Porous Cobalt Phosphide Polyhedrons with Iron Doping as an Efficient Bifunctional Electrocatalyst
Iron (Fe)‐doped porous cobalt phosphide polyhedrons are designed and synthesized as an efficient bifunctional electrocatalyst for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). The synthesis strategy involves one‐step route for doping foreign metallic element and forming...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 13; no. 40 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
25.10.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Iron (Fe)‐doped porous cobalt phosphide polyhedrons are designed and synthesized as an efficient bifunctional electrocatalyst for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). The synthesis strategy involves one‐step route for doping foreign metallic element and forming porous cobalt phosphide polyhedrons. With varying doping levels of Fe, the optimized Fe‐doped porous cobalt phosphide polyhedron exhibits significantly enhanced HER and OER performances, including low onset overpotentials, large current densities, as well as small Tafel slopes and good electrochemical stability during HER and OER.
Porous cobalt phosphide polyhedrons doped with iron are demonstrated to be an efficient bifunctional electrocatalyst for both hydrogen and oxygen evolution reactions. With optimized iron doping, their electrocatalytic activities are significantly enhanced. The electrocatalyst exhibits low onset overpotentials, large current densities, as well as small Tafel slopes, and good electrochemical stability during hydrogen and oxygen evolution. |
---|---|
AbstractList | Iron (Fe)-doped porous cobalt phosphide polyhedrons are designed and synthesized as an efficient bifunctional electrocatalyst for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). The synthesis strategy involves one-step route for doping foreign metallic element and forming porous cobalt phosphide polyhedrons. With varying doping levels of Fe, the optimized Fe-doped porous cobalt phosphide polyhedron exhibits significantly enhanced HER and OER performances, including low onset overpotentials, large current densities, as well as small Tafel slopes and good electrochemical stability during HER and OER. Abstract Iron (Fe)‐doped porous cobalt phosphide polyhedrons are designed and synthesized as an efficient bifunctional electrocatalyst for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). The synthesis strategy involves one‐step route for doping foreign metallic element and forming porous cobalt phosphide polyhedrons. With varying doping levels of Fe, the optimized Fe‐doped porous cobalt phosphide polyhedron exhibits significantly enhanced HER and OER performances, including low onset overpotentials, large current densities, as well as small Tafel slopes and good electrochemical stability during HER and OER. Iron (Fe)‐doped porous cobalt phosphide polyhedrons are designed and synthesized as an efficient bifunctional electrocatalyst for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). The synthesis strategy involves one‐step route for doping foreign metallic element and forming porous cobalt phosphide polyhedrons. With varying doping levels of Fe, the optimized Fe‐doped porous cobalt phosphide polyhedron exhibits significantly enhanced HER and OER performances, including low onset overpotentials, large current densities, as well as small Tafel slopes and good electrochemical stability during HER and OER. Porous cobalt phosphide polyhedrons doped with iron are demonstrated to be an efficient bifunctional electrocatalyst for both hydrogen and oxygen evolution reactions. With optimized iron doping, their electrocatalytic activities are significantly enhanced. The electrocatalyst exhibits low onset overpotentials, large current densities, as well as small Tafel slopes, and good electrochemical stability during hydrogen and oxygen evolution. |
Author | Kim, Guntae Han, Gao‐Feng Ahmad, Ishfaq Zhong, Qin Mahmood, Javeed Li, Feng Lv, Zijian Bu, Yunfei Baek, Jong‐Beom |
Author_xml | – sequence: 1 givenname: Feng surname: Li fullname: Li, Feng organization: Ulsan National Institute of Science and Technology (UNIST) – sequence: 2 givenname: Yunfei surname: Bu fullname: Bu, Yunfei organization: UNIST – sequence: 3 givenname: Zijian surname: Lv fullname: Lv, Zijian organization: Nanjing University of Science and Technology – sequence: 4 givenname: Javeed surname: Mahmood fullname: Mahmood, Javeed organization: Ulsan National Institute of Science and Technology (UNIST) – sequence: 5 givenname: Gao‐Feng surname: Han fullname: Han, Gao‐Feng organization: Ulsan National Institute of Science and Technology (UNIST) – sequence: 6 givenname: Ishfaq surname: Ahmad fullname: Ahmad, Ishfaq organization: Ulsan National Institute of Science and Technology (UNIST) – sequence: 7 givenname: Guntae surname: Kim fullname: Kim, Guntae email: gtkim@unist.ac.kr organization: UNIST – sequence: 8 givenname: Qin surname: Zhong fullname: Zhong, Qin email: zq304@njust.edu.cn organization: Nanjing University of Science and Technology – sequence: 9 givenname: Jong‐Beom surname: Baek fullname: Baek, Jong‐Beom email: jbbaek@unist.ac.kr organization: Ulsan National Institute of Science and Technology (UNIST) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28783231$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkD1PwzAQQC1URD9gZUSWmFv8kcbJCKVApSAqAXN0cWziyo2LnajqvydVSxmZ7oZ3T6c3RL3a1Qqha0omlBB2F9bWThihglAaizM0oDHl4zhhae-0U9JHwxBWhHDKInGB-iwRCWecDhAsnXdtwDNXgG3wsnJhU5lS4aWzu0qV3tUBb01T4UW34ke3MfUXhoChxnOtjTSqbvCD0W0tG-NqsHhulWy8k9CA3YXmEp1rsEFdHecIfT7NP2Yv4-zteTG7z8aSCyHGlAMAKxhjQqhCSx1NE6mhZFDEHCRwXtAoJjrSiSwimsaRltOiBCCRLiXVfIRuD96Nd9-tCk2-cq3vHgo5TaecpIzHpKMmB0p6F4JXOt94swa_yynJ90XzfdH8VLQ7uDlq22KtyhP-m7AD0gOwNVbt_tHl769Z9if_Aabjhow |
CitedBy_id | crossref_primary_10_1039_D2SE00474G crossref_primary_10_1021_acssuschemeng_0c07700 crossref_primary_10_1016_j_ijhydene_2018_11_003 crossref_primary_10_1007_s12274_021_3759_3 crossref_primary_10_1016_j_jechem_2021_12_006 crossref_primary_10_1002_eom2_12312 crossref_primary_10_1021_acssuschemeng_8b03221 crossref_primary_10_1016_j_nanoms_2022_04_003 crossref_primary_10_1016_j_cej_2021_133684 crossref_primary_10_1021_acssuschemeng_8b04397 crossref_primary_10_1021_acs_chemrev_9b00248 crossref_primary_10_1021_acsenergylett_7b01141 