A Hybrid hierarchical approach for brain tissue segmentation by combining brain Atlas and least square support vector machine

In this paper, we present a new semi-automatic brain tissue segmentation method based on a hybrid hierarchical approach that combines a brain atlas as a priori information and a least-square support vector machine (LS-SVM). The method consists of three steps. In the first two steps, the skull is rem...

Full description

Saved in:
Bibliographic Details
Published inJournal of medical signals and sensors Vol. 3; no. 4; pp. 232 - 243
Main Authors Kasiri, Keyvan, Kazemi, Kamran, Dehghani, MohammadJavad, Helfroush, MohammadSadegh
Format Journal Article
LanguageEnglish
Published India Medknow Publications & Media Pvt Ltd 01.10.2013
Wolters Kluwer Medknow Publications
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we present a new semi-automatic brain tissue segmentation method based on a hybrid hierarchical approach that combines a brain atlas as a priori information and a least-square support vector machine (LS-SVM). The method consists of three steps. In the first two steps, the skull is removed and the cerebrospinal fluid (CSF) is extracted. These two steps are performed using the toolbox FMRIB's automated segmentation tool integrated in the FSL software (FSL-FAST) developed in Oxford Centre for functional MRI of the brain (FMRIB). Then, in the third step, the LS-SVM is used to segment grey matter (GM) and white matter (WM). The training samples for LS-SVM are selected from the registered brain atlas. The voxel intensities and spatial positions are selected as the two feature groups for training and test. SVM as a powerful discriminator is able to handle nonlinear classification problems; however, it cannot provide posterior probability. Thus, we use a sigmoid function to map the SVM output into probabilities. The proposed method is used to segment CSF, GM and WM from the simulated magnetic resonance imaging (MRI) using Brainweb MRI simulator and real data provided by Internet Brain Segmentation Repository. The semi-automatically segmented brain tissues were evaluated by comparing to the corresponding ground truth. The Dice and Jaccard similarity coefficients, sensitivity and specificity were calculated for the quantitative validation of the results. The quantitative results show that the proposed method segments brain tissues accurately with respect to corresponding ground truth.
AbstractList In this paper, we present a new semi-automatic brain tissue segmentation method based on a hybrid hierarchical approach that combines a brain atlas as a priori information and a least-square support vector machine (LS-SVM). The method consists of three steps. In the first two steps, the skull is removed and the cerebrospinal fluid (CSF) is extracted. These two steps are performed using the toolbox FMRIB's automated segmentation tool integrated in the FSL software (FSL-FAST) developed in Oxford Centre for functional MRI of the brain (FMRIB). Then, in the third step, the LS-SVM is used to segment grey matter (GM) and white matter (WM). The training samples for LS-SVM are selected from the registered brain atlas. The voxel intensities and spatial positions are selected as the two feature groups for training and test. SVM as a powerful discriminator is able to handle nonlinear classification problems; however, it cannot provide posterior probability. Thus, we use a sigmoid function to map the SVM output into probabilities. The proposed method is used to segment CSF, GM and WM from the simulated magnetic resonance imaging (MRI) using Brainweb MRI simulator and real data provided by Internet Brain Segmentation Repository. The semi-automatically segmented brain tissues were evaluated by comparing to the corresponding ground truth. The Dice and Jaccard similarity coefficients, sensitivity and specificity were calculated for the quantitative validation of the results. The quantitative results show that the proposed method segments brain tissues accurately with respect to corresponding ground truth.In this paper, we present a new semi-automatic brain tissue segmentation method based on a hybrid hierarchical approach that combines a brain atlas as a priori information and a least-square support vector machine (LS-SVM). The method consists of three steps. In the first two steps, the skull is removed and the cerebrospinal fluid (CSF) is extracted. These two steps are performed using the toolbox FMRIB's automated segmentation tool integrated in the FSL software (FSL-FAST) developed in Oxford Centre for functional MRI of the brain (FMRIB). Then, in the third step, the LS-SVM is used to segment grey matter (GM) and white matter (WM). The training samples for LS-SVM are selected from the registered brain atlas. The voxel intensities and spatial positions are selected as the two feature groups for training and test. SVM as a powerful discriminator is able to handle nonlinear classification problems; however, it cannot provide posterior probability. Thus, we use a sigmoid function to map the SVM output into probabilities. The proposed method is used to segment CSF, GM and WM from the simulated magnetic resonance imaging (MRI) using Brainweb MRI simulator and real data provided by Internet Brain Segmentation Repository. The semi-automatically segmented brain tissues were evaluated by comparing to the corresponding ground truth. The Dice and Jaccard similarity coefficients, sensitivity and specificity were calculated for the quantitative validation of the results. The quantitative results show that the proposed method segments brain tissues accurately with respect to corresponding ground truth.
