Comprehensive complexity metric for data warehouse multidimensional model understandability
Data warehouse quality can be determined during the initial phases of data warehouse development by quantifying the structural complexity of multidimensional models using metrics. The structural complexity of a multidimensional model is guided by its elements, types, and relationships among those el...
Saved in:
Published in | IET software Vol. 14; no. 3; pp. 275 - 282 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
The Institution of Engineering and Technology
01.06.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Data warehouse quality can be determined during the initial phases of data warehouse development by quantifying the structural complexity of multidimensional models using metrics. The structural complexity of a multidimensional model is guided by its elements, types, and relationships among those elements. So far, most of the researchers have dealt with metrics based on various elements (facts, dimensions, dimensional hierarchies, and hierarchy levels) existing in these models. However, not much consideration is given to different types of dimensions based on hierarchy types and different relationships among those elements. Therefore, this work proposes a comprehensive complexity metric for measuring multidimensional model complexity by taking into account various elements, their types and the relationships among the elements at various levels of granularity in these models. The theoretical validation of the proposed metric using the property-based framework given by Briand et al. characterises it as a complexity measure. Furthermore, the empirical study, employing statistical techniques (correlation and multinomial regression), on 26 multidimensional models and 20 subjects proved that the authors’ proposed metric is strongly correlated with multidimensional model understandability. Hence, this metric can be considered as a good predictor for data warehouse multidimensional model understandability. |
---|---|
AbstractList | Data warehouse quality can be determined during the initial phases of data warehouse development by quantifying the structural complexity of multidimensional models using metrics. The structural complexity of a multidimensional model is guided by its elements, types, and relationships among those elements. So far, most of the researchers have dealt with metrics based on various elements (facts, dimensions, dimensional hierarchies, and hierarchy levels) existing in these models. However, not much consideration is given to different types of dimensions based on hierarchy types and different relationships among those elements. Therefore, this work proposes a comprehensive complexity metric for measuring multidimensional model complexity by taking into account various elements, their types and the relationships among the elements at various levels of granularity in these models. The theoretical validation of the proposed metric using the property-based framework given by Briand et al. characterises it as a complexity measure. Furthermore, the empirical study, employing statistical techniques (correlation and multinomial regression), on 26 multidimensional models and 20 subjects proved that the authors’ proposed metric is strongly correlated with multidimensional model understandability. Hence, this metric can be considered as a good predictor for data warehouse multidimensional model understandability. Data warehouse quality can be determined during the initial phases of data warehouse development by quantifying the structural complexity of multidimensional