Effects of transionospheric signal decorrelation on Global Navigation Satellite Systems (GNSS) performance studied from irregularity dynamics around the northern crest of the EIA

Transionospheric satellite navigation links operate primarily at L band and are frequently subject to severe degradation of performances arising out of ionospheric irregularities. Various characteristic features of equatorial ionospheric irregularity bubbles like the drift velocity, characteristic v...

Full description

Saved in:
Bibliographic Details
Published inRadio science Vol. 49; no. 10; pp. 851 - 860
Main Authors Das, T., Roy, B., Paul, A.
Format Journal Article
LanguageEnglish
Published Washington Blackwell Publishing Ltd 01.10.2014
Subjects
Online AccessGet full text
ISSN0048-6604
1944-799X
DOI10.1002/2014RS005406

Cover

Abstract Transionospheric satellite navigation links operate primarily at L band and are frequently subject to severe degradation of performances arising out of ionospheric irregularities. Various characteristic features of equatorial ionospheric irregularity bubbles like the drift velocity, characteristic velocity, decorrelation time, and decorrelation distance can be determined using spaced aerial measurements at VHF. These parameters measured at VHF from a station Calcutta situated near the northern crest of the Equatorial Ionization Anomaly (EIA) in the geophysically sensitive Indian longitude sector have been correlated with L band scintillation indices and GPS position accuracy parameters for identifying possible proxies to L band scintillations. Good correspondences have been observed between decorrelation times and distances at VHF with GPS S4 and Position Dilution of Precision during periods of GPS scintillations (S4 > 0.3) for February–April 2011, August–October 2011, and February–April 2012. A functional relation has been developed between irregularity drift velocity measured at VHF and S4 at L band during February–April 2011, and validation of measured S4 and predicted values performed during August–October 2011 and February–April 2012. Significant improvement in L band scintillation prediction and consequent navigational accuracy will result using such relations derived from VHF irregularity measurements which are much simpler and inexpensive. Key Points Irregularity dynamical information derived from VHF spaced aerial measurementsProxy indicators of GNSS performance degradationPrediction of GPS L band S4
AbstractList Transionospheric satellite navigation links operate primarily at L band and are frequently subject to severe degradation of performances arising out of ionospheric irregularities. Various characteristic features of equatorial ionospheric irregularity bubbles like the drift velocity, characteristic velocity, decorrelation time, and decorrelation distance can be determined using spaced aerial measurements at VHF. These parameters measured at VHF from a station Calcutta situated near the northern crest of the Equatorial Ionization Anomaly (EIA) in the geophysically sensitive Indian longitude sector have been correlated with L band scintillation indices and GPS position accuracy parameters for identifying possible proxies to L band scintillations. Good correspondences have been observed between decorrelation times and distances at VHF with GPS S sub(4) and Position Dilution of Precision during periods of GPS scintillations (S sub(4)>0.3) for February-April 2011, August-October 2011, and February-April 2012. A functional relation has been developed between irregularity drift velocity measured at VHF and S sub(4) at L band during February-April 2011, and validation of measured S sub(4) and predicted values performed during August-October 2011 and February-April 2012. Significant improvement in L band scintillation prediction and consequent navigational accuracy will result using such relations derived from VHF irregularity measurements which are much simpler and inexpensive. Key Points * Irregularity dynamical information derived from VHF spaced aerial measurements * Proxy indicators of GNSS performance degradation * Prediction of GPS L band S4
Transionospheric satellite navigation links operate primarily at L band and are frequently subject to severe degradation of performances arising out of ionospheric irregularities. Various characteristic features of equatorial ionospheric irregularity bubbles like the drift velocity, characteristic velocity, decorrelation time, and decorrelation distance can be determined using spaced aerial measurements at VHF. These parameters measured at VHF from a station Calcutta situated near the northern crest of the Equatorial Ionization Anomaly (EIA) in the geophysically sensitive Indian longitude sector have been correlated with L band scintillation indices and GPS position accuracy parameters for identifying possible proxies to L band scintillations. Good correspondences have been observed between decorrelation times and distances at VHF with GPS S4 and Position Dilution of Precision during periods of GPS scintillations (S4 > 0.3) for February–April 2011, August–October 2011, and February–April 2012. A functional relation has been developed between irregularity drift velocity measured at VHF and S4 at L band during February–April 2011, and validation of measured S4 and predicted values performed during August–October 2011 and February–April 2012. Significant improvement in L band scintillation prediction and consequent navigational accuracy will result using such relations derived from VHF irregularity measurements which are much simpler and inexpensive. Key Points Irregularity dynamical information derived from VHF spaced aerial measurementsProxy indicators of GNSS performance degradationPrediction of GPS L band S4
Transionospheric satellite navigation links operate primarily at L band and are frequently subject to severe degradation of performances arising out of ionospheric irregularities. Various characteristic features of equatorial ionospheric irregularity bubbles like the drift velocity, characteristic velocity, decorrelation time, and decorrelation distance can be determined using spaced aerial measurements at VHF. These parameters measured at VHF from a station Calcutta situated near the northern crest of the Equatorial Ionization Anomaly (EIA) in the geophysically sensitive Indian longitude sector have been correlated with L band scintillation indices and GPS position accuracy parameters for identifying possible proxies to L band scintillations. Good correspondences have been observed between decorrelation times and distances at VHF with GPS S 4 and Position Dilution of Precision during periods of GPS scintillations ( S 4  > 0.3) for February–April 2011, August–October 2011, and February–April 2012. A functional relation has been developed between irregularity drift velocity measured at VHF and S 4 at L band during February–April 2011, and validation of measured S 4 and predicted values performed during August–October 2011 and February–April 2012. Significant improvement in L band scintillation prediction and consequent navigational accuracy will result using such relations derived from VHF irregularity measurements which are much simpler and inexpensive. Irregularity dynamical information derived from VHF spaced aerial measurements Proxy indicators of GNSS performance degradation Prediction of GPS L band S4
Transionospheric satellite navigation links operate primarily at L band and are frequently subject to severe degradation of performances arising out of ionospheric irregularities. Various characteristic features of equatorial ionospheric irregularity bubbles like the drift velocity, characteristic velocity, decorrelation time, and decorrelation distance can be determined using spaced aerial measurements at VHF. These parameters measured at VHF from a station Calcutta situated near the northern crest of the Equatorial Ionization Anomaly (EIA) in the geophysically sensitive Indian longitude sector have been correlated with L band scintillation indices and GPS position accuracy parameters for identifying possible proxies to L band scintillations. Good correspondences have been observed between decorrelation times and distances at VHF with GPS S4 and Position Dilution of Precision during periods of GPS scintillations (S4>0.3) for February-April 2011, August-October 2011, and February-April 2012. A functional relation has been developed between irregularity drift velocity measured at VHF and S4 at L band during February-April 2011, and validation of measured S4 and predicted values performed during August-October 2011 and February-April 2012. Significant improvement in L band scintillation prediction and consequent navigational accuracy will result using such relations derived from VHF irregularity measurements which are much simpler and inexpensive. Key Points Irregularity dynamical information derived from VHF spaced aerial measurements Proxy indicators of GNSS performance degradation Prediction of GPS L band S4
Author Das, T.
Roy, B.
Paul, A.
