Mitochondria, energy, and metabolism in neuronal health and disease

Mitochondria are associated with various cellular activities critical to homeostasis, particularly in the nervous system. The plastic architecture of the mitochondrial network and its dynamic structure play crucial roles in ensuring that varying energetic demands are rapidly met to maintain neuronal...

Full description

Saved in:
Bibliographic Details
Published inFEBS letters Vol. 596; no. 9; pp. 1095 - 1110
Main Authors Trigo, Diogo, Avelar, Catarina, Fernandes, Miguel, Sá, Juliana, Cruz e Silva, Odete
Format Journal Article
LanguageEnglish
Published England 01.05.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Mitochondria are associated with various cellular activities critical to homeostasis, particularly in the nervous system. The plastic architecture of the mitochondrial network and its dynamic structure play crucial roles in ensuring that varying energetic demands are rapidly met to maintain neuronal and axonal energy homeostasis. Recent evidence associates aging and neurodegeneration with anomalous neuronal metabolism as age‐dependent alterations of neuronal metabolism are now believed to occur prior to neurodegeneration. The brain has a high energy demand, which makes it particularly sensitive to mitochondrial dysfunction. Distinct cellular events causing oxidative stress or disruption of metabolism and mitochondrial homeostasis can trigger a neuropathology. This review explores the bioenergetic hypothesis for the neurodegenerative pathomechanisms, discussing factors leading to age‐related brain hypometabolism and its contribution to cognitive decline. Recent research on the mitochondrial network in healthy nervous system cells, its response to stress, and how it is affected by pathology, as well as current contributions to novel therapeutic approaches will be highlighted. This review discusses the hypothesis that hypometabolism and mitochondrial dysfunction in neuronal cells represent pathogenic events triggering cognitive decline and neurodegenerative diseases.
AbstractList Mitochondria are associated with various cellular activities critical to homeostasis, particularly in the nervous system. The plastic architecture of the mitochondrial network and its dynamic structure play crucial roles in ensuring that varying energetic demands are rapidly met to maintain neuronal and axonal energy homeostasis. Recent evidence associates aging and neurodegeneration with anomalous neuronal metabolism as age-dependent alterations of neuronal metabolism are now believed to occur prior to neurodegeneration. The brain has a high energy demand, which makes it particularly sensitive to mitochondrial dysfunction. Distinct cellular events causing oxidative stress or disruption of metabolism and mitochondrial homeostasis can trigger a neuropathology. This review explores the bioenergetic hypothesis for the neurodegenerative pathomechanisms, discussing factors leading to age-related brain hypometabolism and its contribution to cognitive decline. Recent research on the mitochondrial network in healthy nervous system cells, its response to stress, and how it is affected by pathology, as well as current contributions to novel therapeutic approaches will be highlighted.
Mitochondria are associated with various cellular activities critical to homeostasis, particularly in the nervous system. The plastic architecture of the mitochondrial network and its dynamic structure play crucial roles in ensuring that varying energetic demands are rapidly met to maintain neuronal and axonal energy homeostasis. Recent evidence associates aging and neurodegeneration with anomalous neuronal metabolism as age-dependent alterations of neuronal metabolism are now believed to occur prior to neurodegeneration. The brain has a high energy demand, which makes it particularly sensitive to mitochondrial dysfunction. Distinct cellular events causing oxidative stress or disruption of metabolism and mitochondrial homeostasis can trigger a neuropathology. This review explores the bioenergetic hypothesis for the neurodegenerative pathomechanisms, discussing factors leading to age-related brain hypometabolism and its contribution to cognitive decline. Recent research on the mitochondrial network in healthy nervous system cells, its response to stress, and how it is affected by pathology, as well as current contributions to novel therapeutic approaches will be highlighted.Mitochondria are associated with various cellular activities critical to homeostasis, particularly in the nervous system. The plastic architecture of the mitochondrial network and its dynamic structure play crucial roles in ensuring that varying energetic demands are rapidly met to maintain neuronal and axonal energy homeostasis. Recent evidence associates aging and neurodegeneration with anomalous neuronal metabolism as age-dependent alterations of neuronal metabolism are now believed to occur prior to neurodegeneration. The brain has a high energy demand, which makes it particularly sensitive to mitochondrial dysfunction. Distinct cellular events causing oxidative stress or disruption of metabolism and mitochondrial homeostasis can trigger a neuropathology. This review explores the bioenergetic hypothesis for the neurodegenerative pathomechanisms, discussing factors leading to age-related brain hypometabolism and its contribution to cognitive decline. Recent research on the mitochondrial network in healthy nervous system cells, its response to stress, and how it is affected by pathology, as well as current contributions to novel therapeutic approaches will be highlighted.
Mitochondria are associated with various cellular activities critical to homeostasis, particularly in the nervous system. The plastic architecture of the mitochondrial network and its dynamic structure play crucial roles in ensuring that varying energetic demands are rapidly met to maintain neuronal and axonal energy homeostasis. Recent evidence associates aging and neurodegeneration with anomalous neuronal metabolism as age‐dependent alterations of neuronal metabolism are now believed to occur prior to neurodegeneration. The brain has a high energy demand, which makes it particularly sensitive to mitochondrial dysfunction. Distinct cellular events causing oxidative stress or disruption of metabolism and mitochondrial homeostasis can trigger a neuropathology. This review explores the bioenergetic hypothesis for the neurodegenerative pathomechanisms, discussing factors leading to age‐related brain hypometabolism and its contribution to cognitive decline. Recent research on the mitochondrial network in healthy nervous system cells, its response to stress, and how it is affected by pathology, as well as current contributions to novel therapeutic approaches will be highlighted. This review discusses the hypothesis that hypometabolism and mitochondrial dysfunction in neuronal cells represent pathogenic events triggering cognitive decline and neurodegenerative diseases.
Author Sá, Juliana
Trigo, Diogo
Cruz e Silva, Odete
Fernandes, Miguel
Avelar, Catarina
Author_xml – sequence: 1
  givenname: Diogo
  orcidid: 0000-0002-4432-0925
  surname: Trigo
  fullname: Trigo, Diogo
  email: trigo.diogo@gmail.com
  organization: University of Aveiro
– sequence: 2
  givenname: Catarina
  orcidid: 0000-0002-6817-5670
  surname: Avelar
  fullname: Avelar, Catarina
  organization: University of Aveiro
– sequence: 3
  givenname: Miguel
  surname: Fernandes
  fullname: Fernandes, Miguel
  organization: University of Aveiro
– sequence: 4
  givenname: Juliana
  surname:
  fullname: Sá, Juliana
  organization: University of Aveiro
– sequence: 5
  givenname: Odete
  orcidid: 0000-0003-3718-9874
  surname: Cruz e Silva
  fullname: Cruz e Silva, Odete
  organization: University of Aveiro
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35088449$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1LAzEQhoMotlbP3mSPHrqaz93sUYtfUPGi55BsZm1kN6nJFum_d2vVgyAKA8MMzzOHdw7Qrg8eEDom-IxgTM-JLFnOeCHPCKeV3EHj780uGmNMeC7Kio3QQUoveJglqfbRiAksJefVGM3uXR_qRfA2Oj3NwEN8Xk8z7W3WQa9NaF3qMuczD6sYvG6zBei2X3wQ1iXQCQ7RXqPbBEeffYKerq8eZ7f5_OHmbnYxz2tWljI3xmAO1FBeMGssaKgKIchQNddVI4U0ppG84YKUrJbABZPD1lpglnMKbIJOt3eXMbyuIPWqc6mGttUewiopWpRCSEkY-wdKmax4QcWAnnyiK9OBVcvoOh3X6iujARBboI4hpQiNql2vexd8H7VrFcFq8wu1SV5tklcfvxi88x_e1-nfjWJrvLkW1n_h6vrqkm7Fd3MNmCs
CitedBy_id crossref_primary_10_1007_s12035_024_04368_1
crossref_primary_10_1016_j_xcrm_2023_101265
crossref_primary_10_3389_fncel_2024_1440555
crossref_primary_10_1038_s12276_024_01198_y
crossref_primary_10_1039_D2CS00562J
crossref_primary_10_3390_biomedicines11102654
crossref_primary_10_1016_j_nbd_2024_106726
crossref_primary_10_1016_j_jbc_2025_108394
crossref_primary_10_1016_j_neuropharm_2023_109828
crossref_primary_10_1016_j_bbr_2023_114659
crossref_primary_10_3233_JAD_240524
crossref_primary_10_3389_fendo_2023_1134025
crossref_primary_10_3389_fnagi_2023_1146660
crossref_primary_10_1016_j_freeradbiomed_2022_07_009
crossref_primary_10_1002_tox_23724
crossref_primary_10_1093_pnasnexus_pgae018
crossref_primary_10_3390_ijms24087221
crossref_primary_10_1002_mds_30123
crossref_primary_10_3390_ijms26020626
crossref_primary_10_1007_s00018_023_04736_5
crossref_primary_10_1016_j_nbd_2023_106046
crossref_primary_10_3390_ijms26010380
crossref_primary_10_1016_j_jconrel_2024_09_009
crossref_primary_10_3390_ijms231911391
crossref_primary_10_5607_en24029
crossref_primary_10_3390_biomedicines10040863
crossref_primary_10_3390_ijms231911593
crossref_primary_10_3390_math12142244
crossref_primary_10_3233_JAD_240092
crossref_primary_10_1016_j_jpha_2024_100968
crossref_primary_10_1080_10495398_2023_2272172
crossref_primary_10_3389_fnins_2025_1552790
crossref_primary_10_3390_ijms24054465
crossref_primary_10_1016_j_lfs_2023_122257
crossref_primary_10_1038_s41419_024_06662_1
crossref_primary_10_1186_s13293_023_00551_6
crossref_primary_10_1002_mds_30095
crossref_primary_10_1016_j_heliyon_2024_e36470
crossref_primary_10_3390_biomedicines11092331
crossref_primary_10_3390_nu15234950
crossref_primary_10_3390_jox14020044
crossref_primary_10_1016_j_bbadis_2024_167547
crossref_primary_10_1016_j_bcp_2024_116053
crossref_primary_10_1080_19491034_2022_2069071
crossref_primary_10_1152_ajpcell_00466_2024
crossref_primary_10_1016_j_dscb_2023_100094
crossref_primary_10_3390_cells12182254
crossref_primary_10_1016_j_meegid_2025_105734
crossref_primary_10_1080_1028415X_2024_2398364
crossref_primary_10_1152_japplphysiol_00611_2022
crossref_primary_10_1002_jnr_25309
crossref_primary_10_1007_s10522_025_10219_w
crossref_primary_10_1016_j_ymthe_2024_05_030
crossref_primary_10_3390_ijms26031325
crossref_primary_10_3389_fneur_2023_1179823
crossref_primary_10_1007_s12031_024_02192_9
crossref_primary_10_1038_s41467_025_57363_y
crossref_primary_10_3390_cells12172183
crossref_primary_10_1016_j_celrep_2024_113883
crossref_primary_10_1111_cbdd_14420
crossref_primary_10_1007_s12031_024_02280_w
crossref_primary_10_1016_j_bbadis_2024_167272
crossref_primary_10_1113_JP287635
crossref_primary_10_3390_biom13060938
crossref_primary_10_1186_s12967_024_05680_z
crossref_primary_10_1073_pnas_2208744119
crossref_primary_10_3390_antiox13111343
crossref_primary_10_4103_1673_5374_355750
crossref_primary_10_1016_j_isci_2024_109052
crossref_primary_10_3390_ijms24043739
crossref_primary_10_1016_j_ceca_2023_102783
crossref_primary_10_1080_15548627_2024_2383145
crossref_primary_10_1016_j_lfs_2023_121666
crossref_primary_10_1371_journal_pone_0290257
crossref_primary_10_3390_ijms252111720
crossref_primary_10_1016_j_expneurol_2025_115153
crossref_primary_10_1002_med_22034
crossref_primary_10_1016_j_brainresbull_2024_110921
crossref_primary_10_3389_fnagi_2023_1087072
crossref_primary_10_3390_cells12202494
crossref_primary_10_1016_j_ejphar_2022_175023
crossref_primary_10_1093_schbul_sbad066
crossref_primary_10_1080_00914037_2023_2215376
crossref_primary_10_1007_s12035_023_03899_3
crossref_primary_10_1016_j_heliyon_2024_e38836
crossref_primary_10_3233_JAD_230881
crossref_primary_10_3390_antiox13020240
crossref_primary_10_1186_s12958_024_01235_5
Cites_doi 10.1073/pnas.0804871105
10.1038/jcbfm.1982.15
10.1242/jcs.02745
10.1089/ars.2012.4774
10.1126/science.1201940
10.1016/j.cell.2011.10.018
10.1039/b820415m
10.1002/mds.26239
10.15252/embj.201695810
10.1038/cddis.2012.213
10.1371/journal.pone.0051517
10.1101/gad.1657108
10.1097/00001756-199908200-00011
10.3390/ijms21031170
10.1126/science.1197696
10.1111/bph.12476
10.1038/nrm2275
10.1016/j.mito.2017.02.005
10.1002/ana.410320706
10.1016/j.cmet.2011.08.016
10.1016/j.neuroimage.2006.12.044
10.1002/glia.23252
10.1016/j.brainresbull.2004.02.003
10.1016/j.neurobiolaging.2006.12.008
10.1016/j.celrep.2017.10.060
10.1371/journal.pone.0079977
10.1159/000353883
10.1016/j.jsb.2007.10.005
10.1007/s00418-012-1045-x
10.1016/S0925-4927(01)00126-3
10.2165/11532140-000000000-00000
10.1016/j.brainresbull.2017.03.009
10.1016/j.arr.2014.12.011
10.1016/j.bbabio.2012.02.033
10.1126/science.1087782
10.1016/j.bcp.2003.10.015
10.1016/j.neuron.2016.11.025
10.1096/fj.201802097R
10.1097/00004647-200110000-00001
10.1016/j.bbadis.2020.165686
10.1038/cr.2015.89
10.1242/jeb.00263
10.1111/psyp.12288
10.1038/ncomms14063
10.1002/dneu.20668
10.1038/s41467-019-10226-9
10.1172/JCI124613
10.1126/science.1246275
10.1016/j.bbadis.2009.07.014
10.3389/fncel.2019.00316
10.1007/s40336-013-0026-y
10.1038/41118
10.1016/j.arr.2007.04.003
10.1111/j.1471-4159.2011.07216.x
10.1038/nm.2736
10.1016/j.neuron.2009.01.030
10.1073/pnas.0510511103
10.1016/j.tins.2008.09.004
10.1021/bi301313b
10.1016/j.neuron.2015.03.035
10.1006/nimg.2002.1208
10.1016/j.arr.2012.01.007
10.1074/mcp.M500090-MCP200
10.2174/1874467212666190920144115
10.3233/JAD-2005-7302
10.1016/j.nbd.2015.09.008
10.3389/fncel.2019.00103
10.1016/0197-4580(87)90070-4
10.1002/jnr.21672
10.15252/emmm.201505256
10.1016/j.tibs.2016.01.001
10.1038/s41598-018-29937-y
10.3389/fncel.2013.00038
10.1371/journal.pone.0178105
10.1016/j.nbd.2011.12.057
10.1093/emboj/21.7.1616
10.1007/978-3-319-71779-1_3
10.1016/0047-6374(80)90120-7
10.1074/jbc.M406960200
10.1016/j.arr.2007.07.003
10.1242/jcs.093849
10.1001/jama.2019.20939
10.1038/sj.cdd.4401260
10.1155/2014/729194
10.1016/j.neulet.2017.06.052
10.1038/nature18928
10.1186/s13395-018-0157-y
10.4103/2394-8108.203257
10.1016/j.nbd.2018.07.005
10.4103/1673-5374.211179
10.1111/j.1471-4159.1993.tb13430.x
10.1016/j.neurobiolaging.2007.05.019
10.1146/annurev-biochem-061516-045037
10.1523/JNEUROSCI.4798-06.2007
10.1242/dev.128926
10.1073/pnas.1417921112
10.1016/j.jshs.2020.01.004
10.1083/jcb.201207019
10.1083/jcb.200811033
10.1038/s41593-018-0332-9
10.1016/j.bbabio.2008.05.442
10.1007/s00259-005-1767-2
10.1038/nrm3440
10.1023/A:1010995408343
10.1038/jcbfm.2009.208
10.1038/ncomms2238
10.1002/ana.410410514
10.1126/science.1207385
10.1016/j.neuron.2012.08.019
10.1038/nmeth1055
10.1089/ars.2007.2000
10.1038/nrn.2016.178
10.1007/s10863-010-9286-7
10.1038/s41580-020-0230-3
10.1523/JNEUROSCI.4680-13.2014
10.1152/ajpcell.00104.2005
10.1046/j.1471-4159.1997.69052064.x
10.1016/S1474-4422(10)70277-5
10.1016/j.pharmthera.2017.04.005
10.1016/j.neuint.2020.104756
10.1016/j.bbrc.2016.08.168
10.1016/j.bbadis.2009.08.012
10.1038/nature07006
10.1007/s00401-020-02252-5
10.1016/j.redox.2014.11.006
10.1177/002215540104900518
10.1242/dmm.026294
10.1002/cyto.a.20198
10.1254/jphs.94.100
10.1007/s11302-005-6321-y
10.1016/j.cell.2013.05.039
10.1038/jcbfm.1991.121
10.1096/fj.04-2173com
10.1038/nrm3877
10.1046/j.1365-2249.1999.01009.x
10.1016/j.bbadis.2016.07.010
10.1111/jnc.13090
10.1016/j.tem.2013.10.006
10.1046/j.0022-3042.2002.00744.x
10.1083/jcb.114.2.295
10.1038/nrm2240
10.1016/j.tcb.2014.10.005
10.1073/pnas.0511154103
10.1007/BF02238755
10.1038/cdd.2009.131
10.1016/j.bbabio.2010.01.004
10.1053/j.gastro.2005.06.006
10.1002/iub.46
10.1016/j.febslet.2009.04.015
10.1074/jbc.M209454200
10.1016/j.molcel.2010.09.022
10.1242/jcs.014522
10.1016/j.arr.2020.101191
10.1016/S0306-4522(00)00580-7
10.1111/j.1742-4658.2011.08010.x
10.1007/s12035-020-02059-1
10.1089/neu.2017.5605
10.1016/j.neuron.2016.12.034
10.1046/j.1432-1033.2002.02869.x
10.1016/j.celrep.2020.01.060
10.1186/1741-7007-11-71
10.3390/cells8070712
10.1385/ENDO:29:1:27
10.1126/science.298.5593.556
10.1046/j.1471-4159.1998.70010268.x
10.1016/j.bbadis.2009.07.012
10.3109/02841850903258058
10.1007/978-1-4419-7002-2_11
10.1016/j.nut.2010.07.021
10.1016/j.arr.2019.02.001
10.1097/00004647-199605000-00005
10.1136/jnnp.50.6.779
10.1113/jphysiol.2014.279331
10.1016/j.expneurol.2009.03.019
10.1016/j.mcn.2019.06.009
10.1523/JNEUROSCI.0541-18.2018
10.1073/pnas.1713129115
10.1002/jemt.1070270303
10.1073/pnas.1404651111
10.1111/j.1582-4934.2010.01010.x
10.1016/j.cmet.2016.08.023
10.1371/journal.pbio.1001754
10.1016/j.cmet.2006.01.012
10.1186/s13059-015-0607-3
10.1113/jphysiol.1991.sp018765
10.1083/jcb.135.4.883
10.1126/science.287.5461.2267
10.1093/schbul/sbx077
10.1007/s00401-018-1903-2
10.1016/j.msard.2020.102143
10.1152/physrev.1979.59.3.527
10.1016/j.bbadis.2009.06.008
10.1023/A:1022473219044
10.3233/JAD-179911
10.1016/j.bbabio.2015.05.022
10.1016/0006-3002(57)90343-8
10.1016/j.freeradbiomed.2016.04.200
10.1016/j.neuint.2012.06.003
ContentType Journal Article
Copyright 2022 Federation of European Biochemical Societies
2022 Federation of European Biochemical Societies.
Copyright_xml – notice: 2022 Federation of European Biochemical Societies
– notice: 2022 Federation of European Biochemical Societies.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1002/1873-3468.14298
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
CrossRef
AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Biology
EISSN 1873-3468
EndPage 1110
ExternalDocumentID 35088449
10_1002_1873_3468_14298
FEB214298
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: CCDRC
  funderid: CENTRO‐01‐0145‐FEDER‐000003
– fundername: Fundação para a Ciência e a Tecnologia
  funderid: 2020.02006.CEECIND; PTDC/DTP‐PIC/5587/2014; UID/BIM/04501/2013
– fundername: CCDRC
  grantid: CENTRO-01-0145-FEDER-000003
– fundername: Fundação para a Ciência e a Tecnologia
  grantid: 2020.02006.CEECIND
– fundername: Fundação para a Ciência e a Tecnologia
  grantid: PTDC/DTP-PIC/5587/2014
– fundername: Fundação para a Ciência e a Tecnologia
  grantid: UID/BIM/04501/2013
GroupedDBID ---
--K
-~X
.55
.~1
0R~
0SF
1B1
1OC
1~.
1~5
24P
29H
2WC
33P
4.4
4G.
53G
5GY
5RE
5VS
6I.
7-5
71M
8P~
AABNK
AACTN
AAEDW
AAESR
AAFTH
AAHBH
AAHHS
AAHQN
AAIKJ
AAIPD
AALRI
AAMNL
AANLZ
AAQXK
AASGY
AAXRX
AAXUO
AAYCA
AAZKR
ABBQC
ABCUV
ABEFU
ABFNM
ABFRF
ABGSF
ABJNI
ABLJU
ABMAC
ABQWH
ABVKL
ABWVN
ABXDB
ABXGK
ACAHQ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACIUM
ACMXC
ACNCT
ACPOU
ACRPL
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADEZE
ADIYS
ADKYN
ADMGS
ADMUD
ADNMO
ADOZA
ADQTV
ADUVX
ADVLN
ADXAS
ADZMN
ADZOD
AEEZP
AEFWE
AEGXH
AEKER
AENEX
AEQDE
AEQOU
AEUYR
AEXQZ
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AGHFR
AGYEJ
AHBTC
AI.
AIACR
AIAGR
AITUG
AITYG
AIURR
AIWBW
AJBDE
AJRQY
AKRWK
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMRAJ
AMYDB
AZFZN
AZVAB
BAWUL
BFHJK
BMXJE
C45
CS3
DCZOG
DIK
DRFUL
DRMAN
DRSTM
DU5
E3Z
EBS
EJD
EMOBN
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FUBAC
G-Q
GBLVA
GI5
GX1
HGLYW
HVGLF
HZ~
IHE
IXB
J1W
KBYEO
L7B
LATKE
LEEKS
LITHE
LOXES
LUTES
LX3
LYRES
M41
MEWTI
MO0
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MVM
MXFUL
MXMAN
MXSTM
N9A
NCXOZ
O-L
O9-
OK1
OVD
OZT
P-8
P-9
P2P
P2W
PC.
Q38
R2-
R9-
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SEL
SES
SEW
SFE
SSZ
SUPJJ
SV3
TEORI
TR2
UHB
UNMZH
VH1
WBKPD
WH7
WIH
WIJ
WIK
WIN
WOHZO
WXSBR
X7M
Y6R
YK3
ZGI
ZZTAW
~02
AAYWO
AAYXX
ACVFH
ADCNI
ADXHL
AEUPX
AEYWJ
AFPUW
AGHNM
AGQPQ
AGYGG
AIGII
AKBMS
AKYEP
CITATION
NPM
UMC
7X8
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
7S9
L.6
ID FETCH-LOGICAL-c3778-bbb04e2b2463dbdeae96551551c4a9f858bbf84f45173c8e4538f85dde3d442e3
ISSN 0014-5793
1873-3468
IngestDate Fri Jul 11 18:31:08 EDT 2025
Fri Jul 11 00:58:18 EDT 2025
Tue Apr 29 09:42:35 EDT 2025
Tue Jul 01 02:46:52 EDT 2025
Thu Apr 24 23:01:10 EDT 2025
Wed Jan 22 16:25:56 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords ageing
mitophagy
mitochondria
ROS
neurodegeneration
neuron
Huntington
axon
Alzheimer
Parkinson
Language English
License 2022 Federation of European Biochemical Societies.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3778-bbb04e2b2463dbdeae96551551c4a9f858bbf84f45173c8e4538f85dde3d442e3
Notes Edited by Quan Chen
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0002-4432-0925
0000-0003-3718-9874
0000-0002-6817-5670
PMID 35088449
PQID 2623894625
PQPubID 23479
PageCount 1110
ParticipantIDs proquest_miscellaneous_2675588133
proquest_miscellaneous_2623894625
pubmed_primary_35088449
crossref_citationtrail_10_1002_1873_3468_14298
crossref_primary_10_1002_1873_3468_14298
wiley_primary_10_1002_1873_3468_14298_FEB214298
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2022
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: May 2022
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle FEBS letters
PublicationTitleAlternate FEBS Lett
PublicationYear 2022
References 2002; 17
2017; 86
1991; 114
2013; 4
2006; 31
2010; 14
2013; 1
2011; 117
1997; 272
2019; 98
2019; 10
2010; 17
1991; 11
1995; 36
1997; 41
2019; 13
2014; 25
2016; 143
2008; 105
2020; 13
2012; 18
2001; 49
2020; 323
2008; 31
2013; 7
2012; 125
2012; 13
2013; 8
2018; 44
2003; 278
2012; 11
2014; 20
1997; 388
2018; 8
2010; 27
2003; 206
2019; 22
2015; 133
2013; 51
2015; 86
2008; 29
2013; 50
2013; 52
2007; 8
2014; 15
2019; 710
2006; 29
2016; 41
2002; 269
2020; 1866
2007; 4
2008; 22
2012; 1817
1996; 135
2018; 38
2010; 30
2018; 35
2019; 8
1987; 50
2019; 33
2009; 61
2010; 39
2005; 118
2013; 342
2014; 2014
2021; 141
2016; 92
2002; 80
2017; 133
2009; 218
1992; 32
2008; 121
1996; 16
2010; 40
2001; 21
2010; 1797
2011; 147
2010; 42
2005; 19
2012; 199
2004; 279
1991; 441
2015; 1847
2020; 30
2015; 112
2018; 115
2015; 593
2009; 583
2005; 129
2005; 4
2010; 694
2005; 7
2005; 1
1998; 70
2009; 185
2020; 21
2014; 34
2016; 24
2006; 103
2012; 61
2004; 63
2011; 278
2017; 8
2017; 3
2019; 51
1987; 8
2020; 64
1993; 60
2015; 30
2002; 114
2004; 67
2016; 100
2008; 7
2011; 10
1994; 27
2020; 57
2019; 129
2011; 14
2014; 171
2007; 35
2019; 122
2003; 10
2001; 103
2016; 90
2013; 11
2017; 36
1982; 2
2009; 50
2006; 69
1995; 66
2018; 136
2020; 9
2017; 34
2020; 138
2010; 1802
2003; 4
2008; 68
1999; 10
2005; 32
2000; 287
2017; 483
2013; 153
2020; 43
2014; 51
2011; 27
2008; 60
2007; 27
2011; 334
2011; 333
2000; 29
2015; 16
1979; 59
2015; 4
2017; 21
1980; 23
1997; 69
2002; 298
2006; 3
2008; 10
2016; 1862
2018; 66
2017; 178
2014; 111
2008; 1777
2015; 7
2018; 64
2011; 331
2012; 75
2008; 161
2015; 25
1980; 14
2004; 94
2009; 30
2018; 1049
2012; 3
2017; 93
2005; 289
2015; 20
2017; 10
2002; 21
2017; 12
2013; 139
2016; 535
2017; 18
2009; 5
2008; 454
2008; 86
2012; 7
2003; 301
1957; 23
e_1_2_11_70_1
e_1_2_11_93_1
e_1_2_11_200_1
e_1_2_11_186_1
e_1_2_11_32_1
e_1_2_11_55_1
e_1_2_11_78_1
e_1_2_11_29_1
e_1_2_11_125_1
e_1_2_11_4_1
e_1_2_11_148_1
e_1_2_11_102_1
e_1_2_11_163_1
e_1_2_11_140_1
e_1_2_11_81_1
e_1_2_11_197_1
e_1_2_11_20_1
e_1_2_11_66_1
e_1_2_11_89_1
e_1_2_11_43_1
e_1_2_11_17_1
e_1_2_11_136_1
e_1_2_11_159_1
e_1_2_11_113_1
e_1_2_11_174_1
e_1_2_11_151_1
e_1_2_11_201_1
e_1_2_11_92_1
e_1_2_11_187_1
e_1_2_11_31_1
e_1_2_11_77_1
e_1_2_11_54_1
e_1_2_11_103_1
e_1_2_11_126_1
e_1_2_11_149_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_141_1
e_1_2_11_164_1
e_1_2_11_190_1
e_1_2_11_80_1
e_1_2_11_198_1
e_1_2_11_88_1
e_1_2_11_42_1
e_1_2_11_65_1
e_1_2_11_114_1
e_1_2_11_16_1
e_1_2_11_137_1
e_1_2_11_39_1
e_1_2_11_152_1
e_1_2_11_175_1
e_1_2_11_180_1
e_1_2_11_72_1
e_1_2_11_202_1
e_1_2_11_188_1
e_1_2_11_57_1
e_1_2_11_34_1
e_1_2_11_95_1
e_1_2_11_11_1
e_1_2_11_104_1
e_1_2_11_127_1
e_1_2_11_2_1
Loessner A (e_1_2_11_128_1) 1995; 36
e_1_2_11_165_1
e_1_2_11_142_1
Rao J (e_1_2_11_99_1) 2006; 31
e_1_2_11_83_1
e_1_2_11_191_1
e_1_2_11_60_1
e_1_2_11_45_1
e_1_2_11_199_1
e_1_2_11_68_1
e_1_2_11_22_1
e_1_2_11_115_1
e_1_2_11_138_1
e_1_2_11_19_1
e_1_2_11_176_1
e_1_2_11_153_1
e_1_2_11_130_1
e_1_2_11_94_1
e_1_2_11_181_1
e_1_2_11_71_1
e_1_2_11_203_1
e_1_2_11_10_1
e_1_2_11_56_1
e_1_2_11_189_1
e_1_2_11_79_1
e_1_2_11_33_1
e_1_2_11_105_1
e_1_2_11_3_1
e_1_2_11_143_1
e_1_2_11_166_1
e_1_2_11_120_1
e_1_2_11_82_1
e_1_2_11_192_1
e_1_2_11_21_1
e_1_2_11_44_1
e_1_2_11_67_1
e_1_2_11_18_1
e_1_2_11_139_1
e_1_2_11_116_1
e_1_2_11_154_1
e_1_2_11_177_1
e_1_2_11_131_1
e_1_2_11_182_1
Wu HQ (e_1_2_11_107_1) 2010; 39
e_1_2_11_36_1
e_1_2_11_51_1
e_1_2_11_74_1
e_1_2_11_97_1
e_1_2_11_13_1
e_1_2_11_118_1
e_1_2_11_106_1
e_1_2_11_48_1
e_1_2_11_121_1
e_1_2_11_167_1
e_1_2_11_144_1
e_1_2_11_193_1
e_1_2_11_47_1
e_1_2_11_24_1
e_1_2_11_62_1
e_1_2_11_129_1
e_1_2_11_8_1
e_1_2_11_85_1
e_1_2_11_117_1
e_1_2_11_59_1
e_1_2_11_178_1
e_1_2_11_132_1
e_1_2_11_155_1
e_1_2_11_170_1
e_1_2_11_50_1
Meier‐Ruge W (e_1_2_11_108_1) 1980; 23
e_1_2_11_183_1
e_1_2_11_58_1
e_1_2_11_119_1
e_1_2_11_35_1
e_1_2_11_73_1
e_1_2_11_12_1
e_1_2_11_96_1
e_1_2_11_122_1
e_1_2_11_145_1
e_1_2_11_168_1
e_1_2_11_160_1
e_1_2_11_61_1
e_1_2_11_194_1
e_1_2_11_46_1
e_1_2_11_69_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_84_1
e_1_2_11_156_1
e_1_2_11_179_1
e_1_2_11_110_1
e_1_2_11_133_1
e_1_2_11_171_1
e_1_2_11_91_1
e_1_2_11_184_1
e_1_2_11_30_1
e_1_2_11_53_1
e_1_2_11_76_1
e_1_2_11_6_1
e_1_2_11_27_1
e_1_2_11_169_1
e_1_2_11_100_1
e_1_2_11_146_1
e_1_2_11_123_1
e_1_2_11_161_1
e_1_2_11_195_1
e_1_2_11_41_1
e_1_2_11_87_1
e_1_2_11_64_1
e_1_2_11_15_1
e_1_2_11_111_1
e_1_2_11_134_1
e_1_2_11_38_1
e_1_2_11_157_1
e_1_2_11_172_1
e_1_2_11_90_1
e_1_2_11_185_1
e_1_2_11_14_1
e_1_2_11_52_1
e_1_2_11_98_1
e_1_2_11_75_1
e_1_2_11_7_1
e_1_2_11_147_1
e_1_2_11_26_1
e_1_2_11_49_1
e_1_2_11_101_1
e_1_2_11_124_1
e_1_2_11_162_1
e_1_2_11_196_1
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_63_1
e_1_2_11_86_1
e_1_2_11_109_1
e_1_2_11_158_1
e_1_2_11_37_1
e_1_2_11_135_1
e_1_2_11_112_1
e_1_2_11_150_1
e_1_2_11_173_1
References_xml – volume: 39
  start-page: 43
  year: 2010
  end-page: 8
  article-title: Expression of GLUT 3 in different brain regions of aged rats
  publication-title: Zhejiang Da Xue Xue Bao Yi Xue Ban
– volume: 29
  start-page: 676
  year: 2008
  end-page: 92
  article-title: Hippocampal hypometabolism predicts cognitive decline from normal aging
  publication-title: Neurobiol Aging
– volume: 269
  start-page: 1996
  year: 2002
  end-page: 2002
  article-title: The mitochondrial‐lysosomal axis theory of aging: accumulation of damaged mitochondria as a result of imperfect autophagocytosis
  publication-title: Eur J Biochem
– volume: 122
  start-page: 35
  year: 2019
  end-page: 40
  article-title: Autophagy and mitophagy in ALS
  publication-title: Neurobiol Dis
– volume: 133
  start-page: 684
  year: 2015
  end-page: 99
  article-title: Changes in mitochondrial morphology induced by calcium or rotenone in primary astrocytes occur predominantly through ros‐mediated remodeling
  publication-title: J Neurochem
– volume: 69
  start-page: 1
  year: 2006
  end-page: 12
  article-title: Simultaneous quantitative measurement and automated analysis of mitochondrial morphology, mass, potential, and motility in living human skin fibroblasts
  publication-title: Cytometry A
– volume: 8
  start-page: 11557
  year: 2018
  article-title: Longitudinal effects of aging on (18)F‐FDG distribution in cognitively normal elderly individuals
  publication-title: Sci Rep
– volume: 98
  start-page: 109
  year: 2019
  end-page: 20
  article-title: Mitochondrial dynamics and transport in Alzheimer's disease
  publication-title: Mol Cell Neurosci
– volume: 18
  start-page: 101
  year: 2017
  end-page: 13
  article-title: Selective neuronal vulnerability in Parkinson disease
  publication-title: Nat Rev Neurosci
– volume: 29
  start-page: 27
  year: 2006
  end-page: 32
  article-title: Energy metabolism and oxidative stress: impact on the metabolic syndrome and the aging process
  publication-title: Endocrine
– volume: 27
  start-page: 422
  year: 2007
  end-page: 30
  article-title: Altered axonal mitochondrial transport in the pathogenesis of Charcot‐Marie‐Tooth disease from mitofusin 2 mutations
  publication-title: J Neurosci
– volume: 14
  start-page: 724
  year: 2011
  end-page: 38
  article-title: Brain energy metabolism: focus on astrocyte‐neuron metabolic cooperation
  publication-title: Cell Metab
– volume: 185
  start-page: 1065
  year: 2009
  end-page: 81
  article-title: HUMMR, a hypoxia‐ and HIF‐1alpha‐inducible protein, alters mitochondrial distribution and transport
  publication-title: J Cell Biol
– volume: 14
  start-page: 457
  year: 2010
  end-page: 87
  article-title: Basic mechanisms of neurodegeneration: a critical update
  publication-title: J Cell Mol Med
– volume: 16
  start-page: 50
  year: 2015
  article-title: Expression of multiple horizontally acquired genes is a hallmark of both vertebrate and invertebrate genomes
  publication-title: Genome Biol
– volume: 16
  start-page: 385
  year: 1996
  end-page: 98
  article-title: The metabolic topography of normal aging
  publication-title: J Cereb Blood Flow Metab
– volume: 25
  start-page: 1108
  year: 2015
  end-page: 20
  article-title: Dynamic tubulation of mitochondria drives mitochondrial network formation
  publication-title: Cell Res
– volume: 129
  start-page: 2597
  year: 2019
  end-page: 607
  article-title: Immunometabolism of pro‐repair cells
  publication-title: J Clin Invest
– volume: 41
  start-page: 261
  year: 2016
  end-page: 73
  article-title: Mitochondrial cristae: where beauty meets functionality
  publication-title: Trends Biochem Sci
– volume: 4
  start-page: 6
  year: 2015
  end-page: 13
  article-title: Mitochondrial dynamics and mitochondrial quality control
  publication-title: Redox Biol
– volume: 153
  start-page: 1194
  year: 2013
  end-page: 217
  article-title: The hallmarks of aging
  publication-title: Cell
– volume: 60
  start-page: 1964
  year: 1993
  end-page: 7
  article-title: Age‐dependent impairment of mitochondrial function in primate brain
  publication-title: J Neurochem
– volume: 694
  start-page: 138
  year: 2010
  end-page: 59
  article-title: Protein homeostasis in models of aging and age‐related conformational disease
  publication-title: Adv Exp Med Biol
– volume: 483
  start-page: 1013
  year: 2017
  end-page: 9
  article-title: Calcium and Parkinson's disease
  publication-title: Biochem Biophys Res Commun
– volume: 138
  year: 2020
  article-title: Mitophagy in Parkinson's disease: from pathogenesis to treatment target
  publication-title: Neurochem Int
– volume: 93
  start-page: 587
  year: 2017
  end-page: 605 e7
  article-title: Transient opening of the mitochondrial permeability transition pore induces microdomain calcium transients in astrocyte processes
  publication-title: Neuron
– volume: 69
  start-page: 2064
  year: 1997
  end-page: 74
  article-title: Evidence of increased oxidative damage in both sporadic and familial amyotrophic lateral sclerosis
  publication-title: J Neurochem
– volume: 1802
  start-page: 62
  year: 2010
  end-page: 5
  article-title: Impaired mitochondrial trafficking in Huntington's disease
  publication-title: Biochim Biophys Acta
– volume: 60
  start-page: 308
  year: 2008
  end-page: 14
  article-title: Brain mitochondrial dysfunction in aging
  publication-title: IUBMB Life
– volume: 111
  start-page: 9633
  year: 2014
  end-page: 8
  article-title: Transcellular degradation of axonal mitochondria
  publication-title: Proc Natl Acad Sci USA
– volume: 66
  start-page: 357
  year: 1995
  end-page: 70
  article-title: Age‐related changes in brain: II. Positron emission tomography of frontal and temporal lobe glucose metabolism in normal subjects
  publication-title: Psychiatr Q
– volume: 27
  start-page: 181
  year: 2010
  end-page: 92
  article-title: Mitochondrial dynamics in Alzheimer's disease: opportunities for future treatment strategies
  publication-title: Drugs Aging
– volume: 23
  start-page: 394
  year: 1957
  end-page: 401
  article-title: The influence of some cations on an adenosine triphosphatase from peripheral nerves
  publication-title: Biochem Biophys Acta
– volume: 103
  start-page: 1283
  year: 2006
  end-page: 8
  article-title: Mitochondrial transfer between cells can rescue aerobic respiration
  publication-title: Proc Natl Acad Sci USA
– volume: 36
  start-page: 1141
  year: 1995
  end-page: 9
  article-title: Regional cerebral function determined by FDG‐PET in healthy volunteers: normal patterns and changes with age
  publication-title: J Nucl Med
– volume: 14
  start-page: 203
  issue: 1–2
  year: 1980
  end-page: 9
  article-title: Glycolytic enzymes from human autoptic brain cortex: normal aged and demented cases
  publication-title: Mech Ageing Dev
– volume: 8
  year: 2017
  article-title: Caloric restriction improves health and survival of rhesus monkeys
  publication-title: Nat Commun
– volume: 118
  start-page: 5411
  issue: Pt 23
  year: 2005
  end-page: 9
  article-title: The axonal transport of mitochondria
  publication-title: J Cell Sci
– volume: 535
  start-page: 551
  year: 2016
  end-page: 5
  article-title: Transfer of mitochondria from astrocytes to neurons after stroke
  publication-title: Nature
– volume: 1802
  start-page: 45
  year: 2010
  end-page: 51
  article-title: Mitochondrial dysfunction in amyotrophic lateral sclerosis
  publication-title: Biochim Biophys Acta
– volume: 10
  start-page: 187
  year: 2011
  end-page: 98
  article-title: Disrupted energy metabolism and neuronal circuit dysfunction in cognitive impairment and Alzheimer's disease
  publication-title: Lancet Neurol
– volume: 17
  start-page: 1071
  year: 2010
  end-page: 82
  article-title: Adenosine signaling and function in glial cells
  publication-title: Cell Death Differ
– volume: 206
  start-page: 1985
  issue: Pt 12
  year: 2003
  end-page: 92
  article-title: Mitochondrial movement and positioning in axons: the role of growth factor signaling
  publication-title: J Exp Biol
– volume: 136
  start-page: 747
  year: 2018
  end-page: 57
  article-title: Region‐specific depletion of synaptic mitochondria in the brains of patients with Alzheimer's disease
  publication-title: Acta Neuropathol
– volume: 41
  start-page: 646
  year: 1997
  end-page: 53
  article-title: Oxidative damage and metabolic dysfunction in Huntington's disease: selective vulnerability of the basal ganglia
  publication-title: Ann Neurol
– volume: 12
  start-page: 1052
  year: 2017
  end-page: 61
  article-title: Mitochondrial quality control in amyotrophic lateral sclerosis: towards a common pathway?
  publication-title: Neural Regen Res
– volume: 129
  start-page: 351
  year: 2005
  end-page: 60
  article-title: Dying a thousand deaths: redundant pathways from different organelles to apoptosis and necrosis
  publication-title: Gastroenterology
– volume: 8
  start-page: 870
  year: 2007
  end-page: 9
  article-title: Functions and dysfunctions of mitochondrial dynamics
  publication-title: Nat Rev Mol Cell Biol
– volume: 30
  start-page: 2332
  year: 2020
  end-page: 2348 e10
  article-title: Defective mitochondrial pyruvate flux affects cell bioenergetics in alzheimer's disease‐related models
  publication-title: Cell Rep
– volume: 80
  start-page: 780
  year: 2002
  end-page: 7
  article-title: Generation of reactive oxygen species by the mitochondrial electron transport chain
  publication-title: J Neurochem
– volume: 66
  start-page: 1213
  year: 2018
  end-page: 34
  article-title: Regulation of mitochondrial dynamics in astrocytes: Mechanisms, consequences, and unknowns
  publication-title: Glia
– volume: 7
  year: 2012
  article-title: The relationship between cerebral glucose metabolism and age: report of a large brain PET data set
  publication-title: PLoS One
– volume: 7
  start-page: 201
  year: 2005
  end-page: 12
  article-title: Sodium azide and 2‐deoxy‐D‐glucose‐induced cellular stress affects phosphorylation‐dependent AbetaPP processing
  publication-title: J Alzheimers Dis
– volume: 454
  start-page: 232
  year: 2008
  end-page: 5
  article-title: Essential role for Nix in autophagic maturation of erythroid cells
  publication-title: Nature
– volume: 57
  start-page: 5084
  year: 2020
  end-page: 102
  article-title: Decreased mitochondrial function, biogenesis, and degradation in peripheral blood mononuclear cells from amyotrophic lateral sclerosis patients as a potential tool for biomarker research
  publication-title: Mol Neurobiol
– volume: 22
  start-page: 401
  year: 2019
  end-page: 12
  article-title: Mitophagy inhibits amyloid‐beta and tau pathology and reverses cognitive deficits in models of Alzheimer's disease
  publication-title: Nat Neurosci
– volume: 86
  start-page: 883
  year: 2015
  end-page: 901
  article-title: A cellular perspective on brain energy metabolism and functional imaging
  publication-title: Neuron
– volume: 1817
  start-page: 1833
  year: 2012
  end-page: 8
  article-title: Bioenergetic role of mitochondrial fusion and fission
  publication-title: Biochim Biophys Acta
– volume: 21
  start-page: 1667
  year: 2017
  end-page: 80
  article-title: ROS control mitochondrial motility through p38 and the motor adaptor miro/trak
  publication-title: Cell Rep
– volume: 333
  start-page: 1109
  year: 2011
  end-page: 12
  article-title: Mitochondria and the autophagy‐inflammation‐cell death axis in organismal aging
  publication-title: Science
– volume: 50
  start-page: 779
  year: 1987
  end-page: 85
  article-title: Relation of measured brain glucose utilisation and cerebral atrophy in man
  publication-title: J Neurol Neurosurg Psychiatry
– volume: 11
  year: 2013
  article-title: Impulse conduction increases mitochondrial transport in adult mammalian peripheral nerves in vivo
  publication-title: PLoS Biol
– volume: 51
  start-page: 1072
  year: 2014
  end-page: 88
  article-title: Taking the pulse of aging: mapping pulse pressure and elasticity in cerebral arteries with optical methods
  publication-title: Psychophysiology
– volume: 710
  year: 2019
  article-title: The role of mitochondria in amyotrophic lateral sclerosis
  publication-title: Neurosci Lett
– volume: 105
  start-page: 19318
  year: 2008
  end-page: 23
  article-title: Amyloid‐beta overproduction causes abnormal mitochondrial dynamics via differential modulation of mitochondrial fission/fusion proteins
  publication-title: Proc Natl Acad Sci USA
– volume: 12
  year: 2017
  article-title: ROS regulation of axonal mitochondrial transport is mediated by Ca2+ and JNK in Drosophila
  publication-title: PLoS One
– volume: 25
  start-page: 112
  year: 2015
  end-page: 24
  article-title: On the move: organelle dynamics during mitosis
  publication-title: Trends Cell Biol
– volume: 125
  start-page: 795
  issue: Pt 4
  year: 2012
  end-page: 9
  article-title: PINK1‐ and Parkin‐mediated mitophagy at a glance
  publication-title: J Cell Sci
– volume: 1049
  start-page: 59
  year: 2018
  end-page: 83
  article-title: Mitochondrial dysfunction in Huntington's disease
  publication-title: Adv Exp Med Biol
– volume: 11
  start-page: 347
  year: 2012
  end-page: 52
  article-title: Evolutionary aspects of human exercise–born to run purposefully
  publication-title: Ageing Res Rev
– volume: 117
  start-page: 797
  year: 2011
  end-page: 811
  article-title: Tetanic failure due to decreased endogenous adenosine A(2A) tonus operating neuronal Ca(v) 1 (L‐type) influx in Myasthenia gravis
  publication-title: J Neurochem
– volume: 143
  start-page: 1981
  year: 2016
  end-page: 92
  article-title: Mitochondrial biogenesis is required for axonal growth
  publication-title: Development
– volume: 86
  start-page: 2250
  year: 2008
  end-page: 7
  article-title: Distribution of mitochondria along small‐diameter myelinated central nervous system axons
  publication-title: J Neurosci Res
– volume: 8
  start-page: 10
  year: 2018
  article-title: Role of Parkin and endurance training on mitochondrial turnover in skeletal muscle
  publication-title: Skelet Muscle
– volume: 7
  start-page: 21
  year: 2008
  end-page: 33
  article-title: Hormesis: a promising strategy to sustain endogenous neuronal survival pathways against neurodegenerative disorders
  publication-title: Ageing Res Rev
– volume: 441
  start-page: 513
  year: 1991
  end-page: 35
  article-title: Changes in excitability and accommodation of human motor axons following brief periods of ischaemia
  publication-title: J Physiol
– volume: 3
  start-page: 1
  year: 2017
  end-page: 13
  article-title: The role of hormesis in the functional performance and protection of neural systems
  publication-title: Brain Circ
– volume: 24
  start-page: 376
  year: 2016
  end-page: 8
  article-title: Mitochondrial transfer from astrocytes to neurons following ischemic insult: guilt by association?
  publication-title: Cell Metab
– volume: 1847
  start-page: 1347
  year: 2015
  end-page: 53
  article-title: Mitochondrial dysfunction in aging: Much progress but many unresolved questions
  publication-title: Biochim Biophys Acta
– volume: 11
  start-page: 71
  year: 2013
  article-title: Mitochondrial network morphology: building an integrative, geometrical view
  publication-title: BMC Biol
– volume: 334
  start-page: 358
  year: 2011
  end-page: 62
  article-title: ER tubules mark sites of mitochondrial division
  publication-title: Science
– volume: 9
  start-page: 394
  issue: 5
  year: 2020
  end-page: 404
  article-title: Physical exercise in the prevention and treatment of Alzheimer's disease
  publication-title: J Sport Health Sci
– volume: 583
  start-page: 1391
  year: 2009
  end-page: 8
  article-title: The Miro GTPases: at the heart of the mitochondrial transport machinery
  publication-title: FEBS Lett
– volume: 42
  start-page: 199
  year: 2010
  end-page: 205
  article-title: The interrelationship between mitochondrial dysfunction and transcriptional dysregulation in Huntington disease
  publication-title: J Bioenerg Biomembr
– volume: 21
  start-page: 1133
  year: 2001
  end-page: 45
  article-title: An energy budget for signaling in the grey matter of the brain
  publication-title: J Cereb Blood Flow Metab
– volume: 100
  start-page: 108
  year: 2016
  end-page: 22
  article-title: Energy metabolism and inflammation in brain aging and Alzheimer's disease
  publication-title: Free Radic Biol Med
– volume: 23
  start-page: 323
  year: 1980
  end-page: 38
  article-title: Neurochemical findings in the aging brain
  publication-title: Adv Biochem Psychopharmacol
– volume: 289
  start-page: C881
  year: 2005
  end-page: 90
  article-title: Mitochondrial network complexity and pathological decrease in complex I activity are tightly correlated in isolated human complex I deficiency
  publication-title: Am J Physiol Cell Physiol
– volume: 49
  start-page: 671
  year: 2001
  end-page: 2
  article-title: Quantitative immunohistochemistry of glucose transport protein (Glut3) expression in the rat hippocampus during aging
  publication-title: J Histochem Cytochem
– volume: 86
  start-page: 715
  year: 2017
  end-page: 48
  article-title: Oxidative stress
  publication-title: Annu Rev Biochem
– volume: 135
  start-page: 883
  year: 1996
  end-page: 93
  article-title: In situ localization of mitochondrial DNA replication in intact mammalian cells
  publication-title: J Cell Biol
– volume: 114
  start-page: 295
  year: 1991
  end-page: 302
  article-title: Kinesin associates with anterogradely transported membranous organelles in vivo
  publication-title: J Cell Biol
– volume: 323
  start-page: 297
  year: 2020
  end-page: 9
  article-title: In Alzheimer research, glucose metabolism moves to center stage
  publication-title: JAMA
– volume: 4
  start-page: 19
  year: 2003
  end-page: 29
  article-title: Mitochondrial electron transport chain complexes in aging rat brain and lymphocytes
  publication-title: Biogerontology
– volume: 52
  start-page: 1913
  year: 2013
  end-page: 26
  article-title: Age‐related oxidative modifications of transthyretin modulate its amyloidogenicity
  publication-title: Biochemistry
– volume: 593
  start-page: 987
  year: 2015
  end-page: 1002
  article-title: Axonal morphological changes following impulse activity in mouse peripheral nerve in vivo: the return pathway for sodium ions
  publication-title: J Physiol
– volume: 133
  start-page: 12
  year: 2017
  end-page: 30
  article-title: Metabolic dysfunction in Parkinson's disease: bioenergetics, redox homeostasis and central carbon metabolism
  publication-title: Brain Res Bull
– volume: 278
  start-page: 941
  year: 2011
  end-page: 54
  article-title: Mitochondrial oxidative stress causes mitochondrial fragmentation via differential modulation of mitochondrial fission‐fusion proteins
  publication-title: FEBS J
– volume: 1
  start-page: 217
  issue: 4
  year: 2013
  end-page: 33
  article-title: Glucose metabolism in normal aging and Alzheimer's disease: Methodological and physiological considerations for PET studies
  publication-title: Clin Transl Imaging
– volume: 279
  start-page: 39068
  year: 2004
  end-page: 74
  article-title: Uth1p is involved in the autophagic degradation of mitochondria
  publication-title: J Biol Chem
– volume: 1866
  year: 2020
  article-title: Neuroprotection from optic nerve injury and modulation of oxidative metabolism by transplantation of active mitochondria to the retina
  publication-title: Biochim Biophys Acta Mol Basis Dis
– volume: 31
  start-page: 149
  year: 2006
  end-page: 58
  article-title: Regulation of cerebral glucose metabolism
  publication-title: Minerva Endocrinol
– volume: 178
  start-page: 157
  year: 2017
  end-page: 74
  article-title: Mitophagy and age‐related pathologies: development of new therapeutics by targeting mitochondrial turnover
  publication-title: Pharmacol Ther
– volume: 2
  start-page: 163
  year: 1982
  end-page: 71
  article-title: Effects of human aging on patterns of local cerebral glucose utilization determined by the [18F]fluorodeoxyglucose method
  publication-title: J Cereb Blood Flow Metab
– volume: 67
  start-page: 1
  year: 2004
  end-page: 15
  article-title: Mitochondrial biogenesis as a cellular signaling framework
  publication-title: Biochem Pharmacol
– volume: 8
  year: 2013
  article-title: Early decline in glucose transport and metabolism precedes shift to ketogenic system in female aging and Alzheimer's mouse brain: implication for bioenergetic intervention
  publication-title: PLoS One
– volume: 31
  start-page: 609
  year: 2008
  end-page: 16
  article-title: Mutant huntingtin and mitochondrial dysfunction
  publication-title: Trends Neurosci
– volume: 19
  start-page: 43
  year: 2005
  end-page: 52
  article-title: Coordinated changes in mitochondrial function and biogenesis in healthy and diseased human skeletal muscle
  publication-title: FASEB J
– volume: 278
  start-page: 1354
  year: 2003
  end-page: 62
  article-title: Storage and release of ATP from astrocytes in culture
  publication-title: J Biol Chem
– volume: 298
  start-page: 556
  year: 2002
  end-page: 62
  article-title: New insights into neuron‐glia communication
  publication-title: Science
– volume: 21
  start-page: 1616
  year: 2002
  end-page: 27
  article-title: Mitochondria are morphologically and functionally heterogeneous within cells
  publication-title: EMBO J
– volume: 272
  start-page: 20313
  year: 1997
  end-page: 6
  article-title: Protein oxidation in aging, disease, and oxidative stress
  publication-title: J Biol Chem
– volume: 301
  start-page: 1387
  year: 2003
  end-page: 91
  article-title: Autophagy genes are essential for dauer development and life‐span extension in C. elegans
  publication-title: Science
– volume: 32
  start-page: S22
  issue: Suppl
  year: 1992
  end-page: 7
  article-title: Free radical damage to protein and DNA: mechanisms involved and relevant observations on brain undergoing oxidative stress
  publication-title: Ann Neurol
– volume: 30
  start-page: 1026
  year: 2015
  end-page: 33
  article-title: A new role for alpha‐synuclein in Parkinson's disease: alteration of ER‐mitochondrial communication
  publication-title: Mov Disord
– volume: 2014
  year: 2014
  article-title: Metabolic syndrome: an important risk factor for Parkinson's disease
  publication-title: Oxid Med Cell Longev
– volume: 4
  start-page: 1849
  year: 2005
  end-page: 61
  article-title: Proteomic analysis of protein expression and oxidative modification in r6/2 transgenic mice: a model of Huntington disease
  publication-title: Mol Cell Proteomics
– volume: 13
  start-page: 607
  year: 2012
  end-page: 25
  article-title: Endoplasmic reticulum‐mitochondria contacts: function of the junction
  publication-title: Nat Rev Mol Cell Biol
– volume: 36
  start-page: 1474
  year: 2017
  end-page: 92
  article-title: Brain metabolism in health, aging, and neurodegeneration
  publication-title: EMBO J
– volume: 33
  start-page: 7225
  year: 2019
  end-page: 35
  article-title: The regulation of mitochondrial dynamics in neurite outgrowth by retinoic acid receptor beta signaling
  publication-title: FASEB J
– volume: 1797
  start-page: 961
  issue: 6–7
  year: 2010
  end-page: 7
  article-title: Mitochondrial energy metabolism and ageing
  publication-title: Biochim Biophys Acta
– volume: 171
  start-page: 2191
  year: 2014
  end-page: 205
  article-title: Mitochondrial dysfunction in amyotrophic lateral sclerosis ‐ a valid pharmacological target?
  publication-title: Br J Pharmacol
– volume: 141
  start-page: 257
  year: 2021
  end-page: 79
  article-title: Mitochondrial bioenergetic deficits in C9orf72 amyotrophic lateral sclerosis motor neurons cause dysfunctional axonal homeostasis
  publication-title: Acta Neuropathol
– volume: 121
  start-page: 75
  issue: Pt 1
  year: 2008
  end-page: 85
  article-title: The mitochondrial membrane potential and Ca2+ oscillations in smooth muscle
  publication-title: J Cell Sci
– volume: 43
  year: 2020
  article-title: Exercise improves neurotrophins in multiple sclerosis independent of disability status
  publication-title: Mult Scler Relat Disord
– volume: 218
  start-page: 247
  year: 2009
  end-page: 56
  article-title: Mitochondrial dynamics in Parkinson's disease
  publication-title: Exp Neurol
– volume: 38
  start-page: 7505
  year: 2018
  end-page: 15
  article-title: Evidence for compartmentalized axonal mitochondrial biogenesis: mitochondrial DNA replication increases in distal axons as an early response to Parkinson's disease‐relevant stress
  publication-title: J Neurosci
– volume: 10
  start-page: 1075
  year: 2017
  end-page: 87
  article-title: Mitochondrial dynamics in Parkinson's disease: a role for alpha‐synuclein?
  publication-title: Dis Model Mech
– volume: 103
  start-page: 2653
  year: 2006
  end-page: 8
  article-title: Increased production of reactive oxygen species in hyperglycemic conditions requires dynamic change of mitochondrial morphology
  publication-title: Proc Natl Acad Sci USA
– volume: 27
  start-page: 3
  year: 2011
  end-page: 20
  article-title: Brain fuel metabolism, aging, and Alzheimer's disease
  publication-title: Nutrition
– volume: 30
  start-page: 112
  year: 2009
  end-page: 24
  article-title: Voxel‐based mapping of brain gray matter volume and glucose metabolism profiles in normal aging
  publication-title: Neurobiol Aging
– volume: 287
  start-page: 2267
  year: 2000
  end-page: 71
  article-title: Response of Schwann cells to action potentials in development
  publication-title: Science
– volume: 1
  start-page: 211
  year: 2005
  end-page: 7
  article-title: Regulation of cell‐to‐cell communication mediated by astrocytic ATP in the CNS
  publication-title: Purinergic Signal
– volume: 342
  start-page: 1468
  year: 2013
  end-page: 73
  article-title: Horizontal transfer of entire genomes via mitochondrial fusion in the angiosperm Amborella
  publication-title: Science
– volume: 21
  start-page: 363
  year: 2020
  end-page: 83
  article-title: Reactive oxygen species (ROS) as pleiotropic physiological signalling agents
  publication-title: Nat Rev Mol Cell Biol
– volume: 112
  start-page: 2876
  year: 2015
  end-page: 81
  article-title: In vivo NAD assay reveals the intracellular NAD contents and redox state in healthy human brain and their age dependences
  publication-title: Proc Natl Acad Sci USA
– volume: 13
  start-page: 316
  year: 2019
  article-title: Mitochondria are dynamically transferring between human neural cells and alexander disease‐associated GFAP mutations impair the astrocytic transfer
  publication-title: Front Cell Neurosci
– volume: 388
  start-page: 390
  year: 1997
  end-page: 3
  article-title: Coupling of kinesin steps to ATP hydrolysis
  publication-title: Nature
– volume: 29
  start-page: 819
  issue: 11–12
  year: 2000
  end-page: 29
  article-title: Cytoplasmic dynein subunit heterogeneity: implications for axonal transport
  publication-title: J Neurocytol
– volume: 1862
  start-page: 1909
  year: 2016
  end-page: 17
  article-title: Mitochondrial traffic jams in Alzheimer's disease ‐ pinpointing the roadblocks
  publication-title: Biochim Biophys Acta
– volume: 61
  start-page: 389
  year: 2012
  end-page: 96
  article-title: Regulation of neuronal bioenergy homeostasis by glutamate
  publication-title: Neurochem Int
– volume: 30
  start-page: 286
  year: 2010
  end-page: 98
  article-title: Brain‐derived neurotrophic factor enhances the expression of the monocarboxylate transporter 2 through translational activation in mouse cultured cortical neurons
  publication-title: J Cereb Blood Flow Metab
– volume: 21
  start-page: 1170
  issue: 3
  year: 2020
  article-title: BDNF as a promising therapeutic agent in Parkinson's disease
  publication-title: Int J Mol Sci
– volume: 35
  start-page: 1800
  year: 2018
  end-page: 18
  article-title: Effects of mitochondrial transplantation on bioenergetics, cellular incorporation, and functional recovery after spinal cord injury
  publication-title: J Neurotrauma
– volume: 7
  start-page: 49
  year: 2008
  end-page: 62
  article-title: The influences of diet and exercise on mental health through hormesis
  publication-title: Ageing Res Rev
– volume: 161
  start-page: 469
  year: 2008
  end-page: 80
  article-title: Electron tomographic analysis of cytoskeletal cross‐bridges in the paranodal region of the node of Ranvier in peripheral nerves
  publication-title: J Struct Biol
– volume: 3
  start-page: 1250
  year: 2012
  article-title: Involvement of PGC‐1alpha in the formation and maintenance of neuronal dendritic spines
  publication-title: Nat Commun
– volume: 10
  start-page: 870
  year: 2003
  end-page: 80
  article-title: Dynamics of mitochondrial morphology in healthy cells and during apoptosis
  publication-title: Cell Death Differ
– volume: 139
  start-page: 221
  year: 2013
  end-page: 31
  article-title: Astrocytes shed large membrane vesicles that contain mitochondria, lipid droplets and ATP
  publication-title: Histochem Cell Biol
– volume: 51
  start-page: 67
  year: 2019
  end-page: 77
  article-title: Unravelling protein aggregation as an ageing related process or a neuropathological response
  publication-title: Ageing Res Rev
– volume: 8
  start-page: 722
  year: 2007
  end-page: 8
  article-title: Hydrogen peroxide: a metabolic by‐product or a common mediator of ageing signals?
  publication-title: Nat Rev Mol Cell Biol
– volume: 8
  start-page: 319
  year: 1987
  end-page: 23
  article-title: Positron emission tomography studies of normal aging: a replication of PET III and 18‐FDG using PET VI and 11‐CDG
  publication-title: Neurobiol Aging
– volume: 4
  year: 2013
  article-title: Computational classification of mitochondrial shapes reflects stress and redox state
  publication-title: Cell Death Dis
– volume: 331
  start-page: 303
  year: 2011
  article-title: Mitochondrial capture by a transmissible cancer
  publication-title: Science
– volume: 70
  start-page: 268
  year: 1998
  end-page: 75
  article-title: Increased protein oxidation in human substantia nigra pars compacta in comparison with basal ganglia and prefrontal cortex measured with an improved dinitrophenylhydrazine assay
  publication-title: J Neurochem
– volume: 8
  start-page: 712
  issue: 7
  year: 2019
  article-title: Mitophagy in Parkinson's disease: from pathogenesis to treatment
  publication-title: Cells
– volume: 90
  start-page: 51
  year: 2016
  end-page: 7
  article-title: Mitochondrial dynamics and quality control in Huntington's disease
  publication-title: Neurobiol Dis
– volume: 64
  start-page: S405
  issue: s1
  year: 2018
  end-page: 26
  article-title: Metabolic dysfunction in Alzheimer's disease: from basic neurobiology to clinical approaches
  publication-title: J Alzheimers Dis
– volume: 147
  start-page: 893
  year: 2011
  end-page: 906
  article-title: PINK1 and parkin target miro for phosphorylation and degradation to arrest mitochondrial motility
  publication-title: Cell
– volume: 10
  start-page: 1313
  year: 2008
  end-page: 42
  article-title: Ultrastructure of the mitochondrion and its bearing on function and bioenergetics
  publication-title: Antioxid Redox Signal
– volume: 68
  start-page: 1348
  year: 2008
  end-page: 61
  article-title: Mitochondrial biogenesis in the axons of vertebrate peripheral neurons
  publication-title: Dev Neurobiol
– volume: 92
  start-page: 1308
  year: 2016
  end-page: 23
  article-title: Mitochondria localize to injured axons to support regeneration
  publication-title: Neuron
– volume: 5
  start-page: 450
  year: 2009
  end-page: 7
  article-title: Caged AG10: new tools for spatially predefined mitochondrial uncoupling
  publication-title: Mol Biosyst
– volume: 103
  start-page: 373
  year: 2001
  end-page: 83
  article-title: Protein oxidation in the brain in Alzheimer's disease
  publication-title: Neuroscience
– volume: 13
  start-page: 103
  year: 2019
  article-title: mitochondrial dysfunction in Huntington's disease; interplay between HSF1, p53 and PGC‐1alpha transcription factors
  publication-title: Front Cell Neurosci
– volume: 114
  start-page: 23
  year: 2002
  end-page: 37
  article-title: Age, sex and laterality effects on cerebral glucose metabolism in healthy adults
  publication-title: Psychiatry Res
– volume: 50
  start-page: 357
  year: 2013
  end-page: 71
  article-title: From structure to function: mitochondrial morphology, motion and shaping in vascular smooth muscle
  publication-title: J Vasc Res
– volume: 64
  year: 2020
  article-title: Defective mitophagy in Alzheimer's disease
  publication-title: Ageing Res Rev
– volume: 75
  start-page: 762
  year: 2012
  end-page: 77
  article-title: Synaptic energy use and supply
  publication-title: Neuron
– volume: 32
  start-page: 794
  year: 2005
  end-page: 805
  article-title: Brain FDG PET study of normal aging in Japanese: effect of atrophy correction
  publication-title: Eur J Nucl Med Mol Imaging
– volume: 1802
  start-page: 52
  year: 2010
  end-page: 61
  article-title: Mitochondria in Huntington's disease
  publication-title: Biochim Biophys Acta
– volume: 50
  start-page: 1169
  year: 2009
  end-page: 74
  article-title: Age‐ and sex‐associated changes in cerebral glucose metabolism in normal healthy subjects: statistical parametric mapping analysis of F‐18 fluorodeoxyglucose brain positron emission tomography
  publication-title: Acta Radiol
– volume: 59
  start-page: 527
  year: 1979
  end-page: 605
  article-title: Hydroperoxide metabolism in mammalian organs
  publication-title: Physiol Rev
– volume: 27
  start-page: 198
  year: 1994
  end-page: 219
  article-title: Dynamics of mitochondria in living cells: shape changes, dislocations, fusion, and fission of mitochondria
  publication-title: Microsc Res Tech
– volume: 63
  start-page: 147
  year: 2004
  end-page: 54
  article-title: Resting state brain glucose metabolism is not reduced in normotensive healthy men during aging, after correction for brain atrophy
  publication-title: Brain Res Bull
– volume: 17
  start-page: 302
  year: 2002
  end-page: 16
  article-title: Discrimination between Alzheimer dementia and controls by automated analysis of multicenter FDG PET
  publication-title: NeuroImage
– volume: 25
  start-page: 89
  year: 2014
  end-page: 98
  article-title: BDNF mediates adaptive brain and body responses to energetic challenges
  publication-title: Trends Endocrinol Metab
– volume: 7
  start-page: 1307
  year: 2015
  end-page: 26
  article-title: Impaired GAPDH‐induced mitophagy contributes to the pathology of Huntington's disease
  publication-title: EMBO Mol Med
– volume: 34
  start-page: 91
  year: 2017
  end-page: 100
  article-title: Intravenous administration of mitochondria for treating experimental Parkinson's disease
  publication-title: Mitochondrion
– volume: 3
  start-page: 187
  year: 2006
  end-page: 97
  article-title: HIF‐1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption
  publication-title: Cell Metab
– volume: 22
  start-page: 1427
  year: 2008
  end-page: 38
  article-title: Proteotoxic stress and inducible chaperone networks in neurodegenerative disease and aging
  publication-title: Genes Dev
– volume: 44
  start-page: 432
  year: 2018
  end-page: 42
  article-title: Isolated mitochondria transfer improves neuronal differentiation of schizophrenia‐derived induced pluripotent stem cells and rescues deficits in a rat model of the disorder
  publication-title: Schizophr Bull
– volume: 10
  start-page: 2493
  year: 1999
  end-page: 6
  article-title: Age‐related changes in regional cerebral blood flow among young to mid‐life adults
  publication-title: NeuroReport
– volume: 20
  start-page: 37
  year: 2015
  end-page: 45
  article-title: Lifelong brain health is a lifelong challenge: from evolutionary principles to empirical evidence
  publication-title: Ageing Res Rev
– volume: 10
  start-page: 2576
  year: 2019
  article-title: DRP1‐mediated mitochondrial shape controls calcium homeostasis and muscle mass
  publication-title: Nat Commun
– volume: 61
  start-page: 541
  year: 2009
  end-page: 55
  article-title: Miro1 is a calcium sensor for glutamate receptor‐dependent localization of mitochondria at synapses
  publication-title: Neuron
– volume: 199
  start-page: 205
  year: 2012
  end-page: 9
  article-title: Exploring the therapeutic space around NAD+
  publication-title: J Cell Biol
– volume: 1802
  start-page: 228
  year: 2010
  end-page: 34
  article-title: Regulation of neuron mitochondrial biogenesis and relevance to brain health
  publication-title: Biochim Biophys Acta
– volume: 15
  start-page: 634
  year: 2014
  end-page: 46
  article-title: Mitochondrial dynamics and inheritance during cell division, development and disease
  publication-title: Nat Rev Mol Cell Biol
– volume: 40
  start-page: 294
  year: 2010
  end-page: 309
  article-title: Hypoxia‐inducible factors and the response to hypoxic stress
  publication-title: Mol Cell
– volume: 18
  start-page: 759
  year: 2012
  end-page: 65
  article-title: Mitochondrial transfer from bone‐marrow‐derived stromal cells to pulmonary alveoli protects against acute lung injury
  publication-title: Nat Med
– volume: 20
  start-page: 353
  year: 2014
  end-page: 71
  article-title: Mitochondrial energy metabolism and redox signaling in brain aging and neurodegeneration
  publication-title: Antioxid Redox Signal
– volume: 1777
  start-page: 860
  issue: 7–8
  year: 2008
  end-page: 6
  article-title: High levels of Fis1, a pro‐fission mitochondrial protein, trigger autophagy
  publication-title: Biochim Biophys Acta
– volume: 7
  start-page: 38
  year: 2013
  article-title: Multifunctional role of astrocytes as gatekeepers of neuronal energy supply
  publication-title: Front Cell Neurosci
– volume: 4
  start-page: 559
  year: 2007
  end-page: 61
  article-title: Imaging axonal transport of mitochondria in vivo
  publication-title: Nat Methods
– volume: 115
  start-page: 7813
  year: 2018
  end-page: 8
  article-title: alpha‐Synuclein oligomers induce early axonal dysfunction in human iPSC‐based models of synucleinopathies
  publication-title: Proc Natl Acad Sci USA
– volume: 51
  start-page: 3
  year: 2013
  end-page: 12
  article-title: Role of mitochondrial homeostasis and dynamics in Alzheimer's disease
  publication-title: Neurobiol Dis
– volume: 35
  start-page: 1231
  year: 2007
  end-page: 7
  article-title: Where the brain grows old: decline in anterior cingulate and medial prefrontal function with normal aging
  publication-title: NeuroImage
– volume: 34
  start-page: 5965
  year: 2014
  end-page: 70
  article-title: CNS axons globally increase axonal transport after peripheral conditioning
  publication-title: J Neurosci
– volume: 13
  start-page: 41
  year: 2020
  end-page: 9
  article-title: Mitotherapy as a novel therapeutic strategy for mitochondrial diseases
  publication-title: Curr Mol Pharmacol
– volume: 94
  start-page: 100
  year: 2004
  end-page: 2
  article-title: ATP‐ and adenosine‐mediated signaling in the central nervous system: adenosine stimulates glutamate release from astrocytes via A2a adenosine receptors
  publication-title: J Pharmacol Sci
– volume: 11
  start-page: 684
  year: 1991
  end-page: 9
  article-title: Decreases in regional cerebral blood flow with normal aging
  publication-title: J Cereb Blood Flow Metab
– ident: e_1_2_11_59_1
  doi: 10.1073/pnas.0804871105
– ident: e_1_2_11_116_1
  doi: 10.1038/jcbfm.1982.15
– ident: e_1_2_11_67_1
  doi: 10.1242/jcs.02745
– ident: e_1_2_11_161_1
  doi: 10.1089/ars.2012.4774
– ident: e_1_2_11_17_1
  doi: 10.1126/science.1201940
– ident: e_1_2_11_39_1
  doi: 10.1016/j.cell.2011.10.018
– ident: e_1_2_11_66_1
  doi: 10.1039/b820415m
– ident: e_1_2_11_61_1
  doi: 10.1002/mds.26239
– ident: e_1_2_11_7_1
  doi: 10.15252/embj.201695810
– ident: e_1_2_11_50_1
  doi: 10.1038/cddis.2012.213
– ident: e_1_2_11_114_1
  doi: 10.1371/journal.pone.0051517
– ident: e_1_2_11_141_1
  doi: 10.1101/gad.1657108
– ident: e_1_2_11_103_1
  doi: 10.1097/00001756-199908200-00011
– ident: e_1_2_11_172_1
  doi: 10.3390/ijms21031170
– ident: e_1_2_11_89_1
  doi: 10.1126/science.1197696
– ident: e_1_2_11_158_1
  doi: 10.1111/bph.12476
– ident: e_1_2_11_25_1
  doi: 10.1038/nrm2275
– ident: e_1_2_11_175_1
  doi: 10.1016/j.mito.2017.02.005
– ident: e_1_2_11_134_1
  doi: 10.1002/ana.410320706
– ident: e_1_2_11_100_1
  doi: 10.1016/j.cmet.2011.08.016
– volume: 36
  start-page: 1141
  year: 1995
  ident: e_1_2_11_128_1
  article-title: Regional cerebral function determined by FDG‐PET in healthy volunteers: normal patterns and changes with age
  publication-title: J Nucl Med
– ident: e_1_2_11_119_1
  doi: 10.1016/j.neuroimage.2006.12.044
– ident: e_1_2_11_83_1
  doi: 10.1002/glia.23252
– ident: e_1_2_11_120_1
  doi: 10.1016/j.brainresbull.2004.02.003
– ident: e_1_2_11_160_1
  doi: 10.1016/j.neurobiolaging.2006.12.008
– ident: e_1_2_11_56_1
  doi: 10.1016/j.celrep.2017.10.060
– ident: e_1_2_11_105_1
  doi: 10.1371/journal.pone.0079977
– ident: e_1_2_11_44_1
  doi: 10.1159/000353883
– ident: e_1_2_11_74_1
  doi: 10.1016/j.jsb.2007.10.005
– ident: e_1_2_11_85_1
  doi: 10.1007/s00418-012-1045-x
– ident: e_1_2_11_118_1
  doi: 10.1016/S0925-4927(01)00126-3
– ident: e_1_2_11_196_1
  doi: 10.2165/11532140-000000000-00000
– ident: e_1_2_11_182_1
  doi: 10.1016/j.brainresbull.2017.03.009
– ident: e_1_2_11_164_1
  doi: 10.1016/j.arr.2014.12.011
– ident: e_1_2_11_54_1
  doi: 10.1016/j.bbabio.2012.02.033
– ident: e_1_2_11_147_1
  doi: 10.1126/science.1087782
– ident: e_1_2_11_36_1
  doi: 10.1016/j.bcp.2003.10.015
– ident: e_1_2_11_69_1
  doi: 10.1016/j.neuron.2016.11.025
– ident: e_1_2_11_23_1
  doi: 10.1096/fj.201802097R
– ident: e_1_2_11_6_1
  doi: 10.1097/00004647-200110000-00001
– ident: e_1_2_11_177_1
  doi: 10.1016/j.bbadis.2020.165686
– ident: e_1_2_11_46_1
  doi: 10.1038/cr.2015.89
– ident: e_1_2_11_73_1
  doi: 10.1242/jeb.00263
– ident: e_1_2_11_102_1
  doi: 10.1111/psyp.12288
– ident: e_1_2_11_132_1
  doi: 10.1038/ncomms14063
– ident: e_1_2_11_33_1
  doi: 10.1002/dneu.20668
– ident: e_1_2_11_48_1
  doi: 10.1038/s41467-019-10226-9
– ident: e_1_2_11_3_1
  doi: 10.1172/JCI124613
– ident: e_1_2_11_88_1
  doi: 10.1126/science.1246275
– ident: e_1_2_11_38_1
  doi: 10.1016/j.bbadis.2009.07.014
– ident: e_1_2_11_181_1
  doi: 10.3389/fncel.2019.00316
– ident: e_1_2_11_125_1
  doi: 10.1007/s40336-013-0026-y
– ident: e_1_2_11_79_1
  doi: 10.1038/41118
– ident: e_1_2_11_9_1
  doi: 10.1016/j.arr.2007.04.003
– ident: e_1_2_11_98_1
  doi: 10.1111/j.1471-4159.2011.07216.x
– ident: e_1_2_11_179_1
  doi: 10.1038/nm.2736
– ident: e_1_2_11_77_1
  doi: 10.1016/j.neuron.2009.01.030
– ident: e_1_2_11_178_1
  doi: 10.1073/pnas.0510511103
– ident: e_1_2_11_189_1
  doi: 10.1016/j.tins.2008.09.004
– ident: e_1_2_11_140_1
  doi: 10.1021/bi301313b
– ident: e_1_2_11_71_1
  doi: 10.1016/j.neuron.2015.03.035
– ident: e_1_2_11_126_1
  doi: 10.1006/nimg.2002.1208
– ident: e_1_2_11_165_1
  doi: 10.1016/j.arr.2012.01.007
– ident: e_1_2_11_136_1
  doi: 10.1074/mcp.M500090-MCP200
– ident: e_1_2_11_173_1
  doi: 10.2174/1874467212666190920144115
– ident: e_1_2_11_195_1
  doi: 10.3233/JAD-2005-7302
– ident: e_1_2_11_28_1
  doi: 10.1016/j.nbd.2015.09.008
– ident: e_1_2_11_190_1
  doi: 10.3389/fncel.2019.00103
– ident: e_1_2_11_123_1
  doi: 10.1016/0197-4580(87)90070-4
– ident: e_1_2_11_81_1
  doi: 10.1002/jnr.21672
– ident: e_1_2_11_151_1
  doi: 10.15252/emmm.201505256
– ident: e_1_2_11_47_1
  doi: 10.1016/j.tibs.2016.01.001
– ident: e_1_2_11_130_1
  doi: 10.1038/s41598-018-29937-y
– ident: e_1_2_11_92_1
  doi: 10.3389/fncel.2013.00038
– ident: e_1_2_11_55_1
  doi: 10.1371/journal.pone.0178105
– ident: e_1_2_11_60_1
  doi: 10.1016/j.nbd.2011.12.057
– ident: e_1_2_11_42_1
  doi: 10.1093/emboj/21.7.1616
– ident: e_1_2_11_159_1
  doi: 10.1007/978-3-319-71779-1_3
– ident: e_1_2_11_109_1
  doi: 10.1016/0047-6374(80)90120-7
