Effects of transionospheric signal decorrelation on Global Navigation Satellite Systems (GNSS) performance studied from irregularity dynamics around the northern crest of the EIA
Transionospheric satellite navigation links operate primarily at L band and are frequently subject to severe degradation of performances arising out of ionospheric irregularities. Various characteristic features of equatorial ionospheric irregularity bubbles like the drift velocity, characteristic v...
Saved in:
Published in | Radio science Vol. 49; no. 10; pp. 851 - 860 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Washington
Blackwell Publishing Ltd
01.10.2014
|
Subjects | |
Online Access | Get full text |
ISSN | 0048-6604 1944-799X |
DOI | 10.1002/2014RS005406 |
Cover
Abstract | Transionospheric satellite navigation links operate primarily at L band and are frequently subject to severe degradation of performances arising out of ionospheric irregularities. Various characteristic features of equatorial ionospheric irregularity bubbles like the drift velocity, characteristic velocity, decorrelation time, and decorrelation distance can be determined using spaced aerial measurements at VHF. These parameters measured at VHF from a station Calcutta situated near the northern crest of the Equatorial Ionization Anomaly (EIA) in the geophysically sensitive Indian longitude sector have been correlated with L band scintillation indices and GPS position accuracy parameters for identifying possible proxies to L band scintillations. Good correspondences have been observed between decorrelation times and distances at VHF with GPS S4 and Position Dilution of Precision during periods of GPS scintillations (S4 > 0.3) for February–April 2011, August–October 2011, and February–April 2012. A functional relation has been developed between irregularity drift velocity measured at VHF and S4 at L band during February–April 2011, and validation of measured S4 and predicted values performed during August–October 2011 and February–April 2012. Significant improvement in L band scintillation prediction and consequent navigational accuracy will result using such relations derived from VHF irregularity measurements which are much simpler and inexpensive.
Key Points
Irregularity dynamical information derived from VHF spaced aerial measurementsProxy indicators of GNSS performance degradationPrediction of GPS L band S4 |
---|---|
AbstractList | Transionospheric satellite navigation links operate primarily at L band and are frequently subject to severe degradation of performances arising out of ionospheric irregularities. Various characteristic features of equatorial ionospheric irregularity bubbles like the drift velocity, characteristic velocity, decorrelation time, and decorrelation distance can be determined using spaced aerial measurements at VHF. These parameters measured at VHF from a station Calcutta situated near the northern crest of the Equatorial Ionization Anomaly (EIA) in the geophysically sensitive Indian longitude sector have been correlated with L band scintillation indices and GPS position accuracy parameters for identifying possible proxies to L band scintillations. Good correspondences have been observed between decorrelation times and distances at VHF with GPS S sub(4) and Position Dilution of Precision during periods of GPS scintillations (S sub(4)>0.3) for February-April 2011, August-October 2011, and February-April 2012. A functional relation has been developed between irregularity drift velocity measured at VHF and S sub(4) at L band during February-April 2011, and validation of measured S sub(4) and predicted values performed during August-October 2011 and February-April 2012. Significant improvement in L band scintillation prediction and consequent navigational accuracy will result using such relations derived from VHF irregularity measurements which are much simpler and inexpensive. Key Points * Irregularity dynamical information derived from VHF spaced aerial measurements * Proxy indicators of GNSS performance degradation * Prediction of GPS L band S4 Transionospheric satellite navigation links operate primarily at L band and are frequently subject to severe degradation of performances arising out of ionospheric irregularities. Various characteristic features of equatorial ionospheric irregularity bubbles like the drift velocity, characteristic velocity, decorrelation time, and decorrelation distance can be determined using spaced aerial measurements at VHF. These parameters measured at VHF from a station Calcutta situated near the northern crest of the Equatorial Ionization Anomaly (EIA) in the geophysically sensitive Indian longitude sector have been correlated with L band scintillation indices and GPS position accuracy parameters for identifying possible proxies to L band scintillations. Good correspondences have been observed between decorrelation times and distances at VHF with GPS S4 and Position Dilution of Precision during periods of GPS scintillations (S4 > 0.3) for February–April 2011, August–October 2011, and February–April 2012. A functional relation has been developed between irregularity drift velocity measured at VHF and S4 at L band during February–April 2011, and validation of measured S4 and predicted values performed during August–October 2011 and February–April 2012. Significant improvement in L band scintillation prediction and consequent navigational accuracy will result using such relations derived from VHF irregularity measurements which are much simpler and inexpensive. Key Points Irregularity dynamical information derived from VHF spaced aerial measurementsProxy indicators of GNSS performance degradationPrediction of GPS L band S4 Transionospheric satellite navigation links operate primarily at L band and are frequently subject to severe degradation of performances arising out of ionospheric irregularities. Various characteristic features of equatorial ionospheric irregularity bubbles like the drift velocity, characteristic velocity, decorrelation time, and decorrelation distance can be determined using spaced aerial measurements at VHF. These parameters measured at VHF from a station Calcutta situated near the northern crest of the Equatorial Ionization Anomaly (EIA) in the geophysically sensitive Indian longitude sector have been correlated with L band scintillation indices and GPS position accuracy parameters for identifying possible proxies to L band scintillations. Good correspondences have been observed between decorrelation times and distances at VHF with GPS S 4 and Position Dilution of Precision during periods of GPS scintillations ( S 4 > 0.3) for February–April 2011, August–October 2011, and February–April 2012. A functional relation has been developed between irregularity drift velocity measured at VHF and S 4 at L band during February–April 2011, and validation of measured S 4 and predicted values performed during August–October 2011 and February–April 2012. Significant improvement in L band scintillation prediction and consequent navigational accuracy will result using such relations derived from VHF irregularity measurements which are much simpler and inexpensive. Irregularity dynamical information derived from VHF spaced aerial measurements Proxy indicators of GNSS performance degradation Prediction of GPS L band S4 Transionospheric satellite navigation links operate primarily at L band and are frequently subject to severe degradation of performances arising out of ionospheric irregularities. Various characteristic features of equatorial ionospheric irregularity bubbles like the drift velocity, characteristic velocity, decorrelation time, and decorrelation distance can be determined using spaced aerial measurements at VHF. These parameters measured at VHF from a station Calcutta situated near the northern crest of the Equatorial Ionization Anomaly (EIA) in the geophysically sensitive Indian longitude sector have been correlated with L band scintillation indices and GPS position accuracy parameters for identifying possible proxies to L band scintillations. Good correspondences have been observed between decorrelation times and distances at VHF with GPS S4 and Position Dilution of Precision during periods of GPS scintillations (S4>0.3) for February-April 2011, August-October 2011, and February-April 2012. A functional relation has been developed between irregularity drift velocity measured at VHF and S4 at L band during February-April 2011, and validation of measured S4 and predicted values performed during August-October 2011 and February-April 2012. Significant improvement in L band scintillation prediction and consequent navigational accuracy will result using such relations derived from VHF irregularity measurements which are much simpler and inexpensive. Key Points Irregularity dynamical information derived from VHF spaced aerial measurements Proxy indicators of GNSS performance degradation Prediction of GPS L band S4 |
Author | Das, T. Roy, B. Paul, A. |
Author_xml | – sequence: 1 givenname: T. surname: Das fullname: Das, T. organization: S.K. Mitra Center for Research in Space Environment, University of Calcutta, Calcutta, India – sequence: 2 givenname: B. surname: Roy fullname: Roy, B. organization: Institute of Radio Physics and Electronics, University of Calcutta, Calcutta, India – sequence: 3 givenname: A. surname: Paul fullname: Paul, A. email: ashikpaul@aol.in organization: Institute of Radio Physics and Electronics, University of Calcutta, Calcutta, India |
BookMark | eNp9kVFrFDEQxxep4LX65gcI-FLB1SSbze4-lva8FsoJXUXfQi6ZXFN3k2uSVfdr-QmNd0WkoBAY8s_vPzOZOS6OnHdQFC8Jfkswpu8oJuymx7hmmD8pFqRjrGy67stRscCYtSXnmD0rjmO8w5msOVsUP5fGgEoReYNSkC5a73zc3UKwCkW7dXJAGpQPAQaZ8iPKZzX4TdbX8pvdHsReJhgGmwD1c0wwRnS6Wvf9a7SDYHwYpVOAYpq0BY1M8COyOeN2GmSwaUZ6dnK0KiIZ_OQ0SreAnA85BIdUgJj2_WV1eXX2vHhq5BDhxUM8KT69X348vyyvP6yuzs-uS1U1TVca0tYaM6o5NjWVXJmuoXIjWacbQ0iF2QZka3CnN7IGrjecVp2SrSYZaQGqk-L0kHcX_P2UexCjjSp_UzrwUxSEM0rbhlY0o68eoXd-Cnl2e6qumpq0VabogVLBxxjACGXTfn558nYQBIvfaxR_rzGb3jwy7YIdZZj_hT_U-G4HmP_LipuLPt95l03lwWTz7n78McnwVfAmNy8-r1diXVd1dcEuBa9-AShPwI8 |
CitedBy_id | crossref_primary_10_1029_2022RS007437 crossref_primary_10_1134_S001679322360042X crossref_primary_10_1007_s10509_024_04372_w crossref_primary_10_1002_2016JA023127 crossref_primary_10_1029_2019RS007042 crossref_primary_10_1016_j_asr_2019_11_035 crossref_primary_10_1016_j_asr_2017_01_044 crossref_primary_10_1002_2016RS005964 |
Cites_doi | 10.1029/JA081i031p05447 10.1029/RS018i002p00263 10.1029/RS023i003p00347 10.1029/JA089iA12p10903 10.1029/RS019i003p00707 10.1029/2007JA012403 10.1007/s10712‐011‐9161‐z 10.1016/j.jastp.2010.03.010 10.1016/0021-9169(85)90052-2 10.1029/2012RS004995 10.1029/1999RS002310 10.1029/RS021i003p00453 10.1088/0370‐1301/63/2/305 10.1029/2003RS002878 10.1002/rds.20025 10.1029/RG018i002p00401 10.1029/2002RS002711 10.1029/JA088iA09p07075 10.1016/0032-0633(79)90157-0 10.1029/2005RS003359 10.1029/JA078i007p01167 10.1007/BF00750769 10.1029/1998JA900111 10.1029/JA084iA08p04251 10.1016/0021-9169(78)90124-1 10.1029/2009RS004329 10.1029/97JA02698 10.1029/2011RS004958 10.1029/98RS02576 10.1029/2010JA016330 10.1002/2013RS005270 10.1016/0021-9169(72)90003-7 10.1109/TAES.2010.5595583 10.1029/2009RS004226 10.1029/2000GL012288 10.1029/2008JA013899 10.1029/RS005i006p00939 10.1016/0273-1177(82)90390-8 10.1029/GL003i011p00681 10.1029/JA082i019p02650 10.1016/j.jastp.2006.09.007 10.1029/2010RS004591 10.1029/RS022i005p00745 10.1002/2013SW001001 10.1029/JA085iA09p04631 10.1109/PROC.1982.12314 10.2151/jmsj.84A.343 10.1029/96JA03376 10.3319/TAO.2002.13.1.53(A) 10.1016/0032-0633(69)90114-7 10.1029/GL003i008p00448 10.1016/0021-9169(90)90116-5 10.1029/2010JA016229 10.1029/JA094iA09p11959 10.1029/JA090iA01p00447 |
ContentType | Journal Article |
Copyright | 2014. American Geophysical Union. All Rights Reserved. |
Copyright_xml | – notice: 2014. American Geophysical Union. All Rights Reserved. |
DBID | BSCLL AAYXX CITATION 7SP 8FD H8D L7M FR3 KR7 |
DOI | 10.1002/2014RS005406 |
DatabaseName | Istex CrossRef Electronics & Communications Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace Engineering Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts Civil Engineering Abstracts Engineering Research Database |
DatabaseTitleList | Aerospace Database CrossRef Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Engineering |
EISSN | 1944-799X |
EndPage | 860 |
ExternalDocumentID | 3557521311 10_1002_2014RS005406 RDS20169 ark_67375_WNG_N5353D4H_6 |
Genre | article |
GroupedDBID | -~X 05W 0R~ 123 186 1OB 1OC 24P 29P 31~ 33P 3V. 50Y 6IK 6TJ 8-1 88I 8FE 8FG 8FH 8G5 8R4 8R5 A00 AAESR AAHHS AAIHA AAJGR AANLZ AASGY AAXRX AAZKR ABCUV ABDPE ABJNI ABTAH ABUWG ACAHQ ACBEA ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOD ACPOU ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFNX AFFPM AFGKR AFKRA AFPWT AHBTC AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALXUD AMYDB ARAPS ASPBG AVWKF AZFZN AZQEC AZVAB BDRZF BEFXN BENPR BFFAM BFHJK BGLVJ BGNUA BHPHI BKEBE BKSAR BMXJE BPEOZ BPHCQ BRXPI BSCLL CCPQU CS3 D1K DCZOG DPXWK DRFUL DRSTM DU5 DWQXO EBS EJD FEDTE G-S GNUQQ GODZA GUQSH HCIFZ HGLYW HVGLF HZ~ H~9 IPLJI JAVBF K6- LATKE LEEKS LITHE LK5 LOXES LUTES LYRES M2O M2P M7R MEWTI MSFUL MSSTM MXFUL MXSTM MY~ O9- OCL OHT OK1 P-X P2P P2W P62 PCBAR PQQKQ PROAC Q2X R.K RIWAO RJQFR ROL SAMSI SUPJJ TN5 UHW UQL VOH WBKPD WIN WXSBR WYJ XOL YNT ZY4 ZZTAW ~02 ~OA ~~A AAHQN AAMNL AANHP AAYCA ABAZT ACRPL ACYXJ ADNMO AEUYN AFWVQ ALVPJ AAYXX ABVLG ADMLS AEYWJ AGHNM AGQPQ AGYGG CITATION PHGZM PHGZT 7SP 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY H8D L7M FR3 KR7 LH4 |
ID | FETCH-LOGICAL-c3779-f185d042d60f52a6cf972aba49d7f11304bea8f09dba5e6db6239ca8d1a498ee3 |
ISSN | 0048-6604 |
IngestDate | Fri Sep 05 12:49:05 EDT 2025 Fri Jul 25 04:17:56 EDT 2025 Tue Jul 01 04:07:12 EDT 2025 Thu Apr 24 23:09:27 EDT 2025 Wed Jan 22 16:48:02 EST 2025 Wed Oct 30 09:49:52 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3779-f185d042d60f52a6cf972aba49d7f11304bea8f09dba5e6db6239ca8d1a498ee3 |
Notes | ark:/67375/WNG-N5353D4H-6 ArticleID:RDS20169 istex:528A40C90C8FD2EBF689C040A2F47354E519EEA0 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 1645375183 |
PQPubID | 54001 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1642287232 proquest_journals_1645375183 crossref_citationtrail_10_1002_2014RS005406 crossref_primary_10_1002_2014RS005406 wiley_primary_10_1002_2014RS005406_RDS20169 istex_primary_ark_67375_WNG_N5353D4H_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-10 October 2014 2014-10-00 20141001 |
