Recent Advance on Mesoporous Silica Nanoparticles-Based Controlled Release System: Intelligent Switches Open up New Horizon

Mesoporous silica nanoparticle (MSN)-based intelligent transport systems have attracted many researchers’ attention due to the characteristics of uniform pore and particle size distribution, good biocompatibility, high surface area, and versatile functionalization, which have led to their widespread...

Full description

Saved in:
Bibliographic Details
Published inNanomaterials (Basel, Switzerland) Vol. 5; no. 4; pp. 2019 - 2053
Main Authors Sun, Ruijuan, Wang, Wenqian, Wen, Yongqiang, Zhang, Xueji
Format Journal Article
LanguageEnglish
Published Switzerland MDPI 25.11.2015
MDPI AG
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Mesoporous silica nanoparticle (MSN)-based intelligent transport systems have attracted many researchers’ attention due to the characteristics of uniform pore and particle size distribution, good biocompatibility, high surface area, and versatile functionalization, which have led to their widespread application in diverse areas. In the past two decades, many kinds of smart controlled release systems were prepared with the development of brilliant nano-switches. This article reviews and discusses the advantages of MSN-based controlled release systems. Meanwhile, the switching mechanisms based on different types of stimulus response are systematically analyzed and summarized. Additionally, the application fields of these devices are further discussed. Obviously, the recent evolution of smart nano-switches promoted the upgrading of the controlled release system from the simple “separated” switch to the reversible, multifunctional, complicated logical switches and selective switches. Especially the free-blockage switches, which are based on hydrophobic/hydrophilic conversion, have been proposed and designed in the last two years. The prospects and directions of this research field are also briefly addressed, which could be better used to promote the further development of this field to meet the needs of mankind.
AbstractList Mesoporous silica nanoparticle (MSN)-based intelligent transport systems have attracted many researchers’ attention due to the characteristics of uniform pore and particle size distribution, good biocompatibility, high surface area, and versatile functionalization, which have led to their widespread application in diverse areas. In the past two decades, many kinds of smart controlled release systems were prepared with the development of brilliant nano-switches. This article reviews and discusses the advantages of MSN-based controlled release systems. Meanwhile, the switching mechanisms based on different types of stimulus response are systematically analyzed and summarized. Additionally, the application fields of these devices are further discussed. Obviously, the recent evolution of smart nano-switches promoted the upgrading of the controlled release system from the simple “separated” switch to the reversible, multifunctional, complicated logical switches and selective switches. Especially the free-blockage switches, which are based on hydrophobic/hydrophilic conversion, have been proposed and designed in the last two years. The prospects and directions of this research field are also briefly addressed, which could be better used to promote the further development of this field to meet the needs of mankind.
Mesoporous silica nanoparticle (MSN)-based intelligent transport systems have attracted many researchers' attention due to the characteristics of uniform pore and particle size distribution, good biocompatibility, high surface area, and versatile functionalization, which have led to their widespread application in diverse areas. In the past two decades, many kinds of smart controlled release systems were prepared with the development of brilliant nano-switches. This article reviews and discusses the advantages of MSN-based controlled release systems. Meanwhile, the switching mechanisms based on different types of stimulus response are systematically analyzed and summarized. Additionally, the application fields of these devices are further discussed. Obviously, the recent evolution of smart nano-switches promoted the upgrading of the controlled release system from the simple "separated" switch to the reversible, multifunctional, complicated logical switches and selective switches. Especially the free-blockage switches, which are based on hydrophobic/hydrophilic conversion, have been proposed and designed in the last two years. The prospects and directions of this research field are also briefly addressed, which could be better used to promote the further development of this field to meet the needs of mankind.Mesoporous silica nanoparticle (MSN)-based intelligent transport systems have attracted many researchers' attention due to the characteristics of uniform pore and particle size distribution, good biocompatibility, high surface area, and versatile functionalization, which have led to their widespread application in diverse areas. In the past two decades, many kinds of smart controlled release systems were prepared with the development of brilliant nano-switches. This article reviews and discusses the advantages of MSN-based controlled release systems. Meanwhile, the switching mechanisms based on different types of stimulus response are systematically analyzed and summarized. Additionally, the application fields of these devices are further discussed. Obviously, the recent evolution of smart nano-switches promoted the upgrading of the controlled release system from the simple "separated" switch to the reversible, multifunctional, complicated logical switches and selective switches. Especially the free-blockage switches, which are based on hydrophobic/hydrophilic conversion, have been proposed and designed in the last two years. The prospects and directions of this research field are also briefly addressed, which could be better used to promote the further development of this field to meet the needs of mankind.
Author Zhang, Xueji
Sun, Ruijuan
Wang, Wenqian
Wen, Yongqiang
AuthorAffiliation Research Center for Bioengineering & Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; E-Mails: srj020322@163.com (R.S.); wang_8876@sina.com (W.W.); zhangxueji@ustb.edu.cn (X.Z.)
AuthorAffiliation_xml – name: Research Center for Bioengineering & Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; E-Mails: srj020322@163.com (R.S.); wang_8876@sina.com (W.W.); zhangxueji@ustb.edu.cn (X.Z.)
Author_xml – sequence: 1
  givenname: Ruijuan
  surname: Sun
  fullname: Sun, Ruijuan
– sequence: 2
  givenname: Wenqian
  surname: Wang
  fullname: Wang, Wenqian
– sequence: 3
  givenname: Yongqiang
  surname: Wen
  fullname: Wen, Yongqiang
– sequence: 4
  givenname: Xueji
  surname: Zhang
  fullname: Zhang, Xueji
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28347110$$D View this record in MEDLINE/PubMed
BookMark eNptkt9rFDEQxxep2Fr75LvkUZDVZJP9ER-Eeqg9qC309DnMZifXlFyyJnst1X_enHeVq5g8ZJj5zmeYyTwvDnzwWBQvGX3LuaTvPPhQU1FRJp8URxVtZSmkZAd79mFxktINzUcy3tX8WXFYdVy0jNGj4tcVavQTOR1uwWskwZOvmMIYYlgnsrDOaiAXucgIcbLaYSo_QsKBzIKfYnAum1foMPvI4j5NuHpP5n5C5-xyw13c2UlfYyKXI3qyHskF3pGzEO3P4F8UTw24hCe797j4_vnTt9lZeX75ZT47PS81b9upZFxLxgyYpkLZgqS650IIHPLNjcsGe8NqqI3J8boD0LRB0zWsp4b3_cCPi_mWOwS4UWO0K4j3KoBVfxwhLtWuOdUD9AaHpgNshKAdyFqYSjKZ-XzgLLM-bFnjul_hsJldBPcI-jji7bVahltVcyraps6A1ztADD_WmCa1sknneYHHPHLFuo61LZNNl6Wv9mv9LfLwe1nAtgIdQ0oRjdJ2gsluvgasU4yqzZKovSXJOW_-yXnA_k_9G4W7wLo
CitedBy_id crossref_primary_10_1021_acs_chemrev_7b00422
crossref_primary_10_1016_j_cej_2018_11_156
crossref_primary_10_3390_nano13081384
crossref_primary_10_1039_C7TB02429K
crossref_primary_10_1039_C9TB00946A
crossref_primary_10_1016_j_nano_2019_03_004
crossref_primary_10_1016_j_clay_2024_107547
crossref_primary_10_1039_C7DT04232A
crossref_primary_10_1002_cphc_201700117
crossref_primary_10_3390_pharmaceutics15020447
crossref_primary_10_1097_ACI_0000000000000782
crossref_primary_10_1002_adhm_202001117
crossref_primary_10_1002_slct_202400450
crossref_primary_10_1016_j_mseb_2021_115232
crossref_primary_10_1002_adbi_201800020
crossref_primary_10_1016_j_ijpharm_2018_07_047
crossref_primary_10_1016_j_jddst_2019_101176
crossref_primary_10_3390_ijms20061311
crossref_primary_10_1016_j_cis_2018_11_004
crossref_primary_10_1208_s12249_017_0740_2
crossref_primary_10_3390_nano6010015
crossref_primary_10_1016_j_ijpharm_2018_08_004
crossref_primary_10_1016_j_ijpharm_2024_124314
crossref_primary_10_1039_c8pp00143j
crossref_primary_10_1080_1061186X_2020_1812614
crossref_primary_10_1016_j_colsurfa_2021_126302
crossref_primary_10_1016_j_jddst_2017_06_015
crossref_primary_10_3390_pharmaceutics15010227
crossref_primary_10_1002_adfm_201703814
crossref_primary_10_1016_j_ejmech_2024_116699
crossref_primary_10_1016_j_jddst_2024_105504
crossref_primary_10_1007_s11051_017_4077_2
crossref_primary_10_1111_ijac_13376
crossref_primary_10_1016_j_colsurfa_2019_124074
crossref_primary_10_1002_pat_4505
crossref_primary_10_1002_slct_202200884
crossref_primary_10_1016_j_chemosphere_2024_143596
crossref_primary_10_1016_j_vacuum_2018_03_034
crossref_primary_10_1002_jbm_a_36770
crossref_primary_10_1039_C7NR05762H
crossref_primary_10_1002_chem_201704161
crossref_primary_10_1039_C8RA05939J
crossref_primary_10_3390_nano6070126
crossref_primary_10_1002_masy_202000336
crossref_primary_10_1002_ps_5348
crossref_primary_10_1002_adfm_202208316
crossref_primary_10_1002_slct_202204332
crossref_primary_10_1177_0885328220977605
crossref_primary_10_1002_cphc_201800388
crossref_primary_10_1007_s10971_022_05747_7
crossref_primary_10_1080_17425247_2019_1598375
crossref_primary_10_2174_0115733947242447231003035334
crossref_primary_10_1016_j_bioadv_2024_213998
Cites_doi 10.1016/j.micromeso.2013.02.012
10.1002/anie.201300183
10.1002/adma.201104797
10.1021/ja9010157
10.1021/la2047504
10.1002/anie.200460675
10.1088/0957-4484/22/41/415101
10.1039/c2cc34290a
10.1039/C5CS00243E
10.1021/ja907838s
10.1021/ja206998x
10.1021/am300878z
10.1021/cm203000u
10.1002/ange.200705211
10.1021/ja900025f
10.1039/c2nr31101a
10.1002/chem.201405222
10.1021/ja1022267
10.1021/cm061682d
10.1093/nar/gkq893
10.1002/anie.200900880
10.1038/nrm2216
10.1021/ja0772086
10.1021/jp201053d
10.1002/smll.201201916
10.1021/cm0011559
10.1021/ja028650l
10.1002/anie.201001847
10.1039/c0jm02590a
10.1002/smll.200700903
10.1021/la104973j
10.1021/ja904982j
10.1021/ja046572r
10.1021/cm703363w
10.1016/j.jconrel.2008.05.003
10.1039/b907978e
10.1021/ja807798g
10.1002/anie.201005471
10.1016/j.jiec.2013.09.045
10.1039/c2cc34501c
10.1039/c3ra47166g
10.1002/ange.200501500
10.1021/bp060348j
10.1039/c3cc43221a
10.1126/science.269.5228.1242
10.1021/la302767b
10.1021/ja058345a
10.1002/adma.200305165
10.1002/adfm.201402339
10.1016/j.reactfunctpolym.2012.03.007
10.1002/anie.201308920
10.1002/anie.200603404
10.1002/anie.200905115
10.1021/ja905288m
10.1039/c3cp44614j
10.1039/c1jm12203g
10.1021/ja110094g
10.1002/adfm.201101960
10.1002/adma.201001417
10.1021/ja901831u
10.1021/ja810011p
10.1002/anie.201000827
10.1039/c3cs35405a
10.1002/app.40477
10.1126/science.279.5350.548
10.1016/j.nano.2004.11.009
10.1016/j.biomaterials.2011.06.066
10.1039/C4NJ00579A
10.1039/c0cc04765a
10.1002/marc.201100876
10.1021/ja0756772
10.1021/ja9042752
10.1073/pnas.0504109102
10.1021/nn800072t
10.1021/ja8060886
10.1021/ja9061085
10.1038/359710a0
10.1039/b701744h
10.1016/j.colsurfb.2014.10.013
10.1021/nn405398d
10.1002/1097-4636(200111)57:2<313::AID-JBM1173>3.0.CO;2-E
10.1021/nl048774r
10.1002/adma.201104714
10.1021/ja200328s
10.1021/ja104501a
10.1016/j.micromeso.2011.12.015
10.1021/tx300166u
10.1111/j.1742-481X.2007.00424.x
10.1002/anie.201005061
10.1016/j.micromeso.2011.07.023
10.1002/pola.26928
10.1021/ja301880x
10.1002/anie.200501819
10.1021/ja065485r
10.1021/am403092m
10.1021/ja2080168
10.1039/c2nr33417h
10.1016/j.colsurfb.2012.03.012
10.1016/j.biomaterials.2012.06.059
10.1021/am3005225
10.1021/nn1029229
10.1038/nature01362
10.1038/nnano.2007.108
10.1021/cm051198v
10.1002/cplu.201100026
10.1088/0957-4484/26/2/025102
10.1039/C4CC04383A
10.1039/c39930000680
10.1002/anie.201203993
10.1039/c2jm32137h
10.1039/c3nr02594b
10.1016/j.colsurfa.2012.03.017
10.1021/ja039424u
10.1021/ar3000986
10.1002/anie.200805818
10.1021/am400604d
10.1042/bj20031253
10.1021/jp070721l
10.1039/c2tb00223j
10.1021/ja105371u
10.1002/adfm.201102746
10.1002/chem.201402334
ContentType Journal Article
Copyright 2015 by the authors; licensee MDPI, Basel, Switzerland. 2015
Copyright_xml – notice: 2015 by the authors; licensee MDPI, Basel, Switzerland. 2015
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3390/nano5042019
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2079-4991
EndPage 2053
ExternalDocumentID oai_doaj_org_article_baabfed68ae64408a954f29195a53d31
PMC5304765
28347110
10_3390_nano5042019
Genre Journal Article
Review
GroupedDBID 53G
5VS
8FE
8FG
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ABJCF
ADBBV
ADMLS
AENEX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
D1I
GROUPED_DOAJ
HCIFZ
HYE
I-F
IPNFZ
KB.
KQ8
LK8
M7P
MODMG
M~E
OK1
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RIG
RPM
NPM
7X8
PQGLB
5PM
PUEGO
ID FETCH-LOGICAL-c377t-13c911faf62e97a90cb3444edede42096ebf15a5ff2e958aac06ef861b0f3bbd3
IEDL.DBID DOA
ISSN 2079-4991
IngestDate Wed Aug 27 01:29:36 EDT 2025
Thu Aug 21 14:07:22 EDT 2025
Fri Jul 11 11:42:55 EDT 2025
Wed Feb 19 02:14:27 EST 2025
Tue Jul 01 02:04:42 EDT 2025
Thu Apr 24 22:55:00 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords free-blockage switch
controlled release
nano-switch
smart materials
mesoporous materials
stimulus response
Language English
License https://creativecommons.org/licenses/by/4.0
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c377t-13c911faf62e97a90cb3444edede42096ebf15a5ff2e958aac06ef861b0f3bbd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
These authors contributed equally to this work.
