Withaferin A Induces Oxidative Stress-Mediated Apoptosis and DNA Damage in Oral Cancer Cells

Withaferin A (WFA) is one of the most active steroidal lactones with reactive oxygen species (ROS) modulating effects against several types of cancer. ROS regulation involves selective killing. However, the anticancer and selective killing effects of WFA against oral cancer cells remain unclear. We...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in physiology Vol. 8; p. 634
Main Authors Chang, Hsueh-Wei, Li, Ruei-Nian, Wang, Hui-Ru, Liu, Jing-Ru, Tang, Jen-Yang, Huang, Hurng-Wern, Chan, Yu-Hsuan, Yen, Ching-Yu
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 07.09.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Withaferin A (WFA) is one of the most active steroidal lactones with reactive oxygen species (ROS) modulating effects against several types of cancer. ROS regulation involves selective killing. However, the anticancer and selective killing effects of WFA against oral cancer cells remain unclear. We evaluated whether the killing ability of WFA is selective, and we explored its mechanism against oral cancer cells. An MTS tetrazolium cell proliferation assay confirmed that WFA selectively killed two oral cancer cells (Ca9-22 and CAL 27) rather than normal oral cells (HGF-1). WFA also induced apoptosis of Ca9-22 cells, which was measured by flow cytometry for subG1 percentage, annexin V expression, and pan-caspase activity, as well as western blotting for caspases 1, 8, and 9 activations. Flow cytometry analysis shows that WFA-treated Ca9-22 oral cancer cells induced G2/M cell cycle arrest, ROS production, mitochondrial membrane depolarization, and phosphorylated histone H2A.X (γH2AX)-based DNA damage. Moreover, pretreating Ca9-22 cells with -acetylcysteine (NAC) rescued WFA-induced selective killing, apoptosis, G2/M arrest, oxidative stress, and DNA damage. We conclude that WFA induced oxidative stress-mediated selective killing of oral cancer cells.
AbstractList Withaferin A (WFA) is one of the most active steroidal lactones with reactive oxygen species (ROS) modulating effects against several types of cancer. ROS regulation involves selective killing. However, the anticancer and selective killing effects of WFA against oral cancer cells remain unclear. We evaluated whether the killing ability of WFA is selective, and we explored its mechanism against oral cancer cells. An MTS tetrazolium cell proliferation assay confirmed that WFA selectively killed two oral cancer cells (Ca9-22 and CAL 27) rather than normal oral cells (HGF-1). WFA also induced apoptosis of Ca9-22 cells, which was measured by flow cytometry for subG1 percentage, annexin V expression, and pan-caspase activity, as well as western blotting for caspases 1, 8, and 9 activations. Flow cytometry analysis shows that WFA-treated Ca9-22 oral cancer cells induced G2/M cell cycle arrest, ROS production, mitochondrial membrane depolarization, and phosphorylated histone H2A.X (γH2AX)-based DNA damage. Moreover, pretreating Ca9-22 cells with -acetylcysteine (NAC) rescued WFA-induced selective killing, apoptosis, G2/M arrest, oxidative stress, and DNA damage. We conclude that WFA induced oxidative stress-mediated selective killing of oral cancer cells.
Withaferin A (WFA) is one of the most active steroidal lactones with reactive oxygen species (ROS) modulating effects against several types of cancer. ROS regulation involves selective killing. However, the anticancer and selective killing effects of WFA against oral cancer cells remain unclear. We evaluated whether the killing ability of WFA is selective, and we explored its mechanism against oral cancer cells. An MTS tetrazolium cell proliferation assay confirmed that WFA selectively killed two oral cancer cells (Ca9-22 and CAL 27) rather than normal oral cells (HGF-1). WFA also induced apoptosis of Ca9-22 cells, which was measured by flow cytometry for subG1 percentage, annexin V expression, and pan-caspase activity, as well as western blotting for caspases 1, 8, and 9 activations. Flow cytometry analysis shows that WFA-treated Ca9-22 oral cancer cells induced G2/M cell cycle arrest, ROS production, mitochondrial membrane depolarization, and phosphorylated histone H2A.X (γH2AX)-based DNA damage. Moreover, pretreating Ca9-22 cells with N-acetylcysteine (NAC) rescued WFA-induced selective killing, apoptosis, G2/M arrest, oxidative stress, and DNA damage. We conclude that WFA induced oxidative stress-mediated selective killing of oral cancer cells.Withaferin A (WFA) is one of the most active steroidal lactones with reactive oxygen species (ROS) modulating effects against several types of cancer. ROS regulation involves selective killing. However, the anticancer and selective killing effects of WFA against oral cancer cells remain unclear. We evaluated whether the killing ability of WFA is selective, and we explored its mechanism against oral cancer cells. An MTS tetrazolium cell proliferation assay confirmed that WFA selectively killed two oral cancer cells (Ca9-22 and CAL 27) rather than normal oral cells (HGF-1). WFA also induced apoptosis of Ca9-22 cells, which was measured by flow cytometry for subG1 percentage, annexin V expression, and pan-caspase activity, as well as western blotting for caspases 1, 8, and 9 activations. Flow cytometry analysis shows that WFA-treated Ca9-22 oral cancer cells induced G2/M cell cycle arrest, ROS production, mitochondrial membrane depolarization, and phosphorylated histone H2A.X (γH2AX)-based DNA damage. Moreover, pretreating Ca9-22 cells with N-acetylcysteine (NAC) rescued WFA-induced selective killing, apoptosis, G2/M arrest, oxidative stress, and DNA damage. We conclude that WFA induced oxidative stress-mediated selective killing of oral cancer cells.
Withaferin A (WFA) is one of the most active steroidal lactones with reactive oxygen species (ROS) modulating effects against several types of cancer. ROS regulation involves selective killing. However, the anticancer and selective killing effects of WFA against oral cancer cells remain unclear. We evaluated whether the killing ability of WFA is selective, and we explored its mechanism against oral cancer cells. An MTS tetrazolium cell proliferation assay confirmed that WFA selectively killed two oral cancer cells (Ca9-22 and CAL 27) rather than normal oral cells (HGF-1). WFA also induced apoptosis of Ca9-22 cells, which was measured by flow cytometry for subG1 percentage, annexin V expression, and pan-caspase activity, as well as western blotting for caspases 1, 8, and 9 activations. Flow cytometry analysis shows that WFA-treated Ca9-22 oral cancer cells induced G2/M cell cycle arrest, ROS production, mitochondrial membrane depolarization, and phosphorylated histone H2A.X (γH2AX)-based DNA damage. Moreover, pretreating Ca9-22 cells with N -acetylcysteine (NAC) rescued WFA-induced selective killing, apoptosis, G2/M arrest, oxidative stress, and DNA damage. We conclude that WFA induced oxidative stress-mediated selective killing of oral cancer cells.