– ident: e_1_2_11_146_1
  doi: 10.1074/jbc.M406960200
– ident: e_1_2_11_166_1
  doi: 10.1016/j.arr.2007.07.003
– ident: e_1_2_11_149_1
  doi: 10.1242/jcs.093849
– ident: e_1_2_11_194_1
  doi: 10.1001/jama.2019.20939
– ident: e_1_2_11_24_1
  doi: 10.1038/sj.cdd.4401260
– ident: e_1_2_11_183_1
  doi: 10.1155/2014/729194
– ident: e_1_2_11_58_1
  doi: 10.1016/j.neulet.2017.06.052
– ident: e_1_2_11_86_1
  doi: 10.1038/nature18928
– ident: e_1_2_11_155_1
  doi: 10.1186/s13395-018-0157-y
– ident: e_1_2_11_8_1
  doi: 10.4103/2394-8108.203257
– ident: e_1_2_11_202_1
  doi: 10.1016/j.nbd.2018.07.005
– ident: e_1_2_11_200_1
  doi: 10.4103/1673-5374.211179
– ident: e_1_2_11_110_1
  doi: 10.1111/j.1471-4159.1993.tb13430.x
– ident: e_1_2_11_127_1
  doi: 10.1016/j.neurobiolaging.2007.05.019
– ident: e_1_2_11_15_1
  doi: 10.1146/annurev-biochem-061516-045037
– ident: e_1_2_11_70_1
  doi: 10.1523/JNEUROSCI.4798-06.2007
– ident: e_1_2_11_34_1
  doi: 10.1242/dev.128926
– ident: e_1_2_11_112_1
  doi: 10.1073/pnas.1417921112
– ident: e_1_2_11_171_1
  doi: 10.1016/j.jshs.2020.01.004
– ident: e_1_2_11_113_1
  doi: 10.1083/jcb.201207019
– ident: e_1_2_11_22_1
  doi: 10.1083/jcb.200811033
– ident: e_1_2_11_150_1
  doi: 10.1038/s41593-018-0332-9
– ident: e_1_2_11_31_1
  doi: 10.1016/j.bbabio.2008.05.442
– ident: e_1_2_11_121_1
  doi: 10.1007/s00259-005-1767-2
– ident: e_1_2_11_2_1
  doi: 10.1038/nrm3440
– ident: e_1_2_11_75_1
  doi: 10.1023/A:1010995408343
– ident: e_1_2_11_167_1
  doi: 10.1038/jcbfm.2009.208
– ident: e_1_2_11_168_1
  doi: 10.1038/ncomms2238
– ident: e_1_2_11_188_1
  doi: 10.1002/ana.410410514
– ident: e_1_2_11_30_1
  doi: 10.1126/science.1207385
– ident: e_1_2_11_101_1
  doi: 10.1016/j.neuron.2012.08.019
– ident: e_1_2_11_80_1
  doi: 10.1038/nmeth1055
– ident: e_1_2_11_49_1
  doi: 10.1089/ars.2007.2000
– ident: e_1_2_11_154_1
  doi: 10.1038/nrn.2016.178
– ident: e_1_2_11_191_1
  doi: 10.1007/s10863-010-9286-7
– ident: e_1_2_11_12_1
  doi: 10.1038/s41580-020-0230-3
– ident: e_1_2_11_68_1
  doi: 10.1523/JNEUROSCI.4680-13.2014
– ident: e_1_2_11_51_1
  doi: 10.1152/ajpcell.00104.2005
– ident: e_1_2_11_138_1
  doi: 10.1046/j.1471-4159.1997.69052064.x
– ident: e_1_2_11_163_1
  doi: 10.1016/S1474-4422(10)70277-5
– ident: e_1_2_11_145_1
  doi: 10.1016/j.pharmthera.2017.04.005
– volume: 39
  start-page: 43
  year: 2010
  ident: e_1_2_11_107_1
  article-title: Expression of GLUT 3 in different brain regions of aged rats
  publication-title: Zhejiang Da Xue Xue Bao Yi Xue Ban
– ident: e_1_2_11_186_1
  doi: 10.1016/j.neuint.2020.104756
– ident: e_1_2_11_153_1
  doi: 10.1016/j.bbrc.2016.08.168
– ident: e_1_2_11_199_1
  doi: 10.1016/j.bbadis.2009.08.012
– ident: e_1_2_11_29_1
  doi: 10.1038/nature07006
– ident: e_1_2_11_203_1
  doi: 10.1007/s00401-020-02252-5
– ident: e_1_2_11_53_1
  doi: 10.1016/j.redox.2014.11.006
– ident: e_1_2_11_106_1
  doi: 10.1177/002215540104900518
– ident: e_1_2_11_156_1
  doi: 10.1242/dmm.026294
– ident: e_1_2_11_40_1
  doi: 10.1002/cyto.a.20198
– ident: e_1_2_11_97_1
  doi: 10.1254/jphs.94.100
– ident: e_1_2_11_95_1
  doi: 10.1007/s11302-005-6321-y
– ident: e_1_2_11_142_1
  doi: 10.1016/j.cell.2013.05.039
– ident: e_1_2_11_104_1
  doi: 10.1038/jcbfm.1991.121
– ident: e_1_2_11_62_1
  doi: 10.1096/fj.04-2173com
– ident: e_1_2_11_37_1
  doi: 10.1038/nrm3877
– ident: e_1_2_11_135_1
  doi: 10.1046/j.1365-2249.1999.01009.x
– ident: e_1_2_11_197_1
  doi: 10.1016/j.bbadis.2016.07.010
– ident: e_1_2_11_57_1
  doi: 10.1111/jnc.13090
– ident: e_1_2_11_169_1
  doi: 10.1016/j.tem.2013.10.006
– ident: e_1_2_11_11_1
  doi: 10.1046/j.0022-3042.2002.00744.x
– ident: e_1_2_11_76_1
  doi: 10.1083/jcb.114.2.295
– ident: e_1_2_11_13_1
  doi: 10.1038/nrm2240
– ident: e_1_2_11_52_1
  doi: 10.1016/j.tcb.2014.10.005
– ident: e_1_2_11_64_1
  doi: 10.1073/pnas.0511154103
– ident: e_1_2_11_129_1
  doi: 10.1007/BF02238755
– ident: e_1_2_11_96_1
  doi: 10.1038/cdd.2009.131
– ident: e_1_2_11_16_1
  doi: 10.1016/j.bbabio.2010.01.004
– ident: e_1_2_11_148_1
  doi: 10.1053/j.gastro.2005.06.006
– ident: e_1_2_11_133_1
  doi: 10.1002/iub.46
– ident: e_1_2_11_21_1
  doi: 10.1016/j.febslet.2009.04.015
– ident: e_1_2_11_91_1
  doi: 10.1074/jbc.M209454200
– ident: e_1_2_11_19_1
  doi: 10.1016/j.molcel.2010.09.022
– ident: e_1_2_11_65_1
  doi: 10.1242/jcs.014522
– ident: e_1_2_11_198_1
  doi: 10.1016/j.arr.2020.101191
– ident: e_1_2_11_137_1
  doi: 10.1016/S0306-4522(00)00580-7
– ident: e_1_2_11_63_1
  doi: 10.1111/j.1742-4658.2011.08010.x
– ident: e_1_2_11_201_1
  doi: 10.1007/s12035-020-02059-1
– ident: e_1_2_11_176_1
  doi: 10.1089/neu.2017.5605
– volume: 31
  start-page: 149
  year: 2006
  ident: e_1_2_11_99_1
  article-title: Regulation of cerebral glucose metabolism
  publication-title: Minerva Endocrinol
– ident: e_1_2_11_84_1
  doi: 10.1016/j.neuron.2016.12.034
– ident: e_1_2_11_144_1
  doi: 10.1046/j.1432-1033.2002.02869.x
– volume: 23
  start-page: 323
  year: 1980
  ident: e_1_2_11_108_1
  article-title: Neurochemical findings in the aging brain
  publication-title: Adv Biochem Psychopharmacol
– ident: e_1_2_11_152_1
  doi: 10.1016/j.celrep.2020.01.060
– ident: e_1_2_11_43_1
  doi: 10.1186/1741-7007-11-71
– ident: e_1_2_11_185_1
  doi: 10.3390/cells8070712
– ident: e_1_2_11_18_1
  doi: 10.1385/ENDO:29:1:27
– ident: e_1_2_11_94_1
  doi: 10.1126/science.298.5593.556
– ident: e_1_2_11_139_1
  doi: 10.1046/j.1471-4159.1998.70010268.x
– ident: e_1_2_11_187_1
  doi: 10.1016/j.bbadis.2009.07.012
– ident: e_1_2_11_117_1
  doi: 10.3109/02841850903258058
– ident: e_1_2_11_143_1
  doi: 10.1007/978-1-4419-7002-2_11
– ident: e_1_2_11_122_1
  doi: 10.1016/j.nut.2010.07.021
– ident: e_1_2_11_131_1
  doi: 10.1016/j.arr.2019.02.001
– ident: e_1_2_11_115_1
  doi: 10.1097/00004647-199605000-00005
– ident: e_1_2_11_124_1
  doi: 10.1136/jnnp.50.6.779
– ident: e_1_2_11_82_1
  doi: 10.1113/jphysiol.2014.279331
– ident: e_1_2_11_26_1
  doi: 10.1016/j.expneurol.2009.03.019
– ident: e_1_2_11_27_1
  doi: 10.1016/j.mcn.2019.06.009
– ident: e_1_2_11_35_1
  doi: 10.1523/JNEUROSCI.0541-18.2018
– ident: e_1_2_11_184_1
  doi: 10.1073/pnas.1713129115
– ident: e_1_2_11_41_1
  doi: 10.1002/jemt.1070270303
– ident: e_1_2_11_180_1
  doi: 10.1073/pnas.1404651111
– ident: e_1_2_11_4_1
  doi: 10.1111/j.1582-4934.2010.01010.x
– ident: e_1_2_11_90_1
  doi: 10.1016/j.cmet.2016.08.023
– ident: e_1_2_11_45_1
  doi: 10.1371/journal.pbio.1001754
– ident: e_1_2_11_20_1
  doi: 10.1016/j.cmet.2006.01.012
– ident: e_1_2_11_87_1
  doi: 10.1186/s13059-015-0607-3
– ident: e_1_2_11_78_1
  doi: 10.1113/jphysiol.1991.sp018765
– ident: e_1_2_11_32_1
  doi: 10.1083/jcb.135.4.883
– ident: e_1_2_11_93_1
  doi: 10.1126/science.287.5461.2267
– ident: e_1_2_11_174_1
  doi: 10.1093/schbul/sbx077
– ident: e_1_2_11_157_1
  doi: 10.1007/s00401-018-1903-2
– ident: e_1_2_11_170_1
  doi: 10.1016/j.msard.2020.102143
– ident: e_1_2_11_14_1
  doi: 10.1152/physrev.1979.59.3.527
– ident: e_1_2_11_192_1
  doi: 10.1016/j.bbadis.2009.06.008
– ident: e_1_2_11_111_1
  doi: 10.1023/A:1022473219044
– ident: e_1_2_11_193_1
  doi: 10.3233/JAD-179911
– ident: e_1_2_11_10_1
  doi: 10.1016/j.bbabio.2015.05.022
– ident: e_1_2_11_72_1
  doi: 10.1016/0006-3002(57)90343-8
– ident: e_1_2_11_5_1
  doi: 10.1016/j.freeradbiomed.2016.04.200
– ident: e_1_2_11_162_1
  doi: 10.1016/j.neuint.2012.06.003
SSID ssj0001819
Score 2.6469827
SecondaryResourceType review_article
Snippet Mitochondria are associated with various cellular activities critical to homeostasis, particularly in the nervous system. The plastic architecture of the...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1095
SubjectTerms ageing
Alzheimer
axon
brain
cognitive disorders
energy
homeostasis
Huntington
metabolism
mitochondria
mitophagy
neurodegeneration
neurodegenerative diseases
neuron
neurons
neuropathology
oxidative stress
Parkinson
ROS
stress response
therapeutics
Title Mitochondria, energy, and metabolism in neuronal health and disease
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2F1873-3468.14298
https://www.ncbi.nlm.nih.gov/pubmed/35088449
https://www.proquest.com/docview/2623894625
https://www.proquest.com/docview/2675588133
Volume 596
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3rb9MwELdgE4IvCDYe5aUgIYTUZWtiO3E-dqXTxB5ILBX9ZsWOM1XqnGmkSPDXc7bjtGU8Bl8iy3Xq6H535zvbd4fQm7TIVIKVCkUik5DIgQwFMEooUlJGsNxTalMpnZwmhxPyYUqny2KcNrqkEbvy-y_jSv4HVegDXE2U7D8g2_0pdEAb8IUnIAzPG2F8AuII6kuXV-7Kq7KBfP5C5oVqAOG5qYIx032buFJ3kY92xOrpjC_VOd4_689tjE9nbefgwdsd1fez-rzuWOSrmhc-ihA8bt0peL837TayZ-cL1V3jOLMH85GPzC7al9ptB_BYu0t-XpVGJKSpK2_oVSl11Wlbnsn6lyZbFQ1Bnw5WlKTpW1lw_a_XlLlLDhuxFIeYJAyUeuwqVq-nzT79yA8mx8c8H0_z22gzBn8BFN7m8OjT56NuUQZDxnlC7Vf7LE-DeO-nCdYNlGtex7oTY62Q_AG637oPwdDxwkN0S-kttD3URVNffAveBvZCrz0p2UJ39n3r7siX9dtGo1Wm2Qkcy-wEgFewZJhgpgPPMIFjGDuiZZhHaHIwzkeHYVtJI5Q4TUHyBAigikVMElyKUhUqAyk01rIkRVYxyoSoGKkIjVIsmSKwDEIvLH24JCRW-DHa0LVWT1FAi4rJtKyiUjIiizRLBNi8MgOzGJyFpOyhXU8-Lts086bayZy7BNkxN_Tmht7c0ruH3nUvXLoMK78f-trjwYFq5mir0KpefOExWPEsI-DM_2lMSiljEcY99MSB2U2IjZ9CSNZDexbdv30JB2mMbevZDeZ7ju4tRegF2miuFuol2LKNeNXy6Q-08JVG
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mitochondria%2C+energy%2C+and+metabolism+in+neuronal+health+and+disease&rft.jtitle=FEBS+letters&rft.au=Trigo%2C+Diogo&rft.au=Avelar%2C+Catarina&rft.au=Fernandes%2C+Miguel&rft.au=S%C3%A1%2C+Juliana&rft.date=2022-05-01&rft.issn=0014-5793&rft.volume=596&rft.issue=9+p.1095-1110&rft.spage=1095&rft.epage=1110&rft_id=info:doi/10.1002%2F1873-3468.14298&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-5793&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-5793&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-5793&client=summon