OpenAccessLink https://doaj.org/article/baabfed68ae64408a954f29195a53d31
PMID 28347110
PQID 1881771968
PQPubID 23479
PageCount 35
ParticipantIDs doaj_primary_oai_doaj_org_article_baabfed68ae64408a954f29195a53d31
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5304765
proquest_miscellaneous_1881771968
pubmed_primary_28347110
crossref_citationtrail_10_3390_nano5042019
crossref_primary_10_3390_nano5042019
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20151125
PublicationDateYYYYMMDD 2015-11-25
PublicationDate_xml – month: 11
  year: 2015
  text: 20151125
  day: 25
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Nanomaterials (Basel, Switzerland)
PublicationTitleAlternate Nanomaterials (Basel)
PublicationYear 2015
Publisher MDPI
MDPI AG
Publisher_xml – name: MDPI
– name: MDPI AG
References Lu (ref_60) 2008; 4
Trewyn (ref_18) 2007; 31
Angelos (ref_44) 2008; 120
Sun (ref_68) 2012; 33
He (ref_55) 2011; 32
Kresge (ref_1) 1992; 359
Yan (ref_106) 2012; 51
Schlossbauer (ref_83) 2010; 49
Sundararaju (ref_64) 2009; 48
Climent (ref_95) 2008; 130
Asefa (ref_6) 2012; 25
Liu (ref_52) 2011; 27
Mayor (ref_14) 2007; 8
Liu (ref_62) 2013; 52
Inagaki (ref_4) 1993; 8
Angelos (ref_97) 2009; 131
Liong (ref_122) 2008; 2
Chen (ref_87) 2013; 9
Wang (ref_119) 2011; 22
Song (ref_9) 2015; 44
Liu (ref_29) 2008; 130
Aznar (ref_96) 2009; 131
Bernardos (ref_77) 2009; 48
Singh (ref_78) 2011; 133
Ramila (ref_15) 2001; 13
Mei (ref_54) 2012; 152
He (ref_89) 2012; 28
Wan (ref_20) 2012; 4
Giri (ref_23) 2005; 44
Wu (ref_5) 2013; 42
Fang (ref_117) 2012; 22
Leung (ref_94) 2006; 18
Chen (ref_19) 2012; 95
Ferris (ref_61) 2009; 131
Verma (ref_21) 2004; 126
Jin (ref_11) 2007; 23
Zhao (ref_79) 2009; 131
Lee (ref_118) 2012; 22
Chen (ref_85) 2011; 47
Zhao (ref_2) 1998; 279
Chen (ref_84) 2011; 39
Chen (ref_47) 2013; 49
Hu (ref_99) 2013; 1
Zhu (ref_56) 2005; 117
Baeza (ref_73) 2011; 5
Tarn (ref_7) 2013; 46
Chen (ref_82) 2011; 50
Muhammad (ref_38) 2011; 133
Chen (ref_53) 2012; 150
Meng (ref_43) 2010; 132
Xing (ref_50) 2012; 403
Chen (ref_71) 2011; 21
Cui (ref_33) 2012; 4
Zhao (ref_42) 2010; 132
Mal (ref_16) 2003; 421
He (ref_58) 2012; 28
Trewyn (ref_17) 2004; 4
Chen (ref_116) 2012; 33
Patel (ref_74) 2008; 130
Wu (ref_114) 2015; 26
Wen (ref_90) 2012; 48
Zhu (ref_92) 2011; 133
Chen (ref_109) 2014; 8
Sun (ref_25) 2011; 133
Luo (ref_91) 2011; 50
Nadrah (ref_32) 2013; 5
Yang (ref_48) 2005; 17
Wu (ref_70) 2013; 5
Hughes (ref_12) 2005; 1
Zhu (ref_30) 2009; 19
Torney (ref_24) 2007; 2
Samart (ref_51) 2014; 20
Yuan (ref_49) 2011; 115
Slowing (ref_63) 2009; 131
Hakeem (ref_102) 2014; 50
Rejman (ref_13) 2004; 377
Chen (ref_88) 2011; 21
Nguyen (ref_28) 2007; 129
Lagona (ref_45) 2005; 44
Climent (ref_81) 2010; 49
Chen (ref_101) 2014; 24
Kang (ref_115) 2012; 22
Zhang (ref_112) 2012; 24
Wen (ref_86) 2012; 4
Angelos (ref_59) 2007; 111
Chen (ref_80) 2012; 48
Croissant (ref_105) 2012; 134
Lai (ref_22) 2003; 125
Nadrah (ref_34) 2013; 15
Lai (ref_113) 2013; 5
You (ref_67) 2008; 20
Liu (ref_37) 2010; 132
Tomatsu (ref_39) 2006; 128
Park (ref_76) 2009; 131
Kim (ref_31) 2010; 22
Yu (ref_57) 2013; 173
Fu (ref_66) 2003; 15
Bagshaw (ref_3) 1995; 269
Lee (ref_35) 2008; 132
Schlossbauer (ref_75) 2009; 48
Slowing (ref_121) 2012; 77
Radin (ref_10) 2001; 57
Park (ref_40) 2007; 46
Yang (ref_111) 2012; 24
Tao (ref_8) 2014; 4
Nguyen (ref_27) 2005; 102
Wang (ref_98) 2014; 20
Liu (ref_100) 2014; 38
Wu (ref_120) 2012; 72
ref_108
Lin (ref_65) 2013; 5
Wang (ref_110) 2015; 21
Karesoja (ref_69) 2013; 51
Zhao (ref_103) 2014; 123
Gethin (ref_36) 2008; 5
Baeza (ref_107) 2012; 24
Zhang (ref_93) 2014; 53
Hernandez (ref_26) 2004; 126
Du (ref_41) 2009; 131
Thomas (ref_72) 2010; 132
Liu (ref_104) 2009; 131
Angelos (ref_46) 2009; 131
20681678 - J Am Chem Soc. 2010 Aug 11;132(31):10623-5
23581883 - ACS Appl Mater Interfaces. 2013 May;5(9):3908-15
22789722 - Biomaterials. 2012 Oct;33(29):7126-37
19746981 - J Am Chem Soc. 2009 Oct 28;131(42):15128-9
18654287 - Nat Nanotechnol. 2007 May;2(5):295-300
22488562 - Macromol Rapid Commun. 2012 May 14;33(9):811-8
12683815 - J Am Chem Soc. 2003 Apr 16;125(15):4451-9
17221893 - Angew Chem Int Ed Engl. 2007;46(9):1455-7
20718462 - J Am Chem Soc. 2010 Sep 15;132(36):12690-7
22850329 - ACS Appl Mater Interfaces. 2012 Aug;4(8):4113-22
23760403 - Chem Commun (Camb). 2013 Jul 25;49(58):6555-7
16052668 - Angew Chem Int Ed Engl. 2005 Aug 5;44(31):4844-70
21981330 - J Am Chem Soc. 2011 Dec 14;133(49):19582-5
18841893 - J Am Chem Soc. 2008 Nov 5;130(44):14418-9
22903226 - Chem Commun (Camb). 2012 Oct 4;48(76):9522-4
19476380 - J Am Chem Soc. 2009 Jun 24;131(24):8398-400
25904466 - Chem Soc Rev. 2015 Jun 7;44(11):3474-504
22823891 - Chem Res Toxicol. 2012 Nov 19;25(11):2265-84
25456989 - Colloids Surf B Biointerfaces. 2014 Nov 1;123:657-63
21574653 - J Am Chem Soc. 2011 Jun 15;133(23):8778-81
18383576 - Small. 2008 Apr;4(4):421-6
17227026 - J Am Chem Soc. 2007 Jan 24;129(3):626-34
24863388 - Chemistry. 2014 Jun 16;20(25):7796-802
17732109 - Science. 1995 Sep 1;269(5228):1242-4
24383581 - ACS Nano. 2014 Jan 28;8(1):744-51
22318874 - Adv Mater. 2012 Mar 15;24(11):1418-23
22777795 - Angew Chem Int Ed Engl. 2012 Aug 13;51(33):8373-7
15025433 - J Am Chem Soc. 2004 Mar 24;126(11):3370-1
16038000 - Angew Chem Int Ed Engl. 2005 Aug 12;44(32):5038-44
25504676 - Chemistry. 2015 Feb 2;21(6):2680-5
22751906 - Nanoscale. 2012 Aug 7;4(15):4473-6
17668088 - Chem Commun (Camb). 2007 Aug 21;(31):3236-45
18494624 - Int Wound J. 2008 Jun;5(2):185-94
18232687 - J Am Chem Soc. 2008 Feb 27;130(8):2382-3
21246683 - Angew Chem Int Ed Engl. 2011 Jan 24;50(4):882-6
22801748 - Chem Commun (Camb). 2012 Aug 28;48(67):8410-2
21914934 - Nanotechnology. 2011 Oct 14;22(41):415101
20737526 - Angew Chem Int Ed Engl. 2010 Sep 24;49(40):7281-3
18211068 - J Am Chem Soc. 2008 Feb 13;130(6):1903-17
16006520 - Proc Natl Acad Sci U S A. 2005 Jul 19;102(29):10029-34
23958787 - Nanoscale. 2013 Oct 7;5(19):9412-8
23689395 - Phys Chem Chem Phys. 2013 Jul 14;15(26):10740-8
24127854 - ACS Appl Mater Interfaces. 2013 Nov 13;5(21):10895-903
23495013 - Angew Chem Int Ed Engl. 2013 Apr 15;52(16):4375-9
22007786 - J Am Chem Soc. 2011 Nov 23;133(46):18554-7
19937629 - Angew Chem Int Ed Engl. 2009;48(52):9962-5
22540671 - J Am Chem Soc. 2012 May 9;134(18):7628-31
19624127 - J Am Chem Soc. 2009 Aug 19;131(32):11344-6
9438845 - Science. 1998 Jan 23;279(5350):548-52
16015668 - Angew Chem Int Ed Engl. 2005 Aug 12;44(32):5083-7
18571265 - J Control Release. 2008 Dec 18;132(3):164-70
20799689 - J Am Chem Soc. 2010 Sep 22;132(37):13016-25
12540896 - Nature. 2003 Jan 23;421(6921):350-3
20803535 - Adv Mater. 2010 Oct 8;22(38):4280-3
21314163 - Langmuir. 2011 Mar 15;27(6):3095-9
11484196 - J Biomed Mater Res. 2001 Nov;57(2):313-20
23341257 - Small. 2013 Aug 26;9(16):2793-800, 2653
24470397 - Angew Chem Int Ed Engl. 2014 Feb 24;53(9):2371-5
19275256 - J Am Chem Soc. 2009 Mar 18;131(10):3462-3
17609668 - Nat Rev Mol Cell Biol. 2007 Aug;8(8):603-12
25237679 - Chem Commun (Camb). 2014 Nov 11;50(87):13268-71
20085351 - J Am Chem Soc. 2010 Feb 10;132(5):1500-1
19799420 - J Am Chem Soc. 2009 Oct 28;131(42):15136-42
19159224 - J Am Chem Soc. 2009 Feb 11;131(5):1686-8
15506760 - J Am Chem Soc. 2004 Nov 3;126(43):13987-91
23543911 - J Mater Chem B Mater Biol Med. 2013;1(8):1109-1118
20540129 - Angew Chem Int Ed Engl. 2010 Jun 28;49(28):4734-7
21816467 - Biomaterials. 2011 Oct;32(30):7711-20
19575431 - Angew Chem Int Ed Engl. 2009;48(32):5884-7
20965972 - Nucleic Acids Res. 2011 Mar;39(4):1638-44
23403864 - Chem Soc Rev. 2013 May 7;42(9):3862-75
22309360 - Langmuir. 2012 Feb 28;28(8):4003-8
17269667 - Biotechnol Prog. 2007 Jan-Feb;23(1):32-41
23387478 - Acc Chem Res. 2013 Mar 19;46(3):792-801
21214180 - J Am Chem Soc. 2011 Feb 9;133(5):1278-81
22494670 - Colloids Surf B Biointerfaces. 2012 Jun 15;95:274-8
22889263 - Langmuir. 2012 Sep 4;28(35):12909-15
23322330 - Nanoscale. 2013 Feb 21;5(4):1544-51
19309022 - Angew Chem Int Ed Engl. 2009;48(17):3092-5
21253628 - Chem Commun (Camb). 2011 Mar 14;47(10):2850-2
21250653 - ACS Nano. 2011 Feb 22;5(2):1259-66
16478172 - J Am Chem Soc. 2006 Feb 22;128(7):2226-7
19402643 - J Am Chem Soc. 2009 May 20;131(19):6833-43
19705840 - J Am Chem Soc. 2009 Sep 16;131(36):12912-4
22539076 - Adv Mater. 2012 Jun 5;24(21):2890-5
25517859 - Nanotechnology. 2015 Jan 16;26(2):025102
19919132 - J Am Chem Soc. 2009 Nov 25;131(46):16614-5
21226142 - Angew Chem Int Ed Engl. 2011 Jan 17;50(3):640-3
19206485 - ACS Nano. 2008 May;2(5):889-96
17292054 - Nanomedicine. 2005 Mar;1(1):22-30
14505488 - Biochem J. 2004 Jan 1;377(Pt 1):159-69
22646097 - ACS Appl Mater Interfaces. 2012 Jun 27;4(6):3177-83
References_xml – volume: 173
  start-page: 64
  year: 2013
  ident: ref_57
  article-title: Facile synthesis of PDMAEMA-coated hollow mesoporous silica nanoparticles and their pH-responsive controlled release
  publication-title: Micropor. Mesopor. Mater.
  doi: 10.1016/j.micromeso.2013.02.012
– volume: 52
  start-page: 4375
  year: 2013
  ident: ref_62
  article-title: Nir-triggered anticancer drug delivery by upconverting nanoparticles with integrated azobenzene-modified mesoporous silica
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201300183
– volume: 24
  start-page: 2890
  year: 2012
  ident: ref_111
  article-title: Near-infrared light-triggered, targeted drug delivery to cancer cells by aptamer gated nanovehicles
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201104797
– volume: 131
  start-page: 12912
  year: 2009
  ident: ref_46
  article-title: pH clock-operated mechanized nanoparticles
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9010157
– volume: 28
  start-page: 4003
  year: 2012
  ident: ref_58
  article-title: A light-responsive reversible molecule-gated system using thymine-modified mesoporous silica nanoparticles
  publication-title: Langmuir
  doi: 10.1021/la2047504
– volume: 44
  start-page: 4844
  year: 2005
  ident: ref_45
  article-title: The cucurbit[n]uril family
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200460675
– volume: 22
  start-page: 415101
  year: 2011
  ident: ref_119
  article-title: A smart multifunctional nanocomposite for intracellular targeted drug delivery and self-release
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/22/41/415101
– volume: 48
  start-page: 9522
  year: 2012
  ident: ref_80
  article-title: A glucose-responsive controlled release system using glucose oxidase-gated mesoporous silica nanocontainers
  publication-title: Chem. Commum.
  doi: 10.1039/c2cc34290a
– volume: 44
  start-page: 3474
  year: 2015
  ident: ref_9
  article-title: Molecular and supramolecular switches on mesoporous silica nanoparticles
  publication-title: Chem. Soc.
  doi: 10.1039/C5CS00243E
– volume: 132
  start-page: 1500
  year: 2010
  ident: ref_37
  article-title: pH-responsive nanogated ensemble based on gold-capped mesoporous silica through an acid-labile acetal linker
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja907838s
– volume: 133
  start-page: 19582
  year: 2011
  ident: ref_78
  article-title: Bioresponsive mesoporous silica nanoparticles for triggered drug release
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja206998x
– volume: 4
  start-page: 4113
  year: 2012
  ident: ref_20
  article-title: Sustained release of heparin on enlarged-pore and functionalized MCM-41
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am300878z
– volume: 24
  start-page: 517
  year: 2012
  ident: ref_107
  article-title: Magnetically triggered multidrug release by hybrid mesoporous silica nanoparticles
  publication-title: Chem. Mater.
  doi: 10.1021/cm203000u
– volume: 120
  start-page: 2254
  year: 2008
  ident: ref_44
  article-title: pH-responsive supramolecular nanovalves based on cucurbit[6]uril pseudorotaxanes
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/ange.200705211
– volume: 131
  start-page: 3462
  year: 2009
  ident: ref_63
  article-title: Photoinduced intracellular controlled release drug delivery in human cells by gold-capped mesoporous silica nanosphere
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja900025f
– volume: 4
  start-page: 4473
  year: 2012
  ident: ref_86
  article-title: Highly efficient remote controlled release system based on light-driven DNA nanomachine functionalized mesoporous silica
  publication-title: Nanoscale
  doi: 10.1039/c2nr31101a
– volume: 21
  start-page: 2680
  year: 2015
  ident: ref_110
  article-title: A free-blockage controlled release system based on the hydrophobic/hydrophilic conversion of mesoporous silica nanopores
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201405222
– volume: 132
  start-page: 10623
  year: 2010
  ident: ref_72
  article-title: Noninvasive remote-controlled release of drug molecules in vitro using magnetic actuation of mechanized nanoparticles
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja1022267
– volume: 18
  start-page: 5919
  year: 2006
  ident: ref_94
  article-title: Supramolecular nanovalves controlled by proton abstraction and competitive binding
  publication-title: Chem. Mater.
  doi: 10.1021/cm061682d
– volume: 39
  start-page: 1638
  year: 2011
  ident: ref_84
  article-title: Stimuli-responsive controlled-release system using quadruplex DNA-capped silica nanocontainers
  publication-title: Nucl. Acids. Res.
  doi: 10.1093/nar/gkq893
– volume: 48
  start-page: 5884
  year: 2009
  ident: ref_77
  article-title: Enzyme-responsive controlled release using mesoporous silica supports capped with lactose
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200900880
– volume: 8
  start-page: 603
  year: 2007
  ident: ref_14
  article-title: Pathways of clathrin-independent endocytosis
  publication-title: Nat. Rev. Mol. Cell. Biol.
  doi: 10.1038/nrm2216
– volume: 130
  start-page: 2382
  year: 2008
  ident: ref_74
  article-title: Enzyme-responsive snap-top covered silica nanocontainers
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0772086
– volume: 115
  start-page: 9926
  year: 2011
  ident: ref_49
  article-title: Preparation of pH-responsive mesoporous silica nanoparticles and their application in controlled drug delivery
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp201053d
– volume: 9
  start-page: 2793
  year: 2013
  ident: ref_87
  article-title: Photosensitizer-incorporated quadruplex DNA-gated nanovechicles for light-triggered, targeted dual drug delivery to cancer cells
  publication-title: Small
  doi: 10.1002/smll.201201916
– volume: 13
  start-page: 308
  year: 2001
  ident: ref_15
  article-title: A new property of MCM-41: Drug delivery system
  publication-title: Chem. Mater.
  doi: 10.1021/cm0011559
– volume: 125
  start-page: 4451
  year: 2003
  ident: ref_22
  article-title: A Mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug mlecules
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja028650l
– volume: 49
  start-page: 7281
  year: 2010
  ident: ref_81
  article-title: Controlled delivery using oligonucleotide-capped mesoporous silica nanoparticles
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201001847
– volume: 21
  start-page: 2535
  year: 2011
  ident: ref_71
  article-title: Multifunctional magnetically removable nanogated lids of Fe3O4-capped mesoporous silica nanoparticles for intracellular controlled release and MR imaging
  publication-title: J. Mater. Chem.
  doi: 10.1039/c0jm02590a
– volume: 4
  start-page: 421
  year: 2008
  ident: ref_60
  article-title: Light-activated nanoimpeller-controlled drug release in cancer cells
  publication-title: Small
  doi: 10.1002/smll.200700903
– volume: 27
  start-page: 3095
  year: 2011
  ident: ref_52
  article-title: Responsive polymer-coated mesoporous silica as a pH-sensitive nanocarrier for controlled release
  publication-title: Langmuir
  doi: 10.1021/la104973j
– volume: 131
  start-page: 15136
  year: 2009
  ident: ref_41
  article-title: Controlled-access hollow mechanized silica nanocontainers
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja904982j
– volume: 126
  start-page: 13987
  year: 2004
  ident: ref_21
  article-title: Tunable reactivation of nanoparticle-inhibited β-galactosidase by glutathione at intracellular concentrations
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja046572r
– volume: 20
  start-page: 3354
  year: 2008
  ident: ref_67
  article-title: Temperature-controlled uptake and release in PNIPAM-modified porous silica nanoparticles
  publication-title: Chem. Mater.
  doi: 10.1021/cm703363w
– volume: 132
  start-page: 164
  year: 2008
  ident: ref_35
  article-title: Recent progress in tumor pH targeting nanotechnology
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2008.05.003
– volume: 19
  start-page: 7765
  year: 2009
  ident: ref_30
  article-title: An efficient cell-targeting and intracellular controlled-release drug delivery system based on MSN-PEM-aptamer conjugates
  publication-title: J. Mater. Chem.
  doi: 10.1039/b907978e
– volume: 131
  start-page: 1686
  year: 2009
  ident: ref_61
  article-title: Light-operated mechanized nanoparticles
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja807798g
– volume: 50
  start-page: 882
  year: 2011
  ident: ref_82
  article-title: Polyvalent nucleic acid/mesoporous silica nanoparticle conjugates: Dual stimuli-responsive vehicles for intracellular drug delivery
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201005471
– volume: 20
  start-page: 2153
  year: 2014
  ident: ref_51
  article-title: Preparation of poly acrylic acid grafted-mesoporous silica as pH responsive releasing material
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2013.09.045
– volume: 48
  start-page: 8410
  year: 2012
  ident: ref_90
  article-title: DNA-based intelligent logic controlled release systems
  publication-title: Chem. Commun.
  doi: 10.1039/c2cc34501c
– volume: 4
  start-page: 18961
  year: 2014
  ident: ref_8
  article-title: Mesoporous silica-based nanodevices for biological applications
  publication-title: RSC Adv.
  doi: 10.1039/c3ra47166g
– volume: 117
  start-page: 5213
  year: 2005
  ident: ref_56
  article-title: Stimuli-responsive controlled drug release from a hollow mesoporous silica sphere/polyelectrolyte multilayer core-shell structure
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/ange.200501500
– volume: 23
  start-page: 32
  year: 2007
  ident: ref_11
  article-title: Nanoparticle-mediated drug delivery and gene therapy
  publication-title: Biotechnol. Prog.
  doi: 10.1021/bp060348j
– volume: 49
  start-page: 6555
  year: 2013
  ident: ref_47
  article-title: Controlled release of cargo molecules from hollow mesoporous silica nanoparticles based on acid and base dual-responsive cucurbit[7]uril pseudorotaxanes
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc43221a
– volume: 269
  start-page: 1242
  year: 1995
  ident: ref_3
  article-title: Templating of mesoporous molecular sieves by nonionic polyethylene oxide surfactants
  publication-title: Science
  doi: 10.1126/science.269.5228.1242
– volume: 28
  start-page: 12909
  year: 2012
  ident: ref_89
  article-title: ATP-responsive controlled release system using aptamer-functionalized mesoporous silica nanoparticles
  publication-title: Langmuir
  doi: 10.1021/la302767b
– volume: 128
  start-page: 2226
  year: 2006
  ident: ref_39
  article-title: Contrast viscosity changes upon photoirradiation for mixtures of poly(acrylic acid)-based α-cyclodextrin and azobenzene polymers
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja058345a
– volume: 15
  start-page: 1262
  year: 2003
  ident: ref_66
  article-title: Control of molecular transport through stimuli-responsive ordered mesoporous materials
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200305165
– volume: 24
  start-page: 6999
  year: 2014
  ident: ref_101
  article-title: Dual bioresponsive mesoporous silica nanocarrier as an “And” logic gate for targeted drug delivery cancer cells
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201402339
– volume: 72
  start-page: 329
  year: 2012
  ident: ref_120
  article-title: pH-responsive magnetic mesoporous silica nanospheres for magnetic resonance imaging and drug delivery
  publication-title: React. Funct. Polym.
  doi: 10.1016/j.reactfunctpolym.2012.03.007
– volume: 53
  start-page: 2371
  year: 2014
  ident: ref_93
  article-title: DNA-hybrid-gated multifunctional mesoporous silica nanocarriers for dual-targeted and microRNA-responsive controlled drug delivery
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201308920
– volume: 46
  start-page: 1455
  year: 2007
  ident: ref_40
  article-title: Controlled release of guest molecules from mesoporous silica particles based on a pH-responsive polypseudorotaxane motif
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200603404
– volume: 48
  start-page: 9962
  year: 2009
  ident: ref_64
  article-title: Light-driven hydrogen generation: Efficient iron-based water reduction catalysts
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200905115
– volume: 131
  start-page: 15128
  year: 2009
  ident: ref_104
  article-title: Multiresponsive supramolecular nanogated ensembles
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja905288m
– volume: 15
  start-page: 10740
  year: 2013
  ident: ref_34
  article-title: Poly(propylene imine) dendrimer caps on mesoporous silica nanoparticles for redox-responsive release. Smaller is better
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c3cp44614j
– volume: 21
  start-page: 13811
  year: 2011
  ident: ref_88
  article-title: Programmable DNA switch for bioresponsive controlled release
  publication-title: J. Mater. Chem.
  doi: 10.1039/c1jm12203g
– volume: 133
  start-page: 1278
  year: 2011
  ident: ref_92
  article-title: Bioresponsive controlled release using mesoporous silica nanoparticles capped with aptamer-based molecular gate
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja110094g
– volume: 22
  start-page: 842
  year: 2012
  ident: ref_117
  article-title: Photo- and pH-triggered release of anticancer drugs from mesoporous silica-coated Pd@Ag nanoparticles
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201101960
– volume: 22
  start-page: 4280
  year: 2010
  ident: ref_31
  article-title: Glutathione-induced intracellular release of guests from mesoporous silica nanocontainers with cyclodextrin gatekeepers
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201001417
– volume: 131
  start-page: 8398
  year: 2009
  ident: ref_79
  article-title: Mesoporous silica nanoparticle-based double drug delivery system for glucose-responsive controlled release of insulin and cyclic AMP
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja901831u
– volume: 131
  start-page: 6833
  year: 2009
  ident: ref_96
  article-title: pH- and photo-switched release of guest molecules from mesoporous silica supports
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja810011p
– volume: 49
  start-page: 4734
  year: 2010
  ident: ref_83
  article-title: A programmable DNA-based molecular valve for colloidal mesoporous silica
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201000827
– volume: 42
  start-page: 3862
  year: 2013
  ident: ref_5
  article-title: Synthesis of mesoporous silica nanoparticles
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c3cs35405a
– ident: ref_108
  doi: 10.1002/app.40477
– volume: 279
  start-page: 548
  year: 1998
  ident: ref_2
  article-title: Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores
  publication-title: Science
  doi: 10.1126/science.279.5350.548
– volume: 1
  start-page: 22
  year: 2005
  ident: ref_12
  article-title: Nanostructure-mediated drug delivery
  publication-title: Nanomedicine
  doi: 10.1016/j.nano.2004.11.009
– volume: 32
  start-page: 7711
  year: 2011
  ident: ref_55
  article-title: A pH-responsive mesoporous silica nanoparticles-based multi-drug delivery system for overcoming multi-drug resistance
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2011.06.066
– volume: 38
  start-page: 4830
  year: 2014
  ident: ref_100
  article-title: A dual responsive targeted drug delivery system based on smart polymer coated mesoporous silica for laryngeal carcinoma treatment
  publication-title: New J. Chem.