Withaferin A (WFA) is one of the most active steroidal lactones with reactive oxygen species (ROS) modulating effects against several types of cancer. ROS regulation involves selective killing. However, the anticancer and selective killing effects of WFA against oral cancer cells remain unclear. We evaluated whether the killing ability of WFA is selective, and we explored its mechanism against oral cancer cells. An MTS tetrazolium cell proliferation assay confirmed that WFA selectively killed two oral cancer cells (Ca9-22 and CAL 27) rather than normal oral cells (HGF-1). WFA also induced apoptosis of Ca9-22 cells, which was measured by flow cytometry for subG1 percentage, annexin V expression, and pan-caspase activity, as well as western blotting for caspases 1, 8, and 9 activations. Flow cytometry analysis shows that WFA-treated Ca9-22 oral cancer cells induced G2/M cell cycle arrest, ROS production, mitochondrial membrane depolarization, and phosphorylated histone H2A.X (γH2AX)-based DNA damage. Moreover, pretreating Ca9-22 cells with N-acetylcysteine (NAC) rescued WFA-induced selective killing, apoptosis, G2/M arrest, oxidative stress, and DNA damage. We conclude that WFA induced oxidative stress-mediated selective killing of oral cancer cells.
Author Tang, Jen-Yang
Yen, Ching-Yu
Huang, Hurng-Wern
Chang, Hsueh-Wei
Liu, Jing-Ru
Li, Ruei-Nian
Wang, Hui-Ru
Chan, Yu-Hsuan
AuthorAffiliation 1 Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University Kaohsiung, Taiwan
3 Cancer Center, Kaohsiung Medical University Hospital; Kaohsiung Medical University Kaohsiung, Taiwan
6 Institute of Biomedical Science, National Sun Yat-Sen University Kaohsiung, Taiwan
2 Department of Medical Research, Kaohsiung Medical University Hospital Kaohsiung, Taiwan
4 Research Center for Natural Products and Drug Development, Kaohsiung Medical University Kaohsiung, Taiwan
7 Department of Radiation Oncology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University Kaohsiung, Taiwan
5 Institute of Medical Science and Technology, National Sun Yat-Sen University Kaohsiung, Taiwan
9 Department of Radiation Oncology, Kaohsiung Municipal Ta-Tung Hospital Kaohsiung, Taiwan
8 Department of Radiation Oncology, Kaohsiung Medical University Hospital Kaohsiung, Taiwan
10 Department of Oral and Maxillofacial Surgery Chi-Mei Medical Center Tainan, Taiwan
11 School of Dentistry,
AuthorAffiliation_xml – name: 11 School of Dentistry, Taipei Medical University Taipei, Taiwan
– name: 4 Research Center for Natural Products and Drug Development, Kaohsiung Medical University Kaohsiung, Taiwan
– name: 9 Department of Radiation Oncology, Kaohsiung Municipal Ta-Tung Hospital Kaohsiung, Taiwan
– name: 10 Department of Oral and Maxillofacial Surgery Chi-Mei Medical Center Tainan, Taiwan
– name: 1 Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University Kaohsiung, Taiwan
– name: 3 Cancer Center, Kaohsiung Medical University Hospital; Kaohsiung Medical University Kaohsiung, Taiwan
– name: 2 Department of Medical Research, Kaohsiung Medical University Hospital Kaohsiung, Taiwan
– name: 7 Department of Radiation Oncology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University Kaohsiung, Taiwan
– name: 8 Department of Radiation Oncology, Kaohsiung Medical University Hospital Kaohsiung, Taiwan
– name: 6 Institute of Biomedical Science, National Sun Yat-Sen University Kaohsiung, Taiwan
– name: 5 Institute of Medical Science and Technology, National Sun Yat-Sen University Kaohsiung, Taiwan
Author_xml – sequence: 1
  givenname: Hsueh-Wei
  surname: Chang
  fullname: Chang, Hsueh-Wei
– sequence: 2
  givenname: Ruei-Nian
  surname: Li
  fullname: Li, Ruei-Nian
– sequence: 3
  givenname: Hui-Ru
  surname: Wang
  fullname: Wang, Hui-Ru
– sequence: 4
  givenname: Jing-Ru
  surname: Liu
  fullname: Liu, Jing-Ru
– sequence: 5
  givenname: Jen-Yang
  surname: Tang
  fullname: Tang, Jen-Yang
– sequence: 6
  givenname: Hurng-Wern
  surname: Huang
  fullname: Huang, Hurng-Wern
– sequence: 7
  givenname: Yu-Hsuan
  surname: Chan
  fullname: Chan, Yu-Hsuan
– sequence: 8
  givenname: Ching-Yu
  surname: Yen
  fullname: Yen, Ching-Yu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28936177$$D View this record in MEDLINE/PubMed
BookMark eNp1kktvEzEUhS1UREvpnhXyks0Ee_wab5CilEekQhaAYIFkecZ3ElcTe7AnFf33OEmpWiS8sXV9znf9OM_RSYgBEHpJyYyxRr_px81tntWEqhkhkvEn6IxKySvC6x8nD9an6CLna1IGJzUh9Bk6rRvNJFXqDP387qeN7SH5gOd4Gdyug4xXv72zk78B_GVKkHP1CZy3Ezg8H-M4xewztsHhy89zfGm3dg24-FfJDnhhQwcJL2AY8gv0tLdDhou7-Rx9e__u6-JjdbX6sFzMr6qOKcUrxdqGatqRxnIrWt4wIKJvnHCUOpA1U1zVQtDalZIEy0EC15SIYoBGAztHyyPXRXttxuS3Nt2aaL05FGJaG5sm3w1gdDFIR7TiWnMmaAtOK9erQlTQuLaw3h5Z467dgusgTOVaj6CPd4LfmHW8MUJoThQtgNd3gBR_7SBPZutzV57DBoi7bKjmtVSi5qJIXz3sdd_k7_cUATkKuhRzTtDfSygx-xCYQwjMPgTmEIJikf9YOj-Vv4z70_rh_8Y_-Bi2ig
CitedBy_id crossref_primary_10_3389_fphar_2018_00694
crossref_primary_10_1016_j_phymed_2019_152844
crossref_primary_10_3390_antiox10030393
crossref_primary_10_1093_carcin_bgy109
crossref_primary_10_3390_antiox10071063
crossref_primary_10_3389_fvets_2022_900453
crossref_primary_10_3390_cancers13102450
crossref_primary_10_1016_j_dnarep_2019_02_010