models using metrics. The structural complexity of a multidimensional model is guided by its elements, types, and relationships among those elements. So far, most of the researchers have dealt with metrics based on various elements (facts, dimensions, dimensional hierarchies, and hierarchy levels) existing in these models. However, not much consideration is given to different types of dimensions based on hierarchy types and different relationships among those elements. Therefore, this work proposes a comprehensive complexity metric for measuring multidimensional model complexity by taking into account various elements, their types and the relationships among the elements at various levels of granularity in these models. The theoretical validation of the proposed metric using the property‐based framework given by Briand et al. characterises it as a complexity measure. Furthermore, the empirical study, employing statistical techniques (correlation and multinomial regression), on 26 multidimensional models and 20 subjects proved that the authors’ proposed metric is strongly correlated with multidimensional model understandability. Hence, this metric can be considered as a good predictor for data warehouse multidimensional model understandability. |
Author | Gosain, Anjana Singh, Jaspreeti |
Author_xml | – sequence: 1 givenname: Anjana surname: Gosain fullname: Gosain, Anjana organization: University School of Information, Communication and Technology, Guru Gobind Singh Indraprastha University, Sector - 16 C, Dwarka, New Delhi - 110078, India – sequence: 2 givenname: Jaspreeti surname: Singh fullname: Singh, Jaspreeti email: jaspreeti_singh@yahoo.com organization: University School of Information, Communication and Technology, Guru Gobind Singh Indraprastha University, Sector - 16 C, Dwarka, New Delhi - 110078, India |
BookMark | eNqFkLFOwzAQhi1UJNrCA7D5BVLsJI4TNqgoIFViAMTAYDn2Rbhyksp2KH17HBUxMJTp7qT77vR_MzTp-g4QuqRkQUleXRkIiYdukRJaLQhl5ARNKWc0KUuaT357UpyhmfcbQhhjWTVF78u-3Tr4gM6bT8AqTha-TNjjFoIzCje9w1oGiXcyrvWDB9wONhht2pHpO2lx22uweOg0OB9kp2VtbDxxjk4baT1c_NQ5el3dvSwfkvXT_ePyZp2ojHOeZCXjhaJlw2qqmkxyIHleN3maUZBFWmjG6rSsQccIda4qRjMmpS7LlDdVTSGbI3q4q1zvvYNGbJ1ppdsLSsRoR0Q7ItoRox0x2okM_8MoE2SIeYKTxh4lrw_kzljY__9KPK_e0tsVISnnEU4O8Li26QcX9fkjz74BwQSSGA |
CitedBy_id | crossref_primary_10_1051_e3sconf_202132600029 crossref_primary_10_3390_info16020155 crossref_primary_10_1016_j_eswa_2024_124754 crossref_primary_10_1007_s13369_021_06269_0 |
Cites_doi | 10.1007/978-3-540-85553-8_11 10.5626/JCSE.2007.1.2.125 10.1142/9781860946066_0007 10.1007/s11219-007-9030-7 10.1007/978-3-540-39597-3_14 10.1007/978-3-319-11933-5_33 10.1109/TSE.1984.5010301 10.1007/11546849_10 10.1145/302405.302654 10.1016/j.datak.2005.11.004 10.1109/HICSS.2003.1174896 10.1007/978-3-319-19425-7 10.1145/1988997.1989015 10.1145/2381716.2381784 10.1016/j.datak.2005.08.003 10.1109/TSE.2002.1027796 10.1016/j.protcy.2012.10.055 10.1049/iet-sen.2012.0095 10.1007/s13198-017-0641-5 10.1007/s10270-013-0356-2 10.1016/j.is.2004.12.002 10.1007/978-3-319-11218-3_39 10.1109/32.481535 10.1016/j.infsof.2006.09.008 |
ContentType | Journal Article |
Copyright | The Institution of Engineering and Technology 2020 The Institution of Engineering and Technology |
Copyright_xml | – notice: The Institution of Engineering and Technology – notice: 2020 The Institution of Engineering and Technology |
DBID | AAYXX CITATION |
DOI | 10.1049/iet-sen.2019.0150 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1751-8814 |
EndPage | 282 |
ExternalDocumentID | 10_1049_iet_sen_2019_0150 SFW2BF00277 |
Genre | article |
GroupedDBID | 0R 24P 29I 3V. 4.4 4IJ 5GY 6IK 8AL 8FE 8FG 8VB AAJGR ABJCF ABPTK ABUWG ACDCL ACGFS ACIWK AENEX AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BENPR BFFAM BGLVJ BPHCQ CS3 DU5 DWQXO EBS EJD ESX GNUQQ GOZPB GRPMH HCIFZ HZ IFIPE IPLJI JAVBF K6V K7- L6V LAI LOTEE LXI M0N M43 M7S MS NADUK NXXTH O9- OCL P62 PQEST PQQKQ PQUKI PROAC PTHSS QWB RIE RNS RUI U5U UNMZH UNR ZL0 .DC 0R~ 0ZK 1OC 2QL 96U AAHHS AAHJG AAYOK ABMDY ABQXS ACCFJ ACCMX ACESK ACGFO ACXQS ADEYR ADZOD AEEZP AEGXH AEQDE AFAZI AIWBW AJBDE ALUQN AVUZU CCPQU F8P GROUPED_DOAJ HZ~ IAO ITC K1G MCNEO MS~ OK1 AAYXX CITATION IDLOA PHGZM PHGZT |
ID | FETCH-LOGICAL-c3777-38576c18f5b1cf3a7e044bf4231ea626d55b28bed751b4c95135aad8827f9b1e3 |
IEDL.DBID | 24P |
ISSN | 1751-8806 1751-8814 |
IngestDate | Thu Apr 24 23:00:26 EDT 2025 Tue Jul 01 02:13:45 EDT 2025 Wed Jan 22 16:32:35 EST 2025 Tue Jan 05 21:44:07 EST 2021 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | statistical techniques data warehouse development hierarchy levels regression analysis comprehensive complexity metric complexity measure software quality multidimensional model complexity multinomial regression correlation regression data warehouse quality hierarchy types structural complexity data warehouse multidimensional model understandability data warehouses software metrics |
Language | English |
License | http://doi.wiley.com/10.1002/tdm_license_1.1 http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3777-38576c18f5b1cf3a7e044bf4231ea626d55b28bed751b4c95135aad8827f9b1e3 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/iet-sen.2019.0150 |
PageCount | 8 |
ParticipantIDs | crossref_primary_10_1049_iet_sen_2019_0150 wiley_primary_10_1049_iet_sen_2019_0150_SFW2BF00277 crossref_citationtrail_10_1049_iet_sen_2019_0150 iet_journals_10_1049_iet_sen_2019_0150 |
ProviderPackageCode | RUI CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200600 June 2020 2020-06-00 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 6 year: 2020 text: 20200600 |
PublicationDecade | 2020 |
PublicationTitle | IET software |
PublicationYear | 2020 |
Publisher | The Institution of Engineering and Technology |
Publisher_xml | – name: The Institution of Engineering and Technology |
References | Gosain, A.; Nagpal, S.; Sabharwal, S. (C25) 2013; 7 Gosain, A.; Nagpal, S.; Sabharwal, S. (C11) 2011; 36 Abello, A.; Samos, J.; Saltor, F. (C3) 2006; 31 Mansmann, S.; Scholl, M.H. (C6) 2007; 1 Zugal, S.; Soffer, P.; Haisjackl, C. (C20) 2015; 14 Basili, V.R.; Weiss, D.M. (C28) 1984; 10 Malinowski, E.; Zimanyi, E. (C5) 2006; 59 Lujan-Mora, S.; Trujillo, J.; Song, I.Y. (C4) 2006; 59 Talwar, K.; Gosain, A. (C17) 2012; 6 Serrano, M.A.; Trujillo, J.; Calero, C. (C24) 2007; 49 Serrano, M.A.; Calero, C.; Sahraoui, H.A. (C1) 2008; 16 Gosain, A.; Singh, J. (C26) 2017 Briand, L.C.; Morasca, S.; Basili, V.R. (C15) 1996; 22 Kitchenham, B.A.; Pfleeger, S.L.; Pickard, L.M. (C29) 2002; 28 2002; 28 2015; 14 2006; 31 2001 2012 1984; 10 2008; 16 2006; 59 2008 1996 2017 2005 2015 2004 2003 2011; 36 2013 2012; 6 2013; 7 2007; 1 1999 1996; 22 2007; 49 e_1_2_7_5_1 Abello A. (e_1_2_7_4_1) 2006; 31 English L. (e_1_2_7_3_1) 1996 e_1_2_7_8_1 Flood R.L. (e_1_2_7_17_1) 2013 Berenguer G (e_1_2_7_9_1) 2005 e_1_2_7_16_1 e_1_2_7_14_1 Gosain A. (e_1_2_7_12_1) 2011; 36 Serrano M.A. (e_1_2_7_15_1) 2004 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 Cherfi S.S. (e_1_2_7_11_1) 2003 e_1_2_7_28_1 Gosain A. (e_1_2_7_13_1) 2015 e_1_2_7_29_1 Cruz-Lemus J. (e_1_2_7_19_1) 2008 e_1_2_7_30_1 e_1_2_7_31_1 Talwar K. (e_1_2_7_18_1) 2012; 6 e_1_2_7_23_1 e_1_2_7_22_1 e_1_2_7_21_1 e_1_2_7_20_1 Serrano M.A. (e_1_2_7_25_1) 2007; 49 Serrano M.A. (e_1_2_7_2_1) 2008; 16 Mansmann S. (e_1_2_7_7_1) 2007; 1 Serrano M.A. (e_1_2_7_24_1) 2004 Malinowski E. (e_1_2_7_6_1) 2006; 59 |
References_xml | – volume: 36 start-page: 1 issue: 4 year: 2011 end-page: 5 ident: C11 article-title: Quality metrics for conceptual models for data warehouse focusing on dimension hierarchies publication-title: ACM SIGSOFT Softw. Eng. Notes – volume: 1 start-page: 125 issue: 2 year: 2007 end-page: 160 ident: C6 article-title: Extending the multidimensional data model to handle Complex data publication-title: J. Comput. Sci. Eng. – volume: 31 start-page: 541 issue: 6 year: 2006 end-page: 567 ident: C3 article-title: YAM2: a multidimensional conceptual model extending UML publication-title: Inf. Syst. – volume: 59 start-page: 348 issue: 2 year: 2006 end-page: 377 ident: C5 article-title: Hierarchies in a multidimensional model: from conceptual modeling to logical representation publication-title: Data Knowl. Eng. – volume: 7 start-page: 93 issue: 2 year: 2013 end-page: 103 ident: C25 article-title: Validating dimension hierarchy metrics for the understandability of multidimensional models for data warehouse publication-title: IET Softw. – volume: 59 start-page: 725 issue: 3 year: 2006 end-page: 769 ident: C4 article-title: A UML profile for multidimensional modeling in data warehouses publication-title: Data Knowl. Eng. – volume: 22 start-page: 68 year: 1996 end-page: 86 ident: C15 article-title: Property based software engineering measurement publication-title: IEEE Trans. Softw. Eng. – volume: 6 start-page: 460 year: 2012 end-page: 468 ident: C17 article-title: Hierarchy classification for data warehouse: a survey publication-title: Procedia Technol. – volume: 28 start-page: 721 issue: 8 year: 2002 end-page: 734 ident: C29 article-title: Preliminary guidelines for empirical research in software engineering publication-title: IEEE Trans. Softw. Eng. – volume: 16 start-page: 79 issue: 1 year: 2008 end-page: 106 ident: C1 article-title: Empirical studies to assess the understandability of data warehouse schemas using structural metrics publication-title: Softw. Qual. J. – start-page: 1672 year: 2017 end-page: 1688 ident: C26 article-title: Quality metrics emphasizing dimension hierarchy sharing in multidimensional models for data warehouse: a theoretical and empirical evaluation publication-title: Int. J. Syst. Assurance Eng. Manage. – volume: 10 start-page: 728 issue: 6 year: 1984 end-page: 738 ident: C28 article-title: A methodology for collecting valid software engineering data publication-title: IEEE Trans. Softw. Eng. – volume: 14 start-page: 1081 issue: 3 year: 2015 end-page: 1103 ident: C20 article-title: Investigating expressiveness and understandability of hierarchy in declarative business process models publication-title: Softw. Syst. Model. – volume: 49 start-page: 851 issue: 8 year: 2007 end-page: 870 ident: C24 article-title: Metrics for data warehouse conceptual models understandability publication-title: Inf. Softw. Technol. – volume: 22 start-page: 68 year: 1996 end-page: 86 article-title: Property based software engineering measurement publication-title: IEEE Trans. Softw. Eng. – volume: 7 start-page: 93 issue: 2 year: 2013 end-page: 103 article-title: Validating dimension hierarchy metrics for the understandability of multidimensional models for data warehouse publication-title: IET Softw. – volume: 16 start-page: 79 issue: 1 year: 2008 end-page: 106 article-title: Empirical studies to assess the understandability of data warehouse schemas using structural metrics publication-title: Softw. Qual. J. – start-page: 506 year: 2004 end-page: 520 – year: 