Comprehensive complexity metric for data warehouse multidimensional model understandability

Data warehouse quality can be determined during the initial phases of data warehouse development by quantifying the structural complexity of multidimensional models using metrics. The structural complexity of a multidimensional model is guided by its elements, types, and relationships among those el...

Full description

Saved in:
Bibliographic Details
Published inIET software Vol. 14; no. 3; pp. 275 - 282
Main Authors Gosain, Anjana, Singh, Jaspreeti
Format Journal Article
LanguageEnglish
Published The Institution of Engineering and Technology 01.06.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Data warehouse quality can be determined during the initial phases of data warehouse development by quantifying the structural complexity of multidimensional models using metrics. The structural complexity of a multidimensional model is guided by its elements, types, and relationships among those elements. So far, most of the researchers have dealt with metrics based on various elements (facts, dimensions, dimensional hierarchies, and hierarchy levels) existing in these models. However, not much consideration is given to different types of dimensions based on hierarchy types and different relationships among those elements. Therefore, this work proposes a comprehensive complexity metric for measuring multidimensional model complexity by taking into account various elements, their types and the relationships among the elements at various levels of granularity in these models. The theoretical validation of the proposed metric using the property-based framework given by Briand et al. characterises it as a complexity measure. Furthermore, the empirical study, employing statistical techniques (correlation and multinomial regression), on 26 multidimensional models and 20 subjects proved that the authors’ proposed metric is strongly correlated with multidimensional model understandability. Hence, this metric can be considered as a good predictor for data warehouse multidimensional model understandability.
AbstractList Data warehouse quality can be determined during the initial phases of data warehouse development by quantifying the structural complexity of multidimensional models using metrics. The structural complexity of a multidimensional model is guided by its elements, types, and relationships among those elements. So far, most of the researchers have dealt with metrics based on various elements (facts, dimensions, dimensional hierarchies, and hierarchy levels) existing in these models. However, not much consideration is given to different types of dimensions based on hierarchy types and different relationships among those elements. Therefore, this work proposes a comprehensive complexity metric for measuring multidimensional model complexity by taking into account various elements, their types and the relationships among the elements at various levels of granularity in these models. The theoretical validation of the proposed metric using the property-based framework given by Briand et al. characterises it as a complexity measure. Furthermore, the empirical study, employing statistical techniques (correlation and multinomial regression), on 26 multidimensional models and 20 subjects proved that the authors’ proposed metric is strongly correlated with multidimensional model understandability. Hence, this metric can be considered as a good predictor for data warehouse multidimensional model understandability.
Data warehouse quality can be determined during the initial phases of data warehouse development by quantifying the structural complexity of multidimensional models using metrics. The structural complexity of a multidimensional model is guided by its elements, types, and relationships among those elements. So far, most of the researchers have dealt with metrics based on various elements (facts, dimensions, dimensional hierarchies, and hierarchy levels) existing in these models. However, not much consideration is given to different types of dimensions based on hierarchy types and different relationships among those elements. Therefore, this work proposes a comprehensive complexity metric for measuring multidimensional model complexity by taking into account various elements, their types and the relationships among the elements at various levels of granularity in these models. The theoretical validation of the proposed metric using the property‐based framework given by Briand et al. characterises it as a complexity measure. Furthermore, the empirical study, employing statistical techniques (correlation and multinomial regression), on 26 multidimensional models and 20 subjects proved that the authors’ proposed metric is strongly correlated with multidimensional model understandability. Hence, this metric can be considered as a good predictor for data warehouse multidimensional model understandability.
Author Gosain, Anjana
Singh, Jaspreeti
Author_xml – sequence: 1
  givenname: Anjana
  surname: Gosain
  fullname: Gosain, Anjana
  organization: University School of Information, Communication and Technology, Guru Gobind Singh Indraprastha University, Sector - 16 C, Dwarka, New Delhi - 110078, India
– sequence: 2
  givenname: Jaspreeti
  surname: Singh
  fullname: Singh, Jaspreeti
  email: jaspreeti_singh@yahoo.com
  organization: University School of Information, Communication and Technology, Guru Gobind Singh Indraprastha University, Sector - 16 C, Dwarka, New Delhi - 110078, India
BookMark eNqFkLFOwzAQhi1UJNrCA7D5BVLsJI4TNqgoIFViAMTAYDn2Rbhyksp2KH17HBUxMJTp7qT77vR_MzTp-g4QuqRkQUleXRkIiYdukRJaLQhl5ARNKWc0KUuaT357UpyhmfcbQhhjWTVF78u-3Tr4gM6bT8AqTha-TNjjFoIzCje9w1oGiXcyrvWDB9wONhht2pHpO2lx22uweOg0OB9kp2VtbDxxjk4baT1c_NQ5el3dvSwfkvXT_ePyZp2ojHOeZCXjhaJlw2qqmkxyIHleN3maUZBFWmjG6rSsQccIda4qRjMmpS7LlDdVTSGbI3q4q1zvvYNGbJ1ppdsLSsRoR0Q7ItoRox0x2okM_8MoE2SIeYKTxh4lrw_kzljY__9KPK_e0tsVISnnEU4O8Li26QcX9fkjz74BwQSSGA
CitedBy_id crossref_primary_10_1051_e3sconf_202132600029
crossref_primary_10_3390_info16020155
crossref_primary_10_1016_j_eswa_2024_124754
crossref_primary_10_1007_s13369_021_06269_0
Cites_doi 10.1007/978-3-540-85553-8_11
10.5626/JCSE.2007.1.2.125
10.1142/9781860946066_0007
10.1007/s11219-007-9030-7
10.1007/978-3-540-39597-3_14
10.1007/978-3-319-11933-5_33
10.1109/TSE.1984.5010301
10.1007/11546849_10
10.1145/302405.302654
10.1016/j.datak.2005.11.004
10.1109/HICSS.2003.1174896
10.1007/978-3-319-19425-7
10.1145/1988997.1989015
10.1145/2381716.2381784
10.1016/j.datak.2005.08.003
10.1109/TSE.2002.1027796
10.1016/j.protcy.2012.10.055
10.1049/iet-sen.2012.0095
10.1007/s13198-017-0641-5
10.1007/s10270-013-0356-2
10.1016/j.is.2004.12.002
10.1007/978-3-319-11218-3_39
10.1109/32.481535
10.1016/j.infsof.2006.09.008
ContentType Journal Article
Copyright The Institution of Engineering and Technology
2020 The Institution of Engineering and Technology
Copyright_xml – notice: The Institution of Engineering and Technology
– notice: 2020 The Institution of Engineering and Technology
DBID AAYXX
CITATION
DOI 10.1049/iet-sen.2019.0150
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1751-8814
EndPage 282
ExternalDocumentID 10_1049_iet_sen_2019_0150
SFW2BF00277
Genre article
GroupedDBID 0R
24P
29I
3V.
4.4
4IJ
5GY
6IK
8AL
8FE
8FG
8VB
AAJGR
ABJCF
ABPTK
ABUWG
ACDCL
ACGFS
ACIWK
AENEX
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BENPR
BFFAM
BGLVJ
BPHCQ
CS3
DU5
DWQXO
EBS
EJD
ESX
GNUQQ
GOZPB
GRPMH
HCIFZ
HZ
IFIPE
IPLJI
JAVBF
K6V
K7-
L6V
LAI
LOTEE
LXI
M0N
M43
M7S
MS
NADUK
NXXTH
O9-
OCL
P62
PQEST
PQQKQ
PQUKI
PROAC
PTHSS
QWB
RIE
RNS
RUI
U5U
UNMZH
UNR
ZL0
.DC
0R~
0ZK
1OC
2QL
96U
AAHHS
AAHJG
AAYOK
ABMDY
ABQXS
ACCFJ
ACCMX
ACESK
ACGFO
ACXQS
ADEYR
ADZOD
AEEZP
AEGXH
AEQDE
AFAZI
AIWBW
AJBDE
ALUQN
AVUZU
CCPQU
F8P
GROUPED_DOAJ
HZ~
IAO
ITC
K1G
MCNEO
MS~
OK1
AAYXX
CITATION
IDLOA
PHGZM
PHGZT
ID FETCH-LOGICAL-c3777-38576c18f5b1cf3a7e044bf4231ea626d55b28bed751b4c95135aad8827f9b1e3
IEDL.DBID 24P
ISSN 1751-8806
1751-8814
IngestDate Thu Apr 24 23:00:26 EDT 2025
Tue Jul 01 02:13:45 EDT 2025
Wed Jan 22 16:32:35 EST 2025
Tue Jan 05 21:44:07 EST 2021
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords statistical techniques
data warehouse development
hierarchy levels
regression analysis
comprehensive complexity metric
complexity measure
software quality
multidimensional model complexity
multinomial regression
correlation regression
data warehouse quality
hierarchy types
structural complexity
data warehouse multidimensional model understandability
data warehouses
software metrics
Language English
License http://doi.wiley.com/10.1002/tdm_license_1.1
http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3777-38576c18f5b1cf3a7e044bf4231ea626d55b28bed751b4c95135aad8827f9b1e3
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/iet-sen.2019.0150
PageCount 8
ParticipantIDs crossref_primary_10_1049_iet_sen_2019_0150
wiley_primary_10_1049_iet_sen_2019_0150_SFW2BF00277
crossref_citationtrail_10_1049_iet_sen_2019_0150
iet_journals_10_1049_iet_sen_2019_0150
ProviderPackageCode RUI
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200600
June 2020
2020-06-00
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 6
  year: 2020
  text: 20200600
PublicationDecade 2020
PublicationTitle IET software
PublicationYear 2020
Publisher The Institution of Engineering and Technology
Publisher_xml – name: The Institution of Engineering and Technology
References Gosain, A.; Nagpal, S.; Sabharwal, S. (C25) 2013; 7
Gosain, A.; Nagpal, S.; Sabharwal, S. (C11) 2011; 36
Abello, A.; Samos, J.; Saltor, F. (C3) 2006; 31
Mansmann, S.; Scholl, M.H. (C6) 2007; 1
Zugal, S.; Soffer, P.; Haisjackl, C. (C20) 2015; 14
Basili, V.R.; Weiss, D.M. (C28) 1984; 10
Malinowski, E.; Zimanyi, E. (C5) 2006; 59
Lujan-Mora, S.; Trujillo, J.; Song, I.Y. (C4) 2006; 59
Talwar, K.; Gosain, A. (C17) 2012; 6
Serrano, M.A.; Trujillo, J.; Calero, C. (C24) 2007; 49
Serrano, M.A.; Calero, C.; Sahraoui, H.A. (C1) 2008; 16
Gosain, A.; Singh, J. (C26) 2017
Briand, L.C.; Morasca, S.; Basili, V.R. (C15) 1996; 22
Kitchenham, B.A.; Pfleeger, S.L.; Pickard, L.M. (C29) 2002; 28
2002; 28
2015; 14
2006; 31
2001
2012
1984; 10
2008; 16
2006; 59
2008
1996
2017
2005
2015
2004
2003
2011; 36
2013
2012; 6
2013; 7
2007; 1
1999
1996; 22
2007; 49
e_1_2_7_5_1
Abello A. (e_1_2_7_4_1) 2006; 31
English L. (e_1_2_7_3_1) 1996
e_1_2_7_8_1
Flood R.L. (e_1_2_7_17_1) 2013
Berenguer G (e_1_2_7_9_1) 2005
e_1_2_7_16_1
e_1_2_7_14_1
Gosain A. (e_1_2_7_12_1) 2011; 36
Serrano M.A. (e_1_2_7_15_1) 2004
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
Cherfi S.S. (e_1_2_7_11_1) 2003
e_1_2_7_28_1
Gosain A. (e_1_2_7_13_1) 2015
e_1_2_7_29_1
Cruz-Lemus J. (e_1_2_7_19_1) 2008
e_1_2_7_30_1
e_1_2_7_31_1
Talwar K. (e_1_2_7_18_1) 2012; 6
e_1_2_7_23_1
e_1_2_7_22_1
e_1_2_7_21_1
e_1_2_7_20_1
Serrano M.A. (e_1_2_7_25_1) 2007; 49
Serrano M.A. (e_1_2_7_2_1) 2008; 16
Mansmann S. (e_1_2_7_7_1) 2007; 1
Serrano M.A. (e_1_2_7_24_1) 2004
Malinowski E. (e_1_2_7_6_1) 2006; 59
References_xml – volume: 36
  start-page: 1
  issue: 4
  year: 2011
  end-page: 5
  ident: C11
  article-title: Quality metrics for conceptual models for data warehouse focusing on dimension hierarchies
  publication-title: ACM SIGSOFT Softw. Eng. Notes
– volume: 1
  start-page: 125
  issue: 2
  year: 2007
  end-page: 160
  ident: C6
  article-title: Extending the multidimensional data model to handle Complex data
  publication-title: J. Comput. Sci. Eng.
– volume: 31
  start-page: 541
  issue: 6
  year: 2006
  end-page: 567
  ident: C3
  article-title: YAM2: a multidimensional conceptual model extending UML
  publication-title: Inf. Syst.
– volume: 59
  start-page: 348
  issue: 2
  year: 2006
  end-page: 377
  ident: C5
  article-title: Hierarchies in a multidimensional model: from conceptual modeling to logical representation
  publication-title: Data Knowl. Eng.
– volume: 7
  start-page: 93
  issue: 2
  year: 2013
  end-page: 103
  ident: C25
  article-title: Validating dimension hierarchy metrics for the understandability of multidimensional models for data warehouse
  publication-title: IET Softw.
– volume: 59
  start-page: 725
  issue: 3
  year: 2006
  end-page: 769
  ident: C4
  article-title: A UML profile for multidimensional modeling in data warehouses
  publication-title: Data Knowl. Eng.
– volume: 22
  start-page: 68
  year: 1996
  end-page: 86
  ident: C15
  article-title: Property based software engineering measurement
  publication-title: IEEE Trans. Softw. Eng.
– volume: 6
  start-page: 460
  year: 2012
  end-page: 468
  ident: C17
  article-title: Hierarchy classification for data warehouse: a survey
  publication-title: Procedia Technol.
– volume: 28
  start-page: 721
  issue: 8
  year: 2002
  end-page: 734
  ident: C29
  article-title: Preliminary guidelines for empirical research in software engineering
  publication-title: IEEE Trans. Softw. Eng.
– volume: 16
  start-page: 79
  issue: 1
  year: 2008
  end-page: 106
  ident: C1
  article-title: Empirical studies to assess the understandability of data warehouse schemas using structural metrics
  publication-title: Softw. Qual. J.
– start-page: 1672
  year: 2017
  end-page: 1688
  ident: C26
  article-title: Quality metrics emphasizing dimension hierarchy sharing in multidimensional models for data warehouse: a theoretical and empirical evaluation
  publication-title: Int. J. Syst. Assurance Eng. Manage.
– volume: 10
  start-page: 728
  issue: 6
  year: 1984
  end-page: 738
  ident: C28
  article-title: A methodology for collecting valid software engineering data
  publication-title: IEEE Trans. Softw. Eng.
– volume: 14
  start-page: 1081
  issue: 3
  year: 2015
  end-page: 1103
  ident: C20
  article-title: Investigating expressiveness and understandability of hierarchy in declarative business process models
  publication-title: Softw. Syst. Model.
– volume: 49
  start-page: 851
  issue: 8
  year: 2007
  end-page: 870
  ident: C24
  article-title: Metrics for data warehouse conceptual models understandability
  publication-title: Inf. Softw. Technol.
– volume: 22
  start-page: 68
  year: 1996
  end-page: 86
  article-title: Property based software engineering measurement
  publication-title: IEEE Trans. Softw. Eng.
– volume: 7
  start-page: 93
  issue: 2
  year: 2013
  end-page: 103
  article-title: Validating dimension hierarchy metrics for the understandability of multidimensional models for data warehouse
  publication-title: IET Softw.
– volume: 16
  start-page: 79
  issue: 1
  year: 2008
  end-page: 106
  article-title: Empirical studies to assess the understandability of data warehouse schemas using structural metrics
  publication-title: Softw. Qual. J.
– start-page: 506
  year: 2004
  end-page: 520
– year: 1996
– volume: 59
  start-page: 348
  issue: 2
  year: 2006
  end-page: 377
  article-title: Hierarchies in a multidimensional model: from conceptual modeling to logical representation
  publication-title: Data Knowl. Eng.
– volume: 1
  start-page: 125
  issue: 2
  year: 2007
  end-page: 160
  article-title: Extending the multidimensional data model to handle Complex data
  publication-title: J. Comput. Sci. Eng.
– volume: 14
  start-page: 1081
  issue: 3
  year: 2015
  end-page: 1103
  article-title: Investigating expressiveness and understandability of hierarchy in declarative business process models
  publication-title: Softw. Syst. Model.
– volume: 36
  start-page: 1
  issue: 4
  year: 2011
  end-page: 5
  article-title: Quality metrics for conceptual models for data warehouse focusing on dimension hierarchies
  publication-title: ACM SIGSOFT Softw. Eng. Notes
– start-page: 305
  year: 2015
  end-page: 316
  article-title: Conceptual multidimensional modeling for data warehouses: a survey
– start-page: 360
  year: 2012
  end-page: 365
  article-title: Complexity metric for multidimensional models for data warehouse
– start-page: 2
  year: 2001
  article-title: Towards data warehouse quality metrics
– volume: 10
  start-page: 728
  issue: 6
  year: 1984
  end-page: 738
  article-title: A methodology for collecting valid software engineering data
  publication-title: IEEE Trans. Softw. Eng.
– start-page: 140
  year: 2003
  end-page: 151
– volume: 6
  start-page: 460
  year: 2012
  end-page: 468
  article-title: Hierarchy classification for data warehouse: a survey
  publication-title: Procedia Technol.
– start-page: 1672
  year: 2017
  end-page: 1688
  article-title: Quality metrics emphasizing dimension hierarchy sharing in multidimensional models for data warehouse: a theoretical and empirical evaluation
  publication-title: Int. J. Syst. Assurance Eng. Manage.
– start-page: 67
  year: 2003
  end-page: 71
  article-title: Measurement of the cognitive functional complexity of software
– volume: 59
  start-page: 725
  issue: 3
  year: 2006
  end-page: 769
  article-title: A UML profile for multidimensional modeling in data warehouses
  publication-title: Data Knowl. Eng.
– start-page: 345
  year: 1999
  end-page: 354
  article-title: Investigating quality factors in object-oriented designs: an industrial case study
– volume: 31
  start-page: 541
  issue: 6
  year: 2006
  end-page: 567
  article-title: YAM2: a multidimensional conceptual model extending UML
  publication-title: Inf. Syst.
– volume: 49
  start-page: 851
  issue: 8
  year: 2007
  end-page: 870
  article-title: Metrics for data warehouse conceptual models understandability
  publication-title: Inf. Softw. Technol.
– year: 2004
– volume: 28
  start-page: 721
  issue: 8
  year: 2002
  end-page: 734
  article-title: Preliminary guidelines for empirical research in software engineering
  publication-title: IEEE Trans. Softw. Eng.
– start-page: 129
  year: 2008
  end-page: 138
– start-page: 7
  year: 2003
  article-title: Experimental validation of multidimensional data models metrics
– start-page: 97
  year: 2005
  end-page: 108
  article-title: Investigating the nesting level of composite states in UML statechart diagrams
– year: 2015
– start-page: 429
  year: 2015
  end-page: 443
– start-page: 95
  year: 2005
  end-page: 104
– year: 2013
– volume-title: Information quality improvement: principles, methods and management
  year: 1996
  ident: e_1_2_7_3_1
– volume-title: Dealing with complexity: an introduction to the theory and application of system sciences
  year: 2013
  ident: e_1_2_7_17_1
– start-page: 129
  volume-title: Software Process and Product Measurement, (LNCS, 4895)
  year: 2008
  ident: e_1_2_7_19_1
  doi: 10.1007/978-3-540-85553-8_11
– volume: 1
  start-page: 125
  issue: 2
  year: 2007
  ident: e_1_2_7_7_1
  article-title: Extending the multidimensional data model to handle Complex data
  publication-title: J. Comput. Sci. Eng.
  doi: 10.5626/JCSE.2007.1.2.125
– ident: e_1_2_7_20_1
  doi: 10.1142/9781860946066_0007
– volume: 16
  start-page: 79
  issue: 1
  year: 2008
  ident: e_1_2_7_2_1
  article-title: Empirical studies to assess the understandability of data warehouse schemas using structural metrics
  publication-title: Softw. Qual. J.
  doi: 10.1007/s11219-007-9030-7
– start-page: 140
  volume-title: Conceptual modeling for novel application domains
  year: 2003
  ident: e_1_2_7_11_1
  doi: 10.1007/978-3-540-39597-3_14
– ident: e_1_2_7_22_1
  doi: 10.1007/978-3-319-11933-5_33
– ident: e_1_2_7_29_1
  doi: 10.1109/TSE.1984.5010301
– start-page: 95
  volume-title: Data warehousing and knowledge discovery
  year: 2005
  ident: e_1_2_7_9_1
  doi: 10.1007/11546849_10
– ident: e_1_2_7_8_1
  doi: 10.1145/302405.302654
– ident: e_1_2_7_28_1
– ident: e_1_2_7_5_1
  doi: 10.1016/j.datak.2005.11.004
– ident: e_1_2_7_23_1
  doi: 10.1109/HICSS.2003.1174896
– start-page: 506
  volume-title: Advanced information systems engineering
  year: 2004
  ident: e_1_2_7_15_1
– ident: e_1_2_7_31_1
  doi: 10.1007/978-3-319-19425-7
– volume: 36
  start-page: 1
  issue: 4
  year: 2011
  ident: e_1_2_7_12_1
  article-title: Quality metrics for conceptual models for data warehouse focusing on dimension hierarchies
  publication-title: ACM SIGSOFT Softw. Eng. Notes
  doi: 10.1145/1988997.1989015
– ident: e_1_2_7_14_1
  doi: 10.1145/2381716.2381784
– volume: 59
  start-page: 348
  issue: 2
  year: 2006
  ident: e_1_2_7_6_1
  article-title: Hierarchies in a multidimensional model: from conceptual modeling to logical representation
  publication-title: Data Knowl. Eng.
  doi: 10.1016/j.datak.2005.08.003
– ident: e_1_2_7_10_1
– ident: e_1_2_7_30_1
  doi: 10.1109/TSE.2002.1027796
– volume: 6
  start-page: 460
  year: 2012
  ident: e_1_2_7_18_1
  article-title: Hierarchy classification for data warehouse: a survey
  publication-title: Procedia Technol.
  doi: 10.1016/j.protcy.2012.10.055
– ident: e_1_2_7_26_1
  doi: 10.1049/iet-sen.2012.0095
– ident: e_1_2_7_27_1
  doi: 10.1007/s13198-017-0641-5
– ident: e_1_2_7_21_1
  doi: 10.1007/s10270-013-0356-2
– volume: 31
  start-page: 541
  issue: 6
  year: 2006
  ident: e_1_2_7_4_1
  article-title: YAM2: a multidimensional conceptual model extending UML
  publication-title: Inf. Syst.
  doi: 10.1016/j.is.2004.12.002
– start-page: 429
  volume-title: Advances in intelligent informatics
  year: 2015
  ident: e_1_2_7_13_1
  doi: 10.1007/978-3-319-11218-3_39
– ident: e_1_2_7_16_1
  doi: 10.1109/32.481535
– volume-title: Definition of a set of metrics for assuring data warehouse quality
  year: 2004
  ident: e_1_2_7_24_1
– volume: 49
  start-page: 851
  issue: 8
  year: 2007
  ident: e_1_2_7_25_1
  article-title: Metrics for data warehouse conceptual models understandability
  publication-title: Inf. Softw. Technol.
  doi: 10.1016/j.infsof.2006.09.008
SSID ssj0055539
Score 2.2317293
Snippet Data warehouse quality can be determined during the initial phases of data warehouse development by quantifying the structural complexity of multidimensional...
SourceID crossref
wiley
iet
SourceType Enrichment Source
Index Database
Publisher
StartPage 275
SubjectTerms complexity measure
comprehensive complexity metric
correlation regression
data warehouse development
data warehouse multidimensional model understandability
data warehouse quality
data warehouses
hierarchy levels
hierarchy types
multidimensional model complexity
multinomial regression
regression analysis
software metrics
software quality
Special Issue: Knowledge Discovery for Software Development (KDSD)
statistical techniques
structural complexity
SummonAdditionalLinks – databaseName: IET Digital Library (Open Access)
  dbid: IDLOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELWgvXBhR5RNPiAOSIY6trMc2aKCgAtUVOIQeQsgQUGlFfD3jO2kqBIqXJOJDzOO_Z49Mw-hXasZL1WsSAS0jfCMxUTGhgOQK7O21JZqf9F-dR13uvyiJ3o_5dHm6cFpZZD6xM2dlttQeeBSt2EdPqx8HARJAN8eggF5t66XKc0OAoFvRklCeQM1z08vHcUKK7MQwiuLwY5JCczbeHzL-csgE_vULLyeRK9--8kX0XyFG_FRCPQSmrH9ZbRQazLg6hddQffu0cA-hrx07DPG7SdAbfzitLM0BpCKXVoo_pBgBrzfYp9UaFyb_9CiA3t5HDwa172EXt5fq6ibn92edEgloEA0SxJYPFJgE5qmpVBUl0wmts25KgFBUSuByRghVJQqa8AhimsAW0xIaQB0Q6QUtWwNNfqvfbuOMEt13DY8lq4yTpdGSV5yowBAWKZVkrZQu3ZXoavu4k7k4rnwt9w8K8CFBXi4cB4unIdbaH_8yVtorTHNeM89q4M_zZD5MP09ZHGT30XHuSPmycZ_h99Ec5Fj3P4cZgs1hoOR3QZYMlQ71Wz7BofH4Fc
  priority: 102
  providerName: Institution of Engineering and Technology
Title Comprehensive complexity metric for data warehouse multidimensional model understandability
URI http://digital-library.theiet.org/content/journals/10.1049/iet-sen.2019.0150
https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-sen.2019.0150
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA7revHiW1wfSw7iQai2TdLHcV0tq_gCrS56KHkVBV1lH6j_3kn6gEVYwVMhTXKYySTfJDPfILSnJaG5CITjg9vm0JgEDg8UBSCXxy6X2pP2of3yKuil9LzP-g3UrXJhCn6I-sLNWIbdr42Bc1FUIQFQC0p80WNnpA2FqRcfFn77vEmxNQT6Pr2ptmPGmC0nBsek50SRR-unzfjo1xRTh9Mc_J6GrPbMSZbRYgkWcafQ7gpq6MEqWqoKMeDSLtfQk2ka6uciGB3bMHH9Bfgav5mCWRIDMsUmFhR_cugGzr7GNpJQGW7_gpcD25o4eFInuxQE3t_rKE1O77o9p6ya4EgShrBjROBCSC_KmfBkTnioXUpFDrDJ0xzcF8WY8COhFQhEUAkIizDOFSBtUI_wNNlAzcH7QG8iTCIZuIoG3KTDyVwJTnOqBKAGTaQIoxZyK3FlsqQUN5UtXjP7tE3jDESYgYQzI-HMSLiFDuohHwWfxqzO-6attKrRrI7EqunvKbPb5ME_Tow3Hm79a9Q2WvCNz21vYnZQczyc6F0AJmPRtguvjeY79-ljCt-zk4vrzg-jj-G-
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA61HvTiW6zPHMSDsNpssq-jr6VqWwRbLHhYkmwWBa3SB-q_dyb7gCIoeM0mOUx2ku9LZr4h5NBoLjLlK8cF2uaIiPuO9FMBQC6LmlIbpu1De6frt_riZuANauSyzIXJ9SGqCzf0DLtfo4PjhXROOAWKZD6biTM2qGHKopOcuM8L3w3QPV1xV-7HnufZemJwTjInDJmo3jaj0x9TzJxOc_B5FrPaQydeIUsFWqRn-fKukpoZrpHlshIDLRxznTxi08g85dHo1MaJm08A2PQVK2ZpCtCUYjAo_ZDQDdi-oTaUMEVx_1yYg9qiOHRaZbvkCt5fG6QfX_UuWk5RNsHRPAhgywiBQ2gWZp5iOuMyME0hVAa4iRkJ_CX1POWGyqRgECU0QCzuSZkC1Ib1UczwTVIfvg3NFqE81H4zFb7EfDidpUqKTKQKYIPhWgVhgzRLcyW60BTH0hYviX3bFlECJkzAwglaOEELN8hxNeQ9F9T4rfMRthVuNf6tI7fL9PeUyX384J7HSMeD7X-NOiALrV6nnbSvu7c7ZNFFAm6vZXZJfTKamj1AKRO1b3_Cb6y-4eA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JSwMxFA61BfHiLtY1B_EgjM5MMtuxVoe6FUFHix6GbIOC1tIF9d_7klmgCBW8Zju85CXfl7x8D6EDJQjNuM8tF2ibRSPiW8yXFIBcFtlMKEeYh_abrt9J6GXP69VQu_wLk-tDVBdu2jPMfq0dfCCznG9SrZH5qsbWSGkJUyc6znl7Q6vlwdJutB6Sp6TckD3PMwnF4KB0rDB0aPW4GZ38GmTqeJqD6mnQak6deBktFnARt_L5XUE11V9FS2UqBlx45hp61kVD9ZKHo2MTKK6-AGHjd50yS2DAplhHg-JPBs2A7itsYgmlVvfPlTmwyYqDJ9V3l1zC-3sdJfH5fbtjFXkTLEGCAPaMEEiEcMLM447ICAuUTSnPADg5igGBkZ7H3ZArCQbhVADGIh5jErA2TBB3FNlA9f5HX20iTELh25L6TH-IE5nkjGZUcsANiggehE1kl-ZKRSEqrnNbvKXmcZtGKZgwBQun2sKptnATHVVdBrmixqzGh7qs8KvRrIbETNPfQ6Z38aN7Gms-Hmz9q9c-mr89i9Pri-7VNlpwNQE31zI7qD4eTtQuoJQx3ytW4Q-3xeLY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comprehensive+complexity+metric+for+data+warehouse+multidimensional+model+understandability&rft.jtitle=IET+software&rft.au=Gosain%2C+Anjana&rft.au=Singh%2C+Jaspreeti&rft.date=2020-06-01&rft.pub=The+Institution+of+Engineering+and+Technology&rft.issn=1751-8814&rft.eissn=1751-8814&rft.volume=14&rft.issue=3&rft.spage=275&rft.epage=282&rft_id=info:doi/10.1049%2Fiet-sen.2019.0150&rft.externalDBID=10.1049%252Fiet-sen.2019.0150&rft.externalDocID=SFW2BF00277
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-8806&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-8806&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-8806&client=summon