crossref_primary_10_1039_C9MD00296K
crossref_primary_10_3389_fphar_2022_975320
crossref_primary_10_3390_molecules27051576
crossref_primary_10_1007_s00210_024_03662_y
crossref_primary_10_1021_acs_jnatprod_3c01003
crossref_primary_10_2147_DDDT_S422512
crossref_primary_10_3389_fcell_2021_636498
crossref_primary_10_3390_ijms22116098
crossref_primary_10_1002_tox_22767
crossref_primary_10_1080_14756366_2018_1481403
crossref_primary_10_3390_pathogens11070782
crossref_primary_10_1155_2019_3868354
crossref_primary_10_1016_j_bbadis_2022_166615
crossref_primary_10_1016_j_semcancer_2018_08_010
crossref_primary_10_1080_07391102_2022_2077448
crossref_primary_10_2174_1566524023666230418094708
crossref_primary_10_3390_antiox9090873
crossref_primary_10_3390_cancers11091303
crossref_primary_10_3390_cells11060961
crossref_primary_10_1007_s12094_024_03784_y
crossref_primary_10_3390_antiox11071352
crossref_primary_10_1016_j_cbi_2023_110698
crossref_primary_10_3390_antiox9090876
crossref_primary_10_3390_biom10050777
crossref_primary_10_3390_ijms23168839
crossref_primary_10_3390_pharmaceutics14030611
crossref_primary_10_1371_journal_pone_0236680
crossref_primary_10_3390_antiox11030587
crossref_primary_10_1016_j_bbrc_2018_06_162
crossref_primary_10_1097_TP_0000000000002287
crossref_primary_10_3390_antiox10071117
crossref_primary_10_1039_D0NJ04319B
crossref_primary_10_1080_09553002_2019_1625490
crossref_primary_10_1055_a_2289_9600
crossref_primary_10_1371_journal_ppat_1012816
crossref_primary_10_3390_biomedicines8120571
crossref_primary_10_1038_s41598_019_53568_6
crossref_primary_10_1186_s13048_019_0586_1
crossref_primary_10_1089_ars_2023_0442
crossref_primary_10_1155_2021_9483433
crossref_primary_10_1371_journal_pone_0209665
crossref_primary_10_3390_ijms21176443
crossref_primary_10_1080_01635581_2020_1778746
crossref_primary_10_3892_ol_2021_12493
crossref_primary_10_3390_antiox11102072
crossref_primary_10_1002_tox_23951
crossref_primary_10_3390_cancers11040453
crossref_primary_10_1002_tox_22986
crossref_primary_10_3390_antiox9111120
crossref_primary_10_1016_j_procbio_2022_07_028
crossref_primary_10_1002_tox_22625
crossref_primary_10_3390_ijms23062981
crossref_primary_10_1016_j_jprot_2021_104334
crossref_primary_10_1021_acssensors_9b01057
Cites_doi 10.1128/MCB.23.23.8878-8889.2003
10.1016/j.taap.2005.07.018
10.1371/journal.pone.0099242
10.1016/j.archoralbio.2016.02.019
10.1016/j.molmed.2006.07.007
10.1016/j.freeradbiomed.2004.04.002
10.1158/0008-5472.CAN-04-0945
10.1016/j.toxlet.2006.09.007
10.1038/35077213
10.1016/j.bcp.2012.08.027
10.1097/00001622-199901000-00014
10.1016/j.bbrc.2014.08.018
10.1016/j.canlet.2014.11.026
10.3390/molecules17067241
10.3390/toxins8110319
10.1038/nrmicro2070
10.1371/journal.pone.0064739
10.3892/etm.2015.2480
10.1186/1475-2867-13-55
10.1016/j.dnarep.2004.03.002
10.3892/ol.2017.6169
10.3390/molecules170910916
10.3109/09553002.2016.1145753
10.3390/md12053072
10.1002/mc.22110
10.1002/ijc.10701
10.1016/S1368-8375(00)00007-5
10.1371/journal.pone.0013536
10.1007/s10495-007-0129-x
10.1016/j.ccr.2006.08.009
10.1002/tox.22238
10.1093/carcin/bgr192
10.1208/s12248-013-9531-1
10.1016/j.canlet.2004.10.049
10.1007/s10495-011-0625-x
10.1016/j.mrgentox.2012.06.003
10.1016/j.biopha.2005.03.009
10.1371/journal.pone.0068425
10.1016/j.canlet.2012.08.026
10.1111/j.1600-065X.2011.01044.x
10.1016/j.freeradbiomed.2009.03.022
10.1021/np400441f
10.1177/1753425913484374
10.1186/1472-6882-11-84
10.4161/cbt.6.5.4092
10.1080/01635580802567158
10.1002/tox.22190
10.1021/jf200566a
10.1111/j.1745-7254.2006.00345.x
10.1016/j.intimp.2003.08.004
10.1038/sj.onc.1207532
ContentType Journal Article
Copyright Copyright © 2017 Chang, Li, Wang, Liu, Tang, Huang, Chan and Yen. 2017 Chang, Li, Wang, Liu, Tang, Huang, Chan and Yen
Copyright_xml – notice: Copyright © 2017 Chang, Li, Wang, Liu, Tang, Huang, Chan and Yen. 2017 Chang, Li, Wang, Liu, Tang, Huang, Chan and Yen
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fphys.2017.00634
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1664-042X
ExternalDocumentID oai_doaj_org_article_9e896d0974994351bed97df76e47e8db
PMC5594071
28936177
10_3389_fphys_2017_00634
Genre Journal Article
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
CITATION
DIK
EMOBN
F5P
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
O5R
O5S
OK1
PGMZT
RNS
RPM
IAO
IEA
IHR
IHW
IPNFZ
ISR
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c3774-73b8191c08a4a5b483e05f8d5d11de62374725512dd5d6ea4e6e4910508ae89e3
IEDL.DBID M48
ISSN 1664-042X
IngestDate Wed Aug 27 01:25:36 EDT 2025
Thu Aug 21 18:22:20 EDT 2025
Fri Jul 11 00:01:12 EDT 2025
Thu Jan 02 22:22:19 EST 2025
Thu Apr 24 22:59:12 EDT 2025
Tue Jul 01 04:18:19 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords selective killing
apoptosis
withaferin A
oral cancer
oxidative stress
N-acetylcysteine
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3774-73b8191c08a4a5b483e05f8d5d11de62374725512dd5d6ea4e6e4910508ae89e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Reviewed by: Vivek Choudhary, Augusta University, United States; Paola Patrignani, Università degli Studi “G. d'Annunzio” Chieti-Pescara, Italy; Juan Antonio Rosado Dionisio, University of Extremadura, Spain
Edited by: Gareth Davison, Ulster University, United Kingdom
This article was submitted to Oxidant Physiology, a section of the journal Frontiers in Physiology
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fphys.2017.00634
PMID 28936177
PQID 1942675245
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_9e896d0974994351bed97df76e47e8db
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5594071
proquest_miscellaneous_1942675245
pubmed_primary_28936177
crossref_primary_10_3389_fphys_2017_00634
crossref_citationtrail_10_3389_fphys_2017_00634
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-09-07
PublicationDateYYYYMMDD 2017-09-07
PublicationDate_xml – month: 09
  year: 2017
  text: 2017-09-07
  day: 07
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in physiology
PublicationTitleAlternate Front Physiol
PublicationYear 2017
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Chang (B5) 2016; 66
Bergsbaken (B2) 2009; 7
Woo (B50) 2014; 451
Roy (B37) 2013; 76
Daniel (B11) 2003; 3
Lee (B18) 2015; 54
Widodo (B48) 2010; 5
Chang (B4) 2016; 92
Li (B20) 2017; 21
Chiu (B8) 2002; 102
Nicco (B30) 2005; 59
Li (B22) 2015; 357
Liu (B24) 2017; 22
Lee (B19) 2009; 46
Yeh (B53) 2012; 17
Chen (B6) 2016; 8
Trachootham (B43) 2006; 10
Vyas (B47) 2014; 16
Mayola (B27) 2011; 16
Munagala (B29) 2011; 32
Lien (B23) 2017; 32
Evan (B13) 2001; 411
Samhan-Arias (B38) 2004; 37
Li (B21) 2006; 27
Pollack (B33) 2001; 7
Chiu (B9) 2005; 223
Ding (B12) 2009; 61
Norbury (B31) 2004; 23
Vignon (B46) 2013; 8
Wilkes (B49) 2003; 23
Oh (B32) 2006; 212
Sollberger (B42) 2014; 20
Shieh (B40) 2014; 9
Hung (B15) 2015; 31
Reed (B35) 1999; 11
Roos (B36) 2006; 12
Lee (B17) 2013; 13
Yang (B52) 2012; 17
Zhang (B55) 2011; 11
Barzilai (B1) 2004; 3
Lv (B25) 2015; 10
Malik (B26) 2007; 12
Miao (B28) 2011; 243
Kim (B16) 2017; 14
Wu (B51) 2007; 6
Hahm (B14) 2013; 334
Chan (B3) 2006; 167
Real (B34) 2004; 64
Uma Devi (B44) 2008; 46
Yen (B54) 2012; 747
Chiu (B10) 2011; 59
Shih (B41) 2014; 12
Chiu (B7) 2013; 8
Scully (B39) 2000; 36
Vanden Berghe (B45) 2012; 84
21859835 - Carcinogenesis. 2011 Nov;32(11):1697-705
26370073 - Environ Toxicol. 2016 Dec;31(12 ):1888-1898
19148178 - Nat Rev Microbiol. 2009 Feb;7(2):99-109
27827950 - Toxins (Basel). 2016 Nov 05;8(11):null
22935676 - Cancer Lett. 2013 Jun 28;334(1):101-8
21978374 - BMC Complement Altern Med. 2011 Oct 06;11:84
26822499 - Environ Toxicol. 2017 Jan;32(1):329-343
15896459 - Cancer Lett. 2005 Jun 8;223(2):249-58
28365961 - J BUON. 2017 Jan-Feb;22(1):244-250
24921657 - PLoS One. 2014 Jun 12;9(6):e99242
17874299 - Apoptosis. 2007 Nov;12(11):2115-33
22695230 - Molecules. 2012 Jun 13;17(6):7241-54
23705007 - PLoS One. 2013 May 21;8(5):e64739
15520201 - Cancer Res. 2004 Nov 1;64(21):7947-53
17049762 - Toxicol Lett. 2006 Dec 15;167(3):191-200
15077143 - Oncogene. 2004 Apr 12;23(16):2797-808
25444914 - Cancer Lett. 2015 Feb 1;357(1):219-30
22721813 - Mutat Res. 2012 Sep 18;747(2):253-8
24293234 - Mol Carcinog. 2015 Jun;54(6):417-29
19345731 - Free Radic Biol Med. 2009 Jun 15;46(12):1639-49
26170956 - Exp Ther Med. 2015 Jul;10(1):323-329
14636829 - Int Immunopharmacol. 2003 Dec;3(13-14):1791-801
18697601 - Indian J Exp Biol. 2008 Jun;46(6):437-42
21391609 - J Agric Food Chem. 2011 Apr 27;59(8):4288-93
10793327 - Oral Oncol. 2000 May;36(3):256-63
24046237 - AAPS J. 2014 Jan;16(1):1-10
17387274 - Cancer Biol Ther. 2007 May;6(5):646-7
25117439 - Biochem Biophys Res Commun. 2014 Aug 29;451(3):455-60
26954095 - Arch Oral Biol. 2016 Jun;66:147-54
23676582 - Innate Immun. 2014 Feb;20(2):115-25
16169029 - Toxicol Appl Pharmacol. 2006 May 1;212(3):212-23
28387888 - Eur Rev Med Pharmacol Sci. 2017 Mar;21(6):1368-1374
21884178 - Immunol Rev. 2011 Sep;243(1):206-14
15862711 - Biomed Pharmacother. 2005 May;59(4):169-74
15183194 - Free Radic Biol Med. 2004 Jul 1;37(1):48-61
26887975 - Int J Radiat Biol. 2016 May;92 (5):263-72
28693185 - Oncol Lett. 2017 Jul;14 (1):416-422
11350907 - Clin Cancer Res. 2001 May;7(5):1362-9
19373608 - Nutr Cancer. 2009;61(3):348-56
12402300 - Int J Cancer. 2002 Dec 1;102(4):328-33
14612425 - Mol Cell Biol. 2003 Dec;23(23):8878-89
16899408 - Trends Mol Med. 2006 Sep;12(9):440-50
20975835 - PLoS One. 2010 Oct 21;5(10):e13536
22968475 - Molecules. 2012 Sep 11;17(9):10916-27
23935867 - PLoS One. 2013 Jul 30;8(7):e68425
15279799 - DNA Repair (Amst). 2004 Aug-Sep;3(8-9):1109-15
11357141 - Nature. 2001 May 17;411(6835):342-8
24857964 - Mar Drugs. 2014 May 22;12(5):3072-90
9914881 - Curr Opin Oncol. 1999 Jan;11(1):68-75
16867262 - Acta Pharmacol Sin. 2006 Aug;27(8):1078-84
24079846 - J Nat Prod. 2013 Oct 25;76(10):1909-15
16959615 - Cancer Cell. 2006 Sep;10(3):241-52
23724847 - Cancer Cell Int. 2013 Jun 03;13(1):55
22981382 - Biochem Pharmacol. 2012 Nov 15;84(10):1282-91
21710254 - Apoptosis. 2011 Oct;16(10):1014-27
References_xml – volume: 23
  start-page: 8878
  year: 2003
  ident: B49
  article-title: Cell-type-specific activation of PAK2 by transforming growth factor beta independent of Smad2 and Smad3
  publication-title: Mol. Cell Biol.
  doi: 10.1128/MCB.23.23.8878-8889.2003
– volume: 212
  start-page: 212
  year: 2006
  ident: B32
  article-title: Rapid and transient ROS generation by cadmium triggers apoptosis via caspase-dependent pathway in HepG2 cells and this is inhibited through N-acetylcysteine-mediated catalase upregulation
  publication-title: Toxicol. Appl. Pharmacol.
  doi: 10.1016/j.taap.2005.07.018
– volume: 22
  start-page: 244
  year: 2017
  ident: B24
  article-title: Withaferin induces mitochondrial-dependent apoptosis in non-small cell lung cancer cells via generation of reactive oxygen species
  publication-title: J. BUON
– volume: 9
  start-page: e99242
  year: 2014
  ident: B40
  article-title: An increase in reactive oxygen species by deregulation of ARNT enhances chemotherapeutic drug-induced cancer cell death
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0099242
– volume: 66
  start-page: 147
  year: 2016
  ident: B5
  article-title: Sinuleptolide inhibits proliferation of oral cancer Ca9-22 cells involving apoptosis, oxidative stress, and DNA damage
  publication-title: Arch. Oral Biol.
  doi: 10.1016/j.archoralbio.2016.02.019
– volume: 12
  start-page: 440
  year: 2006
  ident: B36
  article-title: Damage-induced cell death by apoptosis
  publication-title: Trends Mol. Med.
  doi: 10.1016/j.molmed.2006.07.007
– volume: 37
  start-page: 48
  year: 2004
  ident: B38
  article-title: Kaempferol blocks oxidative stress in cerebellar granule cells and reveals a key role for reactive oxygen species production at the plasma membrane in the commitment to apoptosis
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2004.04.002
– volume: 64
  start-page: 7947
  year: 2004
  ident: B34
  article-title: Breast cancer cells can evade apoptosis-mediated selective killing by a novel small molecule inhibitor of Bcl-2
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-04-0945
– volume: 7
  start-page: 1362
  year: 2001
  ident: B33
  article-title: Direct stimulation of apoptotic signaling by soluble Apo2l/tumor necrosis factor-related apoptosis-inducing ligand leads to selective killing of glioma cells
  publication-title: Clin. Cancer Res.
– volume: 167
  start-page: 191
  year: 2006
  ident: B3
  article-title: CdSe quantum dots induce apoptosis in human neuroblastoma cells via mitochondrial-dependent pathways and inhibition of survival signals
  publication-title: Toxicol. Lett.
  doi: 10.1016/j.toxlet.2006.09.007
– volume: 411
  start-page: 342
  year: 2001
  ident: B13
  article-title: Proliferation, cell cycle and apoptosis in cancer
  publication-title: Nature
  doi: 10.1038/35077213
– volume: 84
  start-page: 1282
  year: 2012
  ident: B45
  article-title: Molecular insight in the multifunctional activities of Withaferin A
  publication-title: Biochem. Pharmacol.
  doi: 10.1016/j.bcp.2012.08.027
– volume: 11
  start-page: 68
  year: 1999
  ident: B35
  article-title: Mechanisms of apoptosis avoidance in cancer
  publication-title: Curr. Opin. Oncol.
  doi: 10.1097/00001622-199901000-00014
– volume: 451
  start-page: 455
  year: 2014
  ident: B50
  article-title: Axl is a novel target of withaferin A in the induction of apoptosis and the suppression of invasion
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2014.08.018
– volume: 357
  start-page: 219
  year: 2015
  ident: B22
  article-title: Synergistic antitumor activity of withaferin A combined with oxaliplatin triggers reactive oxygen species-mediated inactivation of the PI3K/AKT pathway in human pancreatic cancer cells
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2014.11.026
– volume: 17
  start-page: 7241
  year: 2012
  ident: B52
  article-title: Aqueous extracts of the edible Gracilaria tenuistipitata are protective against H2O2-induced DNA damage, growth inhibition, and cell cycle arrest
  publication-title: Molecules
  doi: 10.3390/molecules17067241
– volume: 8
  start-page: 319
  year: 2016
  ident: B6
  article-title: Tenuifolide B from Cinnamomum tenuifolium stem selectively inhibits proliferation of oral cancer cells via apoptosis, ROS generation, mitochondrial depolarization, and DNA damage
  publication-title: Toxins
  doi: 10.3390/toxins8110319
– volume: 7
  start-page: 99
  year: 2009
  ident: B2
  article-title: Pyroptosis: host cell death and inflammation
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro2070
– volume: 8
  start-page: e64739
  year: 2013
  ident: B7
  article-title: Golden berry-derived 4β-hydroxywithanolide E for selectively killing oral cancer cells by generating, ROS DNA damage, and apoptotic pathways
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0064739
– volume: 10
  start-page: 323
  year: 2015
  ident: B25
  article-title: Antiproliferation potential of withaferin A on human osteosarcoma cells via the inhibition of G2/M checkpoint proteins
  publication-title: Exp. Ther. Med.
  doi: 10.3892/etm.2015.2480
– volume: 13
  start-page: 55
  year: 2013
  ident: B17
  article-title: Marine algal natural products with anti-oxidative, anti-inflammatory, and anti-cancer properties
  publication-title: Cancer Cell Int.
  doi: 10.1186/1475-2867-13-55
– volume: 3
  start-page: 1109
  year: 2004
  ident: B1
  article-title: DNA damage responses to oxidative stress
  publication-title: DNA Repair
  doi: 10.1016/j.dnarep.2004.03.002
– volume: 14
  start-page: 416
  year: 2017
  ident: B16
  article-title: Withaferin A inhibits the proliferation of gastric cancer cells by inducing G2/M cell cycle arrest and apoptosis
  publication-title: Oncol. Lett.
  doi: 10.3892/ol.2017.6169
– volume: 17
  start-page: 10916
  year: 2012
  ident: B53
  article-title: Antiproliferation and induction of apoptosis in Ca9-22 oral cancer cells by ethanolic extract of Gracilaria tenuistipitata
  publication-title: Molecules
  doi: 10.3390/molecules170910916
– volume: 92
  start-page: 263
  year: 2016
  ident: B4
  article-title: Synergistic anti-oral cancer effects of UVC and methanolic extracts of Cryptocarya concinna roots via apoptosis, oxidative stress and DNA damage
  publication-title: Int. J. Radiat. Biol.
  doi: 10.3109/09553002.2016.1145753
– volume: 12
  start-page: 3072
  year: 2014
  ident: B41
  article-title: Cracking the cytotoxicity code: apoptotic induction of 10-acetylirciformonin B is mediated through ROS generation and mitochondrial dysfunction
  publication-title: Mar. Drugs
  doi: 10.3390/md12053072
– volume: 54
  start-page: 417
  year: 2015
  ident: B18
  article-title: Withaferin A inhibits experimental epithelial-mesenchymal transition in MCF10A cells and suppresses vimentin protein level in vivo in breast tumors
  publication-title: Mol. Carcinog.
  doi: 10.1002/mc.22110
– volume: 102
  start-page: 328
  year: 2002
  ident: B8
  article-title: Ectopic expression of herpes simplex virus-thymidine kinase gene in human non-small cell lung cancer cells conferred caspase-activated apoptosis sensitized by ganciclovir
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.10701
– volume: 36
  start-page: 256
  year: 2000
  ident: B39
  article-title: Genetic aberrations in oral or head and neck squamous cell carcinoma (SCCHN): 1. Carcinogen metabolism, DNA repair and cell cycle control
  publication-title: Oral Oncol.
  doi: 10.1016/S1368-8375(00)00007-5
– volume: 46
  start-page: 437
  year: 2008
  ident: B44
  article-title: Enhancement of radiation induced cell death in chicken B lymphocytes by withaferin A
  publication-title: Indian J. Exp. Biol.
– volume: 5
  start-page: e13536
  year: 2010
  ident: B48
  article-title: Selective killing of cancer cells by Ashwagandha leaf extract and its component Withanone involves ROS signaling
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0013536
– volume: 12
  start-page: 2115
  year: 2007
  ident: B26
  article-title: Reactive oxygen species generation and mitochondrial dysfunction in the apoptotic cell death of human myeloid leukemia HL-60 cells by a dietary compound withaferin A with concomitant protection by N-acetyl cysteine
  publication-title: Apoptosis
  doi: 10.1007/s10495-007-0129-x
– volume: 10
  start-page: 241
  year: 2006
  ident: B43
  article-title: Selective killing of oncogenically transformed cells through a ROS mediated mechanism by beta-phenylethyl isothiocyanate
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2006.08.009
– volume: 32
  start-page: 329
  year: 2017
  ident: B23
  article-title: Tetrandrine induces programmed cell death in human oral cancer CAL27 cells through the reactive oxygen species production and caspase-dependent pathways and associated with beclin-1-induced cell autophagy
  publication-title: Environ. Toxicol.
  doi: 10.1002/tox.22238
– volume: 32
  start-page: 1697
  year: 2011
  ident: B29
  article-title: Withaferin A induces p53-dependent apoptosis by repression of HPV oncogenes and upregulation of tumor suppressor proteins in human cervical cancer cells
  publication-title: Carcinogenesis
  doi: 10.1093/carcin/bgr192
– volume: 16
  start-page: 1
  year: 2014
  ident: B47
  article-title: Molecular targets and mechanisms of cancer prevention and treatment by withaferin A, a naturally occurring steroidal lactone
  publication-title: AAPS J.
  doi: 10.1208/s12248-013-9531-1
– volume: 223
  start-page: 249
  year: 2005
  ident: B9
  article-title: Etoposide (VP-16) elicits apoptosis following prolonged G2-M cell arrest in p53-mutated human non-small cell lung cancer cells
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2004.10.049
– volume: 16
  start-page: 1014
  year: 2011
  ident: B27
  article-title: Withaferin A induces apoptosis in human melanoma cells through generation of reactive oxygen species and down-regulation of Bcl-2
  publication-title: Apoptosis
  doi: 10.1007/s10495-011-0625-x
– volume: 747
  start-page: 253
  year: 2012
  ident: B54
  article-title: Antiproliferative effects of goniothalamin on Ca9-22 oral cancer cells through apoptosis, DNA damage and ROS induction
  publication-title: Mutat. Res.
  doi: 10.1016/j.mrgentox.2012.06.003
– volume: 59
  start-page: 169
  year: 2005
  ident: B30
  article-title: Differential modulation of normal and tumor cell proliferation by reactive oxygen species
  publication-title: Biomed. Pharmacother.
  doi: 10.1016/j.biopha.2005.03.009
– volume: 8
  start-page: e68425
  year: 2013
  ident: B46
  article-title: Flow cytometric quantification of all phases of the cell cycle and apoptosis in a two-color fluorescence plot
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0068425
– volume: 334
  start-page: 101
  year: 2013
  ident: B14
  article-title: Withaferin A induced apoptosis in human breast cancer cells is associated with suppression of inhibitor of apoptosis family protein expression
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2012.08.026
– volume: 243
  start-page: 206
  year: 2011
  ident: B28
  article-title: Caspase-1-induced pyroptotic cell death
  publication-title: Immunol. Rev.
  doi: 10.1111/j.1600-065X.2011.01044.x
– volume: 21
  start-page: 1368
  year: 2017
  ident: B20
  article-title: Withaferin-A induces apoptosis in osteosarcoma U2OS cell line via generation of ROS and disruption of mitochondrial membrane potential
  publication-title: Eur. Rev. Med. Pharmacol. Sci.
– volume: 46
  start-page: 1639
  year: 2009
  ident: B19
  article-title: induced apoptosis through reactive oxygen species-mediated up-regulation of death receptor 5 and down-regulation of c-FLIP
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2009.03.022
– volume: 76
  start-page: 1909
  year: 2013
  ident: B37
  article-title: A steroidal lactone from Withania somnifera, induces mitotic catastrophe and growth arrest in prostate cancer cells
  publication-title: J. Nat. Prod.
  doi: 10.1021/np400441f
– volume: 20
  start-page: 115
  year: 2014
  ident: B42
  article-title: Caspase-1: the inflammasome and beyond
  publication-title: Innate Immun.
  doi: 10.1177/1753425913484374
– volume: 11
  start-page: 84
  year: 2011
  ident: B55
  article-title: Down-regulation of estrogen receptor-alpha and rearranged during transfection tyrosine kinase is associated with withaferin A-induced apoptosis in MCF-7 breast cancer cells
  publication-title: BMC Complement. Altern. Med.
  doi: 10.1186/1472-6882-11-84
– volume: 6
  start-page: 646
  year: 2007
  ident: B51
  article-title: Targeting ROS selective killing of cancer cells by a cruciferous vegetable derived pro-oxidant compound
  publication-title: Cancer Biol Ther.
  doi: 10.4161/cbt.6.5.4092
– volume: 61
  start-page: 348
  year: 2009
  ident: B12
  article-title: Selective induction of apoptosis of human oral cancer cell lines by avocado extracts via a ROS mediated mechanism
  publication-title: Nutr. Cancer
  doi: 10.1080/01635580802567158
– volume: 31
  start-page: 1888
  year: 2015
  ident: B15
  article-title: Reactive oxygen species mediate Terbufos-induced apoptosis in mouse testicular cell lines via the modulation of cell cycle and pro-apoptotic proteins
  publication-title: Environ. Toxicol
  doi: 10.1002/tox.22190
– volume: 59
  start-page: 4288
  year: 2011
  ident: B10
  article-title: Goniothalamin inhibits growth of human lung cancer cells through DNA damage, apoptosis, and reduced migration ability
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf200566a
– volume: 27
  start-page: 1078
  year: 2006
  ident: B21
  article-title: Role of oxidative stress in the apoptosis of hepatocellular carcinoma induced by combination of arsenic trioxide and ascorbic acid
  publication-title: Acta Pharmacol. Sin.
  doi: 10.1111/j.1745-7254.2006.00345.x
– volume: 3
  start-page: 1791
  year: 2003
  ident: B11
  article-title: Apoptosis-mediated selective killing of malignant cells by cardiac steroids: maintenance of cytotoxicity and loss of cardiac activity of chemically modified derivatives
  publication-title: Int. Immunopharmacol.
  doi: 10.1016/j.intimp.2003.08.004
– volume: 23
  start-page: 2797
  year: 2004
  ident: B31
  article-title: Damage-induced apoptosis
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1207532
– reference: 26822499 - Environ Toxicol. 2017 Jan;32(1):329-343
– reference: 24046237 - AAPS J. 2014 Jan;16(1):1-10
– reference: 16169029 - Toxicol Appl Pharmacol. 2006 May 1;212(3):212-23
– reference: 15896459 - Cancer Lett. 2005 Jun 8;223(2):249-58
– reference: 22935676 - Cancer Lett. 2013 Jun 28;334(1):101-8
– reference: 19373608 - Nutr Cancer. 2009;61(3):348-56
– reference: 11357141 - Nature. 2001 May 17;411(6835):342-8
– reference: 11350907 - Clin Cancer Res. 2001 May;7(5):1362-9
– reference: 15862711 - Biomed Pharmacother. 2005 May;59(4):169-74
– reference: 28365961 - J BUON. 2017 Jan-Feb;22(1):244-250
– reference: 10793327 - Oral Oncol. 2000 May;36(3):256-63
– reference: 25117439 - Biochem Biophys Res Commun. 2014 Aug 29;451(3):455-60
– reference: 19345731 - Free Radic Biol Med. 2009 Jun 15;46(12):1639-49
– reference: 15279799 - DNA Repair (Amst). 2004 Aug-Sep;3(8-9):1109-15
– reference: 21884178 - Immunol Rev. 2011 Sep;243(1):206-14
– reference: 23724847 - Cancer Cell Int. 2013 Jun 03;13(1):55
– reference: 22968475 - Molecules. 2012 Sep 11;17(9):10916-27
– reference: 18697601 - Indian J Exp Biol. 2008 Jun;46(6):437-42
– reference: 26170956 - Exp Ther Med. 2015 Jul;10(1):323-329
– reference: 22695230 - Molecules. 2012 Jun 13;17(6):7241-54
– reference: 24293234 - Mol Carcinog. 2015 Jun;54(6):417-29
– reference: 28387888 - Eur Rev Med Pharmacol Sci. 2017 Mar;21(6):1368-1374
– reference: 24857964 - Mar Drugs. 2014 May 22;12(5):3072-90
– reference: 20975835 - PLoS One. 2010 Oct 21;5(10):e13536
– reference: 23935867 - PLoS One. 2013 Jul 30;8(7):e68425
– reference: 24079846 - J Nat Prod. 2013 Oct 25;76(10):1909-15
– reference: 19148178 - Nat Rev Microbiol. 2009 Feb;7(2):99-109
– reference: 12402300 - Int J Cancer. 2002 Dec 1;102(4):328-33
– reference: 26370073 - Environ Toxicol. 2016 Dec;31(12 ):1888-1898
– reference: 21391609 - J Agric Food Chem. 2011 Apr 27;59(8):4288-93
– reference: 17874299 - Apoptosis. 2007 Nov;12(11):2115-33
– reference: 26954095 - Arch Oral Biol. 2016 Jun;66:147-54
– reference: 24921657 - PLoS One. 2014 Jun 12;9(6):e99242
– reference: 27827950 - Toxins (Basel). 2016 Nov 05;8(11):null
– reference: 23705007 - PLoS One. 2013 May 21;8(5):e64739
– reference: 16899408 - Trends Mol Med. 2006 Sep;12(9):440-50
– reference: 15183194 - Free Radic Biol Med. 2004 Jul 1;37(1):48-61
– reference: 17049762 - Toxicol Lett. 2006 Dec 15;167(3):191-200
– reference: 16959615 - Cancer Cell. 2006 Sep;10(3):241-52
– reference: 25444914 - Cancer Lett. 2015 Feb 1;357(1):219-30
– reference: 26887975 - Int J Radiat Biol. 2016 May;92 (5):263-72
– reference: 14636829 - Int Immunopharmacol. 2003 Dec;3(13-14):1791-801
– reference: 21710254 - Apoptosis. 2011 Oct;16(10):1014-27
– reference: 21859835 - Carcinogenesis. 2011 Nov;32(11):1697-705
– reference: 28693185 - Oncol Lett. 2017 Jul;14 (1):416-422
– reference: 15077143 - Oncogene. 2004 Apr 12;23(16):2797-808
– reference: 22721813 - Mutat Res. 2012 Sep 18;747(2):253-8
– reference: 15520201 - Cancer Res. 2004 Nov 1;64(21):7947-53
– reference: 9914881 - Curr Opin Oncol. 1999 Jan;11(1):68-75
– reference: 23676582 - Innate Immun. 2014 Feb;20(2):115-25
– reference: 14612425 - Mol Cell Biol. 2003 Dec;23(23):8878-89
– reference: 21978374 - BMC Complement Altern Med. 2011 Oct 06;11:84
– reference: 22981382 - Biochem Pharmacol. 2012 Nov 15;84(10):1282-91
– reference: 16867262 - Acta Pharmacol Sin. 2006 Aug;27(8):1078-84
– reference: 17387274 - Cancer Biol Ther. 2007 May;6(5):646-7
SSID ssj0000402001
Score 2.373029
Snippet Withaferin A (WFA) is one of the most active steroidal lactones with reactive oxygen species (ROS) modulating effects against several types of cancer. ROS...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 634
SubjectTerms apoptosis
N-acetylcysteine
oral cancer
oxidative stress
Physiology
selective killing
withaferin A
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fS-QwEA7iky-Hnvej6kkORPChbLNNmuaxt57Igfqgog8HIWmmuLDbXdwVzv_emXRdduW4e_G1TdowM8l8XzKZYezIoVMxUGZpXYY6lcr3Uy-ET3FuFdBXwbgYRHNxWZzfyl_36n6l1BfFhHXpgTvB9fBDpggZwl5j0LULD8Ho0OgCpIYyeFp90eetkKm4BhMtykR3LokszPQa2imgUC5KWVjkcs0PxXT9f8OYb0MlV3zP2Tb7sACNvOoGu8M2oP3IdqsWCfP4mR_zGMYZ98d32e-74fzBNXSrj1ecKnPgSsCv_gxDTPHNr-PlkPQiluiAwKvpZDqfzIYz7trATy8rfurGuMhw7H-FY-EDsotHPoDRaPaJ3Z79vBmcp4sSCmmda4q0zD0xsjornXTKyzKHTDVlUEGIAAh9kE0gqRD9gI8KcBJQroggELY5FDzkn9lmO2nhK-Olc8ZL1eg6r2UQ1FaputSQOUBMEBLWexWorRf5xanMxcgizyAV2KgCSyqwUQUJO1n2mHa5Nf7R9gfpaNmOsmLHB2grdmEr9n-2krDvrxq2OIvoaMS1MHmaWWEQqWjVlyphXzqNL3-FlDRHnKcTptdsYW0s62_a4UPM1I10jQjz3nsMfp9tkThifJs-YJvzxyf4hoBo7g-j7b8ARkkJMA
  priority: 102
  providerName: Directory of Open Access Journals
Title Withaferin A Induces Oxidative Stress-Mediated Apoptosis and DNA Damage in Oral Cancer Cells
URI https://www.ncbi.nlm.nih.gov/pubmed/28936177
https://www.proquest.com/docview/1942675245
https://pubmed.ncbi.nlm.nih.gov/PMC5594071
https://doaj.org/article/9e896d0974994351bed97df76e47e8db
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgvPCCYOMjfExGQkg8hCWNHccPCIVu04TU7QEq9oBk2fGFVeqS0nTS9t9z56bdiioeeE1sxfHd-X4_-3zH2DuLTkVDkcRV4atYSDeIXZq6GG0rh4H02oYgmtFpfjIWX8_l-e316H4Cu63UjupJjefTj9e_bz6jwX8ixon-9qCmTQCK0qJshHkm7rMH6JcUmemoB_thXSaqlKTLs8qtHSkzMPpvdOpqw02FbP7bIOjfkZR3XNPxY_aox5S8XCrBE3YPml22VzbIpy9v-HseojzD9vke-_ljsriwNV364yWnwh24UPCz64kPGcD5t3B3JB6FCh7geTlrZ4u2m3TcNp4fnpb80F7iGsSx_xmOhQ9JbeZ8CNNp95SNj4--D0_ivsJCXGWKAjEzR4StSgorrHSiyCCRdeGlT1MPiIyQbCDnSAceH-VgBeQgEGAgqrNQaMiesZ2mbeAF44W12glZqyqrhE-prZRVoSCxgJDBR-xgNaGm6tOPUxWMqUEaQtIwQRqGpGGCNCL2Yd1jtky98Y-2X0hG63aUNDs8aOe_TG-DBnVS5z5BBqU1osTUgdfK1wr_SUHhXcTeriRs0Mjo5MQ20F51JtUIZJQcCBmx50uJrz-10piIqQ1d2BjL5ptmchESeSObIz798r97vmIPaQ5CzJt6zXYW8yt4gyBp4fbD5sJ-sIA_l7wSoA
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Withaferin+A+Induces+Oxidative+Stress-Mediated+Apoptosis+and+DNA+Damage+in+Oral+Cancer+Cells&rft.jtitle=Frontiers+in+physiology&rft.au=Chang%2C+Hsueh-Wei&rft.au=Li%2C+Ruei-Nian&rft.au=Wang%2C+Hui-Ru&rft.au=Liu%2C+Jing-Ru&rft.date=2017-09-07&rft.pub=Frontiers+Media+S.A&rft.eissn=1664-042X&rft.volume=8&rft_id=info:doi/10.3389%2Ffphys.2017.00634&rft_id=info%3Apmid%2F28936177&rft.externalDocID=PMC5594071
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-042X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-042X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-042X&client=summon