8 – reference: 25237679 - Chem Commun (Camb). 2014 Nov 11;50(87):13268-71 – reference: 17221893 - Angew Chem Int Ed Engl. 2007;46(9):1455-7 – reference: 16478172 - J Am Chem Soc. 2006 Feb 22;128(7):2226-7 – reference: 16052668 - Angew Chem Int Ed Engl. 2005 Aug 5;44(31):4844-70 – reference: 22318874 - Adv Mater. 2012 Mar 15;24(11):1418-23 – reference: 21253628 - Chem Commun (Camb). 2011 Mar 14;47(10):2850-2 – reference: 23958787 - Nanoscale. 2013 Oct 7;5(19):9412-8 – reference: 23760403 - Chem Commun (Camb). 2013 Jul 25;49(58):6555-7 – reference: 22903226 - Chem Commun (Camb). 2012 Oct 4;48(76):9522-4 – reference: 20737526 - Angew Chem Int Ed Engl. 2010 Sep 24;49(40):7281-3 – reference: 19275256 - J Am Chem Soc. 2009 Mar 18;131(10):3462-3 – reference: 25904466 - Chem Soc Rev. 2015 Jun 7;44(11):3474-504 – reference: 11484196 - J Biomed Mater Res. 2001 Nov;57(2):313-20 – reference: 22823891 - Chem Res Toxicol. 2012 Nov 19;25(11):2265-84 – reference: 21574653 - J Am Chem Soc. 2011 Jun 15;133(23):8778-81 – reference: 12683815 - J Am Chem Soc. 2003 Apr 16;125(15):4451-9 – reference: 17227026 - J Am Chem Soc. 2007 Jan 24;129(3):626-34 – reference: 12540896 - Nature. 2003 Jan 23;421(6921):350-3 – reference: 24863388 - Chemistry. 2014 Jun 16;20(25):7796-802 – reference: 19402643 - J Am Chem Soc. 2009 May 20;131(19):6833-43 – reference: 25517859 - Nanotechnology. 2015 Jan 16;26(2):025102 – reference: 19575431 - Angew Chem Int Ed Engl. 2009;48(32):5884-7 – reference: 24127854 - ACS Appl Mater Interfaces. 2013 Nov 13;5(21):10895-903 – reference: 18654287 - Nat Nanotechnol. 2007 May;2(5):295-300 – reference: 21250653 - ACS Nano. 2011 Feb 22;5(2):1259-66 – reference: 14505488 - Biochem J. 2004 Jan 1;377(Pt 1):159-69 – reference: 21246683 - Angew Chem Int Ed Engl. 2011 Jan 24;50(4):882-6 – reference: 19624127 - J Am Chem Soc. 2009 Aug 19;131(32):11344-6 – reference: 22539076 - Adv Mater. 2012 Jun 5;24(21):2890-5 – reference: 20681678 - J Am Chem Soc. 2010 Aug 11;132(31):10623-5 – reference: 20718462 - J Am Chem Soc. 2010 Sep 15;132(36):12690-7 – reference: 22789722 - Biomaterials. 2012 Oct;33(29):7126-37 – reference: 21226142 - Angew Chem Int Ed Engl. 2011 Jan 17;50(3):640-3 – reference: 23403864 - Chem Soc Rev. 2013 May 7;42(9):3862-75 – reference: 17609668 - Nat Rev Mol Cell Biol. 2007 Aug;8(8):603-12 – reference: 25456989 - Colloids Surf B Biointerfaces. 2014 Nov 1;123:657-63 – reference: 22488562 - Macromol Rapid Commun. 2012 May 14;33(9):811-8 – reference: 20965972 - Nucleic Acids Res. 2011 Mar;39(4):1638-44 – reference: 22007786 - J Am Chem Soc. 2011 Nov 23;133(46):18554-7 – reference: 19206485 - ACS Nano. 2008 May;2(5):889-96 – reference: 16015668 - Angew Chem Int Ed Engl. 2005 Aug 12;44(32):5083-7 – reference: 19746981 - J Am Chem Soc. 2009 Oct 28;131(42):15128-9 – reference: 22309360 - Langmuir. 2012 Feb 28;28(8):4003-8 – reference: 23543911 - J Mater Chem B Mater Biol Med. 2013;1(8):1109-1118 – reference: 20085351 - J Am Chem Soc. 2010 Feb 10;132(5):1500-1 – reference: 18211068 - J Am Chem Soc. 2008 Feb 13;130(6):1903-17 – reference: 23581883 - ACS Appl Mater Interfaces. 2013 May;5(9):3908-15 – reference: 18571265 - J Control Release. 2008 Dec 18;132(3):164-70 – reference: 21816467 - Biomaterials. 2011 Oct;32(30):7711-20 – reference: 22777795 - Angew Chem Int Ed Engl. 2012 Aug 13;51(33):8373-7 – reference: 17292054 - Nanomedicine. 2005 Mar;1(1):22-30 – reference: 19919132 - J Am Chem Soc. 2009 Nov 25;131(46):16614-5 – reference: 22540671 - J Am Chem Soc. 2012 May 9;134(18):7628-31 – reference: 19309022 - Angew Chem Int Ed Engl. 2009;48(17):3092-5 |
SSID | ssj0000913853 |
Score | 2.2306902 |
SecondaryResourceType | review_article |
Snippet | Mesoporous silica nanoparticle (MSN)-based intelligent transport systems have attracted many researchers’ attention due to the characteristics of uniform pore... Mesoporous silica nanoparticle (MSN)-based intelligent transport systems have attracted many researchers' attention due to the characteristics of uniform pore... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 2019 |
SubjectTerms | controlled release free-blockage switch mesoporous materials nano-switch Review smart materials stimulus response |
Title | Recent Advance on Mesoporous Silica Nanoparticles-Based Controlled Release System: Intelligent Switches Open up New Horizon |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28347110 https://www.proquest.com/docview/1881771968 https://pubmed.ncbi.nlm.nih.gov/PMC5304765 https://doaj.org/article/baabfed68ae64408a954f29195a53d31 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bS9xAFD54eakP0tqq6WWZgk9CMLe5pG-uuK5CpXgB38JccUEmoiuF9s_3TCYu2SL4InkJmQkZzv1kznwHYI87zaStdGo0y9IqN6hzlptUuYLzjLuC2g7t85xNr6uzG3ozaPUVasIiPHAk3IGSUjlrmJCWhe7IsqaVK-q8ppKWpjtBXaDPGyRTnQ2u8xIdUTyQV2Jef-ClbylKaIepM3BBHVL_S-Hl_1WSA7czeQ-bfbxIDuM6P8CK9VuwMUAR_Ah_MfTDl8lh3M4nrSc_7WOLgTVm9eRyFn7LEbSimB73VXDpGH2XIUexTP0Oby_Q--AzEgHMf5DTBVLnnFz-ngXWPpJQfEKe7gkaRjJtH2Z_Wv8JrifHV0fTtO-pkOqS89B5XqN5c9KxwtZc1plWZVVV1uCFxKmZVS5H0jqH41RIqTNmnWC5ylyplCm3Yc233u4C0awWKACF1khXbqysOCp3QCR0VChbJrD_TOZG94Djoe_FXYOJR-BJM-BJAnuLyfcRZ-PlaePAr8WUAI7dPUCRaXoiNq-JTALfn7ndoDKFHRLpLbKkyYXIOUejJBLYidxffArjMHTkeZYAX5KLpbUsj_jZbQfYTcPeJqOf32LxX-AdEoKG45AF_Qpr84cn-w3jorkawaqYnIxgfXx8_uti1CnEP6zbE4o |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Advance+on+Mesoporous+Silica+Nanoparticles-Based+Controlled+Release+System%3A+Intelligent+Switches+Open+up+New+Horizon&rft.jtitle=Nanomaterials+%28Basel%2C+Switzerland%29&rft.au=Sun%2C+Ruijuan&rft.au=Wang%2C+Wenqian&rft.au=Wen%2C+Yongqiang&rft.au=Zhang%2C+Xueji&rft.date=2015-11-25&rft.issn=2079-4991&rft.eissn=2079-4991&rft.volume=5&rft.issue=4&rft.spage=2019&rft_id=info:doi/10.3390%2Fnano5042019&rft_id=info%3Apmid%2F28347110&rft.externalDocID=28347110 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-4991&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-4991&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-4991&client=summon |