PublicationDateYYYYMMDD | 2014-10-01 |
PublicationDate_xml | – month: 10 year: 2014 text: 2014-10 |
PublicationDecade | 2010 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationTitle | Radio science |
PublicationTitleAlternate | Radio Sci |
PublicationYear | 2014 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | Kelley, M. C., G. Haerendal, H. Kappler, A. Valenzuela, B. B. Balsley, D. A. Carter, W. L. Ecklund, C. W. Carlson, B. Hausler, and R. Torbert (1976), Evidence for a Rayleigh-Taylor type instability and upwelling of depleted density regions during equatorial spread-F, Geophys. Res. Lett., 3, 448-450, doi:10.1029/GL003i008p00448. Bhattacharyya, A., S. J. Franke, and K. C. Yeh (1989), Characteristic velocity of equatorial F region irregularities determined from spaced receiver scintillation data, J. Geophys. Res., 94, 11,959-11,969, doi:10.1029/JA094iA09p11959. Paul, A., and A. DasGupta (2010), Characteristics of the equatorial ionization anomaly in relation to the day-to-day variability of ionospheric irregularities around the postsunset period, Radio Sci., 45, RS6001, doi:10.1029/2009RS004329. Aarons, J. (1982), Global morphology of ionospheric scintillations, Proc. IEEE, 70(4), 360-378. Briggs, B. H., G. J. Phillips, and D. H. Shinn (1950), The analysis of observations on spaced receivers of the fading of radio signals, Proc. Phys. Soc. B, 63, 106, doi:10.1088/0370-1301/63/2/305. Kintner, P. M., H. Kil, T. L. Beach, and E. R. de Paula (2001), Fading timescales associated with GPS signals and potential consequences, Radio Sci., 36, 731-743, doi:10.1029/1999RS002310. Anderson, D. N., and G. Haerendel (1979), The motion of depleted plasma regions in the equatorial ionosphere, J. Geophys. Res., 84, 4251-4256, doi:10.1029/JA084iA08p04251. Spatz, D. E., S. J. Franke, and K. C. Yeh (1988), Analysis and interpretation of spaced receiver scintillation data recorded at an equatorial station, Radio Sci., 23, 347-361, doi:10.1029/RS023i003p00347. Fejer, B. G., and M. C. Kelley (1980), Ionospheric irregularities, Rev. Geophys. Space Phys., 18(2), 401-454. Tsunoda, R. T. (1985), Control of seasonal and longitudinal occurrence of equatorial scintillations by the longitudinal gradient in integrated E-region Pedersen conductivity, J. Geophys. Res., 90, 447-456, doi:10.1029/JA090iA01p00447. Vacchione, J. D., S. J. Franke, and K. C. Yeh (1987), A new analysis technique for estimating zonal irregularity drifts and variability in the equatorial F region using spaced receiver scintillation data, Radio Sci., 22, 347-361, doi:10.1029/RS022i005p00745. Taori, A., N. Dashora, K. Raghunath, J. M. Russell III, and M. G. Mlynczak (2011), Simultaneous mesosphere-thermosphere-ionosphere parameter measurements over Gadanki (13.5°N, 79.2°E): First results, J. Geophys. Res., 116, A05310, doi:10.1029/2010JA016229. Rastogi, R. G., P. V. Koparkar, H. Chandra, and M. R. Deshpande (1990), Multifrequency studies of equatorial ionospheric scintillations at Ootacamund, J. Atmos. Terr. Phys., 52, 69-76. Carrano, C. S., K. M. Groves, R. G. Caton, C. L. Rino, and P. R. Straus (2011), Multiple phase screen modeling of ionospheric scintillation along radio occultation raypaths, Radio Sci., 46, RS0D07, doi:10.1029/2010RS004591. DasGupta, A., A. Paul, S. Ray, A. Das, and S. Ananthakrishnan (2006), Equatorial bubbles as observed with GPS measurements over Pune, India, Radio Sci., 41, RS5S28, doi:10.1029/2005RS003359. Rastogi, R. G., H. Chandra, and M. R. Deshpande (1982), Equatorial scintillations of ATS-6 radio beacons: Phase II-Ootacamund 1975-76, Indian J. Radio Space Phys., 11, 240-246. Paul, A., B. Roy, S. Ray, A. Das, and A. DasGupta (2011), Characteristics of intense space weather events as observed from a low latitude station during solar minimum, J. Geophys. Res., 116, A10307, doi:10.1029/2010JA016330. Weber, E. J., J. Buchau, and J. G. Moore (1980), Airborne studies of equatorial F-layer ionospheric irregularities, J. Geophys. Res., 85, 4631-4641, doi:10.1029/JA085iA09p04631. Moraes, A. O., E. R. de Paula, M. T. de Assis Honorato Muella, and W. J. Perrella (2014), On the second order statistics for GPS ionospheric scintillation modeling, Radio Sci., 49, 94-105, doi:10.1002/2013RS005270. Franke, S. J., and C. H. Liu (1983), Observations and modeling of multifrequency VHF and GHz scintillations in the equatorial region, J. Geophys. Res., 88, 7075-7085, doi:10.1029/JA088iA09p07075. Basu, S., and H. E. Whitney (1983), The temporal structure of intensity scintillations near the magnetic equator, Radio Sci., 18, 263-271, doi:10.1029/RS018i002p00263. Bittencourt, J. A., and Y. Sahai (1978), F-region neutral winds from ionosonde measurements of hmF2 at low latitude magnetic conjugate region, J. Atmos. Terr. Phys., 40(6), 669-676. Mitra, S. N. (1949), A radio method of measuring winds in the ionosphere, Proc. Inst. Electr. Eng., Part 3, 96, 441-446. Kil, H., and R. A. Heelis (1998), Global distribution of density irregularities in the equatorial ionosphere, J. Geophys. Res., 103, 407-417, doi:10.1029/97JA02698. Otsuka, Y., K. Shiokawa, and T. Ogawa (2006), Equatorial ionospheric scintillations and zonal irregularity drifts observed with closely spaced GPS receivers in Indonesia, J. Meteorol. Soc. Jpn., 84A, 343-351. Moraes, A. O., F. S. Rodrigues, W. J. Perrella, and E. R. Paula (2011), Analysis of the characteristics of low-latitude GPS amplitude scintillation measured during solar maximum conditions and implications for receiver performance, Surv. Geophys., 33(5), 1107-1131, doi:10.1007/s10712-011-9161-z. Akala, A. O., P. H. Doherty, C. S. Carrano, C. E. Valladares, and K. M. Groves (2012), Impacts of ionospheric scintillations on GPS receivers intended for equatorial aviation applications, Radio Sci., 47, RS4007, doi:10.1029/2012RS004995. Humphreys, T. E., M. L. Psiaki, and P. M. Kintner (2010b), Modeling the effects of ionospheric scintillation on GPS carrier phase tracking, IEEE Trans. Aerosp. Electron. Syst., 46(4), 1624-1637. Das, A., A. DasGupta, and S. Ray (2010), Characteristics of L-band (1.5 GHz) and VHF (244 MHz) amplitude scintillations recorded at Kolkata during 1996-2006 and development of models for the occurrence probability of scintillations using Neural network, J. Atmos. Sol. Terr. Phys., 72(9-10), 685-704. Maruyama, T., and N. Matuura (1984), Longitudinal variability of annual changes in activity of equatorial spread-F and plasma bubbles, J. Geophys. Res., 89, 10,903-10,912, doi:10.1029/JA089iA12p10903. Aarons, J. (1993), The longitudinal morphology of equatorial F-layer irregularities relevant to their occurrence, Space Sci. Rev., 63(3-4), 209-243. Humphreys, T. E., M. L. Psiaki, B. M. Ledvina, A. P. Cerruti, and P. M. Kintner Jr. (2010a), Data-driven testbed for evaluating GPS carrier tracking loops in ionospheric scintillation, IEEE Trans. Aerosp. Electron. Syst., 46(4), 1609-1623. Whitney, H. E., J. Aarons, and C. Malik (1969), A proposed index for measuring ionospheric scintillations, Planet. Space Sci., 17(5), 1069-1073. Somayajulu, Y. V., S. C. Garg, R. S. Dabas, L. Singh, T. R. Tyagi, B. Loknadhan, S. Ramkrishna, and G. Navneeth (1984), Multistation