Author_xml – sequence: 1
  givenname: T.
  surname: Das
  fullname: Das, T.
  organization: S.K. Mitra Center for Research in Space Environment, University of Calcutta, Calcutta, India
– sequence: 2
  givenname: B.
  surname: Roy
  fullname: Roy, B.
  organization: Institute of Radio Physics and Electronics, University of Calcutta, Calcutta, India
– sequence: 3
  givenname: A.
  surname: Paul
  fullname: Paul, A.
  email: ashikpaul@aol.in
  organization: Institute of Radio Physics and Electronics, University of Calcutta, Calcutta, India
BookMark eNp9kVFrFDEQxxep4LX65gcI-FLB1SSbze4-lva8FsoJXUXfQi6ZXFN3k2uSVfdr-QmNd0WkoBAY8s_vPzOZOS6OnHdQFC8Jfkswpu8oJuymx7hmmD8pFqRjrGy67stRscCYtSXnmD0rjmO8w5msOVsUP5fGgEoReYNSkC5a73zc3UKwCkW7dXJAGpQPAQaZ8iPKZzX4TdbX8pvdHsReJhgGmwD1c0wwRnS6Wvf9a7SDYHwYpVOAYpq0BY1M8COyOeN2GmSwaUZ6dnK0KiIZ_OQ0SreAnA85BIdUgJj2_WV1eXX2vHhq5BDhxUM8KT69X348vyyvP6yuzs-uS1U1TVca0tYaM6o5NjWVXJmuoXIjWacbQ0iF2QZka3CnN7IGrjecVp2SrSYZaQGqk-L0kHcX_P2UexCjjSp_UzrwUxSEM0rbhlY0o68eoXd-Cnl2e6qumpq0VabogVLBxxjACGXTfn558nYQBIvfaxR_rzGb3jwy7YIdZZj_hT_U-G4HmP_LipuLPt95l03lwWTz7n78McnwVfAmNy8-r1diXVd1dcEuBa9-AShPwI8
CitedBy_id crossref_primary_10_1029_2022RS007437
crossref_primary_10_1134_S001679322360042X
crossref_primary_10_1007_s10509_024_04372_w
crossref_primary_10_1002_2016JA023127
crossref_primary_10_1029_2019RS007042
crossref_primary_10_1016_j_asr_2019_11_035
crossref_primary_10_1016_j_asr_2017_01_044
crossref_primary_10_1002_2016RS005964
Cites_doi 10.1029/JA081i031p05447
10.1029/RS018i002p00263
10.1029/RS023i003p00347
10.1029/JA089iA12p10903
10.1029/RS019i003p00707
10.1029/2007JA012403
10.1007/s10712‐011‐9161‐z
10.1016/j.jastp.2010.03.010
10.1016/0021-9169(85)90052-2
10.1029/2012RS004995
10.1029/1999RS002310
10.1029/RS021i003p00453
10.1088/0370‐1301/63/2/305
10.1029/2003RS002878
10.1002/rds.20025
10.1029/RG018i002p00401
10.1029/2002RS002711
10.1029/JA088iA09p07075
10.1016/0032-0633(79)90157-0
10.1029/2005RS003359
10.1029/JA078i007p01167
10.1007/BF00750769
10.1029/1998JA900111
10.1029/JA084iA08p04251
10.1016/0021-9169(78)90124-1
10.1029/2009RS004329
10.1029/97JA02698
10.1029/2011RS004958
10.1029/98RS02576
10.1029/2010JA016330
10.1002/2013RS005270
10.1016/0021-9169(72)90003-7
10.1109/TAES.2010.5595583
10.1029/2009RS004226
10.1029/2000GL012288
10.1029/2008JA013899
10.1029/RS005i006p00939
10.1016/0273-1177(82)90390-8
10.1029/GL003i011p00681
10.1029/JA082i019p02650
10.1016/j.jastp.2006.09.007
10.1029/2010RS004591
10.1029/RS022i005p00745
10.1002/2013SW001001
10.1029/JA085iA09p04631
10.1109/PROC.1982.12314
10.2151/jmsj.84A.343
10.1029/96JA03376
10.3319/TAO.2002.13.1.53(A)
10.1016/0032-0633(69)90114-7
10.1029/GL003i008p00448
10.1016/0021-9169(90)90116-5
10.1029/2010JA016229
10.1029/JA094iA09p11959
10.1029/JA090iA01p00447
ContentType Journal Article
Copyright 2014. American Geophysical Union. All Rights Reserved.
Copyright_xml – notice: 2014. American Geophysical Union. All Rights Reserved.
DBID BSCLL
AAYXX
CITATION
7SP
8FD
H8D
L7M
FR3
KR7
DOI 10.1002/2014RS005406
DatabaseName Istex
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
Civil Engineering Abstracts
Engineering Research Database
DatabaseTitleList Aerospace Database

CrossRef
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Engineering
EISSN 1944-799X
EndPage 860
ExternalDocumentID 3557521311
10_1002_2014RS005406
RDS20169
ark_67375_WNG_N5353D4H_6
Genre article
GroupedDBID -~X
05W
0R~
123
186
1OB
1OC
24P
29P
31~
33P
3V.
50Y
6IK
6TJ
8-1
88I
8FE
8FG
8FH
8G5
8R4
8R5
A00
AAESR
AAHHS
AAIHA
AAJGR
AANLZ
AASGY
AAXRX
AAZKR
ABCUV
ABDPE
ABJNI
ABTAH
ABUWG
ACAHQ
ACBEA
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFKRA
AFPWT
AHBTC
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALXUD
AMYDB
ARAPS
ASPBG
AVWKF
AZFZN
AZQEC
AZVAB
BDRZF
BEFXN
BENPR
BFFAM
BFHJK
BGLVJ
BGNUA
BHPHI
BKEBE
BKSAR
BMXJE
BPEOZ
BPHCQ
BRXPI
BSCLL
CCPQU
CS3
D1K
DCZOG
DPXWK
DRFUL
DRSTM
DU5
DWQXO
EBS
EJD
FEDTE
G-S
GNUQQ
GODZA
GUQSH
HCIFZ
HGLYW
HVGLF
HZ~
H~9
IPLJI
JAVBF
K6-
LATKE
LEEKS
LITHE
LK5
LOXES
LUTES
LYRES
M2O
M2P
M7R
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OCL
OHT
OK1
P-X
P2P
P2W
P62
PCBAR
PQQKQ
PROAC
Q2X
R.K
RIWAO
RJQFR
ROL
SAMSI
SUPJJ
TN5
UHW
UQL
VOH
WBKPD
WIN
WXSBR
WYJ
XOL
YNT
ZY4
ZZTAW
~02
~OA
~~A
AAHQN
AAMNL
AANHP
AAYCA
ABAZT
ACRPL
ACYXJ
ADNMO
AEUYN
AFWVQ
ALVPJ
AAYXX
ABVLG
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
PHGZM
PHGZT
7SP
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
H8D
L7M
FR3
KR7
LH4
ID FETCH-LOGICAL-c3779-f185d042d60f52a6cf972aba49d7f11304bea8f09dba5e6db6239ca8d1a498ee3
ISSN 0048-6604
IngestDate Fri Sep 05 12:49:05 EDT 2025
Fri Jul 25 04:17:56 EDT 2025
Tue Jul 01 04:07:12 EDT 2025
Thu Apr 24 23:09:27 EDT 2025
Wed Jan 22 16:48:02 EST 2025
Wed Oct 30 09:49:52 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3779-f185d042d60f52a6cf972aba49d7f11304bea8f09dba5e6db6239ca8d1a498ee3
Notes ark:/67375/WNG-N5353D4H-6
ArticleID:RDS20169
istex:528A40C90C8FD2EBF689C040A2F47354E519EEA0
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1645375183
PQPubID 54001
PageCount 10
ParticipantIDs proquest_miscellaneous_1642287232
proquest_journals_1645375183
crossref_citationtrail_10_1002_2014RS005406
crossref_primary_10_1002_2014RS005406
wiley_primary_10_1002_2014RS005406_RDS20169
istex_primary_ark_67375_WNG_N5353D4H_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-10
October 2014
2014-10-00
20141001
PublicationDateYYYYMMDD 2014-10-01
PublicationDate_xml – month: 10
  year: 2014
  text: 2014-10
PublicationDecade 2010
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Radio science
PublicationTitleAlternate Radio Sci
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Kelley, M. C., G. Haerendal, H. Kappler, A. Valenzuela, B. B. Balsley, D. A. Carter, W. L. Ecklund, C. W. Carlson, B. Hausler, and R. Torbert (1976), Evidence for a Rayleigh-Taylor type instability and upwelling of depleted density regions during equatorial spread-F, Geophys. Res. Lett., 3, 448-450, doi:10.1029/GL003i008p00448.
Bhattacharyya, A., S. J. Franke, and K. C. Yeh (1989), Characteristic velocity of equatorial F region irregularities determined from spaced receiver scintillation data, J. Geophys. Res., 94, 11,959-11,969, doi:10.1029/JA094iA09p11959.
Paul, A., and A. DasGupta (2010), Characteristics of the equatorial ionization anomaly in relation to the day-to-day variability of ionospheric irregularities around the postsunset period, Radio Sci., 45, RS6001, doi:10.1029/2009RS004329.
Aarons, J. (1982), Global morphology of ionospheric scintillations, Proc. IEEE, 70(4), 360-378.