  doi: 10.1039/C4NJ00579A
– volume: 47
  start-page: 2850
  year: 2011
  ident: ref_85
  article-title: A pH-driven DNA nanoswitch for responsive controlled release
  publication-title: Chem. Commun.
  doi: 10.1039/c0cc04765a
– volume: 33
  start-page: 811
  year: 2012
  ident: ref_68
  article-title: Biocompatible zwitterionic sulfobetaine copolymer-coated mesoporous silica nanoparticles for temperature-responsive drug release
  publication-title: Macromol. Rapid. Commun.
  doi: 10.1002/marc.201100876
– volume: 130
  start-page: 1903
  year: 2008
  ident: ref_95
  article-title: Dual aperture control on pH- and anion-driven supramolecular nanoscopic hybrid gate-like ensembles
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0756772
– volume: 131
  start-page: 11344
  year: 2009
  ident: ref_97
  article-title: Dual-controlled nanoparticles exhibiting and logic
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9042752
– volume: 102
  start-page: 10029
  year: 2005
  ident: ref_27
  article-title: A reversible molecular valve
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0504109102
– volume: 2
  start-page: 889
  year: 2008
  ident: ref_122
  article-title: Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery
  publication-title: ACS Nano
  doi: 10.1021/nn800072t
– volume: 130
  start-page: 14418
  year: 2008
  ident: ref_29
  article-title: Tunable redox-responsive hybrid nanogated ensembles
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja8060886
– volume: 131
  start-page: 16614
  year: 2009
  ident: ref_76
  article-title: Enzyme responsive nanocontainers with cyclodextrin gatekeepers and synergistic effects in release of guests
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9061085
– volume: 359
  start-page: 710
  year: 1992
  ident: ref_1
  article-title: Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism
  publication-title: Nature
  doi: 10.1038/359710a0
– volume: 31
  start-page: 3236
  year: 2007
  ident: ref_18
  article-title: Mesoporous silica nanoparticle based controlled release, drug delivery, and biosensor systems
  publication-title: Chem. Commun.
  doi: 10.1039/b701744h
– volume: 123
  start-page: 657
  year: 2014
  ident: ref_103
  article-title: A study of chitosan hydrogel with embedded mesoporous silica nanoparticles loaded by ibuprofen as a dual stimuli-responsive drug release system for surface coating of titanium implants
  publication-title: Biointerfaces
  doi: 10.1016/j.colsurfb.2014.10.013
– volume: 8
  start-page: 744
  year: 2014
  ident: ref_109
  article-title: A light-responsive release platform by controlling the wetting behavior of hydrophobic surface
  publication-title: ACS Nano
  doi: 10.1021/nn405398d
– volume: 57
  start-page: 313
  year: 2001
  ident: ref_10
  article-title: Silica sol-gel for the controlled release of antibiotics. I. Synthesis, characterization, and in vitro release
  publication-title: J. Biomed. Mater. Res.
  doi: 10.1002/1097-4636(200111)57:2<313::AID-JBM1173>3.0.CO;2-E
– volume: 4
  start-page: 2139
  year: 2004
  ident: ref_17
  article-title: Morphological control of room-temperature ionic liquid templated mesoporous silica nanoparticles for controlled release of antibacterial agents
  publication-title: Nano Lett.
  doi: 10.1021/nl048774r
– volume: 24
  start-page: 1418
  year: 2012
  ident: ref_112
  article-title: Mesoporous silica-coated gold nanorods as a light-mediated multifunctional theranostic platform for cancer treatment
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201104714
– volume: 133
  start-page: 8778
  year: 2011
  ident: ref_38
  article-title: pH-Triggered controlled drug release from mesoporous silica nanoparticles via intracelluar dissolution of ZnO nanolids
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja200328s
– volume: 132
  start-page: 12690
  year: 2010
  ident: ref_43
  article-title: Autonomous in vitro anticancer drug release from mesoporous silica nanoparticles by pH-sensitive nanovalves
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja104501a
– volume: 152
  start-page: 16
  year: 2012
  ident: ref_54
  article-title: Hollow mesoporous silica nanoparticles conjugated with pH-sensitive amphiphilic diblock polymer for controlled drug release
  publication-title: Micropor. Mesopor. Mater.
  doi: 10.1016/j.micromeso.2011.12.015
– volume: 25
  start-page: 2265
  year: 2012
  ident: ref_6
  article-title: Biocompatibility of mesoporous silica nanoparticles
  publication-title: Chem. Res. Toxicol.
  doi: 10.1021/tx300166u
– volume: 5
  start-page: 185
  year: 2008
  ident: ref_36
  article-title: The impact of Manuka honey dressings on the surface pH of chronic wounds
  publication-title: Int. Wound. J.
  doi: 10.1111/j.1742-481X.2007.00424.x
– volume: 50
  start-page: 640
  year: 2011
  ident: ref_91
  article-title: Mesoporous silica nanoparticles end-capped with collagen: Redox-responsive nanoreservoirs for targeted drug delivery
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201005061
– volume: 150
  start-page: 83
  year: 2012
  ident: ref_53
  article-title: Chitosan enclosed mesoporous silica nanoparticles as drug nano-carriers: Sensitive response to the narrow pH range
  publication-title: Micropor. Mesopor. Mater.
  doi: 10.1016/j.micromeso.2011.07.023
– volume: 51
  start-page: 5012
  year: 2013
  ident: ref_69
  article-title: Mesoporous silica particles grafted with poly(ethyleneoxide-block-N-vinylcaprolactam)
  publication-title: J. Polym. Sci. Pol. Chem.
  doi: 10.1002/pola.26928
– volume: 134
  start-page: 7628
  year: 2012
  ident: ref_105
  article-title: Nanovalve-controlled cargo release activated by plasmonic heating
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja301880x
– volume: 44
  start-page: 5038
  year: 2005
  ident: ref_23
  article-title: Stimuli-responsive controlled-release delivery system based on mesoporous silica nanorods capped with magnetic nanoparticles
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200501819
– volume: 129
  start-page: 626
  year: 2007
  ident: ref_28
  article-title: Design and optimization of molecular nanovalves based on redox-switchable bistable rotaxanes
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja065485r
– volume: 5
  start-page: 10895
  year: 2013
  ident: ref_70
  article-title: pH and thermo dual-stimuli-responsive drug carrier based on mesoporous silica nanoparticles encapsulated in a copolymer-lipid bilayer
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am403092m
– volume: 133
  start-page: 18554
  year: 2011
  ident: ref_25
  article-title: Luciferase and luciferin co-immobilized mesoporous silica nanoparticle materials for intracellular biocatalysis
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja2080168
– volume: 5
  start-page: 1544
  year: 2013
  ident: ref_65
  article-title: A magnetic mesoporous silica nanoparticle-based drug delivery system for photosensitive cooperative treatment of cancer with a mesopore-capping agent and mesopore-loaded drug
  publication-title: Nanoscale
  doi: 10.1039/c2nr33417h
– volume: 95
  start-page: 274
  year: 2012
  ident: ref_19
  article-title: Mesoporous silica nanoparticles with manipulated microstructures for drug delivery
  publication-title: Biointerfaces
  doi: 10.1016/j.colsurfb.2012.03.012
– volume: 33
  start-page: 7126
  year: 2012
  ident: ref_116
  article-title: Manganese oxide-based multifunctionalized mesoporous silica nanoparticles for pH-responsive MRI, ultrasonography and circumvention of MDR in cancer cells
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2012.06.059
– volume: 4
  start-page: 3177
  year: 2012
  ident: ref_33
  article-title: Mesoporous silica nanoparticles capped with disulfide-linked PEG gatekeepers for glutathione-mediated controlled release
  publication-title: ACS Appl. Mater. Interface
  doi: 10.1021/am3005225
– volume: 5
  start-page: 1259
  year: 2011
  ident: ref_73
  article-title: Smart drug delivery through DNA/magnetic nanoparticle gates
  publication-title: ACS Nano
  doi: 10.1021/nn1029229
– volume: 421
  start-page: 350
  year: 2003
  ident: ref_16
  article-title: Photocontrolled reversible release of guest molecules from coumarin-modified mesoporous silica
  publication-title: Nature
  doi: 10.1038/nature01362
– volume: 2
  start-page: 295
  year: 2007
  ident: ref_24
  article-title: Mesoporous silica nanoparticles deliver DNA and chemicals into plants
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2007.108
– volume: 17
  start-page: 5999
  year: 2005
  ident: ref_48
  article-title: pH-responsive carrier system based on carboxylic acid modified mesoporous silica and polyelectrolyte for drug delivery
  publication-title: Chem. Mater.
  doi: 10.1021/cm051198v
– volume: 77
  start-page: 48
  year: 2012
  ident: ref_121
  article-title: Tuning the release of anticancer drugs from magnetic iron oxide/mesoporous silica core/shell nanoparticles
  publication-title: ChemPlusChem
  doi: 10.1002/cplu.201100026
– volume: 26
  start-page: 025102
  year: 2015
  ident: ref_114
  article-title: Multifunctional PEG modified Dox loaded mesoporous silica nanoparticle@CuS nanohybrids as photo-thermal agent and thermal-triggered drug release vehicle for hepatocellular carcinoma treatment
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/26/2/025102
– volume: 50
  start-page: 13268
  year: 2014
  ident: ref_102
  article-title: Dual stimuli-responsive nano-vehicles for controlled drug delivery: Mesoporous silica nanoparticles end-capped with natural chitosan
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC04383A
– volume: 8
  start-page: 680
  year: 1993
  ident: ref_4
  article-title: Synthesis of highly ordered mesoporous materials from a layered polysilicate
  publication-title: Chem. Commun.
  doi: 10.1039/c39930000680
– volume: 51
  start-page: 8373
  year: 2012
  ident: ref_106
  article-title: Functional mesoporous silica nanoparticles for photothermal-controlled drug delivery in vivo
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201203993
– volume: 22
  start-page: 14061
  year: 2012
  ident: ref_118
  article-title: A multifunctional mesoporous nanocontainer with an iron oxide core and a cyclodextrin gatekeeper for an efficient theranostic platform
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm32137h
– volume: 5
  start-page: 9412
  year: 2013
  ident: ref_113
  article-title: Trivalent galactosyl-functionalized mesoporous silica nanoparticles as a target-specific delivery system for boron neutron capture therapy
  publication-title: Nanoscale
  doi: 10.1039/c3nr02594b
– volume: 403
  start-page: 7
  year: 2012
  ident: ref_50
  article-title: Biofunctional mesoporous silica nanoparticles for magnetically oriented target and pH-responsive controlled release of ibuprofen
  publication-title: Colloids Surf. A
  doi: 10.1016/j.colsurfa.2012.03.017
– volume: 126
  start-page: 3370
  year: 2004
  ident: ref_26
  article-title: An operational supramolecular nanovalve
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja039424u
– volume: 46
  start-page: 792
  year: 2013
  ident: ref_7
  article-title: Mesoporous silica nanoparticle nanocarriers: Biofunctionality and biocompatibility
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar3000986
– volume: 48
  start-page: 3092
  year: 2009
  ident: ref_75
  article-title: Biotin-avidin as a protease-responsive cap system for controlled guest release from colloidal mesoporous silica
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200805818
– volume: 5
  start-page: 3908
  year: 2013
  ident: ref_32
  article-title: Hindered disulfide bonds to regulate release rate of model drug from mesoporous silica
  publication-title: ACS Appl. Mater. Interface
  doi: 10.1021/am400604d
– volume: 377
  start-page: 159
  year: 2004
  ident: ref_13
  article-title: Size-dependent internalization of particles via the pathways of clathrinand caveolae-mediated endocytosis
  publication-title: Biochem. J.
  doi: 10.1042/bj20031253
– volume: 111
  start-page: 6589
  year: 2007
  ident: ref_59
  article-title: Photo-driven expulsion of molecules from mesostructured silica nanoparticles
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp070721l
– volume: 1
  start-page: 1109
  year: 2013
  ident: ref_99
  article-title: Multifunctional hybrid silica nanoparticles for controlled doxorubicin loading and release with thermal and pH dual response
  publication-title: J. Mater. Chem. B.
  doi: 10.1039/c2tb00223j
– volume: 132
  start-page: 13016
  year: 2010
  ident: ref_42
  article-title: pH-operated nanopistons on the surfaces of mesoporous silica nanoparticles
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja105371u
– volume: 22
  start-page: 1470
  year: 2012
  ident: ref_115
  article-title: Design and synthesis of multifunctional drug carriers based on luminescent rattle-type mesoporous silica microspheres with a thermosensitive hydrogel as a controlled switch
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201102746
– volume: 20
  start-page: 7796
  year: 2014
  ident: ref_98
  article-title: A selective release system based on dual-drug-loaded mesoporous silica for nanoparticle-assisted combination therapy
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201402334
– reference: 22751906 - Nanoscale. 2012 Aug 7;4(15):4473-6
– reference: 15025433 - J Am Chem Soc. 2004 Mar 24;126(11):3370-1
– reference: 22646097 - ACS Appl Mater Interfaces. 2012 Jun 27;4(6):3177-83
– reference: 19937629 - Angew Chem Int Ed Engl. 2009;48(52):9962-5
– reference: 17269667 - Biotechnol Prog. 2007 Jan-Feb;23(1):32-41
– reference: 23689395 - Phys Chem Chem Phys. 2013 Jul 14;15(26):10740-8
– reference: 22801748 - Chem Commun (Camb). 2012 Aug 28;48(67):8410-2
– reference: 23387478 - Acc Chem Res. 2013 Mar 19;46(3):792-801
– reference: 18841893 - J Am Chem Soc. 2008 Nov 5;130(44):14418-9
– reference: 18232687 - J Am Chem Soc. 2008 Feb 27;130(8):2382-3
– reference: 19799420 - J Am Chem Soc. 2009 Oct 28;131(42):15136-42
– reference: 25504676 - Chemistry. 2015 Feb 2;21(6):2680-5
– reference: 20803535 - Adv Mater. 2010 Oct 8;22(38):4280-3
– reference: 16006520 - Proc Natl Acad Sci U S A. 2005 Jul 19;102(29):10029-34
– reference: 22889263 - Langmuir. 2012 Sep 4;28(35):12909-15
– reference: 21314163 - Langmuir. 2011 Mar 15;27(6):3095-9
– reference: 19476380 - J Am Chem Soc. 2009 Jun 24;131(24):8398-400
– reference: 20540129 - Angew Chem Int Ed Engl. 2010 Jun 28;49(28):4734-7
– reference: 23322330 - Nanoscale. 2013 Feb 21;5(4):1544-51
– reference: 15506760 - J Am Chem Soc. 2004 Nov 3;126(43):13987-91
– reference: 24470397 - Angew Chem Int Ed Engl. 2014 Feb 24;53(9):2371-5
– reference: 19705840 - J Am Chem Soc. 2009 Sep 16;131(36):12912-4
– reference: 21214180 - J Am Chem Soc. 2011 Feb 9;133(5):1278-81
– reference: 23341257 - Small. 2013 Aug 26;9(16):2793-800, 2653
– reference: 18494624 - Int Wound J. 2008 Jun;5(2):185-94
– reference: 24383581 - ACS Nano. 2014 Jan 28;8(1):744-51
– reference: 18383576 - Small. 2008 Apr;4(4):421-6
– reference: 9438845 - Science. 1998 Jan 23;279(5350):548-52
– reference: 17732109 - Science. 1995 Sep 1;269(5228):1242-4
– reference: 21914934 - Nanotechnology. 2011 Oct 14;22(41):415101
– reference: 17668088 - Chem Commun (Camb). 2007 Aug 21;(31):3236-45
– reference: 20799689 - J Am Chem Soc. 2010 Sep 22;132(37):13016-25
– reference: 23495013 - Angew Chem Int Ed Engl. 2013 Apr 15;52(16):4375-9
– reference: 16038000 - Angew Chem Int Ed Engl. 2005 Aug 12;44(32):5038-44
– reference: 22850329 - ACS Appl Mater Interfaces. 2012 Aug;4(8):4113-22
– reference: 19159224 - J Am Chem Soc. 2009 Feb 11;131(5):1686-8
– reference: 21981330 - J Am Chem Soc. 2011 Dec 14;133(49):19582-5
– reference: 22494670 - Colloids Surf B Biointerfaces. 2012 Jun 15;95:274-8
– reference: 25237679 - Chem Commun (Camb). 2014 Nov 11;50(87):13268-71
– reference: 17221893 - Angew Chem Int Ed Engl. 2007;46(9):1455-7
– reference: 16478172 - J Am Chem Soc. 2006 Feb 22;128(7):2226-7
– reference: 16052668 - Angew Chem Int Ed Engl. 2005 Aug 5;44(31):4844-70
– reference: 22318874 - Adv Mater. 2012 Mar 15;24(11):1418-23
– reference: 21253628 - Chem Commun (Camb). 2011 Mar 14;47(10):2850-2
– reference: 23958787 - Nanoscale. 2013 Oct 7;5(19):9412-8
– reference: 23760403 - Chem Commun (Camb). 2013 Jul 25;49(58):6555-7
– reference: 22903226 - Chem Commun (Camb). 2012 Oct 4;48(76):9522-4
– reference: 20737526 - Angew Chem Int Ed Engl. 2010 Sep 24;49(40):7281-3
– reference: 19275256 - J Am Chem Soc. 2009 Mar 18;131(10):3462-3
– reference: 25904466 - Chem Soc Rev. 2015 Jun 7;44(11):3474-504
– reference: 11484196 - J Biomed Mater Res. 2001 Nov;57(2):313-20
– reference: 22823891 - Chem Res Toxicol. 2012 Nov 19;25(11):2265-84
– reference: 21574653 - J Am Chem Soc. 2011 Jun 15;133(23):8778-81
– reference: 12683815 - J Am Chem Soc. 2003 Apr 16;125(15):4451-9
– reference: 17227026 - J Am Chem Soc. 2007 Jan 24;129(3):626-34
– reference: 12540896 - Nature. 2003 Jan 23;421(6921):350-3
– reference: 24863388 - Chemistry. 2014 Jun 16;20(25):7796-802
– reference: 19402643 - J Am Chem Soc. 2009 May 20;131(19):6833-43
– reference: 25517859 - Nanotechnology. 2015 Jan 16;26(2):025102
– reference: 19575431 - Angew Chem Int Ed Engl. 2009;48(32):5884-7
– reference: 24127854 - ACS Appl Mater Interfaces. 2013 Nov 13;5(21):10895-903
– reference: 18654287 - Nat Nanotechnol. 2007 May;2(5):295-300
– reference: 21250653 - ACS Nano. 2011 Feb 22;5(2):1259-66
– reference: 14505488 - Biochem J. 2004 Jan 1;377(Pt 1):159-69
– reference: 21246683 - Angew Chem Int Ed Engl. 2011 Jan 24;50(4):882-6
– reference: 19624127 - J Am Chem Soc. 2009 Aug 19;131(32):11344-6
– reference: 22539076 - Adv Mater. 2012 Jun 5;24(21):2890-5
– reference: 20681678 - J Am Chem Soc. 2010 Aug 11;132(31):10623-5
– reference: 20718462 - J Am Chem Soc. 2010 Sep 15;132(36):12690-7
– reference: 22789722 - Biomaterials. 2012 Oct;33(29):7126-37
– reference: 21226142 - Angew Chem Int Ed Engl. 2011 Jan 17;50(3):640-3
– reference: 23403864 - Chem Soc Rev. 2013 May 7;42(9):3862-75
– reference: 17609668 - Nat Rev Mol Cell Biol. 2007 Aug;8(8):603-12
– reference: 25456989 - Colloids Surf B Biointerfaces. 2014 Nov 1;123:657-63
– reference: 22488562 - Macromol Rapid Commun. 2012 May 14;33(9):811-8
– reference: 20965972 - Nucleic Acids Res. 2011 Mar;39(4):1638-44
– reference: 22007786 - J Am Chem Soc. 2011 Nov 23;133(46):18554-7
– reference: 19206485 - ACS Nano. 2008 May;2(5):889-96
– reference: 16015668 - Angew Chem Int Ed Engl. 2005 Aug 12;44(32):5083-7
– reference: 19746981 - J Am Chem Soc. 2009 Oct 28;131(42):15128-9
– reference: 22309360 - Langmuir. 2012 Feb 28;28(8):4003-8
– reference: 23543911 - J Mater Chem B Mater Biol Med. 2013;1(8):1109-1118
– reference: 20085351 - J Am Chem Soc. 2010 Feb 10;132(5):1500-1
– reference: 18211068 - J Am Chem Soc. 2008 Feb 13;130(6):1903-17
– reference: 23581883 - ACS Appl Mater Interfaces. 2013 May;5(9):3908-15
– reference: 18571265 - J Control Release. 2008 Dec 18;132(3):164-70
– reference: 21816467 - Biomaterials. 2011 Oct;32(30):7711-20
– reference: 22777795 - Angew Chem Int Ed Engl. 2012 Aug 13;51(33):8373-7
– reference: 17292054 - Nanomedicine. 2005 Mar;1(1):22-30
– reference: 19919132 - J Am Chem Soc. 2009 Nov 25;131(46):16614-5
– reference: 22540671 - J Am Chem Soc. 2012 May 9;134(18):7628-31
– reference: 19309022 - Angew Chem Int Ed Engl. 2009;48(17):3092-5
SSID ssj0000913853
Score 2.2306902
SecondaryResourceType review_article
Snippet Mesoporous silica nanoparticle (MSN)-based intelligent transport systems have attracted many researchers’ attention due to the characteristics of uniform pore...
Mesoporous silica nanoparticle (MSN)-based intelligent transport systems have attracted many researchers' attention due to the characteristics of uniform pore...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 2019
SubjectTerms controlled release
free-blockage switch
mesoporous materials
nano-switch
Review
smart materials
stimulus response
Title Recent Advance on Mesoporous Silica Nanoparticles-Based Controlled Release System: Intelligent Switches Open up New Horizon
URI https://www.ncbi.nlm.nih.gov/pubmed/28347110
https://www.proquest.com/docview/1881771968
https://pubmed.ncbi.nlm.nih.gov/PMC5304765
https://doaj.org/article/baabfed68ae64408a954f29195a53d31
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bS9xAFD54eakP0tqq6WWZgk9CMLe5pG-uuK5CpXgB38JccUEmoiuF9s_3TCYu2SL4InkJmQkZzv1kznwHYI87zaStdGo0y9IqN6hzlptUuYLzjLuC2g7t85xNr6uzG3ozaPUVasIiPHAk3IGSUjlrmJCWhe7IsqaVK-q8ppKWpjtBXaDPGyRTnQ2u8xIdUTyQV2Jef-ClbylKaIepM3BBHVL_S-Hl_1WSA7czeQ-bfbxIDuM6P8CK9VuwMUAR_Ah_MfTDl8lh3M4nrSc_7WOLgTVm9eRyFn7LEbSimB73VXDpGH2XIUexTP0Oby_Q--AzEgHMf5DTBVLnnFz-ngXWPpJQfEKe7gkaRjJtH2Z_Wv8JrifHV0fTtO-pkOqS89B5XqN5c9KxwtZc1plWZVVV1uCFxKmZVS5H0jqH41RIqTNmnWC5ylyplCm3Yc233u4C0awWKACF1khXbqysOCp3QCR0VChbJrD_TOZG94Djoe_FXYOJR-BJM-BJAnuLyfcRZ-PlaePAr8WUAI7dPUCRaXoiNq-JTALfn7ndoDKFHRLpLbKkyYXIOUejJBLYidxffArjMHTkeZYAX5KLpbUsj_jZbQfYTcPeJqOf32LxX-AdEoKG45AF_Qpr84cn-w3jorkawaqYnIxgfXx8_uti1CnEP6zbE4o
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Advance+on+Mesoporous+Silica+Nanoparticles-Based+Controlled+Release+System%3A+Intelligent+Switches+Open+up+New+Horizon&rft.jtitle=Nanomaterials+%28Basel%2C+Switzerland%29&rft.au=Sun%2C+Ruijuan&rft.au=Wang%2C+Wenqian&rft.au=Wen%2C+Yongqiang&rft.au=Zhang%2C+Xueji&rft.date=2015-11-25&rft.issn=2079-4991&rft.eissn=2079-4991&rft.volume=5&rft.issue=4&rft.spage=2019&rft_id=info:doi/10.3390%2Fnano5042019&rft_id=info%3Apmid%2F28347110&rft.externalDocID=28347110
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-4991&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-4991&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-4991&client=summon