1996 – volume: 59 start-page: 348 issue: 2 year: 2006 end-page: 377 article-title: Hierarchies in a multidimensional model: from conceptual modeling to logical representation publication-title: Data Knowl. Eng. – volume: 1 start-page: 125 issue: 2 year: 2007 end-page: 160 article-title: Extending the multidimensional data model to handle Complex data publication-title: J. Comput. Sci. Eng. – volume: 14 start-page: 1081 issue: 3 year: 2015 end-page: 1103 article-title: Investigating expressiveness and understandability of hierarchy in declarative business process models publication-title: Softw. Syst. Model. – volume: 36 start-page: 1 issue: 4 year: 2011 end-page: 5 article-title: Quality metrics for conceptual models for data warehouse focusing on dimension hierarchies publication-title: ACM SIGSOFT Softw. Eng. Notes – start-page: 305 year: 2015 end-page: 316 article-title: Conceptual multidimensional modeling for data warehouses: a survey – start-page: 360 year: 2012 end-page: 365 article-title: Complexity metric for multidimensional models for data warehouse – start-page: 2 year: 2001 article-title: Towards data warehouse quality metrics – volume: 10 start-page: 728 issue: 6 year: 1984 end-page: 738 article-title: A methodology for collecting valid software engineering data publication-title: IEEE Trans. Softw. Eng. – start-page: 140 year: 2003 end-page: 151 – volume: 6 start-page: 460 year: 2012 end-page: 468 article-title: Hierarchy classification for data warehouse: a survey publication-title: Procedia Technol. – start-page: 1672 year: 2017 end-page: 1688 article-title: Quality metrics emphasizing dimension hierarchy sharing in multidimensional models for data warehouse: a theoretical and empirical evaluation publication-title: Int. J. Syst. Assurance Eng. Manage. – start-page: 67 year: 2003 end-page: 71 article-title: Measurement of the cognitive functional complexity of software – volume: 59 start-page: 725 issue: 3 year: 2006 end-page: 769 article-title: A UML profile for multidimensional modeling in data warehouses publication-title: Data Knowl. Eng. – start-page: 345 year: 1999 end-page: 354 article-title: Investigating quality factors in object-oriented designs: an industrial case study – volume: 31 start-page: 541 issue: 6 year: 2006 end-page: 567 article-title: YAM2: a multidimensional conceptual model extending UML publication-title: Inf. Syst. – volume: 49 start-page: 851 issue: 8 year: 2007 end-page: 870 article-title: Metrics for data warehouse conceptual models understandability publication-title: Inf. Softw. Technol. – year: 2004 – volume: 28 start-page: 721 issue: 8 year: 2002 end-page: 734 article-title: Preliminary guidelines for empirical research in software engineering publication-title: IEEE Trans. Softw. Eng. – start-page: 129 year: 2008 end-page: 138 – start-page: 7 year: 2003 article-title: Experimental validation of multidimensional data models metrics – start-page: 97 year: 2005 end-page: 108 article-title: Investigating the nesting level of composite states in UML statechart diagrams – year: 2015 – start-page: 429 year: 2015 end-page: 443 – start-page: 95 year: 2005 end-page: 104 – year: 2013 – volume-title: Information quality improvement: principles, methods and management year: 1996 ident: e_1_2_7_3_1 – volume-title: Dealing with complexity: an introduction to the theory and application of system sciences year: 2013 ident: e_1_2_7_17_1 – start-page: 129 volume-title: Software Process and Product Measurement, (LNCS, 4895) year: 2008 ident: e_1_2_7_19_1 doi: 10.1007/978-3-540-85553-8_11 – volume: 1 start-page: 125 issue: 2 year: 2007 ident: e_1_2_7_7_1 article-title: Extending the multidimensional data model to handle Complex data publication-title: J. Comput. Sci. Eng. doi: 10.5626/JCSE.2007.1.2.125 – ident: e_1_2_7_20_1 doi: 10.1142/9781860946066_0007 – volume: 16 start-page: 79 issue: 1 year: 2008 ident: e_1_2_7_2_1 article-title: Empirical studies to assess the understandability of data warehouse schemas using structural metrics publication-title: Softw. Qual. J. doi: 10.1007/s11219-007-9030-7 – start-page: 140 volume-title: Conceptual modeling for novel application domains year: 2003 ident: e_1_2_7_11_1 doi: 10.1007/978-3-540-39597-3_14 – ident: e_1_2_7_22_1 doi: 10.1007/978-3-319-11933-5_33 – ident: e_1_2_7_29_1 doi: 10.1109/TSE.1984.5010301 – start-page: 95 volume-title: Data warehousing and knowledge discovery year: 2005 ident: e_1_2_7_9_1 doi: 10.1007/11546849_10 – ident: e_1_2_7_8_1 doi: 10.1145/302405.302654 – ident: e_1_2_7_28_1 – ident: e_1_2_7_5_1 doi: 10.1016/j.datak.2005.11.004 – ident: e_1_2_7_23_1 doi: 10.1109/HICSS.2003.1174896 – start-page: 506 volume-title: Advanced information systems engineering year: 2004 ident: e_1_2_7_15_1 – ident: e_1_2_7_31_1 doi: 10.1007/978-3-319-19425-7 – volume: 36 start-page: 1 issue: 4 year: 2011 ident: e_1_2_7_12_1 article-title: Quality metrics for conceptual models for data warehouse focusing on dimension hierarchies publication-title: ACM SIGSOFT Softw. Eng. Notes doi: 10.1145/1988997.1989015 – ident: e_1_2_7_14_1 doi: 10.1145/2381716.2381784 – volume: 59 start-page: 348 issue: 2 year: 2006 ident: e_1_2_7_6_1 article-title: Hierarchies in a multidimensional model: from conceptual modeling to logical representation publication-title: Data Knowl. Eng. doi: 10.1016/j.datak.2005.08.003 – ident: e_1_2_7_10_1 – ident: e_1_2_7_30_1 doi: 10.1109/TSE.2002.1027796 – volume: 6 start-page: 460 year: 2012 ident: e_1_2_7_18_1 article-title: Hierarchy classification for data warehouse: a survey publication-title: Procedia Technol. doi: 10.1016/j.protcy.2012.10.055 – ident: e_1_2_7_26_1 doi: 10.1049/iet-sen.2012.0095 – ident: e_1_2_7_27_1 doi: 10.1007/s13198-017-0641-5 – ident: e_1_2_7_21_1 doi: 10.1007/s10270-013-0356-2 – volume: 31 start-page: 541 issue: 6 year: 2006 ident: e_1_2_7_4_1 article-title: YAM2: a multidimensional conceptual model extending UML publication-title: Inf. Syst. doi: 10.1016/j.is.2004.12.002 – start-page: 429 volume-title: Advances in intelligent informatics year: 2015 ident: e_1_2_7_13_1 doi: 10.1007/978-3-319-11218-3_39 – ident: e_1_2_7_16_1 doi: 10.1109/32.481535 – volume-title: Definition of a set of metrics for assuring data warehouse quality year: 2004 ident: e_1_2_7_24_1 – volume: 49 start-page: 851 issue: 8 year: 2007 ident: e_1_2_7_25_1 article-title: Metrics for data warehouse conceptual models understandability publication-title: Inf. Softw. Technol. doi: 10.1016/j.infsof.2006.09.008 |
SSID | ssj0055539 |
Score | 2.2317293 |
Snippet | Data warehouse quality can be determined during the initial phases of data warehouse development by quantifying the structural complexity of multidimensional... |
SourceID | crossref wiley iet |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 275 |
SubjectTerms | complexity measure comprehensive complexity metric correlation regression data warehouse development data warehouse multidimensional model understandability data warehouse quality data warehouses hierarchy levels hierarchy types multidimensional model complexity multinomial regression regression analysis software metrics software quality Special Issue: Knowledge Discovery for Software Development (KDSD) statistical techniques structural complexity |
SummonAdditionalLinks | – databaseName: IET Digital Library (Open Access) dbid: IDLOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELWgvXBhR5RNPiAOSIY6trMc2aKCgAtUVOIQeQsgQUGlFfD3jO2kqBIqXJOJDzOO_Z49Mw-hXasZL1WsSAS0jfCMxUTGhgOQK7O21JZqf9F-dR13uvyiJ3o_5dHm6cFpZZD6xM2dlttQeeBSt2EdPqx8HARJAN8eggF5t66XKc0OAoFvRklCeQM1z08vHcUKK7MQwiuLwY5JCczbeHzL-csgE_vULLyeRK9--8kX0XyFG_FRCPQSmrH9ZbRQazLg6hddQffu0cA-hrx07DPG7SdAbfzitLM0BpCKXVoo_pBgBrzfYp9UaFyb_9CiA3t5HDwa172EXt5fq6ibn92edEgloEA0SxJYPFJgE5qmpVBUl0wmts25KgFBUSuByRghVJQqa8AhimsAW0xIaQB0Q6QUtWwNNfqvfbuOMEt13DY8lq4yTpdGSV5yowBAWKZVkrZQu3ZXoavu4k7k4rnwt9w8K8CFBXi4cB4unIdbaH_8yVtorTHNeM89q4M_zZD5MP09ZHGT30XHuSPmycZ_h99Ec5Fj3P4cZgs1hoOR3QZYMlQ71Wz7BofH4Fc priority: 102 providerName: Institution of Engineering and Technology |
Title | Comprehensive complexity metric for data warehouse multidimensional model understandability |
URI | http://digital-library.theiet.org/content/journals/10.1049/iet-sen.2019.0150 https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-sen.2019.0150 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA7revHiW1wfSw7iQai2TdLHcV0tq_gCrS56KHkVBV1lH6j_3kn6gEVYwVMhTXKYySTfJDPfILSnJaG5CITjg9vm0JgEDg8UBSCXxy6X2pP2of3yKuil9LzP-g3UrXJhCn6I-sLNWIbdr42Bc1FUIQFQC0p80WNnpA2FqRcfFn77vEmxNQT6Pr2ptmPGmC0nBsek50SRR-unzfjo1xRTh9Mc_J6GrPbMSZbRYgkWcafQ7gpq6MEqWqoKMeDSLtfQk2ka6uciGB3bMHH9Bfgav5mCWRIDMsUmFhR_cugGzr7GNpJQGW7_gpcD25o4eFInuxQE3t_rKE1O77o9p6ya4EgShrBjROBCSC_KmfBkTnioXUpFDrDJ0xzcF8WY8COhFQhEUAkIizDOFSBtUI_wNNlAzcH7QG8iTCIZuIoG3KTDyVwJTnOqBKAGTaQIoxZyK3FlsqQUN5UtXjP7tE3jDESYgYQzI-HMSLiFDuohHwWfxqzO-6attKrRrI7EqunvKbPb5ME_Tow3Hm79a9Q2WvCNz21vYnZQczyc6F0AJmPRtguvjeY79-ljCt-zk4vrzg-jj-G- |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA61HvTiW6zPHMSDsNpssq-jr6VqWwRbLHhYkmwWBa3SB-q_dyb7gCIoeM0mOUx2ku9LZr4h5NBoLjLlK8cF2uaIiPuO9FMBQC6LmlIbpu1De6frt_riZuANauSyzIXJ9SGqCzf0DLtfo4PjhXROOAWKZD6biTM2qGHKopOcuM8L3w3QPV1xV-7HnufZemJwTjInDJmo3jaj0x9TzJxOc_B5FrPaQydeIUsFWqRn-fKukpoZrpHlshIDLRxznTxi08g85dHo1MaJm08A2PQVK2ZpCtCUYjAo_ZDQDdi-oTaUMEVx_1yYg9qiOHRaZbvkCt5fG6QfX_UuWk5RNsHRPAhgywiBQ2gWZp5iOuMyME0hVAa4iRkJ_CX1POWGyqRgECU0QCzuSZkC1Ib1UczwTVIfvg3NFqE81H4zFb7EfDidpUqKTKQKYIPhWgVhgzRLcyW60BTH0hYviX3bFlECJkzAwglaOEELN8hxNeQ9F9T4rfMRthVuNf6tI7fL9PeUyX384J7HSMeD7X-NOiALrV6nnbSvu7c7ZNFFAm6vZXZJfTKamj1AKRO1b3_Cb6y-4eA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JSwMxFA61BfHiLtY1B_EgjM5MMtuxVoe6FUFHix6GbIOC1tIF9d_7klmgCBW8Zju85CXfl7x8D6EDJQjNuM8tF2ibRSPiW8yXFIBcFtlMKEeYh_abrt9J6GXP69VQu_wLk-tDVBdu2jPMfq0dfCCznG9SrZH5qsbWSGkJUyc6znl7Q6vlwdJutB6Sp6TckD3PMwnF4KB0rDB0aPW4GZ38GmTqeJqD6mnQak6deBktFnARt_L5XUE11V9FS2UqBlx45hp61kVD9ZKHo2MTKK6-AGHjd50yS2DAplhHg-JPBs2A7itsYgmlVvfPlTmwyYqDJ9V3l1zC-3sdJfH5fbtjFXkTLEGCAPaMEEiEcMLM447ICAuUTSnPADg5igGBkZ7H3ZArCQbhVADGIh5jErA2TBB3FNlA9f5HX20iTELh25L6TH-IE5nkjGZUcsANiggehE1kl-ZKRSEqrnNbvKXmcZtGKZgwBQun2sKptnATHVVdBrmixqzGh7qs8KvRrIbETNPfQ6Z38aN7Gms-Hmz9q9c-mr89i9Pri-7VNlpwNQE31zI7qD4eTtQuoJQx3ytW4Q-3xeLY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comprehensive+complexity+metric+for+data+warehouse+multidimensional+model+understandability&rft.jtitle=IET+software&rft.au=Gosain%2C+Anjana&rft.au=Singh%2C+Jaspreeti&rft.date=2020-06-01&rft.pub=The+Institution+of+Engineering+and+Technology&rft.issn=1751-8814&rft.eissn=1751-8814&rft.volume=14&rft.issue=3&rft.spage=275&rft.epage=282&rft_id=info:doi/10.1049%2Fiet-sen.2019.0150&rft.externalDBID=10.1049%252Fiet-sen.2019.0150&rft.externalDocID=SFW2BF00277 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-8806&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-8806&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-8806&client=summon |