study of night time scintillations in low latitudes: Evidence of control by equatorial F region irregularities, Radio Sci., 19, 707-718, doi:10.1029/RS019i003p00707. Hanson, W. B., W. R. Coley, R. A. Heelis, and A. L. Urquhart (1997), Fast equatorial bubbles, J. Geophys. Res., 102, 2039-2046, doi:10.1029/96JA03376. Ray, S., and A. DasGupta (2007), Geostationary L-band signal scintillation observations near the crest of equatorial anomaly in the Indian zone, J. Atmos. Sol. Terr. Phys., 69(4-5), 500-514. Kintner, P. M., B. M. Ledvina, E. R. de Paula, and I. J. Kantor (2004), Size, shape, orientation, speed, and duration of GPS equatorial anomaly scintillations, Radio Sci., 39, RS2012, doi:10.1029/2003RS002878. Hanson, W. B., and S. Sanatani (1973), Large NI gradients below the equatorial F-peak, J. Geophys. Res., 78, 1167-1173, doi:10.1029/JA078i007p01167. Kudeki, E., and S. Bhattacharyya (1999), Post-sunset vortex in equatorial F-region plasma drifts and implications for bottomside spread-F, J. Geophys. Res., 104, 28,163-28,170, doi:10.1029/1998JA900111. Bhar, J. N., A. DasGupta, and S. Basu (1970), Studies on F-region irregularities at low latitude from scintillations of satellite signals, Radio Sci., 5, 939-942, doi:10.1029/RS005i006p00939. DasGupta, A., D. N. Anderson, and J. A. Klobuchar (1983), Equatorial F-region ionization differences between March and September, 1979, Adv. Space Res., 2(10), 199-202. Chakraborty, S. K., A. DasGupta, S. Ray, and S. Banerjee (1999), Long-term observations of VHF scintillation and total electron content near the crest of the equatorial anomaly in the Indian longitude zone, Radio Sci., 34, 241-255, doi:10.1029/98RS02576. Martinis, C., and M. Mendillo (2007), Equatorial spread F-related airglow depletions at Arecibo and conjugate observations, J. Geophys. Res., 112, A10310, doi:10.1029/2007JA012403. Rishbeth, H. (1972), Thermospheric winds and the F-region: A review, J. Atmos. Terr. Phys., 34(1), 1-47. Basu, S., and S. Basu (1976), Correlated measurements of scintillations and in situ F region irregularities from OGO-6, Geophys. Res. Lett., 3, 681-684, doi:10.1029/GL003i011p00681. McNamara, L. F., R. G. Caton, R. T. Parris, T. R. Pedersen, D. C. Thompson, K. C. Wiens, and K. M. Groves (2013), Signatures of equatorial plasma bubbles in VHF satellite scintillations and equatorial ionograms, Radio Sci., 48, 89-101, doi:10.1002/rds.20025. Bhattacharyya, A., K. M. Groves, S. Basu, and H. Kuenzler (2003), L-band scintillation activity and space-time structure of low-latitude UHF scintillations, Radio Sci., 38(1), 1004, doi:10.1029/2002RS002711. Burke, W. J., D. E. Donatelli, R. C. Sagalyn, and M. C. Kelley (1979), Observations of low density regions at high altitudes in the topside equatorial ionosphere and their interpretation in terms of equatorial spread-F, Planet. Space Sci., 27(5), 593-601. Chandra, H., et al. (1993), Coordinated multistation VHF scintillations observations in India during March-April 1991, Indian J. Radio Space Phys., 22, 69-81. Woodman, R. F., and C. La Hoz (1976), Radar observations of F-region equatorial irregularities, J. Geophys. Res., 81, 5447-5466, doi:10.1029/JA081i031p05 2011; 116 1990; 52 1979; 35 1950; 63 1983; 2 1980; 85 1993; 22 2002; 13 1993; 63 1982; 11 1949; 96 1983; 18 2009; 114 1970; 5 1997; 102 1979; 27 2013; 11 2010a; 46 2006; 84A 2004; 39 1985; 90 1984; 19 2010b; 46 2007; 69 2010; 72 1989; 2 2000; 29 2013; 48 1982; 70 2010 1973; 78 1984; 89 1976; 81 2014; 49 1976; 3 2011; 33 2003; 38 2005 2001; 28 1969; 17 1999; 104 1977; 82 1985; 47 2010; 45 2007; 112 1987; 22 1989; 94 2006; 41 1980; 18 1986; 21 1978; 40 1999; 34 1988; 23 2011; 46 1998; 103 2012; 47 1972; 34 2001; 36 1979; 84 1983; 88 e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 Kumar S. (e_1_2_6_40_1) 2000; 29 e_1_2_6_55_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_62_1 e_1_2_6_64_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 Chandra H. (e_1_2_6_22_1) 1979; 35 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_28_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 Rastogi R. G. (e_1_2_6_52_1) 1982; 11 Chandra H. (e_1_2_6_23_1) 1993; 22 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 Mitra S. N. (e_1_2_6_45_1) 1949; 96 e_1_2_6_63_1 e_1_2_6_42_1 e_1_2_6_65_1 e_1_2_6_21_1 Basu S. (e_1_2_6_8_1) 1989 e_1_2_6_61_1 Carrano C. S. (e_1_2_6_18_1) 2010 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 |
References_xml | – reference: Dabas, R. S., and B. M. Reddy (1986), Night time VHF scintillations at 23°N magnetic latitude and their association with equatorial F-region irregularities, Radio Sci., 21, 453-462, doi:10.1029/RS021i003p00453. – reference: Otsuka, Y., K. Shiokawa, and T. Ogawa (2006), Equatorial ionospheric scintillations and zonal irregularity drifts observed with closely spaced GPS receivers in Indonesia, J. Meteorol. Soc. Jpn., 84A, 343-351. – reference: Tsunoda, R. T. (1985), Control of seasonal and longitudinal occurrence of equatorial scintillations by the longitudinal gradient in integrated E-region Pedersen conductivity, J. Geophys. Res., 90, 447-456, doi:10.1029/JA090iA01p00447. – reference: Bhattacharyya, A., S. Basu, K. M. Groves, C. E. Valladares, and R. Sheehan (2001), Dynamics of equatorial F region irregularities from spaced receiver scintillation observations, Geophys. Res. Lett., 28, 119-122, doi:10.1029/2000GL012288. – reference: Kelley, M. C., G. Haerendal, H. Kappler, A. Valenzuela, B. B. Balsley, D. A. Carter, W. L. Ecklund, C. W. Carlson, B. Hausler, and R. Torbert (1976), Evidence for a Rayleigh-Taylor type instability and upwelling of depleted density regions during equatorial spread-F, Geophys. Res. Lett., 3, 448-450, doi:10.1029/GL003i008p00448. – reference: Martinis, C., and M. Mendillo (2007), Equatorial spread F-related airglow depletions at Arecibo and conjugate observations, J. Geophys. Res., 112, A10310, doi:10.1029/2007JA012403. – reference: Taori, A., N. Dashora, K. Raghunath, J. M. Russell III, and M. G. Mlynczak (2011), Simultaneous mesosphere-thermosphere-ionosphere parameter measurements over Gadanki (13.5°N, 79.2°E): First results, J. Geophys. Res., 116, A05310, doi:10.1029/2010JA016229. – reference: Ray, S., and A. DasGupta (2007), Geostationary L-band signal scintillation observations near the crest of equatorial anomaly in the Indian zone, J. Atmos. Sol. Terr. Phys., 69(4-5), 500-514. – reference: Kintner, P. M., B. M. Ledvina, E. R. de Paula, and I. J. Kantor (2004), Size, shape, orientation, speed, and duration of GPS equatorial anomaly scintillations, Radio Sci., 39, RS2012, doi:10.1029/2003RS002878. – reference: Humphreys, T. E., M. L. Psiaki, and P. M. Kintner (2010b), Modeling the effects of ionospheric scintillation on GPS carrier phase tracking, IEEE Trans. Aerosp. Electron. Syst., 46(4), 1624-1637. – reference: Carrano, C. S., K. M. Groves, R. G. Caton, C. L. Rino, and P. R. Straus (2011), Multiple phase screen modeling of ionospheric scintillation along radio occultation raypaths, Radio Sci., 46, RS0D07, doi:10.1029/2010RS004591. – reference: Rastogi, R. G., H. Chandra, and M. R. Deshpande (1982), Equatorial scintillations of ATS-6 radio beacons: Phase II-Ootacamund 1975-76, Indian J. Radio Space Phys., 11, 240-246. – reference: Carrano, C. S., K. M. Groves, and R. G. Caton (2012), The effect of phase scintillations on the accuracy of phase screen simulation using deterministic screens derived from GPS and ALTAIR measurements, Radio Sci., 47, RS0L25, doi:10.1029/2011RS004958. – reference: Vacchione, J. D., S. J. Franke, and K. C. Yeh (1987), A new analysis technique for estimating zonal irregularity drifts and variability in the equatorial F region using spaced receiver scintillation data, Radio Sci., 22, 347-361, doi:10.1029/RS022i005p00745. – reference: Mukherjee, G. K. (2002), Mapping of the simultaneous movement of Equatorial Ionization Anomaly (EIA) and ionospheric plasma bubbles through all-sky imaging of OI 630 nm emission, Terr. Atmos. Oceanic Sci., 13, 53-64. – reference: Basu, S., and S. Basu (1976), Correlated measurements of scintillations and in situ F region irregularities from OGO-6, Geophys. Res. Lett., 3, 681-684, doi:10.1029/GL003i011p00681. – reference: Moraes, A. O., E. R. de Paula, M. T. de Assis Honorato Muella, and W. J. Perrella (2014), On the second order statistics for GPS ionospheric scintillation modeling, Radio Sci., 49, 94-105, doi:10.1002/2013RS005270. – reference: Chandra, H., et al. (1993), Coordinated multistation VHF scintillations observations in India during March-April 1991, Indian J. Radio Space Phys., 22, 69-81. – reference: Akala, A. O., P. H. Doherty, C. S. Carrano, C. E. Valladares, and K. M. Groves (2012), Impacts of ionospheric scintillations on GPS receivers intended for equatorial aviation applications, Radio Sci., 47, RS4007, doi:10.1029/2012RS004995. – reference: Franke, S. J., and C. H. Liu (1983), Observations and modeling of multifrequency VHF and GHz scintillations in the equatorial region, J. Geophys. Res., 88, 7075-7085, doi:10.1029/JA088iA09p07075. – reference: van de Kamp, M., P. S. Cannon, and R. J. Watson (2010), V/UHF space radars: Spatial phase decorrelation of transionospheric signals in the equatorial region, Radio Sci., 45, RS4012, doi:10.1029/2009RS004226. – reference: Bittencourt, J. A., and Y. Sahai (1978), F-region neutral winds from ionosonde measurements of hmF2 at low latitude magnetic conjugate region, J. Atmos. Terr. Phys., 40(6), 669-676. – reference: Bhattacharyya, A., S. J. Franke, and K. C. Yeh (1989), Characteristic velocity of equatorial F region irregularities determined from spaced receiver scintillation data, J. Geophys. Res., 94, 11,959-11,969, doi:10.1029/JA094iA09p11959. – reference: Anderson, D. N., and G. Haerendel (1979), The motion of depleted plasma regions in the equatorial ionosphere, J. Geophys. Res., 84, 4251-4256, doi:10.1029/JA084iA08p04251. – reference: DasGupta, A., A. Paul, S. Ray, A. Das, and S. Ananthakrishnan (2006), Equatorial bubbles as observed with GPS measurements over Pune, India, Radio Sci., 41, RS5S28, doi:10.1029/2005RS003359. – reference: McNamara, L. F., R. G. Caton, R. T. Parris, T. R. Pedersen, D. C. Thompson, K. C. Wiens, and K. M. Groves (2013), Signatures of equatorial plasma bubbles in VHF satellite scintillations and equatorial ionograms, Radio Sci., 48, 89-101, doi:10.1002/rds.20025. – reference: Bhattacharyya, A., K. M. Groves, S. Basu, and H. Kuenzler (2003), L-band scintillation activity and space-time structure of low-latitude UHF scintillations, Radio Sci., 38(1), 1004, doi:10.1029/2002RS002711. – reference: Rastogi, R. G., P. V. Koparkar, H. Chandra, and M. R. Deshpande (1990), Multifrequency studies of equatorial ionospheric scintillations at Ootacamund, J. Atmos. Terr. Phys., 52, 69-76. – reference: Somayajulu, Y. V., S. C. Garg, R. S. Dabas, L. Singh, T. R. Tyagi, B. Loknadhan, S. Ramkrishna, and G. Navneeth (1984), Multistation study of night time scintillations in low latitudes: Evidence of control by equatorial F region irregularities, Radio Sci., 19, 707-718, doi:10.1029/RS019i003p00707. – reference: Burke, W. J., D. E. Donatelli, R. C. Sagalyn, and M. C. Kelley (1979), Observations of low density regions at high altitudes in the topside equatorial ionosphere and their interpretation in terms of equatorial spread-F, Planet. Space Sci., 27(5), 593-601. – reference: Fejer, B. G., and M. C. Kelley (1980), Ionospheric irregularities, Rev. Geophys. Space Phys., 18(2), 401-454. – reference: Basu, S., and S. Basu (1985), Equatorial scintillations: Advances since ISEA-6, J. Atmos. Terr. Phys., 47(8), 753-768. – reference: Chandra, H., H. O. Vats, M. R. Deshpande, R. G. Rastogi, G. Sethia, J. H. Sastri, and B. S. Murthy (1979), Ionospheric scintillations associated with features of equatorial ionosphere, Ann. Geophys., 35, 145-151. – reference: Paul, A., B. Roy, S. Ray, A. Das, and A. DasGupta (2011), Characteristics of intense space weather events as observed from a low latitude station during solar minimum, J. Geophys. Res., 116, A10307, doi:10.1029/2010JA016330. – reference: Mitra, S. N. (1949), A radio method of measuring winds in the ionosphere, Proc. Inst. Electr. Eng., Part 3, 96, 441-446. – reference: Bhar, J. N., A. DasGupta, and S. Basu (1970), Studies on F-region irregularities at low latitude from scintillations of satellite signals, Radio Sci., 5, 939-942, doi:10.1029/RS005i006p00939. – reference: Spatz, D. E., S. J. Franke, and K. C. Yeh (1988), Analysis and interpretation of spaced receiver scintillation data recorded at an equatorial station, Radio Sci., 23, 347-361, doi:10.1029/RS023i003p00347. – reference: Weber, E. J., J. Buchau, and J. G. Moore (1980), Airborne studies of equatorial F-layer ionospheric irregularities, J. Geophys. Res., 85, 4631-4641, doi:10.1029/JA085iA09p04631. – reference: Basu, S., S. Basu, J. Huba, J. Krall, S. E. McDonald, J. J. Makela, E. S. Miller, S. Ray, and K. Groves (2009), Day-to-day variability of the equatorial ionization anomaly and scintillations at dusk observed by GUVI and modeling by SAMI3, J. Geophys. Res., 114, A04302, doi:10.1029/2008JA013899. – reference: Kil, H., and R. A. Heelis (1998), Global distribution of density irregularities in the equatorial ionosphere, J. Geophys. Res., 103, 407-417, doi:10.1029/97JA02698. – reference: Maruyama, T., and N. Matuura (1984), Longitudinal variability of annual changes in activity of equatorial spread-F and plasma bubbles, J. Geophys. Res., 89, 10,903-10,912, doi:10.1029/JA089iA12p10903. – reference: Rishbeth, H. (1972), Thermospheric winds and the F-region: A review, J. Atmos. Terr. Phys., 34(1), 1-47. – reference: Paul, A., and A. DasGupta (2010), Characteristics of the equatorial ionization anomaly in relation to the day-to-day variability of ionospheric irregularities around the postsunset period, Radio Sci., 45, RS6001, doi:10.1029/2009RS004329. – reference: Whitney, H. E., J. Aarons, and C. Malik (1969), A proposed index for measuring ionospheric scintillations, Planet. Space Sci., 17(5), 1069-1073. – reference: Basu, S., and H. E. Whitney (1983), The temporal structure of intensity scintillations near the magnetic equator, Radio Sci., 18, 263-271, doi:10.1029/RS018i002p00263. – reference: McClure, J. P., W. B. Hanson, and J. H. Hoffman (1977), Plasma bubbles and irregularities in the equatorial ionosphere, J. Geophys. Res., 82, 2650-2656, doi:10.1029/JA082i019p02650. – reference: Kumar, S., et al. (2000), Coordinated observations of VHF scintillations in India during February-March, 1993, Indian J. Radio Space Phys., 29, 22-29. – reference: Kudeki, E., and S. Bhattacharyya (1999), Post-sunset vortex in equatorial F-region plasma drifts and implications for bottomside spread-F, J. Geophys. Res., 104, 28,163-28,170, doi:10.1029/1998JA900111. – reference: Das, A., A. DasGupta, and S. Ray (2010), Characteristics of L-band (1.5 GHz) and VHF (244 MHz) amplitude scintillations recorded at Kolkata during 1996-2006 and development of models for the occurrence probability of scintillations using Neural network, J. Atmos. Sol. Terr. Phys., 72(9-10), 685-704. – reference: Roy, B., A. DasGupta, and A. Paul (2013), Impact of space weather events on satellite-based navigation, Space Weather, 11, 680-686, doi:10.1002/2013SW001001. – reference: Woodman, R. F., and C. La Hoz (1976), Radar observations of F-region equatorial irregularities, J. Geophys. Res., 81, 5447-5466, doi:10.1029/JA081i031p05447. – reference: Humphreys, T. E., M. L. Psiaki, B. M. Ledvina, A. P. Cerruti, and P. M. Kintner Jr. (2010a), Data-driven testbed for evaluating GPS carrier tracking loops in ionospheric scintillation, IEEE Trans. Aerosp. Electron. Syst., 46(4), 1609-1623. – reference: Aarons, J. (1982), Global morphology of ionospheric scintillations, Proc. IEEE, 70(4), 360-378. – reference: Hanson, W. B., W. R. Coley, R. A. Heelis, and A. L. Urquhart (1997), Fast equatorial bubbles, J. Geophys. Res., 102, 2039-2046, doi:10.1029/96JA03376. – reference: DasGupta, A., D. N. Anderson, and J. A. Klobuchar (1983), Equatorial F-region ionization differences between March and September, 1979, Adv. Space Res., 2(10), 199-202. – reference: Briggs, B. H., G. J. Phillips, and D. H. Shinn (1950), The analysis of observations on spaced receivers of the fading of radio signals, Proc. Phys. Soc. B, 63, 106, doi:10.1088/0370-1301/63/2/305. – reference: Moraes, A. O., F. S. Rodrigues, W. J. Perrella, and E. R. Paula (2011), Analysis of the characteristics of low-latitude GPS amplitude scintillation measured during solar maximum conditions and implications for receiver performance, Surv. Geophys., 33(5), 1107-1131, doi:10.1007/s10712-011-9161-z. – reference: Chakraborty, S. K., A. DasGupta, S. Ray, and S. Banerjee (1999), Long-term observations of VHF scintillation and total electron content near the crest of the equatorial anomaly in the Indian longitude zone, Radio Sci., 34, 241-255, doi:10.1029/98RS02576. – reference: Kintner, P. M., H. Kil, T. L. Beach, and E. R. de Paula (2001), Fading timescales associated with GPS signals and potential consequences, Radio Sci., 36, 731-743, doi:10.1029/1999RS002310. – reference: Aarons, J. (1993), The longitudinal morphology of equatorial F-layer irregularities relevant to their occurrence, Space Sci. Rev., 63(3-4), 209-243. – reference: Hanson, W. B., and S. Sanatani (1973), Large NI gradients below the equatorial F-peak, J. Geophys. Res., 78, 1167-1173, doi:10.1029/JA078i007p01167. – volume: 46 year: 2011 article-title: Multiple phase screen modeling of ionospheric scintillation along radio occultation raypaths publication-title: Radio Sci. – volume: 17 start-page: 1069 issue: 5 year: 1969 end-page: 1073 article-title: A proposed index for measuring ionospheric scintillations publication-title: Planet. Space Sci. – volume: 21 start-page: 453 year: 1986 end-page: 462 article-title: Night time VHF scintillations at 23°N magnetic latitude and their association with equatorial ‐region irregularities publication-title: Radio Sci. – volume: 47 start-page: 753 issue: 8 year: 1985 end-page: 768 article-title: Equatorial scintillations: Advances since ISEA‐6 publication-title: J. Atmos. Terr. Phys. – year: 2005 – volume: 3 start-page: 681 year: 1976 end-page: 684 article-title: Correlated measurements of scintillations and in situ region irregularities from OGO‐6 publication-title: Geophys. Res. Lett. – volume: 33 start-page: 1107 issue: 5 year: 2011 end-page: 1131 article-title: Analysis of the characteristics of low‐latitude GPS amplitude scintillation measured during solar maximum conditions and implications for receiver performance publication-title: Surv. Geophys. – volume: 116 year: 2011 article-title: Characteristics of intense space weather events as observed from a low latitude station during solar minimum publication-title: J. Geophys. Res. – volume: 81 start-page: 5447 year: 1976 end-page: 5466 article-title: Radar observations of ‐region equatorial irregularities publication-title: J. Geophys. Res. – volume: 18 start-page: 263 year: 1983 end-page: 271 article-title: The temporal structure of intensity scintillations near the magnetic equator publication-title: Radio Sci. – volume: 2 start-page: 199 issue: 10 year: 1983 end-page: 202 article-title: Equatorial ‐region ionization differences between March and September, 1979 publication-title: Adv. Space Res. – volume: 116 year: 2011 article-title: Simultaneous mesosphere‐thermosphere‐ionosphere parameter measurements over Gadanki (13.5°N, 79.2°E): First results publication-title: J. Geophys. Res. – volume: 39 year: 2004 article-title: Size, shape, orientation, speed, and duration of GPS equatorial anomaly scintillations publication-title: Radio Sci. – volume: 104 start-page: 28,163 year: 1999 end-page: 28,170 article-title: Post‐sunset vortex in equatorial F‐region plasma drifts and implications for bottomside spread‐F publication-title: J. Geophys. Res. – volume: 18 start-page: 401 issue: 2 year: 1980 end-page: 454 article-title: Ionospheric irregularities publication-title: Rev. Geophys. Space Phys. – volume: 29 start-page: 22 year: 2000 end-page: 29 article-title: Coordinated observations of VHF scintillations in India during February–March, 1993 publication-title: Indian J. Radio Space Phys. – volume: 11 start-page: 680 year: 2013 end-page: 686 article-title: Impact of space weather events on satellite‐based navigation publication-title: Space Weather – volume: 35 start-page: 145 year: 1979 end-page: 151 article-title: Ionospheric scintillations associated with features of equatorial ionosphere publication-title: Ann. Geophys. – volume: 41 year: 2006 article-title: Equatorial bubbles as observed with GPS measurements over Pune, India publication-title: Radio Sci. – volume: 114 year: 2009 article-title: Day‐to‐day variability of the equatorial ionization anomaly and scintillations at dusk observed by GUVI and modeling by SAMI3 publication-title: J. Geophys. Res. – volume: 52 start-page: 69 year: 1990 end-page: 76 article-title: Multifrequency studies of equatorial ionospheric scintillations at Ootacamund publication-title: J. Atmos. Terr. Phys. – volume: 46 start-page: 1624 issue: 4 year: 2010b end-page: 1637 article-title: Modeling the effects of ionospheric scintillation on GPS carrier phase tracking publication-title: IEEE Trans. Aerosp. Electron. Syst. – volume: 27 start-page: 593 issue: 5 year: 1979 end-page: 601 article-title: Observations of low density regions at high altitudes in the topside equatorial ionosphere and their interpretation in terms of equatorial spread‐ publication-title: Planet. Space Sci. – volume: 11 start-page: 240 year: 1982 end-page: 246 article-title: Equatorial scintillations of ATS‐6 radio beacons: Phase II‐Ootacamund 1975‐76 publication-title: Indian J. Radio Space Phys. – volume: 89 start-page: 10,903 year: 1984 end-page: 10,912 article-title: Longitudinal variability of annual changes in activity of equatorial spread‐ and plasma bubbles publication-title: J. Geophys. Res. – volume: 49 start-page: 94 year: 2014 end-page: 105 article-title: On the second order statistics for GPS ionospheric scintillation modeling publication-title: Radio Sci. – volume: 47 year: 2012 article-title: Impacts of ionospheric scintillations on GPS receivers intended for equatorial aviation applications publication-title: Radio Sci. – volume: 23 start-page: 347 year: 1988 end-page: 361 article-title: Analysis and interpretation of spaced receiver scintillation data recorded at an equatorial station publication-title: Radio Sci. – volume: 28 start-page: 119 year: 2001 end-page: 122 article-title: Dynamics of equatorial region irregularities from spaced receiver scintillation observations publication-title: Geophys. Res. Lett. – volume: 69 start-page: 500 issue: 4–5 year: 2007 end-page: 514 article-title: Geostationary L‐band signal scintillation observations near the crest of equatorial anomaly in the Indian zone publication-title: J. Atmos. Sol. Terr. Phys. – volume: 96 start-page: 441 year: 1949 end-page: 446 article-title: A radio method of measuring winds in the ionosphere publication-title: Proc. Inst. Electr. Eng., Part 3 – volume: 82 start-page: 2650 year: 1977 end-page: 2656 article-title: Plasma bubbles and irregularities in the equatorial ionosphere publication-title: J. Geophys. Res. – volume: 13 start-page: 53 year: 2002 end-page: 64 article-title: Mapping of the simultaneous movement of Equatorial Ionization Anomaly (EIA) and ionospheric plasma bubbles through all‐sky imaging of OI 630 nm emission publication-title: Terr. Atmos. Oceanic Sci. – volume: 88 start-page: 7075 year: 1983 end-page: 7085 article-title: Observations and modeling of multifrequency VHF and GHz scintillations in the equatorial region publication-title: J. Geophys. Res. – volume: 70 start-page: 360 issue: 4 year: 1982 end-page: 378 article-title: Global morphology of ionospheric scintillations publication-title: Proc. IEEE – volume: 48 start-page: 89 year: 2013 end-page: 101 article-title: Signatures of equatorial plasma bubbles in VHF satellite scintillations and equatorial ionograms publication-title: Radio Sci. – volume: 63 start-page: 209 issue: 3–4 year: 1993 end-page: 243 article-title: The longitudinal morphology of equatorial ‐layer irregularities relevant to their occurrence publication-title: Space Sci. Rev. – volume: 47 year: 2012 article-title: The effect of phase scintillations on the accuracy of phase screen simulation using deterministic screens derived from GPS and ALTAIR measurements publication-title: Radio Sci. – volume: 103 start-page: 407 year: 1998 end-page: 417 article-title: Global distribution of density irregularities in the equatorial ionosphere publication-title: J. Geophys. Res. – volume: 22 start-page: 347 year: 1987 end-page: 361 article-title: A new analysis technique for estimating zonal irregularity drifts and variability in the equatorial region using spaced receiver scintillation data publication-title: Radio Sci. – volume: 63 start-page: 106 year: 1950 article-title: The analysis of observations on spaced receivers of the fading of radio signals publication-title: Proc. Phys. Soc. B – volume: 84A start-page: 343 year: 2006 end-page: 351 article-title: Equatorial ionospheric scintillations and zonal irregularity drifts observed with closely spaced GPS receivers in Indonesia publication-title: J. Meteorol. Soc. Jpn. – volume: 22 start-page: 69 year: 1993 end-page: 81 article-title: Coordinated multistation VHF scintillations observations in India during March–April 1991 publication-title: Indian J. Radio Space Phys. – volume: 85 start-page: 4631 year: 1980 end-page: 4641 article-title: Airborne studies of equatorial ‐layer ionospheric irregularities publication-title: J. Geophys. Res. – volume: 84 start-page: 4251 year: 1979 end-page: 4256 article-title: The motion of depleted plasma regions in the equatorial ionosphere publication-title: J. Geophys. Res. – volume: 2 start-page: 128 year: 1989 end-page: 136 – volume: 94 start-page: 11,959 year: 1989 end-page: 11,969 article-title: Characteristic velocity of equatorial region irregularities determined from spaced receiver scintillation data publication-title: J. Geophys. Res. – volume: 72 start-page: 685 issue: 9–10 year: 2010 end-page: 704 article-title: Characteristics of L‐band (1.5 GHz) and VHF (244 MHz) amplitude scintillations recorded at Kolkata during 1996–2006 and development of models for the occurrence probability of scintillations using Neural network publication-title: J. Atmos. Sol. Terr. Phys. – volume: 5 start-page: 939 year: 1970 end-page: 942 article-title: Studies on ‐region irregularities at low latitude from scintillations of satellite signals publication-title: Radio Sci. – volume: 34 start-page: 241 year: 1999 end-page: 255 article-title: Long‐term observations of VHF scintillation and total electron content near the crest of the equatorial anomaly in the Indian longitude zone publication-title: Radio Sci. – volume: 38 issue: 1 year: 2003 article-title: L‐band scintillation activity and space‐time structure of low‐latitude UHF scintillations publication-title: Radio Sci. – volume: 3 start-page: 448 year: 1976 end-page: 450 article-title: Evidence for a Rayleigh‐Taylor type instability and upwelling of depleted density regions during equatorial spread‐ publication-title: Geophys. Res. Lett. – volume: 78 start-page: 1167 year: 1973 end-page: 1173 article-title: Large N gradients below the equatorial ‐peak publication-title: J. Geophys. Res. – start-page: 361 year: 2010 end-page: 374 – volume: 34 start-page: 1 issue: 1 year: 1972 end-page: 47 article-title: Thermospheric winds and the ‐region: A review publication-title: J. Atmos. Terr. Phys. – volume: 40 start-page: 669 issue: 6 year: 1978 end-page: 676 article-title: ‐region neutral winds from ionosonde measurements of at low latitude magnetic conjugate region publication-title: J. Atmos. Terr. Phys. – volume: 36 start-page: 731 year: 2001 end-page: 743 article-title: Fading timescales associated with GPS signals and potential consequences publication-title: Radio Sci. – volume: 46 start-page: 1609 issue: 4 year: 2010a end-page: 1623 article-title: Data‐driven testbed for evaluating GPS carrier tracking loops in ionospheric scintillation publication-title: IEEE Trans. Aerosp. Electron. Syst. – volume: 90 start-page: 447 year: 1985 end-page: 456 article-title: Control of seasonal and longitudinal occurrence of equatorial scintillations by the longitudinal gradient in integrated ‐region Pedersen conductivity publication-title: J. Geophys. Res. – volume: 45 year: 2010 article-title: Characteristics of the equatorial ionization anomaly in relation to the day‐to‐day variability of ionospheric irregularities around the postsunset period publication-title: Radio Sci. – volume: 19 start-page: 707 year: 1984 end-page: 718 article-title: Multistation study of night time scintillations in low latitudes: Evidence of control by equatorial F region irregularities publication-title: Radio Sci. – volume: 102 start-page: 2039 year: 1997 end-page: 2046 article-title: Fast equatorial bubbles publication-title: J. Geophys. Res. – volume: 112 year: 2007 article-title: Equatorial spread F‐related airglow depletions at Arecibo and conjugate observations publication-title: J. Geophys. Res. – volume: 45 year: 2010 article-title: V/UHF space radars: Spatial phase decorrelation of transionospheric signals in the equatorial region publication-title: Radio Sci. – start-page: 128 volume-title: World Ionospheric Thermospheric Studies (WITS) Handbook year: 1989 ident: e_1_2_6_8_1 – ident: e_1_2_6_65_1 doi: 10.1029/JA081i031p05447 – ident: e_1_2_6_9_1 doi: 10.1029/RS018i002p00263 – volume: 22 start-page: 69 year: 1993 ident: e_1_2_6_23_1 article-title: Coordinated multistation VHF scintillations observations in India during March–April 1991 publication-title: Indian J. Radio Space Phys. – ident: e_1_2_6_58_1 doi: 10.1029/RS023i003p00347 – ident: e_1_2_6_42_1 doi: 10.1029/JA089iA12p10903 – ident: e_1_2_6_57_1 doi: 10.1029/RS019i003p00707 – ident: e_1_2_6_41_1 doi: 10.1029/2007JA012403 – ident: e_1_2_6_46_1 doi: 10.1007/s10712‐011‐9161‐z – ident: e_1_2_6_25_1 doi: 10.1016/j.jastp.2010.03.010 – ident: e_1_2_6_7_1 doi: 10.1016/0021-9169(85)90052-2 – ident: e_1_2_6_4_1 doi: 10.1029/2012RS004995 – ident: e_1_2_6_37_1 doi: 10.1029/1999RS002310 – ident: e_1_2_6_24_1 doi: 10.1029/RS021i003p00453 – ident: e_1_2_6_16_1 doi: 10.1088/0370‐1301/63/2/305 – ident: e_1_2_6_38_1 doi: 10.1029/2003RS002878 – ident: e_1_2_6_44_1 doi: 10.1002/rds.20025 – ident: e_1_2_6_28_1 doi: 10.1029/RG018i002p00401 – ident: e_1_2_6_14_1 doi: 10.1029/2002RS002711 – ident: e_1_2_6_29_1 doi: 10.1029/JA088iA09p07075 – ident: e_1_2_6_17_1 doi: 10.1016/0032-0633(79)90157-0 – ident: e_1_2_6_27_1 doi: 10.1029/2005RS003359 – ident: e_1_2_6_30_1 doi: 10.1029/JA078i007p01167 – ident: e_1_2_6_3_1 doi: 10.1007/BF00750769 – start-page: 361 volume-title: Proceedings of the 2010 Institute of Navigation ION GNSS Meeting year: 2010 ident: e_1_2_6_18_1 – ident: e_1_2_6_39_1 doi: 10.1029/1998JA900111 – ident: e_1_2_6_5_1 doi: 10.1029/JA084iA08p04251 – ident: e_1_2_6_15_1 doi: 10.1016/0021-9169(78)90124-1 – ident: e_1_2_6_50_1 doi: 10.1029/2009RS004329 – ident: e_1_2_6_36_1 doi: 10.1029/97JA02698 – volume: 96 start-page: 441 year: 1949 ident: e_1_2_6_45_1 article-title: A radio method of measuring winds in the ionosphere publication-title: Proc. Inst. Electr. Eng., Part 3 – ident: e_1_2_6_20_1 doi: 10.1029/2011RS004958 – ident: e_1_2_6_21_1 doi: 10.1029/98RS02576 – ident: e_1_2_6_51_1 doi: 10.1029/2010JA016330 – ident: e_1_2_6_47_1 doi: 10.1002/2013RS005270 – ident: e_1_2_6_55_1 doi: 10.1016/0021-9169(72)90003-7 – volume: 35 start-page: 145 year: 1979 ident: e_1_2_6_22_1 article-title: Ionospheric scintillations associated with features of equatorial ionosphere publication-title: Ann. Geophys. – ident: e_1_2_6_33_1 doi: 10.1109/TAES.2010.5595583 – ident: e_1_2_6_62_1 doi: 10.1029/2009RS004226 – ident: e_1_2_6_13_1 doi: 10.1029/2000GL012288 – ident: e_1_2_6_10_1 doi: 10.1029/2008JA013899 – ident: e_1_2_6_11_1 doi: 10.1029/RS005i006p00939 – volume: 29 start-page: 22 year: 2000 ident: e_1_2_6_40_1 article-title: Coordinated observations of VHF scintillations in India during February–March, 1993 publication-title: Indian J. Radio Space Phys. – ident: e_1_2_6_26_1 doi: 10.1016/0273-1177(82)90390-8 – ident: e_1_2_6_6_1 doi: 10.1029/GL003i011p00681 – ident: e_1_2_6_43_1 doi: 10.1029/JA082i019p02650 – ident: e_1_2_6_54_1 doi: 10.1016/j.jastp.2006.09.007 – ident: e_1_2_6_19_1 doi: 10.1029/2010RS004591 – ident: e_1_2_6_61_1 doi: 10.1029/RS022i005p00745 – ident: e_1_2_6_56_1 doi: 10.1002/2013SW001001 – ident: e_1_2_6_63_1 doi: 10.1029/JA085iA09p04631 – ident: e_1_2_6_2_1 doi: 10.1109/PROC.1982.12314 – ident: e_1_2_6_49_1 doi: 10.2151/jmsj.84A.343 – ident: e_1_2_6_32_1 – ident: e_1_2_6_31_1 doi: 10.1029/96JA03376 – ident: e_1_2_6_48_1 doi: 10.3319/TAO.2002.13.1.53(A) – ident: e_1_2_6_64_1 doi: 10.1016/0032-0633(69)90114-7 – ident: e_1_2_6_35_1 doi: 10.1029/GL003i008p00448 – volume: 11 start-page: 240 year: 1982 ident: e_1_2_6_52_1 article-title: Equatorial scintillations of ATS‐6 radio beacons: Phase II‐Ootacamund 1975‐76 publication-title: Indian J. Radio Space Phys. – ident: e_1_2_6_53_1 doi: 10.1016/0021-9169(90)90116-5 – ident: e_1_2_6_34_1 doi: 10.1109/TAES.2010.5595583 – ident: e_1_2_6_59_1 doi: 10.1029/2010JA016229 – ident: e_1_2_6_12_1 doi: 10.1029/JA094iA09p11959 – ident: e_1_2_6_60_1 doi: 10.1029/JA090iA01p00447 |
SSID | ssj0014564 |
Score | 2.094466 |
Snippet | Transionospheric satellite navigation links operate primarily at L band and are frequently subject to severe degradation of performances arising out of... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 851 |
SubjectTerms | Drift Global Positioning System Global positioning systems GNSS GNSS position determination accuracy under adverse ionospheric conditions GPS Ionosphere Irregularities irregularity dynamics at VHF Navigation Proxy client servers Satellite navigation systems Satellites Scintillation VHF |
Title | Effects of transionospheric signal decorrelation on Global Navigation Satellite Systems (GNSS) performance studied from irregularity dynamics around the northern crest of the EIA |
URI | https://api.istex.fr/ark:/67375/WNG-N5353D4H-6/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2F2014RS005406 https://www.proquest.com/docview/1645375183 https://www.proquest.com/docview/1642287232 |
Volume | 49 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bixMxFA51-6IPoqtidZUIuijDrHPJ3B7LtmuVdoResG9DJpOB4tIuvYj4A_xB_kLPSTLTqa6yCqW0aQgp55vkXL9DyEuZ-KX0k8B2feHbTPq-nXtJCYocE04hchFFWJw8SsPBjH2YB_NW63sja2m3zc_Et2vrSv5HqjAGcsUq2X-QbL0oDMBnkC-8g4Th_UYy7u-TMbZ452CFwgZ5AhbCwsQMDMCgebk2GW-WodCA8ZR_UeQaeFxwxcq5lRV9uXIdpJMJegyuGoUFG5VzWOiSlAWsim3ssfmdVei-9huLr7FNk9JmlxgRwj5rAtt_VLkI_ffdpj485sViZZlreO813xykb4-1v7AODmE2494Na1wWLquT3-pjmMV2GOq-w2dSn7wJY3aUqL669dGs2UwrCDqNgzY2NLXmztY9CX67DjS9LG5hPFHK6TWs2-nH7GI2HGbT_nx6i7S9KMJwf7vbGw0ndTwKSXd0roLeuCmhgPXfNlc_UG7a-Jx-PbBcmvaPUmCm98hdY3nQrobRfdKSy2Nyp8FHeUw6IzChVmsVaaGn9PxyAfaM-vaA_DBgo6uS_go2qsFGD8BG4aXBRvdgozXYqAEbfY1Qe0MbQKMGaBSBRptAoxXQqAYaBUjRCmhUAU3tD0YBaA_J7KI_PR_YpuGHLZD30i5BeSzgFilCpww8HooyiTyec5YUUemCtsVyyePSSYqcBzIsctDdE8HjwoUpsZT-I3K0XC3lY0IdLmQecsaCPGE5d0DNLlxXlG4UC3SZdIhVSSoThg0fm7JcZprH28uacu2QV_XsK80C84d5p0ro9SS-_oyZk1GQfUrfZWngB36PDTKYeFKhIjMHyiZzQxb4GAb1O-RF_TMc9xjD40u52qk5nhdHYAfBP1Bo-uuGsnFv4iHh0pMbrPiU3N4_rSfkaLveyWegcm_z5-Z5-AnN-Nnm |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+transionospheric+signal+decorrelation+on+Global+Navigation+Satellite+Systems+%28GNSS%29+performance+studied+from+irregularity+dynamics+around+the+northern+crest+of+the+EIA&rft.jtitle=Radio+science&rft.au=Das%2C+T&rft.au=Roy%2C+B&rft.au=Paul%2C+A&rft.date=2014-10-01&rft.issn=0048-6604&rft.eissn=1944-799X&rft.volume=49&rft.issue=10&rft.spage=851&rft.epage=860&rft_id=info:doi/10.1002%2F2014RS005406&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-6604&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-6604&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-6604&client=summon |