Briggs, B. H., G. J. Phillips, and D. H. Shinn (1950), The analysis of observations on spaced receivers of the fading of radio signals, Proc. Phys. Soc. B, 63, 106, doi:10.1088/0370-1301/63/2/305.
Kintner, P. M., H. Kil, T. L. Beach, and E. R. de Paula (2001), Fading timescales associated with GPS signals and potential consequences, Radio Sci., 36, 731-743, doi:10.1029/1999RS002310.
Anderson, D. N., and G. Haerendel (1979), The motion of depleted plasma regions in the equatorial ionosphere, J. Geophys. Res., 84, 4251-4256, doi:10.1029/JA084iA08p04251.
Spatz, D. E., S. J. Franke, and K. C. Yeh (1988), Analysis and interpretation of spaced receiver scintillation data recorded at an equatorial station, Radio Sci., 23, 347-361, doi:10.1029/RS023i003p00347.
Fejer, B. G., and M. C. Kelley (1980), Ionospheric irregularities, Rev. Geophys. Space Phys., 18(2), 401-454.
Tsunoda, R. T. (1985), Control of seasonal and longitudinal occurrence of equatorial scintillations by the longitudinal gradient in integrated E-region Pedersen conductivity, J. Geophys. Res., 90, 447-456, doi:10.1029/JA090iA01p00447.
Vacchione, J. D., S. J. Franke, and K. C. Yeh (1987), A new analysis technique for estimating zonal irregularity drifts and variability in the equatorial F region using spaced receiver scintillation data, Radio Sci., 22, 347-361, doi:10.1029/RS022i005p00745.
Taori, A., N. Dashora, K. Raghunath, J. M. Russell III, and M. G. Mlynczak (2011), Simultaneous mesosphere-thermosphere-ionosphere parameter measurements over Gadanki (13.5°N, 79.2°E): First results, J. Geophys. Res., 116, A05310, doi:10.1029/2010JA016229.
Rastogi, R. G., P. V. Koparkar, H. Chandra, and M. R. Deshpande (1990), Multifrequency studies of equatorial ionospheric scintillations at Ootacamund, J. Atmos. Terr. Phys., 52, 69-76.
Carrano, C. S., K. M. Groves, R. G. Caton, C. L. Rino, and P. R. Straus (2011), Multiple phase screen modeling of ionospheric scintillation along radio occultation raypaths, Radio Sci., 46, RS0D07, doi:10.1029/2010RS004591.
DasGupta, A., A. Paul, S. Ray, A. Das, and S. Ananthakrishnan (2006), Equatorial bubbles as observed with GPS measurements over Pune, India, Radio Sci., 41, RS5S28, doi:10.1029/2005RS003359.
Rastogi, R. G., H. Chandra, and M. R. Deshpande (1982), Equatorial scintillations of ATS-6 radio beacons: Phase II-Ootacamund 1975-76, Indian J. Radio Space Phys., 11, 240-246.
Paul, A., B. Roy, S. Ray, A. Das, and A. DasGupta (2011), Characteristics of intense space weather events as observed from a low latitude station during solar minimum, J. Geophys. Res., 116, A10307, doi:10.1029/2010JA016330.
Weber, E. J., J. Buchau, and J. G. Moore (1980), Airborne studies of equatorial F-layer ionospheric irregularities, J. Geophys. Res., 85, 4631-4641, doi:10.1029/JA085iA09p04631.
Moraes, A. O., E. R. de Paula, M. T. de Assis Honorato Muella, and W. J. Perrella (2014), On the second order statistics for GPS ionospheric scintillation modeling, Radio Sci., 49, 94-105, doi:10.1002/2013RS005270.
Franke, S. J., and C. H. Liu (1983), Observations and modeling of multifrequency VHF and GHz scintillations in the equatorial region, J. Geophys. Res., 88, 7075-7085, doi:10.1029/JA088iA09p07075.
Basu, S., and H. E. Whitney (1983), The temporal structure of intensity scintillations near the magnetic equator, Radio Sci., 18, 263-271, doi:10.1029/RS018i002p00263.
Bittencourt, J. A., and Y. Sahai (1978), F-region neutral winds from ionosonde measurements of hmF2 at low latitude magnetic conjugate region, J. Atmos. Terr. Phys., 40(6), 669-676.
Mitra, S. N. (1949), A radio method of measuring winds in the ionosphere, Proc. Inst. Electr. Eng., Part 3, 96, 441-446.
Kil, H., and R. A. Heelis (1998), Global distribution of density irregularities in the equatorial ionosphere, J. Geophys. Res., 103, 407-417, doi:10.1029/97JA02698.
Otsuka, Y., K. Shiokawa, and T. Ogawa (2006), Equatorial ionospheric scintillations and zonal irregularity drifts observed with closely spaced GPS receivers in Indonesia, J. Meteorol. Soc. Jpn., 84A, 343-351.
Moraes, A. O., F. S. Rodrigues, W. J. Perrella, and E. R. Paula (2011), Analysis of the characteristics of low-latitude GPS amplitude scintillation measured during solar maximum conditions and implications for receiver performance, Surv. Geophys., 33(5), 1107-1131, doi:10.1007/s10712-011-9161-z.
Akala, A. O., P. H. Doherty, C. S. Carrano, C. E. Valladares, and K. M. Groves (2012), Impacts of ionospheric scintillations on GPS receivers intended for equatorial aviation applications, Radio Sci., 47, RS4007, doi:10.1029/2012RS004995.
Humphreys, T. E., M. L. Psiaki, and P. M. Kintner (2010b), Modeling the effects of ionospheric scintillation on GPS carrier phase tracking, IEEE Trans. Aerosp. Electron. Syst., 46(4), 1624-1637.
Das, A., A. DasGupta, and S. Ray (2010), Characteristics of L-band (1.5 GHz) and VHF (244 MHz) amplitude scintillations recorded at Kolkata during 1996-2006 and development of models for the occurrence probability of scintillations using Neural network, J. Atmos. Sol. Terr. Phys., 72(9-10), 685-704.
Maruyama, T., and N. Matuura (1984), Longitudinal variability of annual changes in activity of equatorial spread-F and plasma bubbles, J. Geophys. Res., 89, 10,903-10,912, doi:10.1029/JA089iA12p10903.
Aarons, J. (1993), The longitudinal morphology of equatorial F-layer irregularities relevant to their occurrence, Space Sci. Rev., 63(3-4), 209-243.
Humphreys, T. E., M. L. Psiaki, B. M. Ledvina, A. P. Cerruti, and P. M. Kintner Jr. (2010a), Data-driven testbed for evaluating GPS carrier tracking loops in ionospheric scintillation, IEEE Trans. Aerosp. Electron. Syst., 46(4), 1609-1623.
Whitney, H. E., J. Aarons, and C. Malik (1969), A proposed index for measuring ionospheric scintillations, Planet. Space Sci., 17(5), 1069-1073.
Somayajulu, Y. V., S. C. Garg, R. S. Dabas, L. Singh, T. R. Tyagi, B. Loknadhan, S. Ramkrishna, and G. Navneeth (1984), Multistation study of night time scintillations in low latitudes: Evidence of control by equatorial F region irregularities, Radio Sci., 19, 707-718, doi:10.1029/RS019i003p00707.
Hanson, W. B., W. R. Coley, R. A. Heelis, and A. L. Urquhart (1997), Fast equatorial bubbles, J. Geophys. Res., 102, 2039-2046, doi:10.1029/96JA03376.
Ray, S., and A. DasGupta (2007), Geostationary L-band signal scintillation observations near the crest of equatorial anomaly in the Indian zone, J. Atmos. Sol. Terr. Phys., 69(4-5), 500-514.
Kintner, P. M., B. M. Ledvina, E. R. de Paula, and I. J. Kantor (2004), Size, shape, orientation, speed, and duration of GPS equatorial anomaly scintillations, Radio Sci., 39, RS2012, doi:10.1029/2003RS002878.
Hanson, W. B., and S. Sanatani (1973), Large NI gradients below the equatorial F-peak, J. Geophys. Res., 78, 1167-1173, doi:10.1029/JA078i007p01167.
Kudeki, E., and S. Bhattacharyya (1999), Post-sunset vortex in equatorial F-region plasma drifts and implications for bottomside spread-F, J. Geophys. Res., 104, 28,163-28,170, doi:10.1029/1998JA900111.
Bhar, J. N., A. DasGupta, and S. Basu (1970), Studies on F-region irregularities at low latitude from scintillations of satellite signals, Radio Sci., 5, 939-942, doi:10.1029/RS005i006p00939.
DasGupta, A., D. N. Anderson, and J. A. Klobuchar (1983), Equatorial F-region ionization differences between March and September, 1979, Adv. Space Res., 2(10), 199-202.
Chakraborty, S. K., A. DasGupta, S. Ray, and S. Banerjee (1999), Long-term observations of VHF scintillation and total electron content near the crest of the equatorial anomaly in the Indian longitude zone, Radio Sci., 34, 241-255, doi:10.1029/98RS02576.
Martinis, C., and M. Mendillo (2007), Equatorial spread F-related airglow depletions at Arecibo and conjugate observations, J. Geophys. Res., 112, A10310, doi:10.1029/2007JA012403.
Rishbeth, H. (1972), Thermospheric winds and the F-region: A review, J. Atmos. Terr. Phys., 34(1), 1-47.
Basu, S., and S. Basu (1976), Correlated measurements of scintillations and in situ F region irregularities from OGO-6, Geophys. Res. Lett., 3, 681-684, doi:10.1029/GL003i011p00681.
McNamara, L. F., R. G. Caton, R. T. Parris, T. R. Pedersen, D. C. Thompson, K. C. Wiens, and K. M. Groves (2013), Signatures of equatorial plasma bubbles in VHF satellite scintillations and equatorial ionograms, Radio Sci., 48, 89-101, doi:10.1002/rds.20025.
Bhattacharyya, A., K. M. Groves, S. Basu, and H. Kuenzler (2003), L-band scintillation activity and space-time structure of low-latitude UHF scintillations, Radio Sci., 38(1), 1004, doi:10.1029/2002RS002711.
Burke, W. J., D. E. Donatelli, R. C. Sagalyn, and M. C. Kelley (1979), Observations of low density regions at high altitudes in the topside equatorial ionosphere and their interpretation in terms of equatorial spread-F, Planet. Space Sci., 27(5), 593-601.
Chandra, H., et al. (1993), Coordinated multistation VHF scintillations observations in India during March-April 1991, Indian J. Radio Space Phys., 22, 69-81.
Woodman, R. F., and C. La Hoz (1976), Radar observations of F-region equatorial irregularities, J. Geophys. Res., 81, 5447-5466, doi:10.1029/JA081i031p05
2011; 116
1990; 52
1979; 35
1950; 63
1983; 2
1980; 85
1993; 22
2002; 13
1993; 63
1982; 11
1949; 96
1983; 18
2009; 114
1970; 5
1997; 102
1979; 27
2013; 11
2010a; 46
2006; 84A
2004; 39
1985; 90
1984; 19
2010b; 46
2007; 69
2010; 72
1989; 2
2000; 29
2013; 48
1982; 70
2010
1973; 78
1984; 89
1976; 81
2014; 49
1976; 3
2011; 33
2003; 38
2005
2001; 28
1969; 17
1999; 104
1977; 82
1985; 47
2010; 45
2007; 112
1987; 22
1989; 94
2006; 41
1980; 18
1986; 21
1978; 40
1999; 34
1988; 23
2011; 46
1998; 103
2012; 47
1972; 34
2001; 36
1979; 84
1983; 88
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
Kumar S. (e_1_2_6_40_1) 2000; 29
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_62_1
e_1_2_6_64_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
Chandra H. (e_1_2_6_22_1) 1979; 35
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_28_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
Rastogi R. G. (e_1_2_6_52_1) 1982; 11
Chandra H. (e_1_2_6_23_1) 1993; 22
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
Mitra S. N. (e_1_2_6_45_1) 1949; 96
e_1_2_6_63_1
e_1_2_6_42_1
e_1_2_6_65_1
e_1_2_6_21_1
Basu S. (e_1_2_6_8_1) 1989
e_1_2_6_61_1
Carrano C. S. (e_1_2_6_18_1) 2010
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – reference: Dabas, R. S., and B. M. Reddy (1986), Night time VHF scintillations at 23°N magnetic latitude and their association with equatorial F-region irregularities, Radio Sci., 21, 453-462, doi:10.1029/RS021i003p00453.
– reference: Otsuka, Y., K. Shiokawa, and T. Ogawa (2006), Equatorial ionospheric scintillations and zonal irregularity drifts observed with closely spaced GPS receivers in Indonesia, J. Meteorol. Soc. Jpn., 84A, 343-351.
– reference: Tsunoda, R. T. (1985), Control of seasonal and longitudinal occurrence of equatorial scintillations by the longitudinal gradient in integrated E-region Pedersen conductivity, J. Geophys. Res., 90, 447-456, doi:10.1029/JA090iA01p00447.
– reference: Bhattacharyya, A., S. Basu, K. M. Groves, C. E. Valladares, and R. Sheehan (2001), Dynamics of equatorial F region irregularities from spaced receiver scintillation observations, Geophys. Res. Lett., 28, 119-122, doi:10.1029/2000GL012288.
– reference: Kelley, M. C., G. Haerendal, H. Kappler, A. Valenzuela, B. B. Balsley, D. A. Carter, W. L. Ecklund, C. W. Carlson, B. Hausler, and R. Torbert (1976), Evidence for a Rayleigh-Taylor type instability and upwelling of depleted density regions during equatorial spread-F, Geophys. Res. Lett., 3, 448-450, doi:10.1029/GL003i008p00448.
– reference: Martinis, C., and M. Mendillo (2007), Equatorial spread F-related airglow depletions at Arecibo and conjugate observations, J. Geophys. Res., 112, A10310, doi:10.1029/2007JA012403.
– reference: Taori, A., N. Dashora, K. Raghunath, J. M. Russell III, and M. G. Mlynczak (2011), Simultaneous mesosphere-thermosphere-ionosphere parameter measurements over Gadanki (13.5°N, 79.2°E): First results, J. Geophys. Res., 116, A05310, doi:10.1029/2010JA016229.
– reference: Ray, S., and A. DasGupta (2007), Geostationary L-band signal scintillation observations near the crest of equatorial anomaly in the Indian zone, J. Atmos. Sol. Terr. Phys., 69(4-5), 500-514.
– reference: Kintner, P. M., B. M. Ledvina, E. R. de Paula, and I. J. Kantor (2004), Size, shape, orientation, speed, and duration of GPS equatorial anomaly scintillations, Radio Sci., 39, RS2012, doi:10.1029/2003RS002878.
– reference: Humphreys, T. E., M. L. Psiaki, and P. M. Kintner (2010b), Modeling the effects of ionospheric scintillation on GPS carrier phase tracking, IEEE Trans. Aerosp. Electron. Syst., 46(4), 1624-1637.
– reference: Carrano, C. S., K. M. Groves, R. G. Caton, C. L. Rino, and P. R. Straus (2011), Multiple phase screen modeling of ionospheric scintillation along radio occultation raypaths, Radio Sci., 46, RS0D07, doi:10.1029/2010RS004591.
– reference: Rastogi, R. G., H. Chandra, and M. R. Deshpande (1982), Equatorial scintillations of ATS-6 radio beacons: Phase II-Ootacamund 1975-76, Indian J. Radio Space Phys., 11, 240-246.
– reference: Carrano, C. S., K. M. Groves, and R. G. Caton (2012), The effect of phase scintillations on the accuracy of phase screen simulation using deterministic screens derived from GPS and ALTAIR measurements, Radio Sci., 47, RS0L25, doi:10.1029/2011RS004958.
– reference: Vacchione, J. D., S. J. Franke, and K. C. Yeh (1987), A new analysis technique for estimating zonal irregularity drifts and variability in the equatorial F region using spaced receiver scintillation data, Radio Sci., 22, 347-361, doi:10.1029/RS022i005p00745.
– reference: Mukherjee, G. K. (2002), Mapping of the simultaneous movement of Equatorial Ionization Anomaly (EIA) and ionospheric plasma bubbles through all-sky imaging of OI 630 nm emission, Terr. Atmos. Oceanic Sci., 13, 53-64.
– reference: Basu, S., and S. Basu (1976), Correlated measurements of scintillations and in situ F region irregularities from OGO-6, Geophys. Res. Lett., 3, 681-684, doi:10.1029/GL003i011p00681.
– reference: Moraes, A. O., E. R. de Paula, M. T. de Assis Honorato Muella, and W. J. Perrella (2014), On the second order statistics for GPS ionospheric scintillation modeling, Radio Sci., 49, 94-105, doi:10.1002/2013RS005270.
– reference: Chandra, H., et al. (1993), Coordinated multistation VHF scintillations observations in India during March-April 1991, Indian J. Radio Space Phys., 22, 69-81.
– reference: Akala, A. O., P. H. Doherty, C. S. Carrano, C. E. Valladares, and K. M. Groves (2012), Impacts of ionospheric scintillations on GPS receivers intended for equatorial aviation applications, Radio Sci., 47, RS4007, doi:10.1029/2012RS004995.
– reference: Franke, S. J., and C. H. Liu (1983), Observations and modeling of multifrequency VHF and GHz scintillations in the equatorial region, J. Geophys. Res., 88, 7075-7085, doi:10.1029/JA088iA09p07075.
– reference: van de Kamp, M., P. S. Cannon, and R. J. Watson (2010), V/UHF space radars: Spatial phase decorrelation of transionospheric signals in the equatorial region, Radio Sci., 45, RS4012, doi:10.1029/2009RS004226.
– reference: Bittencourt, J. A., and Y. Sahai (1978), F-region neutral winds from ionosonde measurements of hmF2 at low latitude magnetic conjugate region, J. Atmos. Terr. Phys., 40(6), 669-676.
– reference: Bhattacharyya, A., S. J. Franke, and K. C. Yeh (1989), Characteristic velocity of equatorial F region irregularities determined from spaced receiver scintillation data, J. Geophys. Res., 94, 11,959-11,969, doi:10.1029/JA094iA09p11959.
– reference: Anderson, D. N., and G. Haerendel (1979), The motion of depleted plasma regions in the equatorial ionosphere, J. Geophys. Res., 84, 4251-4256, doi:10.1029/JA084iA08p04251.
– reference: DasGupta, A., A. Paul, S. Ray, A. Das, and S. Ananthakrishnan (2006), Equatorial bubbles as observed with GPS measurements over Pune, India, Radio Sci., 41, RS5S28, doi:10.1029/2005RS003359.
– reference: McNamara, L. F., R. G. Caton, R. T. Parris, T. R. Pedersen, D. C. Thompson, K. C. Wiens, and K. M. Groves (2013), Signatures of equatorial plasma bubbles in VHF satellite scintillations and equatorial ionograms, Radio Sci., 48, 89-101, doi:10.1002/rds.20025.
– reference: Bhattacharyya, A., K. M. Groves, S. Basu, and H. Kuenzler (2003), L-band scintillation activity and space-time structure of low-latitude UHF scintillations, Radio Sci., 38(1), 1004, doi:10.1029/2002RS002711.
– reference: Rastogi, R. G., P. V. Koparkar, H. Chandra, and M. R. Deshpande (1990), Multifrequency studies of equatorial ionospheric scintillations at Ootacamund, J. Atmos. Terr. Phys., 52, 69-76.
– reference: Somayajulu, Y. V., S. C. Garg, R. S. Dabas, L. Singh, T. R. Tyagi, B. Loknadhan, S. Ramkrishna, and G. Navneeth (1984), Multistation study of night time scintillations in low latitudes: Evidence of control by equatorial F region irregularities, Radio Sci., 19, 707-718, doi:10.1029/RS019i003p00707.
– reference: Burke, W. J., D. E. Donatelli, R. C. Sagalyn, and M. C. Kelley (1979), Observations of low density regions at high altitudes in the topside equatorial ionosphere and their interpretation in terms of equatorial spread-F, Planet. Space Sci., 27(5), 593-601.
– reference: Fejer, B. G., and M. C. Kelley (1980), Ionospheric irregularities, Rev. Geophys. Space Phys., 18(2), 401-454.
– reference: Basu, S., and S. Basu (1985), Equatorial scintillations: Advances since ISEA-6, J. Atmos. Terr. Phys., 47(8), 753-768.
– reference: Chandra, H., H. O. Vats, M. R. Deshpande, R. G. Rastogi, G. Sethia, J. H. Sastri, and B. S. Murthy (1979), Ionospheric scintillations associated with features of equatorial ionosphere, Ann. Geophys., 35, 145-151.
– reference: Paul, A., B. Roy, S. Ray, A. Das, and A. DasGupta (2011), Characteristics of intense space weather events as observed from a low latitude station during solar minimum, J. Geophys. Res., 116, A10307, doi:10.1029/2010JA016330.
– reference: Mitra, S. N. (1949), A radio method of measuring winds in the ionosphere, Proc. Inst. Electr. Eng., Part 3, 96, 441-446.
– reference: Bhar, J. N., A. DasGupta, and S. Basu (1970), Studies on F-region irregularities at low latitude from scintillations of satellite signals, Radio Sci., 5, 939-942, doi:10.1029/RS005i006p00939.
– reference: Spatz, D. E., S. J. Franke, and K. C. Yeh (1988), Analysis and interpretation of spaced receiver scintillation data recorded at an equatorial station, Radio Sci., 23, 347-361, doi:10.1029/RS023i003p00347.
– reference: Weber, E. J., J. Buchau, and J. G. Moore (1980), Airborne studies of equatorial F-layer ionospheric irregularities, J. Geophys. Res., 85, 4631-4641, doi:10.1029/JA085iA09p04631.
– reference: Basu, S., S. Basu, J. Huba, J. Krall, S. E. McDonald, J. J. Makela, E. S. Miller, S. Ray, and K. Groves (2009), Day-to-day variability of the equatorial ionization anomaly and scintillations at dusk observed by GUVI and modeling by SAMI3, J. Geophys. Res., 114, A04302, doi:10.1029/2008JA013899.
– reference: Kil, H., and R. A. Heelis (1998), Global distribution of density irregularities in the equatorial ionosphere, J. Geophys. Res., 103, 407-417, doi:10.1029/97JA02698.
– reference: Maruyama, T., and N. Matuura (1984), Longitudinal variability of annual changes in activity of equatorial spread-F and plasma bubbles, J. Geophys. Res., 89, 10,903-10,912, doi:10.1029/JA089iA12p10903.
– reference: Rishbeth, H. (1972), Thermospheric winds and the F-region: A review, J. Atmos. Terr. Phys., 34(1), 1-47.
– reference: Paul, A., and A. DasGupta (2010), Characteristics of the equatorial ionization anomaly in relation to the day-to-day variability of ionospheric irregularities around the postsunset period, Radio Sci., 45, RS6001, doi:10.1029/2009RS004329.
– reference: Whitney, H. E., J. Aarons, and C. Malik (1969), A proposed index for measuring ionospheric scintillations, Planet. Space Sci., 17(5), 1069-1073.
– reference: Basu, S., and H. E. Whitney (1983), The temporal structure of intensity scintillations near the magnetic equator, Radio Sci., 18, 263-271, doi:10.1029/RS018i002p00263.
– reference: McClure, J. P., W. B. Hanson, and J. H. Hoffman (1977), Plasma bubbles and irregularities in the equatorial ionosphere, J. Geophys. Res., 82, 2650-2656, doi:10.1029/JA082i019p02650.
– reference: Kumar, S., et al. (2000), Coordinated observations of VHF scintillations in India during February-March, 1993, Indian J. Radio Space Phys., 29, 22-29.
– reference: Kudeki, E., and S. Bhattacharyya (1999), Post-sunset vortex in equatorial F-region plasma drifts and implications for bottomside spread-F, J. Geophys. Res., 104, 28,163-28,170, doi:10.1029/1998JA900111.
– reference: Das, A., A. DasGupta, and S. Ray (2010), Characteristics of L-band (1.5 GHz) and VHF (244 MHz) amplitude scintillations recorded at Kolkata during 1996-2006 and development of models for the occurrence probability of scintillations using Neural network, J. Atmos. Sol. Terr. Phys., 72(9-10), 685-704.
– reference: Roy, B., A. DasGupta, and A. Paul (2013), Impact of space weather events on satellite-based navigation, Space Weather, 11, 680-686, doi:10.1002/2013SW001001.
– reference: Woodman, R. F., and C. La Hoz (1976), Radar observations of F-region equatorial irregularities, J. Geophys. Res., 81, 5447-5466, doi:10.1029/JA081i031p05447.
– reference: Humphreys, T. E., M. L. Psiaki, B. M. Ledvina, A. P. Cerruti, and P. M. Kintner Jr. (2010a), Data-driven testbed for evaluating GPS carrier tracking loops in ionospheric scintillation, IEEE Trans. Aerosp. Electron. Syst., 46(4), 1609-1623.
– reference: Aarons, J. (1982), Global morphology of ionospheric scintillations, Proc. IEEE, 70(4), 360-378.
– reference: Hanson, W. B., W. R. Coley, R. A. Heelis, and A. L. Urquhart (1997), Fast equatorial bubbles, J. Geophys. Res., 102, 2039-2046, doi:10.1029/96JA03376.
– reference: DasGupta, A., D. N. Anderson, and J. A. Klobuchar (1983), Equatorial F-region ionization differences between March and September, 1979, Adv. Space Res., 2(10), 199-202.
– reference: Briggs, B. H., G. J. Phillips, and D. H. Shinn (1950), The analysis of observations on spaced receivers of the fading of radio signals, Proc. Phys. Soc. B, 63, 106, doi:10.1088/0370-1301/63/2/305.
– reference: Moraes, A. O., F. S. Rodrigues, W. J. Perrella, and E. R. Paula (2011), Analysis of the characteristics of low-latitude GPS amplitude scintillation measured during solar maximum conditions and implications for receiver performance, Surv. Geophys., 33(5), 1107-1131, doi:10.1007/s10712-011-9161-z.
– reference: Chakraborty, S. K., A. DasGupta, S. Ray, and S. Banerjee (1999), Long-term observations of VHF scintillation and total electron content near the crest of the equatorial anomaly in the Indian longitude zone, Radio Sci., 34, 241-255, doi:10.1029/98RS02576.
– reference: Kintner, P. M., H. Kil, T. L. Beach, and E. R. de Paula (2001), Fading timescales associated with GPS signals and potential consequences, Radio Sci., 36, 731-743, doi:10.1029/1999RS002310.
– reference: Aarons, J. (1993), The longitudinal morphology of equatorial F-layer irregularities relevant to their occurrence, Space Sci. Rev., 63(3-4), 209-243.
– reference: Hanson, W. B., and S. Sanatani (1973), Large NI gradients below the equatorial F-peak, J. Geophys. Res., 78, 1167-1173, doi:10.1029/JA078i007p01167.
– volume: 46
  year: 2011
  article-title: Multiple phase screen modeling of ionospheric scintillation along radio occultation raypaths
  publication-title: Radio Sci.
– volume: 17
  start-page: 1069
  issue: 5
  year: 1969
  end-page: 1073
  article-title: A proposed index for measuring ionospheric scintillations
  publication-title: Planet. Space Sci.
– volume: 21
  start-page: 453
  year: 1986
  end-page: 462
  article-title: Night time VHF scintillations at 23°N magnetic latitude and their association with equatorial ‐region irregularities
  publication-title: Radio Sci.
– volume: 47
  start-page: 753
  issue: 8
  year: 1985
  end-page: 768
  article-title: Equatorial scintillations: Advances since ISEA‐6
  publication-title: J. Atmos. Terr. Phys.
– year: 2005
– volume: 3
  start-page: 681
  year: 1976
  end-page: 684
  article-title: Correlated measurements of scintillations and in situ region irregularities from OGO‐6
  publication-title: Geophys. Res. Lett.
– volume: 33
  start-page: 1107
  issue: 5
  year: 2011
  end-page: 1131
  article-title: Analysis of the characteristics of low‐latitude GPS amplitude scintillation measured during solar maximum conditions and implications for receiver performance
  publication-title: Surv. Geophys.
– volume: 116
  year: 2011
  article-title: Characteristics of intense space weather events as observed from a low latitude station during solar minimum
  publication-title: J. Geophys. Res.
– volume: 81
  start-page: 5447
  year: 1976
  end-page: 5466
  article-title: Radar observations of ‐region equatorial irregularities
  publication-title: J. Geophys. Res.
– volume: 18
  start-page: 263
  year: 1983
  end-page: 271
  article-title: The temporal structure of intensity scintillations near the magnetic equator
  publication-title: Radio Sci.
– volume: 2
  start-page: 199
  issue: 10
  year: 1983
  end-page: 202
  article-title: Equatorial ‐region ionization differences between March and September, 1979
  publication-title: Adv. Space Res.
– volume: 116
  year: 2011
  article-title: Simultaneous mesosphere‐thermosphere‐ionosphere parameter measurements over Gadanki (13.5°N, 79.2°E): First results
  publication-title: J. Geophys. Res.
– volume: 39
  year: 2004
  article-title: Size, shape, orientation, speed, and duration of GPS equatorial anomaly scintillations
  publication-title: Radio Sci.
– volume: 104
  start-page: 28,163
  year: 1999
  end-page: 28,170
  article-title: Post‐sunset vortex in equatorial F‐region plasma drifts and implications for bottomside spread‐F
  publication-title: J. Geophys. Res.
– volume: 18
  start-page: 401
  issue: 2
  year: 1980
  end-page: 454
  article-title: Ionospheric irregularities
  publication-title: Rev. Geophys. Space Phys.
– volume: 29
  start-page: 22
  year: 2000
  end-page: 29
  article-title: Coordinated observations of VHF scintillations in India during February–March, 1993
  publication-title: Indian J. Radio Space Phys.
– volume: 11
  start-page: 680
  year: 2013
  end-page: 686
  article-title: Impact of space weather events on satellite‐based navigation
  publication-title: Space Weather
– volume: 35
  start-page: 145
  year: 1979
  end-page: 151
  article-title: Ionospheric scintillations associated with features of equatorial ionosphere
  publication-title: Ann. Geophys.
– volume: 41
  year: 2006
  article-title: Equatorial bubbles as observed with GPS measurements over Pune, India
  publication-title: Radio Sci.
– volume: 114
  year: 2009
  article-title: Day‐to‐day variability of the equatorial ionization anomaly and scintillations at dusk observed by GUVI and modeling by SAMI3
  publication-title: J. Geophys. Res.
– volume: 52
  start-page: 69
  year: 1990
  end-page: 76
  article-title: Multifrequency studies of equatorial ionospheric scintillations at Ootacamund
  publication-title: J. Atmos. Terr. Phys.
– volume: 46
  start-page: 1624
  issue: 4
  year: 2010b
  end-page: 1637
  article-title: Modeling the effects of ionospheric scintillation on GPS carrier phase tracking
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
– volume: 27
  start-page: 593
  issue: 5
  year: 1979
  end-page: 601
  article-title: Observations of low density regions at high altitudes in the topside equatorial ionosphere and their interpretation in terms of equatorial spread‐
  publication-title: Planet. Space Sci.
– volume: 11
  start-page: 240
  year: 1982
  end-page: 246
  article-title: Equatorial scintillations of ATS‐6 radio beacons: Phase II‐Ootacamund 1975‐76
  publication-title: Indian J. Radio Space Phys.
– volume: 89
  start-page: 10,903
  year: 1984
  end-page: 10,912
  article-title: Longitudinal variability of annual changes in activity of equatorial spread‐ and plasma bubbles
  publication-title: J. Geophys. Res.
– volume: 49
  start-page: 94
  year: 2014
  end-page: 105
  article-title: On the second order statistics for GPS ionospheric scintillation modeling
  publication-title: Radio Sci.
– volume: 47
  year: 2012
  article-title: Impacts of ionospheric scintillations on GPS receivers intended for equatorial aviation applications
  publication-title: Radio Sci.
– volume: 23
  start-page: 347
  year: 1988
  end-page: 361
  article-title: Analysis and interpretation of spaced receiver scintillation data recorded at an equatorial station
  publication-title: Radio Sci.
– volume: 28
  start-page: 119
  year: 2001
  end-page: 122
  article-title: Dynamics of equatorial region irregularities from spaced receiver scintillation observations
  publication-title: Geophys. Res. Lett.
– volume: 69
  start-page: 500
  issue: 4–5
  year: 2007
  end-page: 514
  article-title: Geostationary L‐band signal scintillation observations near the crest of equatorial anomaly in the Indian zone
  publication-title: J. Atmos. Sol. Terr. Phys.
– volume: 96
  start-page: 441
  year: 1949
  end-page: 446
  article-title: A radio method of measuring winds in the ionosphere
  publication-title: Proc. Inst. Electr. Eng., Part 3
– volume: 82
  start-page: 2650
  year: 1977
  end-page: 2656
  article-title: Plasma bubbles and irregularities in the equatorial ionosphere
  publication-title: J. Geophys. Res.
– volume: 13
  start-page: 53
  year: 2002
  end-page: 64
  article-title: Mapping of the simultaneous movement of Equatorial Ionization Anomaly (EIA) and ionospheric plasma bubbles through all‐sky imaging of OI 630 nm emission
  publication-title: Terr. Atmos. Oceanic Sci.
– volume: 88
  start-page: 7075
  year: 1983
  end-page: 7085
  article-title: Observations and modeling of multifrequency VHF and GHz scintillations in the equatorial region
  publication-title: J. Geophys. Res.
– volume: 70
  start-page: 360
  issue: 4
  year: 1982
  end-page: 378
  article-title: Global morphology of ionospheric scintillations
  publication-title: Proc. IEEE
– volume: 48
  start-page: 89
  year: 2013
  end-page: 101
  article-title: Signatures of equatorial plasma bubbles in VHF satellite scintillations and equatorial ionograms
  publication-title: Radio Sci.
– volume: 63
  start-page: 209
  issue: 3–4
  year: 1993
  end-page: 243
  article-title: The longitudinal morphology of equatorial ‐layer irregularities relevant to their occurrence
  publication-title: Space Sci. Rev.
– volume: 47
  year: 2012
  article-title: The effect of phase scintillations on the accuracy of phase screen simulation using deterministic screens derived from GPS and ALTAIR measurements
  publication-title: Radio Sci.
– volume: 103
  start-page: 407
  year: 1998
  end-page: 417
  article-title: Global distribution of density irregularities in the equatorial ionosphere
  publication-title: J. Geophys. Res.
– volume: 22
  start-page: 347
  year: 1987
  end-page: 361
  article-title: A new analysis technique for estimating zonal irregularity drifts and variability in the equatorial region using spaced receiver scintillation data
  publication-title: Radio Sci.
– volume: 63
  start-page: 106
  year: 1950
  article-title: The analysis of observations on spaced receivers of the fading of radio signals
  publication-title: Proc. Phys. Soc. B
– volume: 84A
  start-page: 343
  year: 2006
  end-page: 351
  article-title: Equatorial ionospheric scintillations and zonal irregularity drifts observed with closely spaced GPS receivers in Indonesia
  publication-title: J. Meteorol. Soc. Jpn.
– volume: 22
  start-page: 69
  year: 1993
  end-page: 81
  article-title: Coordinated multistation VHF scintillations observations in India during March–April 1991
  publication-title: Indian J. Radio Space Phys.
– volume: 85
  start-page: 4631
  year: 1980
  end-page: 4641
  article-title: Airborne studies of equatorial ‐layer ionospheric irregularities
  publication-title: J. Geophys. Res.
– volume: 84
  start-page: 4251
  year: 1979
  end-page: 4256
  article-title: The motion of depleted plasma regions in the equatorial ionosphere
  publication-title: J. Geophys. Res.
– volume: 2
  start-page: 128
  year: 1989
  end-page: 136
– volume: 94
  start-page: 11,959
  year: 1989
  end-page: 11,969
  article-title: Characteristic velocity of equatorial region irregularities determined from spaced receiver scintillation data
  publication-title: J. Geophys. Res.
– volume: 72
  start-page: 685
  issue: 9–10
  year: 2010
  end-page: 704
  article-title: Characteristics of L‐band (1.5 GHz) and VHF (244 MHz) amplitude scintillations recorded at Kolkata during 1996–2006 and development of models for the occurrence probability of scintillations using Neural network
  publication-title: J. Atmos. Sol. Terr. Phys.
– volume: 5
  start-page: 939
  year: 1970
  end-page: 942
  article-title: Studies on ‐region irregularities at low latitude from scintillations of satellite signals
  publication-title: Radio Sci.
– volume: 34
  start-page: 241
  year: 1999
  end-page: 255
  article-title: Long‐term observations of VHF scintillation and total electron content near the crest of the equatorial anomaly in the Indian longitude zone
  publication-title: Radio Sci.
– volume: 38
  issue: 1
  year: 2003
  article-title: L‐band scintillation activity and space‐time structure of low‐latitude UHF scintillations
  publication-title: Radio Sci.
– volume: 3
  start-page: 448
  year: 1976
  end-page: 450
  article-title: Evidence for a Rayleigh‐Taylor type instability and upwelling of depleted density regions during equatorial spread‐
  publication-title: Geophys. Res. Lett.
– volume: 78
  start-page: 1167
  year: 1973
  end-page: 1173
  article-title: Large N gradients below the equatorial ‐peak
  publication-title: J. Geophys. Res.
– start-page: 361
  year: 2010
  end-page: 374
– volume: 34
  start-page: 1
  issue: 1
  year: 1972
  end-page: 47
  article-title: Thermospheric winds and the ‐region: A review
  publication-title: J. Atmos. Terr. Phys.
– volume: 40
  start-page: 669
  issue: 6
  year: 1978
  end-page: 676
  article-title: ‐region neutral winds from ionosonde measurements of at low latitude magnetic conjugate region
  publication-title: J. Atmos. Terr. Phys.
– volume: 36
  start-page: 731
  year: 2001
  end-page: 743
  article-title: Fading timescales associated with GPS signals and potential consequences
  publication-title: Radio Sci.
– volume: 46
  start-page: 1609
  issue: 4
  year: 2010a
  end-page: 1623
  article-title: Data‐driven testbed for evaluating GPS carrier tracking loops in ionospheric scintillation
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
– volume: 90
  start-page: 447
  year: 1985
  end-page: 456
  article-title: Control of seasonal and longitudinal occurrence of equatorial scintillations by the longitudinal gradient in integrated ‐region Pedersen conductivity
  publication-title: J. Geophys. Res.
– volume: 45
  year: 2010
  article-title: Characteristics of the equatorial ionization anomaly in relation to the day‐to‐day variability of ionospheric irregularities around the postsunset period
  publication-title: Radio Sci.
– volume: 19
  start-page: 707
  year: 1984
  end-page: 718
  article-title: Multistation study of night time scintillations in low latitudes: Evidence of control by equatorial F region irregularities
  publication-title: Radio Sci.
– volume: 102
  start-page: 2039
  year: 1997
  end-page: 2046
  article-title: Fast equatorial bubbles
  publication-title: J. Geophys. Res.
– volume: 112
  year: 2007
  article-title: Equatorial spread F‐related airglow depletions at Arecibo and conjugate observations
  publication-title: J. Geophys. Res.
– volume: 45
  year: 2010
  article-title: V/UHF space radars: Spatial phase decorrelation of transionospheric signals in the equatorial region
  publication-title: Radio Sci.
– start-page: 128
  volume-title: World Ionospheric Thermospheric Studies (WITS) Handbook
  year: 1989
  ident: e_1_2_6_8_1
– ident: e_1_2_6_65_1
  doi: 10.1029/JA081i031p05447
– ident: e_1_2_6_9_1
  doi: 10.1029/RS018i002p00263
– volume: 22
  start-page: 69
  year: 1993
  ident: e_1_2_6_23_1
  article-title: Coordinated multistation VHF scintillations observations in India during March–April 1991
  publication-title: Indian J. Radio Space Phys.
– ident: e_1_2_6_58_1
  doi: 10.1029/RS023i003p00347
– ident: e_1_2_6_42_1
  doi: 10.1029/JA089iA12p10903
– ident: e_1_2_6_57_1
  doi: 10.1029/RS019i003p00707
– ident: e_1_2_6_41_1
  doi: 10.1029/2007JA012403
– ident: e_1_2_6_46_1
  doi: 10.1007/s10712‐011‐9161‐z
– ident: e_1_2_6_25_1
  doi: 10.1016/j.jastp.2010.03.010
– ident: e_1_2_6_7_1
  doi: 10.1016/0021-9169(85)90052-2
– ident: e_1_2_6_4_1
  doi: 10.1029/2012RS004995
– ident: e_1_2_6_37_1
  doi: 10.1029/1999RS002310
– ident: e_1_2_6_24_1
  doi: 10.1029/RS021i003p00453
– ident: e_1_2_6_16_1
  doi: 10.1088/0370‐1301/63/2/305
– ident: e_1_2_6_38_1
  doi: 10.1029/2003RS002878
– ident: e_1_2_6_44_1
  doi: 10.1002/rds.20025
– ident: e_1_2_6_28_1
  doi: 10.1029/RG018i002p00401
– ident: e_1_2_6_14_1
  doi: 10.1029/2002RS002711
– ident: e_1_2_6_29_1
  doi: 10.1029/JA088iA09p07075
– ident: e_1_2_6_17_1
  doi: 10.1016/0032-0633(79)90157-0
– ident: e_1_2_6_27_1
  doi: 10.1029/2005RS003359
– ident: e_1_2_6_30_1
  doi: 10.1029/JA078i007p01167
– ident: e_1_2_6_3_1
  doi: 10.1007/BF00750769
– start-page: 361
  volume-title: Proceedings of the 2010 Institute of Navigation ION GNSS Meeting
  year: 2010
  ident: e_1_2_6_18_1
– ident: e_1_2_6_39_1
  doi: 10.1029/1998JA900111
– ident: e_1_2_6_5_1
  doi: 10.1029/JA084iA08p04251
– ident: e_1_2_6_15_1
  doi: 10.1016/0021-9169(78)90124-1
– ident: e_1_2_6_50_1
  doi: 10.1029/2009RS004329
– ident: e_1_2_6_36_1
  doi: 10.1029/97JA02698
– volume: 96
  start-page: 441
  year: 1949
  ident: e_1_2_6_45_1
  article-title: A radio method of measuring winds in the ionosphere
  publication-title: Proc. Inst. Electr. Eng., Part 3
– ident: e_1_2_6_20_1
  doi: 10.1029/2011RS004958
– ident: e_1_2_6_21_1
  doi: 10.1029/98RS02576
– ident: e_1_2_6_51_1
  doi: 10.1029/2010JA016330
– ident: e_1_2_6_47_1
  doi: 10.1002/2013RS005270
– ident: e_1_2_6_55_1
  doi: 10.1016/0021-9169(72)90003-7
– volume: 35
  start-page: 145
  year: 1979
  ident: e_1_2_6_22_1
  article-title: Ionospheric scintillations associated with features of equatorial ionosphere
  publication-title: Ann. Geophys.
– ident: e_1_2_6_33_1
  doi: 10.1109/TAES.2010.5595583
– ident: e_1_2_6_62_1
  doi: 10.1029/2009RS004226
– ident: e_1_2_6_13_1
  doi: 10.1029/2000GL012288
– ident: e_1_2_6_10_1
  doi: 10.1029/2008JA013899
– ident: e_1_2_6_11_1
  doi: 10.1029/RS005i006p00939
– volume: 29
  start-page: 22
  year: 2000
  ident: e_1_2_6_40_1
  article-title: Coordinated observations of VHF scintillations in India during February–March, 1993
  publication-title: Indian J. Radio Space Phys.
– ident: e_1_2_6_26_1
  doi: 10.1016/0273-1177(82)90390-8
– ident: e_1_2_6_6_1
  doi: 10.1029/GL003i011p00681
– ident: e_1_2_6_43_1
  doi: 10.1029/JA082i019p02650
– ident: e_1_2_6_54_1
  doi: 10.1016/j.jastp.2006.09.007
– ident: e_1_2_6_19_1
  doi: 10.1029/2010RS004591
– ident: e_1_2_6_61_1
  doi: 10.1029/RS022i005p00745
– ident: e_1_2_6_56_1
  doi: 10.1002/2013SW001001
– ident: e_1_2_6_63_1
  doi: 10.1029/JA085iA09p04631
– ident: e_1_2_6_2_1
  doi: 10.1109/PROC.1982.12314
– ident: e_1_2_6_49_1
  doi: 10.2151/jmsj.84A.343
– ident: e_1_2_6_32_1
– ident: e_1_2_6_31_1
  doi: 10.1029/96JA03376
– ident: e_1_2_6_48_1
  doi: 10.3319/TAO.2002.13.1.53(A)
– ident: e_1_2_6_64_1
  doi: 10.1016/0032-0633(69)90114-7
– ident: e_1_2_6_35_1
  doi: 10.1029/GL003i008p00448
– volume: 11
  start-page: 240
  year: 1982
  ident: e_1_2_6_52_1
  article-title: Equatorial scintillations of ATS‐6 radio beacons: Phase II‐Ootacamund 1975‐76
  publication-title: Indian J. Radio Space Phys.
– ident: e_1_2_6_53_1
  doi: 10.1016/0021-9169(90)90116-5
– ident: e_1_2_6_34_1
  doi: 10.1109/TAES.2010.5595583
– ident: e_1_2_6_59_1
  doi: 10.1029/2010JA016229
– ident: e_1_2_6_12_1
  doi: 10.1029/JA094iA09p11959
– ident: e_1_2_6_60_1
  doi: 10.1029/JA090iA01p00447
SSID ssj0014564
Score 2.094466
Snippet Transionospheric satellite navigation links operate primarily at L band and are frequently subject to severe degradation of performances arising out of...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 851
SubjectTerms Drift
Global Positioning System
Global positioning systems
GNSS
GNSS position determination accuracy under adverse ionospheric conditions
GPS
Ionosphere
Irregularities
irregularity dynamics at VHF
Navigation
Proxy client servers
Satellite navigation systems
Satellites
Scintillation
VHF
Title Effects of transionospheric signal decorrelation on Global Navigation Satellite Systems (GNSS) performance studied from irregularity dynamics around the northern crest of the EIA
URI https://api.istex.fr/ark:/67375/WNG-N5353D4H-6/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2F2014RS005406
https://www.proquest.com/docview/1645375183
https://www.proquest.com/docview/1642287232
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bixMxFA51-6IPoqtidZUIuijDrHPJ3B7LtmuVdoResG9DJpOB4tIuvYj4A_xB_kLPSTLTqa6yCqW0aQgp55vkXL9DyEuZ-KX0k8B2feHbTPq-nXtJCYocE04hchFFWJw8SsPBjH2YB_NW63sja2m3zc_Et2vrSv5HqjAGcsUq2X-QbL0oDMBnkC-8g4Th_UYy7u-TMbZ452CFwgZ5AhbCwsQMDMCgebk2GW-WodCA8ZR_UeQaeFxwxcq5lRV9uXIdpJMJegyuGoUFG5VzWOiSlAWsim3ssfmdVei-9huLr7FNk9JmlxgRwj5rAtt_VLkI_ffdpj485sViZZlreO813xykb4-1v7AODmE2494Na1wWLquT3-pjmMV2GOq-w2dSn7wJY3aUqL669dGs2UwrCDqNgzY2NLXmztY9CX67DjS9LG5hPFHK6TWs2-nH7GI2HGbT_nx6i7S9KMJwf7vbGw0ndTwKSXd0roLeuCmhgPXfNlc_UG7a-Jx-PbBcmvaPUmCm98hdY3nQrobRfdKSy2Nyp8FHeUw6IzChVmsVaaGn9PxyAfaM-vaA_DBgo6uS_go2qsFGD8BG4aXBRvdgozXYqAEbfY1Qe0MbQKMGaBSBRptAoxXQqAYaBUjRCmhUAU3tD0YBaA_J7KI_PR_YpuGHLZD30i5BeSzgFilCpww8HooyiTyec5YUUemCtsVyyePSSYqcBzIsctDdE8HjwoUpsZT-I3K0XC3lY0IdLmQecsaCPGE5d0DNLlxXlG4UC3SZdIhVSSoThg0fm7JcZprH28uacu2QV_XsK80C84d5p0ro9SS-_oyZk1GQfUrfZWngB36PDTKYeFKhIjMHyiZzQxb4GAb1O-RF_TMc9xjD40u52qk5nhdHYAfBP1Bo-uuGsnFv4iHh0pMbrPiU3N4_rSfkaLveyWegcm_z5-Z5-AnN-Nnm
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+transionospheric+signal+decorrelation+on+Global+Navigation+Satellite+Systems+%28GNSS%29+performance+studied+from+irregularity+dynamics+around+the+northern+crest+of+the+EIA&rft.jtitle=Radio+science&rft.au=Das%2C+T&rft.au=Roy%2C+B&rft.au=Paul%2C+A&rft.date=2014-10-01&rft.issn=0048-6604&rft.eissn=1944-799X&rft.volume=49&rft.issue=10&rft.spage=851&rft.epage=860&rft_id=info:doi/10.1002%2F2014RS005406&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-6604&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-6604&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-6604&client=summon