In this paper, we present a new semi-automatic brain tissue segmentation method based on a hybrid hierarchical approach that combines a brain atlas as a priori information and a least-square support vector machine (LS-SVM). The method consists of three steps. In the first two steps, the skull is removed and the cerebrospinal fluid (CSF) is extracted. These two steps are performed using the toolbox FMRIB's automated segmentation tool integrated in the FSL software (FSL-FAST) developed in Oxford Centre for functional MRI of the brain (FMRIB). Then, in the third step, the LS-SVM is used to segment grey matter (GM) and white matter (WM). The training samples for LS-SVM are selected from the registered brain atlas. The voxel intensities and spatial positions are selected as the two feature groups for training and test. SVM as a powerful discriminator is able to handle nonlinear classification problems; however, it cannot provide posterior probability. Thus, we use a sigmoid function to map the SVM output into probabilities. The proposed method is used to segment CSF, GM and WM from the simulated magnetic resonance imaging (MRI) using Brainweb MRI simulator and real data provided by Internet Brain Segmentation Repository. The semi-automatically segmented brain tissues were evaluated by comparing to the corresponding ground truth. The Dice and Jaccard similarity coefficients, sensitivity and specificity were calculated for the quantitative validation of the results. The quantitative results show that the proposed method segments brain tissues accurately with respect to corresponding ground truth.
In this paper, we present a new semi-automatic brain tissue segmentation method based on a hybrid hierarchical approach that combines a brain atlas as a priori information and a least-square support vector machine (LS-SVM). The method consists of three steps. In the first two steps, the skull is removed and the cerebrospinal fluid (CSF) is extracted. These two steps are performed using the toolbox FMRIB's automated segmentation tool integrated in the FSL software (FSL-FAST) developed in Oxford Centre for functional MRI of the brain (FMRIB). Then, in the third step, the LS-SVM is used to segment grey matter (GM) and white matter (WM). The training samples for LS-SVM are selected from the registered brain atlas. The voxel intensities and spatial positions are selected as the two feature groups for training and test. SVM as a powerful discriminator is able to handle nonlinear classification problems; however, it cannot provide posterior probability. Thus, we use a sigmoid function to map the SVM output into probabilities. The proposed method is used to segment CSF, GM and WM from the simulated magnetic resonance imaging (MRI) using Brainweb MRI simulator and real data provided by Internet Brain Segmentation Repository. The semi-automatically segmented brain tissues were evaluated by comparing to the corresponding ground truth. The Dice and Jaccard similarity coefficients, sensitivity and specificity were calculated for the quantitative validation of the results. The quantitative results show that the proposed method segments brain tissues accurately with respect to corresponding ground truth.
Author Kazemi, Kamran
Dehghani, MohammadJavad
Helfroush, MohammadSadegh
Kasiri, Keyvan
AuthorAffiliation Department of Electrical and Electronics Engineering, Shiraz University of Technology, Shiraz, Iran
AuthorAffiliation_xml – name: Department of Electrical and Electronics Engineering, Shiraz University of Technology, Shiraz, Iran
Author_xml – sequence: 1
  givenname: Keyvan
  surname: Kasiri
  fullname: Kasiri, Keyvan
– sequence: 2
  givenname: Kamran
  surname: Kazemi
  fullname: Kazemi, Kamran
– sequence: 3
  givenname: MohammadJavad
  surname: Dehghani
  fullname: Dehghani, MohammadJavad
– sequence: 4
  givenname: MohammadSadegh
  surname: Helfroush
  fullname: Helfroush, MohammadSadegh
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24696800$$D View this record in MEDLINE/PubMed
BookMark eNp1kr1rHDEQxUVwiB3HfaqgMs050uprtwkcJokNhjRJLUYfeyezK62lXcMV_t-jy52NHYgaidF7v4GZ9x6dxBQ9Qh8pueSUsC9N07QrxZW6pE3LGvEGnT2XTl68T9FFKXekHikIJd07dNpw2cmWkDP0uMbXO5ODw9vgM2S7DRYGDNOUE9gt7lPGJkOIeA6lLB4Xvxl9nGEOKWKzwzaNJsQQN0fZeh6gYIgODx7KjMv9ArnalmlKecYP3s4VOVZ2iP4DetvDUPzF8T5Hv79_-3V1vbr9-ePman27skwpseqsoZ62vZXKUNVyw4RT4CyXqnNNB1JRz2lPWB2LZY6J1pne1ELXGgU9Z-fo5sB1Ce70lMMIeacTBP23kPJGQ56DHbyGVjpwru2UBc6tA9pyKW1PneBUGFZZXw-saTGjd7YOI8PwCvr6J4at3qQHzTqpeCMr4PMRkNP94susx1CsHwaIPi1FU0EZEURQUaWfXvZ6bvK0vyqQB4HNqZTse23DYTe1dRg0JXqfFb0Pg96HQR-yUo3kH-MT-7-WP5QMwkA
CitedBy_id crossref_primary_10_1007_s13246_015_0352_7
crossref_primary_10_1016_j_cmpb_2020_105841
crossref_primary_10_1002_hipo_22389
crossref_primary_10_1002_ima_22267
crossref_primary_10_1007_s11517_016_1483_z
crossref_primary_10_1002_ima_22335
Cites_doi 10.1109/ICMLC.2006.258583
10.1002/nbm.1347
10.1007/978-1-4757-2440-0
ContentType Journal Article
Copyright Copyright: © Journal of Medical Signals and Sensors 2013
Copyright_xml – notice: Copyright: © Journal of Medical Signals and Sensors 2013
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.4103/2228-7477.128325
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2228-7477
EndPage 243
ExternalDocumentID oai_doaj_org_article_a86dadd897ca44cda18466cf1d5415b3
PMC3967426
24696800
10_4103_2228_7477_128325
Genre Journal Article
GroupedDBID AAYXX
ABDBF
ACGFS
ACUHS
ADBBV
ADRAZ
AEGXH
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
EOJEC
ESX
GROUPED_DOAJ
HYE
IAO
IEA
IHR
ITC
KQ8
M48
ML0
OBODZ
OK1
OVD
PGMZT
RPM
TEORI
TUS
NPM
7X8
5PM
ID FETCH-LOGICAL-c3775-9cb1e18fc67b1784b35d7adc4679d29a671e41f03103c3d358dbfb1f098b7af43
IEDL.DBID M48
ISSN 2228-7477
IngestDate Wed Aug 27 01:29:46 EDT 2025
Thu Aug 21 18:22:51 EDT 2025
Fri Jul 11 15:27:04 EDT 2025
Thu Apr 03 06:59:21 EDT 2025
Thu Apr 24 22:51:01 EDT 2025
Tue Jul 01 04:02:00 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Atlas
segmentation
magnetic resonance imaging
support vector machines
brain
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3775-9cb1e18fc67b1784b35d7adc4679d29a671e41f03103c3d358dbfb1f098b7af43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/a86dadd897ca44cda18466cf1d5415b3
PMID 24696800
PQID 1513050515
PQPubID 23479
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_a86dadd897ca44cda18466cf1d5415b3
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3967426
proquest_miscellaneous_1513050515
pubmed_primary_24696800
crossref_citationtrail_10_4103_2228_7477_128325
crossref_primary_10_4103_2228_7477_128325
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-10-01
PublicationDateYYYYMMDD 2013-10-01
PublicationDate_xml – month: 10
  year: 2013
  text: 2013-10-01
  day: 01
PublicationDecade 2010
PublicationPlace India
PublicationPlace_xml – name: India
PublicationTitle Journal of medical signals and sensors
PublicationTitleAlternate J Med Signals Sens
PublicationYear 2013
Publisher Medknow Publications & Media Pvt Ltd
Wolters Kluwer Medknow Publications
Publisher_xml – name: Medknow Publications & Media Pvt Ltd
– name: Wolters Kluwer Medknow Publications
References Suykens (key-10.4103/2228-7477.128325-28) 1999
key-10.4103/2228-7477.128325-32
Tanabe (key-10.4103/2228-7477.128325-1) 1997
key-10.4103/2228-7477.128325-34
Zhang (key-10.4103/2228-7477.128325-40) 2001
key-10.4103/2228-7477.128325-36
Collins (key-10.4103/2228-7477.128325-15) 1995
key-10.4103/2228-7477.128325-35
Held (key-10.4103/2228-7477.128325-10) 1997
key-10.4103/2228-7477.128325-37
Hall (key-10.4103/2228-7477.128325-16) 1992
Ashburner (key-10.4103/2228-7477.128325-17) 2005
Cocosco (key-10.4103/2228-7477.128325-8) 2003
Apostolova (key-10.4103/2228-7477.128325-2) 2006
Wells (key-10.4103/2228-7477.128325-12) 1996
Pontil (key-10.4103/2228-7477.128325-25) 1998
Dice (key-10.4103/2228-7477.128325-41) 1945
Van (key-10.4103/2228-7477.128325-19) 1999
Shenton (key-10.4103/2228-7477.128325-5) 1992
Scholkopf (key-10.4103/2228-7477.128325-26) 1997
Li (key-10.4103/2228-7477.128325-13) 2008
Guo (key-10.4103/2228-7477.128325-27) 2007
Spinks (key-10.4103/2228-7477.128325-7) 2002
Schnell (key-10.4103/2228-7477.128325-31) 2009
Liew (key-10.4103/2228-7477.128325-11) 2003
key-10.4103/2228-7477.128325-43
key-10.4103/2228-7477.128325-23
key-10.4103/2228-7477.128325-22
Smith (key-10.4103/2228-7477.128325-39) 2004
key-10.4103/2228-7477.128325-24
Quddus (key-10.4103/2228-7477.128325-29) 2005
Bezdek (key-10.4103/2228-7477.128325-9) 1993
McCarley (key-10.4103/2228-7477.128325-4) 1999
Bae (key-10.4103/2228-7477.128325-33) 2010
Wang (key-10.4103/2228-7477.128325-14) 2010
Marroquin (key-10.4103/2228-7477.128325-18) 2002
Lao (key-10.4103/2228-7477.128325-30) 2008
Jaccard (key-10.4103/2228-7477.128325-42) 1912
Zhou (key-10.4103/2228-7477.128325-21) 2007
Ashburner (key-10.4103/2228-7477.128325-6) 2000
Van (key-10.4103/2228-7477.128325-20) 1999
Smith (key-10.4103/2228-7477.128325-38) 2002
Lawrie (key-10.4103/2228-7477.128325-3) 1998
10628948 - IEEE Trans Med Imaging. 1999 Oct;18(10):885-96
9533587 - IEEE Trans Med Imaging. 1997 Dec;16(6):878-86
10628949 - IEEE Trans Med Imaging. 1999 Oct;18(10):897-908
19285561 - Neuroimage. 2009 Jul 1;46(3):642-51
17282216 - Conf Proc IEEE Eng Med Biol Soc. 2005;1:463-6
11293691 - IEEE Trans Med Imaging. 2001 Jan;20(1):45-57
18280928 - Acad Radiol. 2008 Mar;15(3):300-13
14561555 - Med Image Anal. 2003 Dec;7(4):513-27
15501092 - Neuroimage. 2004;23 Suppl 1:S208-19
15955494 - Neuroimage. 2005 Jul 1;26(3):839-51
8413011 - Med Phys. 1993 Jul-Aug;20(4):1033-48
12391568 - Hum Brain Mapp. 2002 Nov;17(3):143-55
10860804 - Neuroimage. 2000 Jun;11(6 Pt 1):805-21
17260863 - IEEE Trans Biomed Eng. 2007 Jan;54(1):122-9
12472266 - IEEE Trans Med Imaging. 2002 Aug;21(8):934-45
17018552 - Brain. 2006 Nov;129(Pt 11):2867-73
18051142 - Med Image Comput Comput Assist Interv. 2007;10(Pt 1):883-90
18276467 - IEEE Trans Neural Netw. 1992;3(5):672-82
20230858 - J Neurosci Methods. 2010 May 15;188(2):316-25
9519062 - Br J Psychiatry. 1998 Feb;172:110-20
18215925 - IEEE Trans Med Imaging. 1996;15(4):429-42
1640954 - N Engl J Med. 1992 Aug 27;327(9):604-12
12956262 - IEEE Trans Med Imaging. 2003 Sep;22(9):1063-75
19105242 - NMR Biomed. 2009 May;22(4):374-90
18784040 - IEEE Trans Image Process. 2008 Oct;17(10):1940-9
9010529 - AJNR Am J Neuroradiol. 1997 Jan;18(1):115-23
10331102 - Biol Psychiatry. 1999 May 1;45(9):1099-119
18003386 - Conf Proc IEEE Eng Med Biol Soc. 2007;2007:6020-3
12377139 - Neuroimage. 2002 Oct;17(2):631-42
References_xml – start-page: 115
  volume-title: Tissue segmentation of the brain in Alzheimer disease
  year: 1997
  ident: key-10.4103/2228-7477.128325-1
  publication-title: AJNR Am J Neuroradiol
– start-page: 190
  volume-title: Automatic 3D model-based neuroanatomical segmentation
  year: 1995
  ident: key-10.4103/2228-7477.128325-15
  publication-title: Hum Brain Mapp
– start-page: 513
  volume-title: A fully automatic and robust brain MRI tissue classification method
  year: 2003
  ident: key-10.4103/2228-7477.128325-8
  publication-title: Med Image Anal
– start-page: 2758
  volume-title: Comparing support vector machines with Gaussian kernels to radial basis function classifiers
  year: 1997
  ident: key-10.4103/2228-7477.128325-26
  publication-title: IEEE Trans Signal Process
– ident: key-10.4103/2228-7477.128325-23
– start-page: 1099
  volume-title: MRI anatomy of schizophrenia
  year: 1999
  ident: key-10.4103/2228-7477.128325-4
  publication-title: Biol Psychiatry
– start-page: 300
  volume-title: Computer-assisted segmentation of white matter lesions in 3D MR images using support vector machine
  year: 2008
  ident: key-10.4103/2228-7477.128325-30
  publication-title: Acad Radiol
– start-page: S208
  volume-title: Advances in functional and structural MR image analysis and implementation as FSL
  year: 2004
  ident: key-10.4103/2228-7477.128325-39
  publication-title: Neuroimage
– start-page: 122
  volume-title: Atlas-based fuzzy connectedness segmentation and intensity nonuniformity correction applied to brain MRI
  year: 2007
  ident: key-10.4103/2228-7477.128325-21
  publication-title: IEEE Trans Biomed Eng
– start-page: 297
  volume-title: Measures of the amount of ecologic association between species
  year: 1945
  ident: key-10.4103/2228-7477.128325-41
  publication-title: Ecology
– start-page: 1940
  volume-title: Minimization of region-scalable fitting energy for image segmentation
  year: 2008
  ident: key-10.4103/2228-7477.128325-13
  publication-title: IEEE Trans Image Process
– start-page: 672
  volume-title: A comparison of neural network and fuzzy clustering techniques in segmenting magnetic resonance images of the brain
  year: 1992
  ident: key-10.4103/2228-7477.128325-16
  publication-title: IEEE Trans Neural Netw
– start-page: 637
  volume-title: Support vector machines for 3-D object recognition
  year: 1998
  ident: key-10.4103/2228-7477.128325-25
  publication-title: IEEE Trans Pattern Anal Mach Intell
– start-page: 1033
  volume-title: Review of MR image segmentation techniques using pattern recognition
  year: 1993
  ident: key-10.4103/2228-7477.128325-9
  publication-title: Med Phys
– start-page: 4955
  volume-title: Mix-ratio sampling: Classifying multiclass imbalanced mouse brain images using support vector machines
  year: 2010
  ident: key-10.4103/2228-7477.128325-33
  publication-title: Expert Syst Appl
– start-page: 316
  volume-title: Level set segmentation of brain magnetic resonance images based on local Gaussian distribution fitting energy
  year: 2010
  ident: key-10.4103/2228-7477.128325-14
  publication-title: J Neurosci Methods
– start-page: 293
  volume-title: Least squares support vector machine classifiers
  year: 1999
  ident: key-10.4103/2228-7477.128325-28
  publication-title: Neural Process Lett
– start-page: 110
  volume-title: Brain abnormality in schizophrenia.A systematic and quantitative review of volumetric magnetic resonance imaging studies
  year: 1998
  ident: key-10.4103/2228-7477.128325-3
  publication-title: Br J Psychiatry
– ident: key-10.4103/2228-7477.128325-36
– ident: key-10.4103/2228-7477.128325-43
– start-page: 897
  volume-title: Automated model-based tissue classification of MR images of the brain
  year: 1999
  ident: key-10.4103/2228-7477.128325-20
  publication-title: IEEE Trans Med Imaging
– start-page: 805
  volume-title: Voxel-based morphometry-The methods
  year: 2000
  ident: key-10.4103/2228-7477.128325-6
  publication-title: Neuroimage
– start-page: 1063
  volume-title: An adaptive spatial fuzzy clustering algorithm for 3-D MR image segmentation
  year: 2003
  ident: key-10.4103/2228-7477.128325-11
  publication-title: IEEE Trans Med Imaging
– start-page: 839
  volume-title: Unified segmentation
  year: 2005
  ident: key-10.4103/2228-7477.128325-17
  publication-title: Neuroimage
– start-page: 6020
  volume-title: Research on the segmentation of MRI image based on multi-classification support vector machine
  year: 2007
  ident: key-10.4103/2228-7477.128325-27
  publication-title: Conf Proc IEEE Eng Med Biol Soc
– start-page: 878
  volume-title: Markov random field segmentation of brain MR images
  year: 1997
  ident: key-10.4103/2228-7477.128325-10
  publication-title: IEEE Trans Med Imaging
– start-page: 37
  volume-title: The distribution of flora in the alpine zone
  year: 1912
  ident: key-10.4103/2228-7477.128325-42
  publication-title: New Phytol
– ident: key-10.4103/2228-7477.128325-22
  doi: 10.1109/ICMLC.2006.258583
– start-page: 631
  volume-title: Manual and automated measurement of the whole thalamus and mediodorsal nucleus using magnetic resonance imaging
  year: 2002
  ident: key-10.4103/2228-7477.128325-7
  publication-title: Neuroimage
– start-page: 885
  volume-title: Automated model-based bias field correction of MR images of the brain
  year: 1999
  ident: key-10.4103/2228-7477.128325-19
  publication-title: IEEE Trans Med Imaging
– ident: key-10.4103/2228-7477.128325-24
– ident: key-10.4103/2228-7477.128325-32
– start-page: 2867
  volume-title: 3D comparison of hippocampal atrophy in amnestic mild cognitive impairment and Alzheimer′s disease
  year: 2006
  ident: key-10.4103/2228-7477.128325-2
  publication-title: Brain
– start-page: 143
  volume-title: Fast robust automated brain extraction
  year: 2002
  ident: key-10.4103/2228-7477.128325-38
  publication-title: Hum Brain Mapp
– ident: key-10.4103/2228-7477.128325-34
  doi: 10.1002/nbm.1347
– start-page: 463
  volume-title: Adaboost and support vector machines for white matter lesion segmentation in MR images
  year: 2005
  ident: key-10.4103/2228-7477.128325-29
  publication-title: Conf Proc IEEE Eng Med Biol Soc
– start-page: 604
  volume-title: Abnormalities of the left temporal lobe and thought disorder in schizophrenia.A quantitative magnetic resonance imaging study
  year: 1992
  ident: key-10.4103/2228-7477.128325-5
  publication-title: N Engl J Med
– ident: key-10.4103/2228-7477.128325-37
– start-page: 45
  volume-title: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm
  year: 2001
  ident: key-10.4103/2228-7477.128325-40
  publication-title: IEEE Trans Med Imaging
– start-page: 642
  volume-title: Fully automated classification of HARDI in vivo data using a support vector machine
  year: 2009
  ident: key-10.4103/2228-7477.128325-31
  publication-title: Neuroimage
– ident: key-10.4103/2228-7477.128325-35
  doi: 10.1007/978-1-4757-2440-0
– start-page: 429
  volume-title: Adaptive segmentation of MRI data
  year: 1996
  ident: key-10.4103/2228-7477.128325-12
  publication-title: IEEE Trans Med Imaging
– start-page: 934
  volume-title: An accurate and efficient Bayesian method for automatic segmentation of brain MRI
  year: 2002
  ident: key-10.4103/2228-7477.128325-18
  publication-title: IEEE Trans Med Imaging
– reference: 11293691 - IEEE Trans Med Imaging. 2001 Jan;20(1):45-57
– reference: 18280928 - Acad Radiol. 2008 Mar;15(3):300-13
– reference: 8413011 - Med Phys. 1993 Jul-Aug;20(4):1033-48
– reference: 10628949 - IEEE Trans Med Imaging. 1999 Oct;18(10):897-908
– reference: 10331102 - Biol Psychiatry. 1999 May 1;45(9):1099-119
– reference: 12377139 - Neuroimage. 2002 Oct;17(2):631-42
– reference: 12472266 - IEEE Trans Med Imaging. 2002 Aug;21(8):934-45
– reference: 10628948 - IEEE Trans Med Imaging. 1999 Oct;18(10):885-96
– reference: 18215925 - IEEE Trans Med Imaging. 1996;15(4):429-42
– reference: 9533587 - IEEE Trans Med Imaging. 1997 Dec;16(6):878-86
– reference: 12956262 - IEEE Trans Med Imaging. 2003 Sep;22(9):1063-75
– reference: 10860804 - Neuroimage. 2000 Jun;11(6 Pt 1):805-21
– reference: 9010529 - AJNR Am J Neuroradiol. 1997 Jan;18(1):115-23
– reference: 17282216 - Conf Proc IEEE Eng Med Biol Soc. 2005;1:463-6
– reference: 17018552 - Brain. 2006 Nov;129(Pt 11):2867-73
– reference: 14561555 - Med Image Anal. 2003 Dec;7(4):513-27
– reference: 17260863 - IEEE Trans Biomed Eng. 2007 Jan;54(1):122-9
– reference: 15955494 - Neuroimage. 2005 Jul 1;26(3):839-51
– reference: 19105242 - NMR Biomed. 2009 May;22(4):374-90
– reference: 18276467 - IEEE Trans Neural Netw. 1992;3(5):672-82
– reference: 12391568 - Hum Brain Mapp. 2002 Nov;17(3):143-55
– reference: 9519062 - Br J Psychiatry. 1998 Feb;172:110-20
– reference: 18003386 - Conf Proc IEEE Eng Med Biol Soc. 2007;2007:6020-3
– reference: 19285561 - Neuroimage. 2009 Jul 1;46(3):642-51
– reference: 18051142 - Med Image Comput Comput Assist Interv. 2007;10(Pt 1):883-90
– reference: 15501092 - Neuroimage. 2004;23 Suppl 1:S208-19
– reference: 1640954 - N Engl J Med. 1992 Aug 27;327(9):604-12
– reference: 20230858 - J Neurosci Methods. 2010 May 15;188(2):316-25
– reference: 18784040 - IEEE Trans Image Process. 2008 Oct;17(10):1940-9
SSID ssj0000650109
Score 1.9009894
Snippet In this paper, we present a new semi-automatic brain tissue segmentation method based on a hybrid hierarchical approach that combines a brain atlas as a priori...
In this paper, we present a new semi-automatic brain tissue segmentation method based on a hybrid hierarchical approach that combines a brain atlas as a priori...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 232
SubjectTerms brain
magnetic resonance imaging
Original
segmentation
support vector machines
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUQJzhULQW60CJX4sIh3XXs2Mlxi0CrSuUEEjfLn20lCAubRdpD_3tnnGyUrRC99OrYsuUZe57j8XuEnAIC5w4ic1a5ImYCjmtZ5ZnP1CRgPI25dPhQ-PuVnN2Ib7fF7UDqC3PCWnrgduLGppQe1mBZKWeEcN7AkURKF5kvIPbYxPMJMW9wmGr34ALvfFBZLs-RMFOp9o5SsAkf92VfGCr1FBsxKVH3v4Q3_06bHMShy7fkTQcg6bQd-DuyFeo9sjugFXxPfk_pbIUvsSgKXaerArAEXdOHU8Cp1KI0BG3StNNF-HHfvUGqqV1R8EKbhCO6atMGMDY1tad3KPVDF4_gWNBsOUf0Tp_Tn396n_Iywz65uby4Pp9lncxC5rhSaCXLAiujk8oyVQrLC6-Md7CFVj6vjFQsCBaRQ5Q77nlRehstFFSlVSYKfkC264c6fCC0EHlg0ecxeIMi65aHiL9MEPZVVoYRGa8nWruOgxylMO40nEXQNBpNo9E0ujXNiJz1LeYt_8Yrdb-i7fp6yJydCsCfdOdP-l_-NCKf15bXsNLw-sTU4WG50ICNOOr-MejosPWEvqtcIMnQZDIiasNHNsay-aX-9TOxefNKKoBJR_9j8MdkJ0e5jpRs-JFsN0_L8AlAU2NP0vr4A0bpFB4
  priority: 102
  providerName: Directory of Open Access Journals
Title A Hybrid hierarchical approach for brain tissue segmentation by combining brain Atlas and least square support vector machine
URI https://www.ncbi.nlm.nih.gov/pubmed/24696800
https://www.proquest.com/docview/1513050515
https://pubmed.ncbi.nlm.nih.gov/PMC3967426
https://doaj.org/article/a86dadd897ca44cda18466cf1d5415b3
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxELagvcABAeURHpGReulh03jttXdPKKFEFVI5NVJvlp8tUrpp86iaA_-dGe8mNCiquO7a65VnxvPZ45mPkENA4NyBZ84qV8RMwHYtqzzzmeoH9Kcxlw4Thc9-ytOx-HFRXPxNj24ncL5za4d8UuPZpHd_u_oKBg_4tSdYnx_jIUYGsFj1GBLvFE_JPvglhWZ61oL9Zl0uMA6EbHPrDk3ccudHtvxUKue_C4P-e5XygW8avSQvWlBJB40WvCJPQv2aPH9QavCA_B7QqxVmZ1Ekv07hA5AOXZcUp4BdqUW6CLpIoqDzcHnd5iXV1K4oaKZNZBJtM7MA3E1N7ekE6X_o_BaUDbotb3Ay6V2KBtDrdFczvCHj0ffzb6dZS72QOa4USs6ywMropLJMlcLywivjHSyrlc8rIxULgkWsK8od97wovY0WHlSlVSYK_pbs1dM6vCe0EHlg0ecxeIPE65aHiMcoCAUrK0OHHK8nWru2LjnSY0w07E9QNBpFo1E0uhFNhxxtetw0NTkeaTtE2W3aYTXt9GA6u9StcWpTSg_rfFkpZ4Rw3sC2V0oXmS8A31jeIV_WktdgfRhSMXWYLuca8BJHLkAGA71rNGEzVC6w8FC_3yFqS0e2_mX7Tf3rKlX45pVUAJ0-_Me4H8mzHBk60v3CT2RvMVuGz4CTFrZL9gfDk-Gom84ZuskY_gC25xH2
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+hierarchical+approach+for+brain+tissue+segmentation+by+combining+brain+atlas+and+least+square+support+vector+machine&rft.jtitle=Journal+of+medical+signals+and+sensors&rft.au=Kasiri%2C+Keyvan&rft.au=Kazemi%2C+Kamran&rft.au=Dehghani%2C+Mohammad+Javad&rft.au=Helfroush%2C+Mohammad+Sadegh&rft.date=2013-10-01&rft.issn=2228-7477&rft.eissn=2228-7477&rft.volume=3&rft.issue=4&rft.spage=232&rft_id=info:doi/10.4103%2F2228-7477.128325&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2228-7477&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2228-7477&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2228-7477&client=summon