crossref_primary_10_1016_j_ijhydene_2023_10_189 crossref_primary_10_1016_j_mtchem_2018_10_004 crossref_primary_10_1016_j_ijhydene_2022_08_138 crossref_primary_10_1039_C8TA09919G crossref_primary_10_1007_s11426_023_1666_4 crossref_primary_10_1039_D1TA04032D crossref_primary_10_1039_D0NR08108F crossref_primary_10_1039_D3NR04822E crossref_primary_10_3390_nano11071847 crossref_primary_10_1021_acsaem_2c02263 crossref_primary_10_1039_D1DT02183D crossref_primary_10_1016_j_ijhydene_2021_06_047 crossref_primary_10_1021_acsanm_1c02607 crossref_primary_10_1002_smll_201904105 crossref_primary_10_1002_smll_202107572 crossref_primary_10_1016_j_diamond_2021_108508 crossref_primary_10_1021_acsami_8b19148 crossref_primary_10_1016_j_ijhydene_2020_10_150 crossref_primary_10_1002_cctc_201801960 crossref_primary_10_1021_acssuschemeng_9b01315 crossref_primary_10_1002_cctc_201800036 crossref_primary_10_1016_j_jallcom_2020_155784 crossref_primary_10_1002_cssc_201901604 crossref_primary_10_1021_acs_inorgchem_1c03498 crossref_primary_10_1039_C9NR04837E crossref_primary_10_1016_j_ijhydene_2023_10_299 crossref_primary_10_1088_1361_6528_aba3d9 crossref_primary_10_1021_acs_chemrev_3c00005 crossref_primary_10_1039_C9CC09741D crossref_primary_10_1039_C9TA00530G crossref_primary_10_1007_s12274_021_3810_4 crossref_primary_10_1021_acs_inorgchem_3c02438 crossref_primary_10_1021_acscatal_8b01609 crossref_primary_10_3390_catal9090762 crossref_primary_10_1016_j_ijhydene_2024_02_327 crossref_primary_10_1021_acssuschemeng_8b05302 crossref_primary_10_3390_en14051320 crossref_primary_10_1016_j_electacta_2020_137651 crossref_primary_10_1007_s12598_021_01851_9 crossref_primary_10_1002_cey2_532 crossref_primary_10_1016_j_electacta_2020_137536 crossref_primary_10_1021_acsanm_8b01579 crossref_primary_10_1039_C9RA00869A crossref_primary_10_1039_D1TA08938B crossref_primary_10_1002_adma_201803676 crossref_primary_10_1002_celc_202001454 crossref_primary_10_1007_s12274_023_5463_y crossref_primary_10_1039_C9TA04949E crossref_primary_10_1021_acsami_1c12512 crossref_primary_10_1016_j_ijhydene_2023_08_137 crossref_primary_10_1016_j_jcat_2019_06_008 crossref_primary_10_1002_adma_202107072 crossref_primary_10_1002_cey2_182 crossref_primary_10_1039_C8TA07958G crossref_primary_10_1021_accountsmr_0c00110 crossref_primary_10_1002_adsu_202000128 crossref_primary_10_1016_j_ceramint_2020_11_135 crossref_primary_10_1016_j_ijhydene_2022_09_310 crossref_primary_10_1039_C8TA01310A crossref_primary_10_1002_cssc_201902232 crossref_primary_10_1016_j_nanoen_2018_12_018 crossref_primary_10_1039_D1CS00323B crossref_primary_10_1039_C9NR10785A crossref_primary_10_1016_j_apsusc_2020_147172 crossref_primary_10_1016_j_electacta_2020_136850 crossref_primary_10_1021_acs_energyfuels_2c03732 crossref_primary_10_1186_s11671_020_03316_x crossref_primary_10_1039_C7NR06111K crossref_primary_10_1016_j_jallcom_2019_153542 |
Cites_doi | 10.1021/ja403440e 10.1016/j.rser.2012.02.028 10.1021/ja407115p 10.1021/ic051004d 10.1021/jacs.6b00757 10.1002/adma.201401692 10.1038/nnano.2016.304 10.1039/C4CC05285D 10.1039/C4TA06071G 10.1039/C4CC04709E 10.1002/anie.201406848 10.1021/ja3089923 10.1126/science.1211934 10.1021/ja503372r 10.1021/nn5048553 10.1002/ange.201204842 10.1002/anie.201204958 10.1021/acsami.5b10727 10.1039/C3CS60468C 10.1021/la203570h 10.1021/ja307507a 10.1038/ncomms5695 10.1039/C4CS00448E 10.1021/acs.chemmater.5b02877 10.1126/science.1127180 |
ContentType | Journal Article |
Copyright | 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | NPM AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/smll.201701167 |
DatabaseName | PubMed CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | PubMed CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | PubMed CrossRef Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 10_1002_smll_201701167 28783231 SMLL201701167 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Science Research Center funderid: 2016R1A5A1009405 – fundername: Natural Science Foundation of Jiangsu Province funderid: BK20160834; 2016M591850 – fundername: BK21 Plus funderid: 10Z20130011057 – fundername: Chinese Postdoctoral Science Foundation – fundername: Academic Program Development of Jiangsu Higher Education Institutions – fundername: Creative Research Initiative funderid: 2014R1A2069102 – fundername: Climate Change funderid: 2016M1A2940910 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAIHA AANLZ AAONW AASGY AAXRX AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ AAYOK ACBWZ ASPBG AVWKF AZFZN BDRZF FEDTE GODZA HVGLF NPM AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c3777-13aaa2b22277ebfcf458cfad2ab63aca33b1460f4f8cb41964fc5bdaa04fdc1f3 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 |
IngestDate | Thu Oct 10 16:28:52 EDT 2024 Fri Aug 23 01:08:47 EDT 2024 Sat Sep 28 08:48:06 EDT 2024 Sat Aug 24 00:57:25 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 40 |
Keywords | cobalt phosphide bifunctional electrocatalysts dissociation iron doping |
Language | English |
License | 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3777-13aaa2b22277ebfcf458cfad2ab63aca33b1460f4f8cb41964fc5bdaa04fdc1f3 |
PMID | 28783231 |
PQID | 1953092360 |
PQPubID | 1046358 |
PageCount | 6 |
ParticipantIDs | proquest_journals_1953092360 crossref_primary_10_1002_smll_201701167 pubmed_primary_28783231 wiley_primary_10_1002_smll_201701167_SMLL201701167 |
PublicationCentury | 2000 |
PublicationDate | October 25, 2017 |
PublicationDateYYYYMMDD | 2017-10-25 |
PublicationDate_xml | – month: 10 year: 2017 text: October 25, 2017 day: 25 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2017 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2011; 334 2014; 5 2015; 27 2012; 134 2015; 3 2012; 124 2015; 44 2017; 12 2013; 52 2014; 26 2013; 135 2016; 138 2012; 16 2014; 8 2011; 27 2014; 50 2014; 136 2016; 8 2005; 44 2014; 43 2006; 312 2014; 53 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_25_1 e_1_2_7_24_1 e_1_2_7_23_1 e_1_2_7_22_1 e_1_2_7_21_1 e_1_2_7_20_1 |
References_xml | – volume: 50 start-page: 11554 year: 2014 publication-title: Chem. Commun. – volume: 16 start-page: 3024 year: 2012 publication-title: Renewable Sustainable Energy Rev. – volume: 44 start-page: 5148 year: 2015 publication-title: Chem. Soc. Rev. – volume: 12 start-page: 441 year: 2017 publication-title: Nat. Nanotechnol. – volume: 138 start-page: 3570 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 312 start-page: 1322 year: 2006 publication-title: Science – volume: 26 start-page: 5702 year: 2014 publication-title: Adv. Mater. – volume: 50 start-page: 11026 year: 2014 publication-title: Chem. Commun. – volume: 334 start-page: 1256 year: 2011 publication-title: Science – volume: 44 start-page: 8988 year: 2005 publication-title: Inorg. Chem. – volume: 8 start-page: 11101 year: 2014 publication-title: ACS Nano – volume: 53 start-page: 12855 year: 2014 publication-title: Angew. Chem. Int. Ed. – volume: 27 start-page: 7636 year: 2015 publication-title: Chem. Mater. – volume: 135 start-page: 9267 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 124 start-page: 12663 year: 2012 publication-title: Angew. Chem. Int. Ed. – volume: 3 start-page: 1941 year: 2015 publication-title: J. Mater. Chem. A – volume: 5 start-page: 4695 year: 2014 publication-title: Nat. Commun. – volume: 27 start-page: 15261 year: 2011 publication-title: Langmuir – volume: 52 start-page: 371 year: 2013 publication-title: Angew. Chem. Int. Ed. – volume: 43 start-page: 6555 year: 2014 publication-title: Chem. Soc. Rev. – volume: 135 start-page: 16977 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 135 start-page: 2013 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 136 start-page: 7587 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 134 start-page: 17253 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 2158 year: 2016 publication-title: ACS Appl. Mater. Interfaces – ident: e_1_2_7_16_1 doi: 10.1021/ja403440e – ident: e_1_2_7_6_1 doi: 10.1016/j.rser.2012.02.028 – ident: e_1_2_7_2_1 doi: 10.1021/ja407115p – ident: e_1_2_7_24_1 doi: 10.1021/ic051004d – ident: e_1_2_7_22_1 doi: 10.1021/jacs.6b00757 – ident: e_1_2_7_11_1 doi: 10.1002/adma.201401692 – ident: e_1_2_7_5_1 doi: 10.1038/nnano.2016.304 – ident: e_1_2_7_10_1 doi: 10.1039/C4CC05285D – ident: e_1_2_7_9_1 doi: 10.1039/C4TA06071G – ident: e_1_2_7_13_1 doi: 10.1039/C4CC04709E – ident: e_1_2_7_14_1 doi: 10.1002/anie.201406848 – ident: e_1_2_7_8_1 doi: 10.1021/ja3089923 – ident: e_1_2_7_20_1 doi: 10.1126/science.1211934 – ident: e_1_2_7_12_1 doi: 10.1021/ja503372r – ident: e_1_2_7_15_1 doi: 10.1021/nn5048553 – ident: e_1_2_7_19_1 doi: 10.1002/ange.201204842 – ident: e_1_2_7_23_1 doi: 10.1002/anie.201204958 – ident: e_1_2_7_17_1 doi: 10.1021/acsami.5b10727 – ident: e_1_2_7_3_1 doi: 10.1039/C3CS60468C – ident: e_1_2_7_25_1 doi: 10.1021/la203570h – ident: e_1_2_7_1_1 doi: 10.1021/ja307507a – ident: e_1_2_7_18_1 doi: 10.1038/ncomms5695 – ident: e_1_2_7_4_1 doi: 10.1039/C4CS00448E – ident: e_1_2_7_21_1 doi: 10.1021/acs.chemmater.5b02877 – ident: e_1_2_7_7_1 doi: 10.1126/science.1127180 |
SSID | ssj0031247 |
Score | 2.5508933 |
Snippet | Iron (Fe)‐doped porous cobalt phosphide polyhedrons are designed and synthesized as an efficient bifunctional electrocatalyst for both hydrogen evolution... Iron (Fe)-doped porous cobalt phosphide polyhedrons are designed and synthesized as an efficient bifunctional electrocatalyst for both hydrogen evolution... Abstract Iron (Fe)‐doped porous cobalt phosphide polyhedrons are designed and synthesized as an efficient bifunctional electrocatalyst for both hydrogen... |
SourceID | proquest crossref pubmed wiley |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | bifunctional electrocatalysts Chemical synthesis Cobalt cobalt phosphide dissociation Doping Hydrogen evolution reactions Iron iron doping Nanotechnology Oxygen evolution reactions Polyhedra Slope stability Tafel slopes |
Title | Porous Cobalt Phosphide Polyhedrons with Iron Doping as an Efficient Bifunctional Electrocatalyst |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.201701167 https://www.ncbi.nlm.nih.gov/pubmed/28783231 https://www.proquest.com/docview/1953092360 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQEwy8H4GCPCAxpSRxErcj9KGCAFU8JLbozolVBDRVkw7l1-NL2kBhQILFcgZbju_s73z2fcfYSRPcQBrYsX2UjilQ2egpU6AbJpTawdHk77i5DXuP_tVT8PQlir_kh6gcbrQyiv2aFjhgdvZJGpq9vdLVAfGJuyGFk7tC0puu9l3FHyUMeBXZVQxm2US8NWdtdLyzxeaLqPTD1Fy0XAvo6a4zmA-6fHHyUp_kWFfv3_gc__NXG2xtZpfy81KRNtlSMtxiq1_YCrcZ9NNxOsl4iyhEct4fpNlo8BwnvJ--TgdJPDYKzMmvyy9NlbeLUCwOGYch7xRMFQbg-MUzQWnpgeSdMglP4UOaZvkOe-x2Hlo9e5ahwVZCSmm7AgA8pHhamaBW2g8aSkPsAYYCFAiBZid2tK8bCn3i_tIqwBjA8XWsXC122fIwHSb7jCuUcQBN6cZh0wdHNYVqIAYKjRFhzoBosdO5hKJRScQRlZTLXkSTFlWTZrHaXIDRbEFmEd0WOsaYDR2L7ZVCrboxh0azrwnXYl4hml_6j-5vrq-rr4O_NDpkK1QnDPSCGlvOx5PkyBg3OR4XCvwBMgHy6A |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xHIAD-1JWH5A4BZI4idsjS1GBFlUsErfI48QqAhrUpAf4ejxJEygckOBiJZFsxR6P33jseQOw35COLwzsWB4K2xSoLHSVKdAJYkrtYGvyd3Sug9a9d_ngl7cJKRam4IeoHG6kGfl6TQpODumjT9bQ9OWZzg6IUNwJxCRMG53nlL3h7KZikOIGvvL8Kga1LKLeKnkbbfdovP44Lv0wNsdt1xx8zhcAy98u7pw8HQ4zPFTv3xgd_9WvRZgfmabsuJhLSzAR95dh7gth4QrIbjJIhik7JRaRjHV7Sfrae4xi1k2e33pxNDBzmJFrl12YR3aWR2MxmTLZZ82crMJgHDt5JDQtnJCsWeThyd1Ib2m2CvfnzbvTljVK0mApLoSwHC6ldJFCakWMWmnPrystI1diwKWSnKNZjG3t6bpCj-i_tPIxktL2dKQczddgqp_04w1gCkXky4ZwoqDhSVs1uKoj-gqNHWG2gViDg1JE4WvBxREWrMtuSIMWVoNWg-1SguFIJ9OQDgxtY88Gdg3WC6lWzZh9o1nauFMDN5fNL-2Ht512u3rb_EulPZhp3XXaYfvi-moLZuk7QaLrb8NUNhjGO8bWyXA3n80fWIH3AA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xSAgO7EuhgA9InAJJnMTtEUorloIqFolb5HFiFQFN1aQH-Ho8SRsoHJDgYiWRbCUe2-95nHkDcFCXji8M7FgeCtsUqCx0lSnQCWJK7WBr8ndc3wTnD97lo__4JYq_0IcoHW40M_L1miZ4P9LHn6Kh6esLHR2QnrgTiGmY9QJDf4kW3ZYCUtygV55exYCWRcpbY9lG2z2erD8JSz-45iR1zbGntQRy_NbFLyfPR8MMj9T7N0HH_3zWMiyOiCk7KUbSCkzFvVVY-CJXuAaykwySYcoapCGSsU43SfvdpyhmneTlrRtHAzOCGTl22YW5ZGd5LBaTKZM91sylKgzCsdMnwtLCBcmaRRae3In0lmbr8NBq3jfOrVGKBktxIYTlcCmlixRQK2LUSnt-TWkZuRIDLpXkHM1SbGtP1xR6JP6llY-RlLanI-VovgEzvaQXbwFTKCJf1oUTBXVP2qrOVQ3RV2hYhNkEYgUOxxYK-4USR1hoLrshdVpYdloFqmMDhqMZmYZ0XGgbNhvYFdgsjFo2Y3aNZmHjTgXc3DS_tB_eXbfb5d32Xyrtw1znrBW2L26udmCeHhMeun4VZrLBMN41RCfDvXwsfwB87PWv |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Porous+Cobalt+Phosphide+Polyhedrons+with+Iron+Doping+as+an+Efficient+Bifunctional+Electrocatalyst&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Li%2C+Feng&rft.au=Bu%2C+Yunfei&rft.au=Lv%2C+Zijian&rft.au=Mahmood%2C+Javeed&rft.date=2017-10-25&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=13&rft.issue=40&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmll.201701167&rft.externalDBID=10.1002%252Fsmll.201701167&rft.externalDocID=SMLL201701167 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |