Porous Cobalt Phosphide Polyhedrons with Iron Doping as an Efficient Bifunctional Electrocatalyst

Iron (Fe)‐doped porous cobalt phosphide polyhedrons are designed and synthesized as an efficient bifunctional electrocatalyst for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). The synthesis strategy involves one‐step route for doping foreign metallic element and forming...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 13; no. 40
Main Authors Li, Feng, Bu, Yunfei, Lv, Zijian, Mahmood, Javeed, Han, Gao‐Feng, Ahmad, Ishfaq, Kim, Guntae, Zhong, Qin, Baek, Jong‐Beom
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 25.10.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Iron (Fe)‐doped porous cobalt phosphide polyhedrons are designed and synthesized as an efficient bifunctional electrocatalyst for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). The synthesis strategy involves one‐step route for doping foreign metallic element and forming porous cobalt phosphide polyhedrons. With varying doping levels of Fe, the optimized Fe‐doped porous cobalt phosphide polyhedron exhibits significantly enhanced HER and OER performances, including low onset overpotentials, large current densities, as well as small Tafel slopes and good electrochemical stability during HER and OER. Porous cobalt phosphide polyhedrons doped with iron are demonstrated to be an efficient bifunctional electrocatalyst for both hydrogen and oxygen evolution reactions. With optimized iron doping, their electrocatalytic activities are significantly enhanced. The electrocatalyst exhibits low onset overpotentials, large current densities, as well as small Tafel slopes, and good electrochemical stability during hydrogen and oxygen evolution.
AbstractList Iron (Fe)-doped porous cobalt phosphide polyhedrons are designed and synthesized as an efficient bifunctional electrocatalyst for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). The synthesis strategy involves one-step route for doping foreign metallic element and forming porous cobalt phosphide polyhedrons. With varying doping levels of Fe, the optimized Fe-doped porous cobalt phosphide polyhedron exhibits significantly enhanced HER and OER performances, including low onset overpotentials, large current densities, as well as small Tafel slopes and good electrochemical stability during HER and OER.
Abstract Iron (Fe)‐doped porous cobalt phosphide polyhedrons are designed and synthesized as an efficient bifunctional electrocatalyst for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). The synthesis strategy involves one‐step route for doping foreign metallic element and forming porous cobalt phosphide polyhedrons. With varying doping levels of Fe, the optimized Fe‐doped porous cobalt phosphide polyhedron exhibits significantly enhanced HER and OER performances, including low onset overpotentials, large current densities, as well as small Tafel slopes and good electrochemical stability during HER and OER.
Iron (Fe)‐doped porous cobalt phosphide polyhedrons are designed and synthesized as an efficient bifunctional electrocatalyst for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). The synthesis strategy involves one‐step route for doping foreign metallic element and forming porous cobalt phosphide polyhedrons. With varying doping levels of Fe, the optimized Fe‐doped porous cobalt phosphide polyhedron exhibits significantly enhanced HER and OER performances, including low onset overpotentials, large current densities, as well as small Tafel slopes and good electrochemical stability during HER and OER. Porous cobalt phosphide polyhedrons doped with iron are demonstrated to be an efficient bifunctional electrocatalyst for both hydrogen and oxygen evolution reactions. With optimized iron doping, their electrocatalytic activities are significantly enhanced. The electrocatalyst exhibits low onset overpotentials, large current densities, as well as small Tafel slopes, and good electrochemical stability during hydrogen and oxygen evolution.
Author Kim, Guntae
Han, Gao‐Feng
Ahmad, Ishfaq
Zhong, Qin
Mahmood, Javeed
Li, Feng
Lv, Zijian
Bu, Yunfei
Baek, Jong‐Beom
Author_xml – sequence: 1
  givenname: Feng
  surname: Li
  fullname: Li, Feng
  organization: Ulsan National Institute of Science and Technology (UNIST)
– sequence: 2
  givenname: Yunfei
  surname: Bu
  fullname: Bu, Yunfei
  organization: UNIST
– sequence: 3
  givenname: Zijian
  surname: Lv
  fullname: Lv, Zijian
  organization: Nanjing University of Science and Technology
– sequence: 4
  givenname: Javeed
  surname: Mahmood
  fullname: Mahmood, Javeed
  organization: Ulsan National Institute of Science and Technology (UNIST)
– sequence: 5
  givenname: Gao‐Feng
  surname: Han
  fullname: Han, Gao‐Feng
  organization: Ulsan National Institute of Science and Technology (UNIST)
– sequence: 6
  givenname: Ishfaq
  surname: Ahmad
  fullname: Ahmad, Ishfaq
  organization: Ulsan National Institute of Science and Technology (UNIST)
– sequence: 7
  givenname: Guntae
  surname: Kim
  fullname: Kim, Guntae
  email: gtkim@unist.ac.kr
  organization: UNIST
– sequence: 8
  givenname: Qin
  surname: Zhong
  fullname: Zhong, Qin
  email: zq304@njust.edu.cn
  organization: Nanjing University of Science and Technology
– sequence: 9
  givenname: Jong‐Beom
  surname: Baek
  fullname: Baek, Jong‐Beom
  email: jbbaek@unist.ac.kr
  organization: Ulsan National Institute of Science and Technology (UNIST)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28783231$$D View this record in MEDLINE/PubMed
BookMark eNqFkD1PwzAQQC1URD9gZUSWmFv8kcbJCKVApSAqAXN0cWziyo2LnajqvydVSxmZ7oZ3T6c3RL3a1Qqha0omlBB2F9bWThihglAaizM0oDHl4zhhae-0U9JHwxBWhHDKInGB-iwRCWecDhAsnXdtwDNXgG3wsnJhU5lS4aWzu0qV3tUBb01T4UW34ke3MfUXhoChxnOtjTSqbvCD0W0tG-NqsHhulWy8k9CA3YXmEp1rsEFdHecIfT7NP2Yv4-zteTG7z8aSCyHGlAMAKxhjQqhCSx1NE6mhZFDEHCRwXtAoJjrSiSwimsaRltOiBCCRLiXVfIRuD96Nd9-tCk2-cq3vHgo5TaecpIzHpKMmB0p6F4JXOt94swa_yynJ90XzfdH8VLQ7uDlq22KtyhP-m7AD0gOwNVbt_tHl769Z9if_Aabjhow
CitedBy_id crossref_primary_10_1039_D2SE00474G
crossref_primary_10_1021_acssuschemeng_0c07700
crossref_primary_10_1016_j_ijhydene_2018_11_003
crossref_primary_10_1007_s12274_021_3759_3
crossref_primary_10_1016_j_jechem_2021_12_006
crossref_primary_10_1002_eom2_12312
crossref_primary_10_1021_acssuschemeng_8b03221
crossref_primary_10_1016_j_nanoms_2022_04_003
crossref_primary_10_1016_j_cej_2021_133684
crossref_primary_10_1021_acssuschemeng_8b04397
crossref_primary_10_1021_acs_chemrev_9b00248
crossref_primary_10_1021_acsenergylett_7b01141
crossref_primary_10_1016_j_ijhydene_2023_10_189
crossref_primary_10_1016_j_mtchem_2018_10_004
crossref_primary_10_1016_j_ijhydene_2022_08_138
crossref_primary_10_1039_C8TA09919G
crossref_primary_10_1007_s11426_023_1666_4
crossref_primary_10_1039_D1TA04032D
crossref_primary_10_1039_D0NR08108F
crossref_primary_10_1039_D3NR04822E
crossref_primary_10_3390_nano11071847
crossref_primary_10_1021_acsaem_2c02263
crossref_primary_10_1039_D1DT02183D
crossref_primary_10_1016_j_ijhydene_2021_06_047
crossref_primary_10_1021_acsanm_1c02607
crossref_primary_10_1002_smll_201904105
crossref_primary_10_1002_smll_202107572
crossref_primary_10_1016_j_diamond_2021_108508
crossref_primary_10_1021_acsami_8b19148
crossref_primary_10_1016_j_ijhydene_2020_10_150
crossref_primary_10_1002_cctc_201801960
crossref_primary_10_1021_acssuschemeng_9b01315
crossref_primary_10_1002_cctc_201800036
crossref_primary_10_1016_j_jallcom_2020_155784
crossref_primary_10_1002_cssc_201901604
crossref_primary_10_1021_acs_inorgchem_1c03498
crossref_primary_10_1039_C9NR04837E
crossref_primary_10_1016_j_ijhydene_2023_10_299
crossref_primary_10_1088_1361_6528_aba3d9
crossref_primary_10_1021_acs_chemrev_3c00005
crossref_primary_10_1039_C9CC09741D
crossref_primary_10_1039_C9TA00530G
crossref_primary_10_1007_s12274_021_3810_4
crossref_primary_10_1021_acs_inorgchem_3c02438
crossref_primary_10_1021_acscatal_8b01609
crossref_primary_10_3390_catal9090762
crossref_primary_10_1016_j_ijhydene_2024_02_327
crossref_primary_10_1021_acssuschemeng_8b05302
crossref_primary_10_3390_en14051320
crossref_primary_10_1016_j_electacta_2020_137651
crossref_primary_10_1007_s12598_021_01851_9
crossref_primary_10_1002_cey2_532
crossref_primary_10_1016_j_electacta_2020_137536
crossref_primary_10_1021_acsanm_8b01579
crossref_primary_10_1039_C9RA00869A
crossref_primary_10_1039_D1TA08938B
crossref_primary_10_1002_adma_201803676
crossref_primary_10_1002_celc_202001454
crossref_primary_10_1007_s12274_023_5463_y
crossref_primary_10_1039_C9TA04949E
crossref_primary_10_1021_acsami_1c12512
crossref_primary_10_1016_j_ijhydene_2023_08_137
crossref_primary_10_1016_j_jcat_2019_06_008
crossref_primary_10_1002_adma_202107072
crossref_primary_10_1002_cey2_182
crossref_primary_10_1039_C8TA07958G
crossref_primary_10_1021_accountsmr_0c00110
crossref_primary_10_1002_adsu_202000128
crossref_primary_10_1016_j_ceramint_2020_11_135
crossref_primary_10_1016_j_ijhydene_2022_09_310
crossref_primary_10_1039_C8TA01310A
crossref_primary_10_1002_cssc_201902232
crossref_primary_10_1016_j_nanoen_2018_12_018
crossref_primary_10_1039_D1CS00323B
crossref_primary_10_1039_C9NR10785A
crossref_primary_10_1016_j_apsusc_2020_147172
crossref_primary_10_1016_j_electacta_2020_136850
crossref_primary_10_1021_acs_energyfuels_2c03732
crossref_primary_10_1186_s11671_020_03316_x
crossref_primary_10_1039_C7NR06111K
crossref_primary_10_1016_j_jallcom_2019_153542
Cites_doi 10.1021/ja403440e
10.1016/j.rser.2012.02.028
10.1021/ja407115p
10.1021/ic051004d
10.1021/jacs.6b00757
10.1002/adma.201401692
10.1038/nnano.2016.304
10.1039/C4CC05285D
10.1039/C4TA06071G
10.1039/C4CC04709E
10.1002/anie.201406848
10.1021/ja3089923
10.1126/science.1211934
10.1021/ja503372r
10.1021/nn5048553
10.1002/ange.201204842
10.1002/anie.201204958
10.1021/acsami.5b10727
10.1039/C3CS60468C
10.1021/la203570h
10.1021/ja307507a
10.1038/ncomms5695
10.1039/C4CS00448E
10.1021/acs.chemmater.5b02877
10.1126/science.1127180
ContentType Journal Article
Copyright 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID NPM
AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/smll.201701167
DatabaseName PubMed
CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle PubMed
CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList PubMed
CrossRef

Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 10_1002_smll_201701167
28783231
SMLL201701167
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Science Research Center
  funderid: 2016R1A5A1009405
– fundername: Natural Science Foundation of Jiangsu Province
  funderid: BK20160834; 2016M591850
– fundername: BK21 Plus
  funderid: 10Z20130011057
– fundername: Chinese Postdoctoral Science Foundation
– fundername: Academic Program Development of Jiangsu Higher Education Institutions
– fundername: Creative Research Initiative
  funderid: 2014R1A2069102
– fundername: Climate Change
  funderid: 2016M1A2940910
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAIHA
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AAYOK
ACBWZ
ASPBG
AVWKF
AZFZN
BDRZF
FEDTE
GODZA
HVGLF
NPM
AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c3777-13aaa2b22277ebfcf458cfad2ab63aca33b1460f4f8cb41964fc5bdaa04fdc1f3
IEDL.DBID DR2
ISSN 1613-6810
IngestDate Thu Oct 10 16:28:52 EDT 2024
Fri Aug 23 01:08:47 EDT 2024
Sat Sep 28 08:48:06 EDT 2024
Sat Aug 24 00:57:25 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 40
Keywords cobalt phosphide
bifunctional electrocatalysts
dissociation
iron doping
Language English
License 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3777-13aaa2b22277ebfcf458cfad2ab63aca33b1460f4f8cb41964fc5bdaa04fdc1f3
PMID 28783231
PQID 1953092360
PQPubID 1046358
PageCount 6
ParticipantIDs proquest_journals_1953092360
crossref_primary_10_1002_smll_201701167
pubmed_primary_28783231
wiley_primary_10_1002_smll_201701167_SMLL201701167
PublicationCentury 2000
PublicationDate October 25, 2017
PublicationDateYYYYMMDD 2017-10-25
PublicationDate_xml – month: 10
  year: 2017
  text: October 25, 2017
  day: 25
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2011; 334
2014; 5
2015; 27
2012; 134
2015; 3
2012; 124
2015; 44
2017; 12
2013; 52
2014; 26
2013; 135
2016; 138
2012; 16
2014; 8
2011; 27
2014; 50
2014; 136
2016; 8
2005; 44
2014; 43
2006; 312
2014; 53
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_25_1
e_1_2_7_24_1
e_1_2_7_23_1
e_1_2_7_22_1
e_1_2_7_21_1
e_1_2_7_20_1
References_xml – volume: 50
  start-page: 11554
  year: 2014
  publication-title: Chem. Commun.
– volume: 16
  start-page: 3024
  year: 2012
  publication-title: Renewable Sustainable Energy Rev.
– volume: 44
  start-page: 5148
  year: 2015
  publication-title: Chem. Soc. Rev.
– volume: 12
  start-page: 441
  year: 2017
  publication-title: Nat. Nanotechnol.
– volume: 138
  start-page: 3570
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 312
  start-page: 1322
  year: 2006
  publication-title: Science
– volume: 26
  start-page: 5702
  year: 2014
  publication-title: Adv. Mater.
– volume: 50
  start-page: 11026
  year: 2014
  publication-title: Chem. Commun.
– volume: 334
  start-page: 1256
  year: 2011
  publication-title: Science
– volume: 44
  start-page: 8988
  year: 2005
  publication-title: Inorg. Chem.
– volume: 8
  start-page: 11101
  year: 2014
  publication-title: ACS Nano
– volume: 53
  start-page: 12855
  year: 2014
  publication-title: Angew. Chem. Int. Ed.
– volume: 27
  start-page: 7636
  year: 2015
  publication-title: Chem. Mater.
– volume: 135
  start-page: 9267
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 124
  start-page: 12663
  year: 2012
  publication-title: Angew. Chem. Int. Ed.
– volume: 3
  start-page: 1941
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 4695
  year: 2014
  publication-title: Nat. Commun.
– volume: 27
  start-page: 15261
  year: 2011
  publication-title: Langmuir
– volume: 52
  start-page: 371
  year: 2013
  publication-title: Angew. Chem. Int. Ed.
– volume: 43
  start-page: 6555
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 135
  start-page: 16977
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 135
  start-page: 2013
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 136
  start-page: 7587
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 134
  start-page: 17253
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 2158
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– ident: e_1_2_7_16_1
  doi: 10.1021/ja403440e
– ident: e_1_2_7_6_1
  doi: 10.1016/j.rser.2012.02.028
– ident: e_1_2_7_2_1
  doi: 10.1021/ja407115p
– ident: e_1_2_7_24_1
  doi: 10.1021/ic051004d
– ident: e_1_2_7_22_1
  doi: 10.1021/jacs.6b00757
– ident: e_1_2_7_11_1
  doi: 10.1002/adma.201401692
– ident: e_1_2_7_5_1
  doi: 10.1038/nnano.2016.304
– ident: e_1_2_7_10_1
  doi: 10.1039/C4CC05285D
– ident: e_1_2_7_9_1
  doi: 10.1039/C4TA06071G
– ident: e_1_2_7_13_1
  doi: 10.1039/C4CC04709E
– ident: e_1_2_7_14_1
  doi: 10.1002/anie.201406848
– ident: e_1_2_7_8_1
  doi: 10.1021/ja3089923
– ident: e_1_2_7_20_1
  doi: 10.1126/science.1211934
– ident: e_1_2_7_12_1
  doi: 10.1021/ja503372r
– ident: e_1_2_7_15_1
  doi: 10.1021/nn5048553
– ident: e_1_2_7_19_1
  doi: 10.1002/ange.201204842
– ident: e_1_2_7_23_1
  doi: 10.1002/anie.201204958
– ident: e_1_2_7_17_1
  doi: 10.1021/acsami.5b10727
– ident: e_1_2_7_3_1
  doi: 10.1039/C3CS60468C
– ident: e_1_2_7_25_1
  doi: 10.1021/la203570h
– ident: e_1_2_7_1_1
  doi: 10.1021/ja307507a
– ident: e_1_2_7_18_1
  doi: 10.1038/ncomms5695
– ident: e_1_2_7_4_1
  doi: 10.1039/C4CS00448E
– ident: e_1_2_7_21_1
  doi: 10.1021/acs.chemmater.5b02877
– ident: e_1_2_7_7_1
  doi: 10.1126/science.1127180
SSID ssj0031247
Score 2.5508933
Snippet Iron (Fe)‐doped porous cobalt phosphide polyhedrons are designed and synthesized as an efficient bifunctional electrocatalyst for both hydrogen evolution...
Iron (Fe)-doped porous cobalt phosphide polyhedrons are designed and synthesized as an efficient bifunctional electrocatalyst for both hydrogen evolution...
Abstract Iron (Fe)‐doped porous cobalt phosphide polyhedrons are designed and synthesized as an efficient bifunctional electrocatalyst for both hydrogen...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms bifunctional electrocatalysts
Chemical synthesis
Cobalt
cobalt phosphide
dissociation
Doping
Hydrogen evolution reactions
Iron
iron doping
Nanotechnology
Oxygen evolution reactions
Polyhedra
Slope stability
Tafel slopes
Title Porous Cobalt Phosphide Polyhedrons with Iron Doping as an Efficient Bifunctional Electrocatalyst
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.201701167
https://www.ncbi.nlm.nih.gov/pubmed/28783231
https://www.proquest.com/docview/1953092360
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQEwy8H4GCPCAxpSRxErcj9KGCAFU8JLbozolVBDRVkw7l1-NL2kBhQILFcgZbju_s73z2fcfYSRPcQBrYsX2UjilQ2egpU6AbJpTawdHk77i5DXuP_tVT8PQlir_kh6gcbrQyiv2aFjhgdvZJGpq9vdLVAfGJuyGFk7tC0puu9l3FHyUMeBXZVQxm2US8NWdtdLyzxeaLqPTD1Fy0XAvo6a4zmA-6fHHyUp_kWFfv3_gc__NXG2xtZpfy81KRNtlSMtxiq1_YCrcZ9NNxOsl4iyhEct4fpNlo8BwnvJ--TgdJPDYKzMmvyy9NlbeLUCwOGYch7xRMFQbg-MUzQWnpgeSdMglP4UOaZvkOe-x2Hlo9e5ahwVZCSmm7AgA8pHhamaBW2g8aSkPsAYYCFAiBZid2tK8bCn3i_tIqwBjA8XWsXC122fIwHSb7jCuUcQBN6cZh0wdHNYVqIAYKjRFhzoBosdO5hKJRScQRlZTLXkSTFlWTZrHaXIDRbEFmEd0WOsaYDR2L7ZVCrboxh0azrwnXYl4hml_6j-5vrq-rr4O_NDpkK1QnDPSCGlvOx5PkyBg3OR4XCvwBMgHy6A
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xHIAD-1JWH5A4BZI4idsjS1GBFlUsErfI48QqAhrUpAf4ejxJEygckOBiJZFsxR6P33jseQOw35COLwzsWB4K2xSoLHSVKdAJYkrtYGvyd3Sug9a9d_ngl7cJKRam4IeoHG6kGfl6TQpODumjT9bQ9OWZzg6IUNwJxCRMG53nlL3h7KZikOIGvvL8Kga1LKLeKnkbbfdovP44Lv0wNsdt1xx8zhcAy98u7pw8HQ4zPFTv3xgd_9WvRZgfmabsuJhLSzAR95dh7gth4QrIbjJIhik7JRaRjHV7Sfrae4xi1k2e33pxNDBzmJFrl12YR3aWR2MxmTLZZ82crMJgHDt5JDQtnJCsWeThyd1Ib2m2CvfnzbvTljVK0mApLoSwHC6ldJFCakWMWmnPrystI1diwKWSnKNZjG3t6bpCj-i_tPIxktL2dKQczddgqp_04w1gCkXky4ZwoqDhSVs1uKoj-gqNHWG2gViDg1JE4WvBxREWrMtuSIMWVoNWg-1SguFIJ9OQDgxtY88Gdg3WC6lWzZh9o1nauFMDN5fNL-2Ht512u3rb_EulPZhp3XXaYfvi-moLZuk7QaLrb8NUNhjGO8bWyXA3n80fWIH3AA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xSAgO7EuhgA9InAJJnMTtEUorloIqFolb5HFiFQFN1aQH-Ho8SRsoHJDgYiWRbCUe2-95nHkDcFCXji8M7FgeCtsUqCx0lSnQCWJK7WBr8ndc3wTnD97lo__4JYq_0IcoHW40M_L1miZ4P9LHn6Kh6esLHR2QnrgTiGmY9QJDf4kW3ZYCUtygV55exYCWRcpbY9lG2z2erD8JSz-45iR1zbGntQRy_NbFLyfPR8MMj9T7N0HH_3zWMiyOiCk7KUbSCkzFvVVY-CJXuAaykwySYcoapCGSsU43SfvdpyhmneTlrRtHAzOCGTl22YW5ZGd5LBaTKZM91sylKgzCsdMnwtLCBcmaRRae3In0lmbr8NBq3jfOrVGKBktxIYTlcCmlixRQK2LUSnt-TWkZuRIDLpXkHM1SbGtP1xR6JP6llY-RlLanI-VovgEzvaQXbwFTKCJf1oUTBXVP2qrOVQ3RV2hYhNkEYgUOxxYK-4USR1hoLrshdVpYdloFqmMDhqMZmYZ0XGgbNhvYFdgsjFo2Y3aNZmHjTgXc3DS_tB_eXbfb5d32Xyrtw1znrBW2L26udmCeHhMeun4VZrLBMN41RCfDvXwsfwB87PWv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Porous+Cobalt+Phosphide+Polyhedrons+with+Iron+Doping+as+an+Efficient+Bifunctional+Electrocatalyst&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Li%2C+Feng&rft.au=Bu%2C+Yunfei&rft.au=Lv%2C+Zijian&rft.au=Mahmood%2C+Javeed&rft.date=2017-10-25&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=13&rft.issue=40&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmll.201701167&rft.externalDBID=10.1002%252Fsmll.201701167&rft.externalDocID=SMLL201701167
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon