Withaferin A Induces Oxidative Stress-Mediated Apoptosis and DNA Damage in Oral Cancer Cells
Withaferin A (WFA) is one of the most active steroidal lactones with reactive oxygen species (ROS) modulating effects against several types of cancer. ROS regulation involves selective killing. However, the anticancer and selective killing effects of WFA against oral cancer cells remain unclear. We...
Saved in:
Published in | Frontiers in physiology Vol. 8; p. 634 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
07.09.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Withaferin A (WFA) is one of the most active steroidal lactones with reactive oxygen species (ROS) modulating effects against several types of cancer. ROS regulation involves selective killing. However, the anticancer and selective killing effects of WFA against oral cancer cells remain unclear. We evaluated whether the killing ability of WFA is selective, and we explored its mechanism against oral cancer cells. An MTS tetrazolium cell proliferation assay confirmed that WFA selectively killed two oral cancer cells (Ca9-22 and CAL 27) rather than normal oral cells (HGF-1). WFA also induced apoptosis of Ca9-22 cells, which was measured by flow cytometry for subG1 percentage, annexin V expression, and pan-caspase activity, as well as western blotting for caspases 1, 8, and 9 activations. Flow cytometry analysis shows that WFA-treated Ca9-22 oral cancer cells induced G2/M cell cycle arrest, ROS production, mitochondrial membrane depolarization, and phosphorylated histone H2A.X (γH2AX)-based DNA damage. Moreover, pretreating Ca9-22 cells with
-acetylcysteine (NAC) rescued WFA-induced selective killing, apoptosis, G2/M arrest, oxidative stress, and DNA damage. We conclude that WFA induced oxidative stress-mediated selective killing of oral cancer cells. |
---|---|
AbstractList | Withaferin A (WFA) is one of the most active steroidal lactones with reactive oxygen species (ROS) modulating effects against several types of cancer. ROS regulation involves selective killing. However, the anticancer and selective killing effects of WFA against oral cancer cells remain unclear. We evaluated whether the killing ability of WFA is selective, and we explored its mechanism against oral cancer cells. An MTS tetrazolium cell proliferation assay confirmed that WFA selectively killed two oral cancer cells (Ca9-22 and CAL 27) rather than normal oral cells (HGF-1). WFA also induced apoptosis of Ca9-22 cells, which was measured by flow cytometry for subG1 percentage, annexin V expression, and pan-caspase activity, as well as western blotting for caspases 1, 8, and 9 activations. Flow cytometry analysis shows that WFA-treated Ca9-22 oral cancer cells induced G2/M cell cycle arrest, ROS production, mitochondrial membrane depolarization, and phosphorylated histone H2A.X (γH2AX)-based DNA damage. Moreover, pretreating Ca9-22 cells with
-acetylcysteine (NAC) rescued WFA-induced selective killing, apoptosis, G2/M arrest, oxidative stress, and DNA damage. We conclude that WFA induced oxidative stress-mediated selective killing of oral cancer cells. Withaferin A (WFA) is one of the most active steroidal lactones with reactive oxygen species (ROS) modulating effects against several types of cancer. ROS regulation involves selective killing. However, the anticancer and selective killing effects of WFA against oral cancer cells remain unclear. We evaluated whether the killing ability of WFA is selective, and we explored its mechanism against oral cancer cells. An MTS tetrazolium cell proliferation assay confirmed that WFA selectively killed two oral cancer cells (Ca9-22 and CAL 27) rather than normal oral cells (HGF-1). WFA also induced apoptosis of Ca9-22 cells, which was measured by flow cytometry for subG1 percentage, annexin V expression, and pan-caspase activity, as well as western blotting for caspases 1, 8, and 9 activations. Flow cytometry analysis shows that WFA-treated Ca9-22 oral cancer cells induced G2/M cell cycle arrest, ROS production, mitochondrial membrane depolarization, and phosphorylated histone H2A.X (γH2AX)-based DNA damage. Moreover, pretreating Ca9-22 cells with N-acetylcysteine (NAC) rescued WFA-induced selective killing, apoptosis, G2/M arrest, oxidative stress, and DNA damage. We conclude that WFA induced oxidative stress-mediated selective killing of oral cancer cells.Withaferin A (WFA) is one of the most active steroidal lactones with reactive oxygen species (ROS) modulating effects against several types of cancer. ROS regulation involves selective killing. However, the anticancer and selective killing effects of WFA against oral cancer cells remain unclear. We evaluated whether the killing ability of WFA is selective, and we explored its mechanism against oral cancer cells. An MTS tetrazolium cell proliferation assay confirmed that WFA selectively killed two oral cancer cells (Ca9-22 and CAL 27) rather than normal oral cells (HGF-1). WFA also induced apoptosis of Ca9-22 cells, which was measured by flow cytometry for subG1 percentage, annexin V expression, and pan-caspase activity, as well as western blotting for caspases 1, 8, and 9 activations. Flow cytometry analysis shows that WFA-treated Ca9-22 oral cancer cells induced G2/M cell cycle arrest, ROS production, mitochondrial membrane depolarization, and phosphorylated histone H2A.X (γH2AX)-based DNA damage. Moreover, pretreating Ca9-22 cells with N-acetylcysteine (NAC) rescued WFA-induced selective killing, apoptosis, G2/M arrest, oxidative stress, and DNA damage. We conclude that WFA induced oxidative stress-mediated selective killing of oral cancer cells. Withaferin A (WFA) is one of the most active steroidal lactones with reactive oxygen species (ROS) modulating effects against several types of cancer. ROS regulation involves selective killing. However, the anticancer and selective killing effects of WFA against oral cancer cells remain unclear. We evaluated whether the killing ability of WFA is selective, and we explored its mechanism against oral cancer cells. An MTS tetrazolium cell proliferation assay confirmed that WFA selectively killed two oral cancer cells (Ca9-22 and CAL 27) rather than normal oral cells (HGF-1). WFA also induced apoptosis of Ca9-22 cells, which was measured by flow cytometry for subG1 percentage, annexin V expression, and pan-caspase activity, as well as western blotting for caspases 1, 8, and 9 activations. Flow cytometry analysis shows that WFA-treated Ca9-22 oral cancer cells induced G2/M cell cycle arrest, ROS production, mitochondrial membrane depolarization, and phosphorylated histone H2A.X (γH2AX)-based DNA damage. Moreover, pretreating Ca9-22 cells with N -acetylcysteine (NAC) rescued WFA-induced selective killing, apoptosis, G2/M arrest, oxidative stress, and DNA damage. We conclude that WFA induced oxidative stress-mediated selective killing of oral cancer cells. Withaferin A (WFA) is one of the most active steroidal lactones with reactive oxygen species (ROS) modulating effects against several types of cancer. ROS regulation involves selective killing. However, the anticancer and selective killing effects of WFA against oral cancer cells remain unclear. We evaluated whether the killing ability of WFA is selective, and we explored its mechanism against oral cancer cells. An MTS tetrazolium cell proliferation assay confirmed that WFA selectively killed two oral cancer cells (Ca9-22 and CAL 27) rather than normal oral cells (HGF-1). WFA also induced apoptosis of Ca9-22 cells, which was measured by flow cytometry for subG1 percentage, annexin V expression, and pan-caspase activity, as well as western blotting for caspases 1, 8, and 9 activations. Flow cytometry analysis shows that WFA-treated Ca9-22 oral cancer cells induced G2/M cell cycle arrest, ROS production, mitochondrial membrane depolarization, and phosphorylated histone H2A.X (γH2AX)-based DNA damage. Moreover, pretreating Ca9-22 cells with N-acetylcysteine (NAC) rescued WFA-induced selective killing, apoptosis, G2/M arrest, oxidative stress, and DNA damage. We conclude that WFA induced oxidative stress-mediated selective killing of oral cancer cells. |
Author | Tang, Jen-Yang Yen, Ching-Yu Huang, Hurng-Wern Chang, Hsueh-Wei Liu, Jing-Ru Li, Ruei-Nian Wang, Hui-Ru Chan, Yu-Hsuan |
AuthorAffiliation | 1 Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University Kaohsiung, Taiwan 3 Cancer Center, Kaohsiung Medical University Hospital; Kaohsiung Medical University Kaohsiung, Taiwan 6 Institute of Biomedical Science, National Sun Yat-Sen University Kaohsiung, Taiwan 2 Department of Medical Research, Kaohsiung Medical University Hospital Kaohsiung, Taiwan 4 Research Center for Natural Products and Drug Development, Kaohsiung Medical University Kaohsiung, Taiwan 7 Department of Radiation Oncology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University Kaohsiung, Taiwan 5 Institute of Medical Science and Technology, National Sun Yat-Sen University Kaohsiung, Taiwan 9 Department of Radiation Oncology, Kaohsiung Municipal Ta-Tung Hospital Kaohsiung, Taiwan 8 Department of Radiation Oncology, Kaohsiung Medical University Hospital Kaohsiung, Taiwan 10 Department of Oral and Maxillofacial Surgery Chi-Mei Medical Center Tainan, Taiwan 11 School of Dentistry, |
AuthorAffiliation_xml | – name: 11 School of Dentistry, Taipei Medical University Taipei, Taiwan – name: 4 Research Center for Natural Products and Drug Development, Kaohsiung Medical University Kaohsiung, Taiwan – name: 9 Department of Radiation Oncology, Kaohsiung Municipal Ta-Tung Hospital Kaohsiung, Taiwan – name: 10 Department of Oral and Maxillofacial Surgery Chi-Mei Medical Center Tainan, Taiwan – name: 1 Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University Kaohsiung, Taiwan – name: 3 Cancer Center, Kaohsiung Medical University Hospital; Kaohsiung Medical University Kaohsiung, Taiwan – name: 2 Department of Medical Research, Kaohsiung Medical University Hospital Kaohsiung, Taiwan – name: 7 Department of Radiation Oncology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University Kaohsiung, Taiwan – name: 8 Department of Radiation Oncology, Kaohsiung Medical University Hospital Kaohsiung, Taiwan – name: 6 Institute of Biomedical Science, National Sun Yat-Sen University Kaohsiung, Taiwan – name: 5 Institute of Medical Science and Technology, National Sun Yat-Sen University Kaohsiung, Taiwan |
Author_xml | – sequence: 1 givenname: Hsueh-Wei surname: Chang fullname: Chang, Hsueh-Wei – sequence: 2 givenname: Ruei-Nian surname: Li fullname: Li, Ruei-Nian – sequence: 3 givenname: Hui-Ru surname: Wang fullname: Wang, Hui-Ru – sequence: 4 givenname: Jing-Ru surname: Liu fullname: Liu, Jing-Ru – sequence: 5 givenname: Jen-Yang surname: Tang fullname: Tang, Jen-Yang – sequence: 6 givenname: Hurng-Wern surname: Huang fullname: Huang, Hurng-Wern – sequence: 7 givenname: Yu-Hsuan surname: Chan fullname: Chan, Yu-Hsuan – sequence: 8 givenname: Ching-Yu surname: Yen fullname: Yen, Ching-Yu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28936177$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kktvEzEUhS1UREvpnhXyks0Ee_wab5CilEekQhaAYIFkecZ3ElcTe7AnFf33OEmpWiS8sXV9znf9OM_RSYgBEHpJyYyxRr_px81tntWEqhkhkvEn6IxKySvC6x8nD9an6CLna1IGJzUh9Bk6rRvNJFXqDP387qeN7SH5gOd4Gdyug4xXv72zk78B_GVKkHP1CZy3Ezg8H-M4xewztsHhy89zfGm3dg24-FfJDnhhQwcJL2AY8gv0tLdDhou7-Rx9e__u6-JjdbX6sFzMr6qOKcUrxdqGatqRxnIrWt4wIKJvnHCUOpA1U1zVQtDalZIEy0EC15SIYoBGAztHyyPXRXttxuS3Nt2aaL05FGJaG5sm3w1gdDFIR7TiWnMmaAtOK9erQlTQuLaw3h5Z467dgusgTOVaj6CPd4LfmHW8MUJoThQtgNd3gBR_7SBPZutzV57DBoi7bKjmtVSi5qJIXz3sdd_k7_cUATkKuhRzTtDfSygx-xCYQwjMPgTmEIJikf9YOj-Vv4z70_rh_8Y_-Bi2ig |
CitedBy_id | crossref_primary_10_3389_fphar_2018_00694 crossref_primary_10_1016_j_phymed_2019_152844 crossref_primary_10_3390_antiox10030393 crossref_primary_10_1093_carcin_bgy109 crossref_primary_10_3390_antiox10071063 crossref_primary_10_3389_fvets_2022_900453 crossref_primary_10_3390_cancers13102450 crossref_primary_10_1016_j_dnarep_2019_02_010 crossref_primary_10_1039_C9MD00296K crossref_primary_10_3389_fphar_2022_975320 crossref_primary_10_3390_molecules27051576 crossref_primary_10_1007_s00210_024_03662_y crossref_primary_10_1021_acs_jnatprod_3c01003 crossref_primary_10_2147_DDDT_S422512 crossref_primary_10_3389_fcell_2021_636498 crossref_primary_10_3390_ijms22116098 crossref_primary_10_1002_tox_22767 crossref_primary_10_1080_14756366_2018_1481403 crossref_primary_10_3390_pathogens11070782 crossref_primary_10_1155_2019_3868354 crossref_primary_10_1016_j_bbadis_2022_166615 crossref_primary_10_1016_j_semcancer_2018_08_010 crossref_primary_10_1080_07391102_2022_2077448 crossref_primary_10_2174_1566524023666230418094708 crossref_primary_10_3390_antiox9090873 crossref_primary_10_3390_cancers11091303 crossref_primary_10_3390_cells11060961 crossref_primary_10_1007_s12094_024_03784_y crossref_primary_10_3390_antiox11071352 crossref_primary_10_1016_j_cbi_2023_110698 crossref_primary_10_3390_antiox9090876 crossref_primary_10_3390_biom10050777 crossref_primary_10_3390_ijms23168839 crossref_primary_10_3390_pharmaceutics14030611 crossref_primary_10_1371_journal_pone_0236680 crossref_primary_10_3390_antiox11030587 crossref_primary_10_1016_j_bbrc_2018_06_162 crossref_primary_10_1097_TP_0000000000002287 crossref_primary_10_3390_antiox10071117 crossref_primary_10_1039_D0NJ04319B crossref_primary_10_1080_09553002_2019_1625490 crossref_primary_10_1055_a_2289_9600 crossref_primary_10_1371_journal_ppat_1012816 crossref_primary_10_3390_biomedicines8120571 crossref_primary_10_1038_s41598_019_53568_6 crossref_primary_10_1186_s13048_019_0586_1 crossref_primary_10_1089_ars_2023_0442 crossref_primary_10_1155_2021_9483433 crossref_primary_10_1371_journal_pone_0209665 crossref_primary_10_3390_ijms21176443 crossref_primary_10_1080_01635581_2020_1778746 crossref_primary_10_3892_ol_2021_12493 crossref_primary_10_3390_antiox11102072 crossref_primary_10_1002_tox_23951 crossref_primary_10_3390_cancers11040453 crossref_primary_10_1002_tox_22986 crossref_primary_10_3390_antiox9111120 crossref_primary_10_1016_j_procbio_2022_07_028 crossref_primary_10_1002_tox_22625 crossref_primary_10_3390_ijms23062981 crossref_primary_10_1016_j_jprot_2021_104334 crossref_primary_10_1021_acssensors_9b01057 |
Cites_doi | 10.1128/MCB.23.23.8878-8889.2003 10.1016/j.taap.2005.07.018 10.1371/journal.pone.0099242 10.1016/j.archoralbio.2016.02.019 10.1016/j.molmed.2006.07.007 10.1016/j.freeradbiomed.2004.04.002 10.1158/0008-5472.CAN-04-0945 10.1016/j.toxlet.2006.09.007 10.1038/35077213 10.1016/j.bcp.2012.08.027 10.1097/00001622-199901000-00014 10.1016/j.bbrc.2014.08.018 10.1016/j.canlet.2014.11.026 10.3390/molecules17067241 10.3390/toxins8110319 10.1038/nrmicro2070 10.1371/journal.pone.0064739 10.3892/etm.2015.2480 10.1186/1475-2867-13-55 10.1016/j.dnarep.2004.03.002 10.3892/ol.2017.6169 10.3390/molecules170910916 10.3109/09553002.2016.1145753 10.3390/md12053072 10.1002/mc.22110 10.1002/ijc.10701 10.1016/S1368-8375(00)00007-5 10.1371/journal.pone.0013536 10.1007/s10495-007-0129-x 10.1016/j.ccr.2006.08.009 10.1002/tox.22238 10.1093/carcin/bgr192 10.1208/s12248-013-9531-1 10.1016/j.canlet.2004.10.049 10.1007/s10495-011-0625-x 10.1016/j.mrgentox.2012.06.003 10.1016/j.biopha.2005.03.009 10.1371/journal.pone.0068425 10.1016/j.canlet.2012.08.026 10.1111/j.1600-065X.2011.01044.x 10.1016/j.freeradbiomed.2009.03.022 10.1021/np400441f 10.1177/1753425913484374 10.1186/1472-6882-11-84 10.4161/cbt.6.5.4092 10.1080/01635580802567158 10.1002/tox.22190 10.1021/jf200566a 10.1111/j.1745-7254.2006.00345.x 10.1016/j.intimp.2003.08.004 10.1038/sj.onc.1207532 |
ContentType | Journal Article |
Copyright | Copyright © 2017 Chang, Li, Wang, Liu, Tang, Huang, Chan and Yen. 2017 Chang, Li, Wang, Liu, Tang, Huang, Chan and Yen |
Copyright_xml | – notice: Copyright © 2017 Chang, Li, Wang, Liu, Tang, Huang, Chan and Yen. 2017 Chang, Li, Wang, Liu, Tang, Huang, Chan and Yen |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3389/fphys.2017.00634 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1664-042X |
ExternalDocumentID | oai_doaj_org_article_9e896d0974994351bed97df76e47e8db PMC5594071 28936177 10_3389_fphys_2017_00634 |
Genre | Journal Article |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ACXDI ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV CITATION DIK EMOBN F5P GROUPED_DOAJ GX1 HYE KQ8 M48 M~E O5R O5S OK1 PGMZT RNS RPM IAO IEA IHR IHW IPNFZ ISR NPM RIG 7X8 5PM |
ID | FETCH-LOGICAL-c3774-73b8191c08a4a5b483e05f8d5d11de62374725512dd5d6ea4e6e4910508ae89e3 |
IEDL.DBID | M48 |
ISSN | 1664-042X |
IngestDate | Wed Aug 27 01:25:36 EDT 2025 Thu Aug 21 18:22:20 EDT 2025 Fri Jul 11 00:01:12 EDT 2025 Thu Jan 02 22:22:19 EST 2025 Thu Apr 24 22:59:12 EDT 2025 Tue Jul 01 04:18:19 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | selective killing apoptosis withaferin A oral cancer oxidative stress N-acetylcysteine |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3774-73b8191c08a4a5b483e05f8d5d11de62374725512dd5d6ea4e6e4910508ae89e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Reviewed by: Vivek Choudhary, Augusta University, United States; Paola Patrignani, Università degli Studi “G. d'Annunzio” Chieti-Pescara, Italy; Juan Antonio Rosado Dionisio, University of Extremadura, Spain Edited by: Gareth Davison, Ulster University, United Kingdom This article was submitted to Oxidant Physiology, a section of the journal Frontiers in Physiology |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fphys.2017.00634 |
PMID | 28936177 |
PQID | 1942675245 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_9e896d0974994351bed97df76e47e8db pubmedcentral_primary_oai_pubmedcentral_nih_gov_5594071 proquest_miscellaneous_1942675245 pubmed_primary_28936177 crossref_primary_10_3389_fphys_2017_00634 crossref_citationtrail_10_3389_fphys_2017_00634 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-09-07 |
PublicationDateYYYYMMDD | 2017-09-07 |
PublicationDate_xml | – month: 09 year: 2017 text: 2017-09-07 day: 07 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in physiology |
PublicationTitleAlternate | Front Physiol |
PublicationYear | 2017 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Chang (B5) 2016; 66 Bergsbaken (B2) 2009; 7 Woo (B50) 2014; 451 Roy (B37) 2013; 76 Daniel (B11) 2003; 3 Lee (B18) 2015; 54 Widodo (B48) 2010; 5 Chang (B4) 2016; 92 Li (B20) 2017; 21 Chiu (B8) 2002; 102 Nicco (B30) 2005; 59 Li (B22) 2015; 357 Liu (B24) 2017; 22 Lee (B19) 2009; 46 Yeh (B53) 2012; 17 Chen (B6) 2016; 8 Trachootham (B43) 2006; 10 Vyas (B47) 2014; 16 Mayola (B27) 2011; 16 Munagala (B29) 2011; 32 Lien (B23) 2017; 32 Evan (B13) 2001; 411 Samhan-Arias (B38) 2004; 37 Li (B21) 2006; 27 Pollack (B33) 2001; 7 Chiu (B9) 2005; 223 Ding (B12) 2009; 61 Norbury (B31) 2004; 23 Vignon (B46) 2013; 8 Wilkes (B49) 2003; 23 Oh (B32) 2006; 212 Sollberger (B42) 2014; 20 Shieh (B40) 2014; 9 Hung (B15) 2015; 31 Reed (B35) 1999; 11 Roos (B36) 2006; 12 Lee (B17) 2013; 13 Yang (B52) 2012; 17 Zhang (B55) 2011; 11 Barzilai (B1) 2004; 3 Lv (B25) 2015; 10 Malik (B26) 2007; 12 Miao (B28) 2011; 243 Kim (B16) 2017; 14 Wu (B51) 2007; 6 Hahm (B14) 2013; 334 Chan (B3) 2006; 167 Real (B34) 2004; 64 Uma Devi (B44) 2008; 46 Yen (B54) 2012; 747 Chiu (B10) 2011; 59 Shih (B41) 2014; 12 Chiu (B7) 2013; 8 Scully (B39) 2000; 36 Vanden Berghe (B45) 2012; 84 21859835 - Carcinogenesis. 2011 Nov;32(11):1697-705 26370073 - Environ Toxicol. 2016 Dec;31(12 ):1888-1898 19148178 - Nat Rev Microbiol. 2009 Feb;7(2):99-109 27827950 - Toxins (Basel). 2016 Nov 05;8(11):null 22935676 - Cancer Lett. 2013 Jun 28;334(1):101-8 21978374 - BMC Complement Altern Med. 2011 Oct 06;11:84 26822499 - Environ Toxicol. 2017 Jan;32(1):329-343 15896459 - Cancer Lett. 2005 Jun 8;223(2):249-58 28365961 - J BUON. 2017 Jan-Feb;22(1):244-250 24921657 - PLoS One. 2014 Jun 12;9(6):e99242 17874299 - Apoptosis. 2007 Nov;12(11):2115-33 22695230 - Molecules. 2012 Jun 13;17(6):7241-54 23705007 - PLoS One. 2013 May 21;8(5):e64739 15520201 - Cancer Res. 2004 Nov 1;64(21):7947-53 17049762 - Toxicol Lett. 2006 Dec 15;167(3):191-200 15077143 - Oncogene. 2004 Apr 12;23(16):2797-808 25444914 - Cancer Lett. 2015 Feb 1;357(1):219-30 22721813 - Mutat Res. 2012 Sep 18;747(2):253-8 24293234 - Mol Carcinog. 2015 Jun;54(6):417-29 19345731 - Free Radic Biol Med. 2009 Jun 15;46(12):1639-49 26170956 - Exp Ther Med. 2015 Jul;10(1):323-329 14636829 - Int Immunopharmacol. 2003 Dec;3(13-14):1791-801 18697601 - Indian J Exp Biol. 2008 Jun;46(6):437-42 21391609 - J Agric Food Chem. 2011 Apr 27;59(8):4288-93 10793327 - Oral Oncol. 2000 May;36(3):256-63 24046237 - AAPS J. 2014 Jan;16(1):1-10 17387274 - Cancer Biol Ther. 2007 May;6(5):646-7 25117439 - Biochem Biophys Res Commun. 2014 Aug 29;451(3):455-60 26954095 - Arch Oral Biol. 2016 Jun;66:147-54 23676582 - Innate Immun. 2014 Feb;20(2):115-25 16169029 - Toxicol Appl Pharmacol. 2006 May 1;212(3):212-23 28387888 - Eur Rev Med Pharmacol Sci. 2017 Mar;21(6):1368-1374 21884178 - Immunol Rev. 2011 Sep;243(1):206-14 15862711 - Biomed Pharmacother. 2005 May;59(4):169-74 15183194 - Free Radic Biol Med. 2004 Jul 1;37(1):48-61 26887975 - Int J Radiat Biol. 2016 May;92 (5):263-72 28693185 - Oncol Lett. 2017 Jul;14 (1):416-422 11350907 - Clin Cancer Res. 2001 May;7(5):1362-9 19373608 - Nutr Cancer. 2009;61(3):348-56 12402300 - Int J Cancer. 2002 Dec 1;102(4):328-33 14612425 - Mol Cell Biol. 2003 Dec;23(23):8878-89 16899408 - Trends Mol Med. 2006 Sep;12(9):440-50 20975835 - PLoS One. 2010 Oct 21;5(10):e13536 22968475 - Molecules. 2012 Sep 11;17(9):10916-27 23935867 - PLoS One. 2013 Jul 30;8(7):e68425 15279799 - DNA Repair (Amst). 2004 Aug-Sep;3(8-9):1109-15 11357141 - Nature. 2001 May 17;411(6835):342-8 24857964 - Mar Drugs. 2014 May 22;12(5):3072-90 9914881 - Curr Opin Oncol. 1999 Jan;11(1):68-75 16867262 - Acta Pharmacol Sin. 2006 Aug;27(8):1078-84 24079846 - J Nat Prod. 2013 Oct 25;76(10):1909-15 16959615 - Cancer Cell. 2006 Sep;10(3):241-52 23724847 - Cancer Cell Int. 2013 Jun 03;13(1):55 22981382 - Biochem Pharmacol. 2012 Nov 15;84(10):1282-91 21710254 - Apoptosis. 2011 Oct;16(10):1014-27 |
References_xml | – volume: 23 start-page: 8878 year: 2003 ident: B49 article-title: Cell-type-specific activation of PAK2 by transforming growth factor beta independent of Smad2 and Smad3 publication-title: Mol. Cell Biol. doi: 10.1128/MCB.23.23.8878-8889.2003 – volume: 212 start-page: 212 year: 2006 ident: B32 article-title: Rapid and transient ROS generation by cadmium triggers apoptosis via caspase-dependent pathway in HepG2 cells and this is inhibited through N-acetylcysteine-mediated catalase upregulation publication-title: Toxicol. Appl. Pharmacol. doi: 10.1016/j.taap.2005.07.018 – volume: 22 start-page: 244 year: 2017 ident: B24 article-title: Withaferin induces mitochondrial-dependent apoptosis in non-small cell lung cancer cells via generation of reactive oxygen species publication-title: J. BUON – volume: 9 start-page: e99242 year: 2014 ident: B40 article-title: An increase in reactive oxygen species by deregulation of ARNT enhances chemotherapeutic drug-induced cancer cell death publication-title: PLoS ONE doi: 10.1371/journal.pone.0099242 – volume: 66 start-page: 147 year: 2016 ident: B5 article-title: Sinuleptolide inhibits proliferation of oral cancer Ca9-22 cells involving apoptosis, oxidative stress, and DNA damage publication-title: Arch. Oral Biol. doi: 10.1016/j.archoralbio.2016.02.019 – volume: 12 start-page: 440 year: 2006 ident: B36 article-title: Damage-induced cell death by apoptosis publication-title: Trends Mol. Med. doi: 10.1016/j.molmed.2006.07.007 – volume: 37 start-page: 48 year: 2004 ident: B38 article-title: Kaempferol blocks oxidative stress in cerebellar granule cells and reveals a key role for reactive oxygen species production at the plasma membrane in the commitment to apoptosis publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2004.04.002 – volume: 64 start-page: 7947 year: 2004 ident: B34 article-title: Breast cancer cells can evade apoptosis-mediated selective killing by a novel small molecule inhibitor of Bcl-2 publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-04-0945 – volume: 7 start-page: 1362 year: 2001 ident: B33 article-title: Direct stimulation of apoptotic signaling by soluble Apo2l/tumor necrosis factor-related apoptosis-inducing ligand leads to selective killing of glioma cells publication-title: Clin. Cancer Res. – volume: 167 start-page: 191 year: 2006 ident: B3 article-title: CdSe quantum dots induce apoptosis in human neuroblastoma cells via mitochondrial-dependent pathways and inhibition of survival signals publication-title: Toxicol. Lett. doi: 10.1016/j.toxlet.2006.09.007 – volume: 411 start-page: 342 year: 2001 ident: B13 article-title: Proliferation, cell cycle and apoptosis in cancer publication-title: Nature doi: 10.1038/35077213 – volume: 84 start-page: 1282 year: 2012 ident: B45 article-title: Molecular insight in the multifunctional activities of Withaferin A publication-title: Biochem. Pharmacol. doi: 10.1016/j.bcp.2012.08.027 – volume: 11 start-page: 68 year: 1999 ident: B35 article-title: Mechanisms of apoptosis avoidance in cancer publication-title: Curr. Opin. Oncol. doi: 10.1097/00001622-199901000-00014 – volume: 451 start-page: 455 year: 2014 ident: B50 article-title: Axl is a novel target of withaferin A in the induction of apoptosis and the suppression of invasion publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2014.08.018 – volume: 357 start-page: 219 year: 2015 ident: B22 article-title: Synergistic antitumor activity of withaferin A combined with oxaliplatin triggers reactive oxygen species-mediated inactivation of the PI3K/AKT pathway in human pancreatic cancer cells publication-title: Cancer Lett. doi: 10.1016/j.canlet.2014.11.026 – volume: 17 start-page: 7241 year: 2012 ident: B52 article-title: Aqueous extracts of the edible Gracilaria tenuistipitata are protective against H2O2-induced DNA damage, growth inhibition, and cell cycle arrest publication-title: Molecules doi: 10.3390/molecules17067241 – volume: 8 start-page: 319 year: 2016 ident: B6 article-title: Tenuifolide B from Cinnamomum tenuifolium stem selectively inhibits proliferation of oral cancer cells via apoptosis, ROS generation, mitochondrial depolarization, and DNA damage publication-title: Toxins doi: 10.3390/toxins8110319 – volume: 7 start-page: 99 year: 2009 ident: B2 article-title: Pyroptosis: host cell death and inflammation publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro2070 – volume: 8 start-page: e64739 year: 2013 ident: B7 article-title: Golden berry-derived 4β-hydroxywithanolide E for selectively killing oral cancer cells by generating, ROS DNA damage, and apoptotic pathways publication-title: PLoS ONE doi: 10.1371/journal.pone.0064739 – volume: 10 start-page: 323 year: 2015 ident: B25 article-title: Antiproliferation potential of withaferin A on human osteosarcoma cells via the inhibition of G2/M checkpoint proteins publication-title: Exp. Ther. Med. doi: 10.3892/etm.2015.2480 – volume: 13 start-page: 55 year: 2013 ident: B17 article-title: Marine algal natural products with anti-oxidative, anti-inflammatory, and anti-cancer properties publication-title: Cancer Cell Int. doi: 10.1186/1475-2867-13-55 – volume: 3 start-page: 1109 year: 2004 ident: B1 article-title: DNA damage responses to oxidative stress publication-title: DNA Repair doi: 10.1016/j.dnarep.2004.03.002 – volume: 14 start-page: 416 year: 2017 ident: B16 article-title: Withaferin A inhibits the proliferation of gastric cancer cells by inducing G2/M cell cycle arrest and apoptosis publication-title: Oncol. Lett. doi: 10.3892/ol.2017.6169 – volume: 17 start-page: 10916 year: 2012 ident: B53 article-title: Antiproliferation and induction of apoptosis in Ca9-22 oral cancer cells by ethanolic extract of Gracilaria tenuistipitata publication-title: Molecules doi: 10.3390/molecules170910916 – volume: 92 start-page: 263 year: 2016 ident: B4 article-title: Synergistic anti-oral cancer effects of UVC and methanolic extracts of Cryptocarya concinna roots via apoptosis, oxidative stress and DNA damage publication-title: Int. J. Radiat. Biol. doi: 10.3109/09553002.2016.1145753 – volume: 12 start-page: 3072 year: 2014 ident: B41 article-title: Cracking the cytotoxicity code: apoptotic induction of 10-acetylirciformonin B is mediated through ROS generation and mitochondrial dysfunction publication-title: Mar. Drugs doi: 10.3390/md12053072 – volume: 54 start-page: 417 year: 2015 ident: B18 article-title: Withaferin A inhibits experimental epithelial-mesenchymal transition in MCF10A cells and suppresses vimentin protein level in vivo in breast tumors publication-title: Mol. Carcinog. doi: 10.1002/mc.22110 – volume: 102 start-page: 328 year: 2002 ident: B8 article-title: Ectopic expression of herpes simplex virus-thymidine kinase gene in human non-small cell lung cancer cells conferred caspase-activated apoptosis sensitized by ganciclovir publication-title: Int. J. Cancer doi: 10.1002/ijc.10701 – volume: 36 start-page: 256 year: 2000 ident: B39 article-title: Genetic aberrations in oral or head and neck squamous cell carcinoma (SCCHN): 1. Carcinogen metabolism, DNA repair and cell cycle control publication-title: Oral Oncol. doi: 10.1016/S1368-8375(00)00007-5 – volume: 46 start-page: 437 year: 2008 ident: B44 article-title: Enhancement of radiation induced cell death in chicken B lymphocytes by withaferin A publication-title: Indian J. Exp. Biol. – volume: 5 start-page: e13536 year: 2010 ident: B48 article-title: Selective killing of cancer cells by Ashwagandha leaf extract and its component Withanone involves ROS signaling publication-title: PLoS ONE doi: 10.1371/journal.pone.0013536 – volume: 12 start-page: 2115 year: 2007 ident: B26 article-title: Reactive oxygen species generation and mitochondrial dysfunction in the apoptotic cell death of human myeloid leukemia HL-60 cells by a dietary compound withaferin A with concomitant protection by N-acetyl cysteine publication-title: Apoptosis doi: 10.1007/s10495-007-0129-x – volume: 10 start-page: 241 year: 2006 ident: B43 article-title: Selective killing of oncogenically transformed cells through a ROS mediated mechanism by beta-phenylethyl isothiocyanate publication-title: Cancer Cell doi: 10.1016/j.ccr.2006.08.009 – volume: 32 start-page: 329 year: 2017 ident: B23 article-title: Tetrandrine induces programmed cell death in human oral cancer CAL27 cells through the reactive oxygen species production and caspase-dependent pathways and associated with beclin-1-induced cell autophagy publication-title: Environ. Toxicol. doi: 10.1002/tox.22238 – volume: 32 start-page: 1697 year: 2011 ident: B29 article-title: Withaferin A induces p53-dependent apoptosis by repression of HPV oncogenes and upregulation of tumor suppressor proteins in human cervical cancer cells publication-title: Carcinogenesis doi: 10.1093/carcin/bgr192 – volume: 16 start-page: 1 year: 2014 ident: B47 article-title: Molecular targets and mechanisms of cancer prevention and treatment by withaferin A, a naturally occurring steroidal lactone publication-title: AAPS J. doi: 10.1208/s12248-013-9531-1 – volume: 223 start-page: 249 year: 2005 ident: B9 article-title: Etoposide (VP-16) elicits apoptosis following prolonged G2-M cell arrest in p53-mutated human non-small cell lung cancer cells publication-title: Cancer Lett. doi: 10.1016/j.canlet.2004.10.049 – volume: 16 start-page: 1014 year: 2011 ident: B27 article-title: Withaferin A induces apoptosis in human melanoma cells through generation of reactive oxygen species and down-regulation of Bcl-2 publication-title: Apoptosis doi: 10.1007/s10495-011-0625-x – volume: 747 start-page: 253 year: 2012 ident: B54 article-title: Antiproliferative effects of goniothalamin on Ca9-22 oral cancer cells through apoptosis, DNA damage and ROS induction publication-title: Mutat. Res. doi: 10.1016/j.mrgentox.2012.06.003 – volume: 59 start-page: 169 year: 2005 ident: B30 article-title: Differential modulation of normal and tumor cell proliferation by reactive oxygen species publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2005.03.009 – volume: 8 start-page: e68425 year: 2013 ident: B46 article-title: Flow cytometric quantification of all phases of the cell cycle and apoptosis in a two-color fluorescence plot publication-title: PLoS ONE doi: 10.1371/journal.pone.0068425 – volume: 334 start-page: 101 year: 2013 ident: B14 article-title: Withaferin A induced apoptosis in human breast cancer cells is associated with suppression of inhibitor of apoptosis family protein expression publication-title: Cancer Lett. doi: 10.1016/j.canlet.2012.08.026 – volume: 243 start-page: 206 year: 2011 ident: B28 article-title: Caspase-1-induced pyroptotic cell death publication-title: Immunol. Rev. doi: 10.1111/j.1600-065X.2011.01044.x – volume: 21 start-page: 1368 year: 2017 ident: B20 article-title: Withaferin-A induces apoptosis in osteosarcoma U2OS cell line via generation of ROS and disruption of mitochondrial membrane potential publication-title: Eur. Rev. Med. Pharmacol. Sci. – volume: 46 start-page: 1639 year: 2009 ident: B19 article-title: induced apoptosis through reactive oxygen species-mediated up-regulation of death receptor 5 and down-regulation of c-FLIP publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2009.03.022 – volume: 76 start-page: 1909 year: 2013 ident: B37 article-title: A steroidal lactone from Withania somnifera, induces mitotic catastrophe and growth arrest in prostate cancer cells publication-title: J. Nat. Prod. doi: 10.1021/np400441f – volume: 20 start-page: 115 year: 2014 ident: B42 article-title: Caspase-1: the inflammasome and beyond publication-title: Innate Immun. doi: 10.1177/1753425913484374 – volume: 11 start-page: 84 year: 2011 ident: B55 article-title: Down-regulation of estrogen receptor-alpha and rearranged during transfection tyrosine kinase is associated with withaferin A-induced apoptosis in MCF-7 breast cancer cells publication-title: BMC Complement. Altern. Med. doi: 10.1186/1472-6882-11-84 – volume: 6 start-page: 646 year: 2007 ident: B51 article-title: Targeting ROS selective killing of cancer cells by a cruciferous vegetable derived pro-oxidant compound publication-title: Cancer Biol Ther. doi: 10.4161/cbt.6.5.4092 – volume: 61 start-page: 348 year: 2009 ident: B12 article-title: Selective induction of apoptosis of human oral cancer cell lines by avocado extracts via a ROS mediated mechanism publication-title: Nutr. Cancer doi: 10.1080/01635580802567158 – volume: 31 start-page: 1888 year: 2015 ident: B15 article-title: Reactive oxygen species mediate Terbufos-induced apoptosis in mouse testicular cell lines via the modulation of cell cycle and pro-apoptotic proteins publication-title: Environ. Toxicol doi: 10.1002/tox.22190 – volume: 59 start-page: 4288 year: 2011 ident: B10 article-title: Goniothalamin inhibits growth of human lung cancer cells through DNA damage, apoptosis, and reduced migration ability publication-title: J. Agric. Food Chem. doi: 10.1021/jf200566a – volume: 27 start-page: 1078 year: 2006 ident: B21 article-title: Role of oxidative stress in the apoptosis of hepatocellular carcinoma induced by combination of arsenic trioxide and ascorbic acid publication-title: Acta Pharmacol. Sin. doi: 10.1111/j.1745-7254.2006.00345.x – volume: 3 start-page: 1791 year: 2003 ident: B11 article-title: Apoptosis-mediated selective killing of malignant cells by cardiac steroids: maintenance of cytotoxicity and loss of cardiac activity of chemically modified derivatives publication-title: Int. Immunopharmacol. doi: 10.1016/j.intimp.2003.08.004 – volume: 23 start-page: 2797 year: 2004 ident: B31 article-title: Damage-induced apoptosis publication-title: Oncogene doi: 10.1038/sj.onc.1207532 – reference: 26822499 - Environ Toxicol. 2017 Jan;32(1):329-343 – reference: 24046237 - AAPS J. 2014 Jan;16(1):1-10 – reference: 16169029 - Toxicol Appl Pharmacol. 2006 May 1;212(3):212-23 – reference: 15896459 - Cancer Lett. 2005 Jun 8;223(2):249-58 – reference: 22935676 - Cancer Lett. 2013 Jun 28;334(1):101-8 – reference: 19373608 - Nutr Cancer. 2009;61(3):348-56 – reference: 11357141 - Nature. 2001 May 17;411(6835):342-8 – reference: 11350907 - Clin Cancer Res. 2001 May;7(5):1362-9 – reference: 15862711 - Biomed Pharmacother. 2005 May;59(4):169-74 – reference: 28365961 - J BUON. 2017 Jan-Feb;22(1):244-250 – reference: 10793327 - Oral Oncol. 2000 May;36(3):256-63 – reference: 25117439 - Biochem Biophys Res Commun. 2014 Aug 29;451(3):455-60 – reference: 19345731 - Free Radic Biol Med. 2009 Jun 15;46(12):1639-49 – reference: 15279799 - DNA Repair (Amst). 2004 Aug-Sep;3(8-9):1109-15 – reference: 21884178 - Immunol Rev. 2011 Sep;243(1):206-14 – reference: 23724847 - Cancer Cell Int. 2013 Jun 03;13(1):55 – reference: 22968475 - Molecules. 2012 Sep 11;17(9):10916-27 – reference: 18697601 - Indian J Exp Biol. 2008 Jun;46(6):437-42 – reference: 26170956 - Exp Ther Med. 2015 Jul;10(1):323-329 – reference: 22695230 - Molecules. 2012 Jun 13;17(6):7241-54 – reference: 24293234 - Mol Carcinog. 2015 Jun;54(6):417-29 – reference: 28387888 - Eur Rev Med Pharmacol Sci. 2017 Mar;21(6):1368-1374 – reference: 24857964 - Mar Drugs. 2014 May 22;12(5):3072-90 – reference: 20975835 - PLoS One. 2010 Oct 21;5(10):e13536 – reference: 23935867 - PLoS One. 2013 Jul 30;8(7):e68425 – reference: 24079846 - J Nat Prod. 2013 Oct 25;76(10):1909-15 – reference: 19148178 - Nat Rev Microbiol. 2009 Feb;7(2):99-109 – reference: 12402300 - Int J Cancer. 2002 Dec 1;102(4):328-33 – reference: 26370073 - Environ Toxicol. 2016 Dec;31(12 ):1888-1898 – reference: 21391609 - J Agric Food Chem. 2011 Apr 27;59(8):4288-93 – reference: 17874299 - Apoptosis. 2007 Nov;12(11):2115-33 – reference: 26954095 - Arch Oral Biol. 2016 Jun;66:147-54 – reference: 24921657 - PLoS One. 2014 Jun 12;9(6):e99242 – reference: 27827950 - Toxins (Basel). 2016 Nov 05;8(11):null – reference: 23705007 - PLoS One. 2013 May 21;8(5):e64739 – reference: 16899408 - Trends Mol Med. 2006 Sep;12(9):440-50 – reference: 15183194 - Free Radic Biol Med. 2004 Jul 1;37(1):48-61 – reference: 17049762 - Toxicol Lett. 2006 Dec 15;167(3):191-200 – reference: 16959615 - Cancer Cell. 2006 Sep;10(3):241-52 – reference: 25444914 - Cancer Lett. 2015 Feb 1;357(1):219-30 – reference: 26887975 - Int J Radiat Biol. 2016 May;92 (5):263-72 – reference: 14636829 - Int Immunopharmacol. 2003 Dec;3(13-14):1791-801 – reference: 21710254 - Apoptosis. 2011 Oct;16(10):1014-27 – reference: 21859835 - Carcinogenesis. 2011 Nov;32(11):1697-705 – reference: 28693185 - Oncol Lett. 2017 Jul;14 (1):416-422 – reference: 15077143 - Oncogene. 2004 Apr 12;23(16):2797-808 – reference: 22721813 - Mutat Res. 2012 Sep 18;747(2):253-8 – reference: 15520201 - Cancer Res. 2004 Nov 1;64(21):7947-53 – reference: 9914881 - Curr Opin Oncol. 1999 Jan;11(1):68-75 – reference: 23676582 - Innate Immun. 2014 Feb;20(2):115-25 – reference: 14612425 - Mol Cell Biol. 2003 Dec;23(23):8878-89 – reference: 21978374 - BMC Complement Altern Med. 2011 Oct 06;11:84 – reference: 22981382 - Biochem Pharmacol. 2012 Nov 15;84(10):1282-91 – reference: 16867262 - Acta Pharmacol Sin. 2006 Aug;27(8):1078-84 – reference: 17387274 - Cancer Biol Ther. 2007 May;6(5):646-7 |
SSID | ssj0000402001 |
Score | 2.373029 |
Snippet | Withaferin A (WFA) is one of the most active steroidal lactones with reactive oxygen species (ROS) modulating effects against several types of cancer. ROS... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 634 |
SubjectTerms | apoptosis N-acetylcysteine oral cancer oxidative stress Physiology selective killing withaferin A |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fS-QwEA7iky-Hnvej6kkORPChbLNNmuaxt57Igfqgog8HIWmmuLDbXdwVzv_emXRdduW4e_G1TdowM8l8XzKZYezIoVMxUGZpXYY6lcr3Uy-ET3FuFdBXwbgYRHNxWZzfyl_36n6l1BfFhHXpgTvB9fBDpggZwl5j0LULD8Ho0OgCpIYyeFp90eetkKm4BhMtykR3LokszPQa2imgUC5KWVjkcs0PxXT9f8OYb0MlV3zP2Tb7sACNvOoGu8M2oP3IdqsWCfP4mR_zGMYZ98d32e-74fzBNXSrj1ecKnPgSsCv_gxDTPHNr-PlkPQiluiAwKvpZDqfzIYz7trATy8rfurGuMhw7H-FY-EDsotHPoDRaPaJ3Z79vBmcp4sSCmmda4q0zD0xsjornXTKyzKHTDVlUEGIAAh9kE0gqRD9gI8KcBJQroggELY5FDzkn9lmO2nhK-Olc8ZL1eg6r2UQ1FaputSQOUBMEBLWexWorRf5xanMxcgizyAV2KgCSyqwUQUJO1n2mHa5Nf7R9gfpaNmOsmLHB2grdmEr9n-2krDvrxq2OIvoaMS1MHmaWWEQqWjVlyphXzqNL3-FlDRHnKcTptdsYW0s62_a4UPM1I10jQjz3nsMfp9tkThifJs-YJvzxyf4hoBo7g-j7b8ARkkJMA priority: 102 providerName: Directory of Open Access Journals |
Title | Withaferin A Induces Oxidative Stress-Mediated Apoptosis and DNA Damage in Oral Cancer Cells |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28936177 https://www.proquest.com/docview/1942675245 https://pubmed.ncbi.nlm.nih.gov/PMC5594071 https://doaj.org/article/9e896d0974994351bed97df76e47e8db |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgvPCCYOMjfExGQkg8hCWNHccPCIVu04TU7QEq9oBk2fGFVeqS0nTS9t9z56bdiioeeE1sxfHd-X4_-3zH2DuLTkVDkcRV4atYSDeIXZq6GG0rh4H02oYgmtFpfjIWX8_l-e316H4Cu63UjupJjefTj9e_bz6jwX8ixon-9qCmTQCK0qJshHkm7rMH6JcUmemoB_thXSaqlKTLs8qtHSkzMPpvdOpqw02FbP7bIOjfkZR3XNPxY_aox5S8XCrBE3YPml22VzbIpy9v-HseojzD9vke-_ljsriwNV364yWnwh24UPCz64kPGcD5t3B3JB6FCh7geTlrZ4u2m3TcNp4fnpb80F7iGsSx_xmOhQ9JbeZ8CNNp95SNj4--D0_ivsJCXGWKAjEzR4StSgorrHSiyCCRdeGlT1MPiIyQbCDnSAceH-VgBeQgEGAgqrNQaMiesZ2mbeAF44W12glZqyqrhE-prZRVoSCxgJDBR-xgNaGm6tOPUxWMqUEaQtIwQRqGpGGCNCL2Yd1jtky98Y-2X0hG63aUNDs8aOe_TG-DBnVS5z5BBqU1osTUgdfK1wr_SUHhXcTeriRs0Mjo5MQ20F51JtUIZJQcCBmx50uJrz-10piIqQ1d2BjL5ptmchESeSObIz798r97vmIPaQ5CzJt6zXYW8yt4gyBp4fbD5sJ-sIA_l7wSoA |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Withaferin+A+Induces+Oxidative+Stress-Mediated+Apoptosis+and+DNA+Damage+in+Oral+Cancer+Cells&rft.jtitle=Frontiers+in+physiology&rft.au=Chang%2C+Hsueh-Wei&rft.au=Li%2C+Ruei-Nian&rft.au=Wang%2C+Hui-Ru&rft.au=Liu%2C+Jing-Ru&rft.date=2017-09-07&rft.pub=Frontiers+Media+S.A&rft.eissn=1664-042X&rft.volume=8&rft_id=info:doi/10.3389%2Ffphys.2017.00634&rft_id=info%3Apmid%2F28936177&rft.externalDocID=PMC5594071 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-042X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-042X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-042X&client=summon |