Mixture separability loss in a deep convolutional network for image classification

In machine learning, the cost function is crucial because it measures how good or bad a system is. In image classification, well-known networks only consider modifying the network structures and applying cross-entropy loss at the end of the network. However, using only cross-entropy loss causes a ne...

Full description

Saved in:
Bibliographic Details
Published inIET image processing Vol. 13; no. 1; pp. 135 - 141
Main Authors Do, Trung Dung, Jin, Cheng-Bin, Nguyen, Van Huan, Kim, Hakil
Format Journal Article
LanguageEnglish
Published The Institution of Engineering and Technology 01.01.2019
Subjects
Online AccessGet full text
ISSN1751-9659
1751-9667
DOI10.1049/iet-ipr.2018.5613

Cover

Loading…
Abstract In machine learning, the cost function is crucial because it measures how good or bad a system is. In image classification, well-known networks only consider modifying the network structures and applying cross-entropy loss at the end of the network. However, using only cross-entropy loss causes a network to stop updating weights when all training images are correctly classified. This is the problem of early saturation. This study proposes a novel cost function, called mixture separability loss (MSL), which updates the weights of the network even when most of the training images are accurately predicted. MSL consists of between-class and within-class loss. Between-class loss maximises the differences between inter-class images, whereas within-class loss minimises the similarities between intra-class images. They designed the proposed loss function to attach to different convolutional layers in the network in order to utilise intermediate feature maps. Experiments show that a network with MSL deepens the learning process and obtains promising results with some public datasets, such as Street View House Number, Canadian Institute for Advanced Research, and the authors’ self-collected Inha Computer Vision Lab gender dataset.
AbstractList In machine learning, the cost function is crucial because it measures how good or bad a system is. In image classification, well‐known networks only consider modifying the network structures and applying cross‐entropy loss at the end of the network. However, using only cross‐entropy loss causes a network to stop updating weights when all training images are correctly classified. This is the problem of early saturation. This study proposes a novel cost function, called mixture separability loss (MSL), which updates the weights of the network even when most of the training images are accurately predicted. MSL consists of between‐class and within‐class loss. Between‐class loss maximises the differences between inter‐class images, whereas within‐class loss minimises the similarities between intra‐class images. They designed the proposed loss function to attach to different convolutional layers in the network in order to utilise intermediate feature maps. Experiments show that a network with MSL deepens the learning process and obtains promising results with some public datasets, such as Street View House Number, Canadian Institute for Advanced Research, and the authors’ self‐collected Inha Computer Vision Lab gender dataset.
Author Do, Trung Dung
Nguyen, Van Huan
Jin, Cheng-Bin
Kim, Hakil
Author_xml – sequence: 1
  givenname: Trung Dung
  surname: Do
  fullname: Do, Trung Dung
  organization: 1Department of Information and Communication Engineering, Inha University, 22212, Incheon, Republic of Korea
– sequence: 2
  givenname: Cheng-Bin
  orcidid: 0000-0001-8486-5738
  surname: Jin
  fullname: Jin, Cheng-Bin
  organization: 1Department of Information and Communication Engineering, Inha University, 22212, Incheon, Republic of Korea
– sequence: 3
  givenname: Van Huan
  surname: Nguyen
  fullname: Nguyen, Van Huan
  organization: 2Faculty of Information Technology, Ton Duc Thang University, Ho Chi Minh City, Vietnam
– sequence: 4
  givenname: Hakil
  orcidid: 0000-0003-4232-3804
  surname: Kim
  fullname: Kim, Hakil
  email: hikim@inha.ac.kr
  organization: 1Department of Information and Communication Engineering, Inha University, 22212, Incheon, Republic of Korea
BookMark eNqFkMFOwzAMhiM0JLbBA3DLC3QkTdM23GBiMGkINO0epYmLMkJTJR1jb0_LEAcOcLIt-bN_fRM0anwDCF1SMqMkE1cWusS2YZYSWs54TtkJGtOC00TkeTH66bk4Q5MYt4RwQUo-RutH-9HtAuAIrQqqss52B-x8jNg2WGED0GLtm3fvdp31jXK4gW7vwyuufcD2Tb0A1k7FaGur1bByjk5r5SJcfNcp2izuNvOHZPV0v5zfrBLNioIltalNzrmugOvMaMEEYbXRukiVzoCVWWYoiLQyacmFglyZjBlGKwaU5jmwKaLHszr0aQPUsg19nHCQlMjBieydyN6JHJzIwUnPFL8Ybbuv0F1Q1v1JXh_JvXVw-P-VXD6v09tFP4oBTo7wsLb1u9BrjH88-wQvFY69
CitedBy_id crossref_primary_10_1007_s40815_019_00724_9
Cites_doi 10.1109/CVPR.2015.7298682
10.1109/CVPR.2015.7298594
10.1109/TCSVT.2017.2718225
10.1109/TCSVT.2015.2477937
10.1109/CVPR.2005.202
10.1109/CVPR.2016.308
10.1109/CVPR.2017.668
10.1016/j.patcog.2017.10.013
10.1109/CVPR.2017.634
10.1007/978-3-319-46493-0_38
10.1016/j.patcog.2017.09.015
10.1007/978-3-319-11740-9_34
10.1109/TIT.1981.1056373
10.1109/CVPR.2016.90
ContentType Journal Article
Copyright The Institution of Engineering and Technology
2021 The Authors. IET Image Processing published by John Wiley & Sons, Ltd. on behalf of The Institution of Engineering and Technology
Copyright_xml – notice: The Institution of Engineering and Technology
– notice: 2021 The Authors. IET Image Processing published by John Wiley & Sons, Ltd. on behalf of The Institution of Engineering and Technology
DBID AAYXX
CITATION
DOI 10.1049/iet-ipr.2018.5613
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1751-9667
EndPage 141
ExternalDocumentID 10_1049_iet_ipr_2018_5613
IPR2BF01893
Genre article
GrantInformation_xml – fundername: Industrial Technology Innovation Program
GroupedDBID 0R
24P
29I
5GY
6IK
8VB
AAJGR
ABPTK
ACGFS
ACIWK
AENEX
ALMA_UNASSIGNED_HOLDINGS
BFFAM
CS3
DU5
ESX
HZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS
O9-
OCL
P2P
QWB
RIE
RNS
RUI
UNR
ZL0
.DC
0R~
1OC
4.4
8FE
8FG
AAHHS
AAHJG
ABJCF
ABQXS
ACCFJ
ACCMX
ACESK
ACXQS
ADZOD
AEEZP
AEQDE
AFKRA
AIWBW
AJBDE
ALUQN
ARAPS
AVUZU
BENPR
BGLVJ
CCPQU
EBS
EJD
GROUPED_DOAJ
HCIFZ
HZ~
IAO
ITC
K1G
L6V
M7S
MCNEO
MS~
OK1
P62
PTHSS
ROL
S0W
AAMMB
AAYXX
AEFGJ
AGXDD
AIDQK
AIDYY
CITATION
IDLOA
PHGZM
PHGZT
ID FETCH-LOGICAL-c3773-fdfd655cbe5c4dc93903fdcc72ac4e3844d1e92bd2859ae6ad43d31b3e1166e3
IEDL.DBID 24P
ISSN 1751-9659
IngestDate Sun Jul 06 05:06:53 EDT 2025
Thu Apr 24 22:56:56 EDT 2025
Wed Jan 22 16:32:21 EST 2025
Tue Jan 05 21:45:39 EST 2021
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords inter-class images
within-class loss
deep convolutional network
well-known networks
image classification
street view house number
self-collected Inha computer vision lab gender dataset
MSL
training images
novel cost function
machine learning
loss function
entropy
intra-class images
between-class loss
image representation
computer vision
mixture separability loss
Canadian institute for advanced research
learning (artificial intelligence)
convolutional layers
network structures
feedforward neural nets
applying cross-entropy loss
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3773-fdfd655cbe5c4dc93903fdcc72ac4e3844d1e92bd2859ae6ad43d31b3e1166e3
ORCID 0000-0001-8486-5738
0000-0003-4232-3804
OpenAccessLink https://ietresearch.onlinelibrary.wiley.com/doi/pdfdirect/10.1049/iet-ipr.2018.5613
PageCount 7
ParticipantIDs wiley_primary_10_1049_iet_ipr_2018_5613_IPR2BF01893
crossref_primary_10_1049_iet_ipr_2018_5613
iet_journals_10_1049_iet_ipr_2018_5613
crossref_citationtrail_10_1049_iet_ipr_2018_5613
ProviderPackageCode RUI
PublicationCentury 2000
PublicationDate January 2019
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: January 2019
PublicationDecade 2010
PublicationTitle IET image processing
PublicationYear 2019
Publisher The Institution of Engineering and Technology
Publisher_xml – name: The Institution of Engineering and Technology
References Shaham, U.; Lederman, R.R. (C23) 2018; 74
Shore, J.; Johnson, R. (C26) 1981; 27
Zhang, K.; Guo, L.; Gao, C. (C32) 2017
Zhang, K.; Sun, M.; Han, X. (C11) 2017; 14
Xu, C.; Lu, C.; Liang, X. (C22) 2016; 26
Gu, J.; Wang, Z.; Kuen, J. (C28) 2017; 77
Janocha, K.; Czarnecki, W.M. (C20) 2016; 25
December 2011
December 2012
2012
June 2010
2010
June 2013
2009
1981; 27
June 2005
May 2015
February 2017
October 2014
October 2016
October 2015
2017; 14
July 2017
2017; 77
June 2015
June 2016
2017
2016
2018; 74
2015
2013
2016; 26
2016; 25
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
Janocha K. (e_1_2_7_21_1) 2016; 25
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
Zhang K. (e_1_2_7_33_1) 2017
References_xml – start-page: 1
  year: 2017
  end-page: 11
  ident: C32
  article-title: Pyramidal RoR for image classification
  publication-title: Cluster Comput.
– volume: 25
  start-page: 49
  year: 2016
  end-page: 59
  ident: C20
  article-title: On loss functions for deep neural networks in classification
  publication-title: Theor. Found. Mach.e Learn.
– volume: 14
  start-page: 1
  issue: 8
  year: 2017
  end-page: 12
  ident: C11
  article-title: Residual networks of residual networks: multilevel residual networks
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– volume: 77
  start-page: 354
  year: 2017
  end-page: 377
  ident: C28
  article-title: Recent advances in convolutional neural networks
  publication-title: Pattern Recognit.
– volume: 26
  start-page: 2273
  issue: 12
  year: 2016
  end-page: 2283
  ident: C22
  article-title: Multi-loss regularized deep neural network
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– volume: 74
  start-page: 52
  year: 2018
  end-page: 63
  ident: C23
  article-title: Learning by coincidence: Siamese networks and common variable learning
  publication-title: Pattern Recognit.
– volume: 27
  start-page: 472
  issue: 4
  year: 1981
  end-page: 482
  ident: C26
  article-title: Properties of cross-entropy minimization
  publication-title: IEEE Trans. Inf. Theory
– year: 2009
– start-page: 4278
  year: February 2017
  end-page: 4284
– volume: 26
  start-page: 2273
  issue: 12
  year: 2016
  end-page: 2283
  article-title: Multi‐loss regularized deep neural network
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– start-page: 5987
  year: July 2017
  end-page: 5995
– start-page: 1058
  year: June 2013
  end-page: 1066
– start-page: 770
  year: June 2016
  end-page: 778
– start-page: 1
  year: October 2015
  end-page: 9
– volume: 27
  start-page: 472
  issue: 4
  year: 1981
  end-page: 482
  article-title: Properties of cross‐entropy minimization
  publication-title: IEEE Trans. Inf. Theory
– start-page: 6307
  year: July 2017
  end-page: 6315
– start-page: 807
  year: June 2010
  end-page: 814
– start-page: 364
  year: October 2014
  end-page: 375
– year: 2016
– start-page: 2818
  year: June 2016
  end-page: 2826
– year: 2012
– year: May 2015
– start-page: 1097
  year: December 2012
  end-page: 1105
– volume: 25
  start-page: 49
  year: 2016
  end-page: 59
  article-title: On loss functions for deep neural networks in classification
  publication-title: Theor. Found. Mach.e Learn.
– volume: 14
  start-page: 1
  issue: 8
  year: 2017
  end-page: 12
  article-title: Residual networks of residual networks: multilevel residual networks
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– start-page: 1800
  year: July 2017
  end-page: 1807
– start-page: 630
  year: October 2016
  end-page: 645
– start-page: 815
  year: June 2015
  end-page: 823
– start-page: 507
  year: June 2016
  end-page: 516
– volume: 77
  start-page: 354
  year: 2017
  end-page: 377
  article-title: Recent advances in convolutional neural networks
  publication-title: Pattern Recognit.
– year: December 2011
– start-page: 249
  year: 2010
  end-page: 256
– volume: 74
  start-page: 52
  year: 2018
  end-page: 63
  article-title: Learning by coincidence: Siamese networks and common variable learning
  publication-title: Pattern Recognit.
– year: 2015
– start-page: 539
  year: June 2005
  end-page: 546
– start-page: 1
  year: 2017
  end-page: 11
  article-title: Pyramidal RoR for image classification
  publication-title: Cluster Comput.
– year: 2013
– ident: e_1_2_7_20_1
– ident: e_1_2_7_14_1
– ident: e_1_2_7_26_1
  doi: 10.1109/CVPR.2015.7298682
– ident: e_1_2_7_3_1
– ident: e_1_2_7_7_1
  doi: 10.1109/CVPR.2015.7298594
– ident: e_1_2_7_22_1
– ident: e_1_2_7_28_1
– ident: e_1_2_7_12_1
  doi: 10.1109/TCSVT.2017.2718225
– ident: e_1_2_7_23_1
  doi: 10.1109/TCSVT.2015.2477937
– ident: e_1_2_7_4_1
– start-page: 1
  year: 2017
  ident: e_1_2_7_33_1
  article-title: Pyramidal RoR for image classification
  publication-title: Cluster Comput.
– ident: e_1_2_7_8_1
– ident: e_1_2_7_25_1
  doi: 10.1109/CVPR.2005.202
– ident: e_1_2_7_10_1
– ident: e_1_2_7_16_1
– ident: e_1_2_7_5_1
  doi: 10.1109/CVPR.2016.308
– ident: e_1_2_7_2_1
– ident: e_1_2_7_30_1
– ident: e_1_2_7_32_1
– ident: e_1_2_7_34_1
  doi: 10.1109/CVPR.2017.668
– ident: e_1_2_7_19_1
– ident: e_1_2_7_29_1
  doi: 10.1016/j.patcog.2017.10.013
– ident: e_1_2_7_13_1
  doi: 10.1109/CVPR.2017.634
– ident: e_1_2_7_18_1
– ident: e_1_2_7_6_1
– ident: e_1_2_7_9_1
  doi: 10.1007/978-3-319-46493-0_38
– ident: e_1_2_7_24_1
  doi: 10.1016/j.patcog.2017.09.015
– ident: e_1_2_7_17_1
  doi: 10.1007/978-3-319-11740-9_34
– volume: 25
  start-page: 49
  year: 2016
  ident: e_1_2_7_21_1
  article-title: On loss functions for deep neural networks in classification
  publication-title: Theor. Found. Mach.e Learn.
– ident: e_1_2_7_27_1
  doi: 10.1109/TIT.1981.1056373
– ident: e_1_2_7_31_1
– ident: e_1_2_7_11_1
  doi: 10.1109/CVPR.2016.90
– ident: e_1_2_7_15_1
SSID ssj0059085
Score 2.1334858
Snippet In machine learning, the cost function is crucial because it measures how good or bad a system is. In image classification, well-known networks only consider...
In machine learning, the cost function is crucial because it measures how good or bad a system is. In image classification, well‐known networks only consider...
SourceID crossref
wiley
iet
SourceType Enrichment Source
Index Database
Publisher
StartPage 135
SubjectTerms applying cross‐entropy loss
between‐class loss
Canadian institute for advanced research
computer vision
convolutional layers
deep convolutional network
entropy
feedforward neural nets
image classification
image representation
inter‐class images
intra‐class images
learning (artificial intelligence)
loss function
machine learning
mixture separability loss
MSL
network structures
novel cost function
Research Article
self‐collected Inha computer vision lab gender dataset
street view house number
training images
well‐known networks
within‐class loss
SummonAdditionalLinks – databaseName: IET Digital Library Open Access
  dbid: IDLOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5se_HiW6wv9iAehNgku0m6R1-lFStSKvQW9hUJ1FhsBf33ziTbSkGqt2yymcDMZveb2dn5CDlLkKlOBgqQm2yDgxKFHvgq2jOAnqXPQiUlxjv6j3H3md-PotHP8WiTvyBXhjePuGG03FYnDzB1G-bhltNxRUgC-LYFHbx8grU9g_Yl4uEaaYQJOF910ujdPqCLVc3MSO8dlQckkVo-jsRil_MXIUvrVA0eL6PXcvnpbJENhxvpVWXobbJmix2y6TAkdX_odJcM-vknbgrQqcWq3mXq6xcdwydoXlBJjbUTiqnmbsiBzKLKBKcAX2n-CvML1QipMYeoNNseGXbuhjddz_EmeJolCfMyk5k4irSykeZGCyZ8lhmtk1BqblmbcxNYESqDxeukjaXhzLBAMRsEcWzZPqkXb4U9IFQAWDGKSZX5miecKwVoARtWwJqmZJP4cyWl2tUUR2qLcVrubXORguJS0GuKek1Rr01ysXhlUhXUWNX5HO_NTb6qIyuN87fItPc0CK870BTs8L_ij8g6XIsq9HJM6rP3D3sCYGSmTt0Y-wbh5twD
  priority: 102
  providerName: Institution of Engineering and Technology
Title Mixture separability loss in a deep convolutional network for image classification
URI http://digital-library.theiet.org/content/journals/10.1049/iet-ipr.2018.5613
https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-ipr.2018.5613
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ZS8MwGA87XnzxFucx8iA-CNW1SdvlcU7HJk7H2GT4UnIVCrMON0H_e7-v7QZDmOBTSZoDviP5JfkOQi5CzFQnXQXITTbhgOJ7DpxVtGMAPcsG85SUeN_Rfwq6Y_4w8Scl0l76wuTxIVYXbqgZ2XqNCi5VnoUEQC0wMbELJ5lhSE-3eY0wuEyq6GKLwu7xwXI5xpzefuYVifnkA1-snjbFza8h1janMvxeh6zZntPZJdsFWKStnLt7pGTTfbJTAEdaqOX8gAz7yRe-BNC5xVDemb3rN53CFDRJqaTG2hlF-_JCzmDMNDf_poBZafIGiwrViKPRcCjj1SEZde5H7a5TJEtwNAtD5sQmNoHva2V9zY0WTDRYbLQOPam5ZU3OjWuFpwxGrJM2kIYzw1zFrOsGgWVHpJK-p_aYUAEIxSgmVdzQPORcKYAIWLACNjIla6SxJFKki0DimM9iGmUP2lxEQLgI6BohXSOka41crbrM8igamxpfYl2hS_NNDVnGnL-HjHqDoXfbgaJgJ__qdUq2oF7kly9npLL4-LTnAEcWqp6JW51UWy_j1zF8e3ePz60fxMXdaw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA61HvTiW6zPHMSDsNrdZHebo6_SaltKqdDbktfCQl2LraD_3pnstlCECh6TTbIwySRfZibfEHIZY6Y66StAbrIBF5Qw8OCuoj0D6FnWWaCkRHtHtxe1XvnzKBxVyOP8LUzBD7EwuKFmuP0aFRwN0sWFkyNJZmZnXjZBTk-_cYM4eI2s8yiIMYFDwPvz_RiTeofuWSQmlI9CsfBtittfQyydTmvweRmzukOnuUO2SrRI74rp3SUVm--R7RI50lIvp_tk0M2-0BVApxa5vF3A6zcdwy9ollNJjbUTigHm5UKDMfMi_psCaKXZG-wqVCOQxsghN1kHZNh8Gj60vDJbgqdZHDMvNamJwlArG2putGCizlKjdRxIzS1rcG58KwJlkLJO2kgazgzzFbO-H0WWHZJq_p7bI0IFQBSjmFRpXfOYc6UAI2DBCjjJlKyR-lxIiS6ZxDGhxThxHm0uEhBcAnJNUK4JyrVGrhddJgWNxqrGV1hXKtN0VUPmJufvIZN2fxDcN6Eo2PG_el2Qjdaw20k67d7LCdmENqKwxJyS6uzj054BNpmpc7f0fgDZFt2N
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9zgvjitzg_8yA-CNW1SdvlUadlUzfGmLC3kq9CYdbiJuh_713bDYYwwcekSQqXXPLL3eV3hFyGmKlOugqQm2zBBcX3HLiraMcAepZN5ikp0d7R6wedV_409sc10p6_hSn5IRYGN9SMYr9GBc9NUt43OXJkpnbmpDlSerqtG4TBa2QdnX64zD0-mG_HmNPbL15FYj75wBcL16a4_TXE0uG0Bp-XIWtx5kQ7ZKsCi_SunN1dUrPZHtmugCOt1HK6T4a99As9AXRqkcq7iHf9phP4BU0zKqmxNqcYX16tMxgzK8O_KWBWmr7BpkI14mgMHCrm6oCMosdRu-NUyRIczcKQOYlJTOD7Wllfc6MFE02WGK1DT2puWYtz41rhKYOMddIG0nBmmKuYdd0gsOyQ1LP3zB4RKgChGMWkSpqah5wrBRABC1bAQaZkgzTnQop1RSSO-SwmceHQ5iIGwcUg1xjlGqNcG-R60SUvWTRWNb7CukqXpqsasmJy_h4y7g6G3n0ERcGO_9XrgmwMHqL4pdt_PiGb0ESUdphTUp99fNozQCYzdV6svB-r9ty_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mixture+separability+loss+in+a+deep+convolutional+network+for+image+classification&rft.jtitle=IET+image+processing&rft.au=Do%2C+Trung+Dung&rft.au=Jin%2C+Cheng%E2%80%90Bin&rft.au=Nguyen%2C+Van+Huan&rft.au=Kim%2C+Hakil&rft.date=2019-01-01&rft.pub=The+Institution+of+Engineering+and+Technology&rft.issn=1751-9659&rft.eissn=1751-9667&rft.volume=13&rft.issue=1&rft.spage=135&rft.epage=141&rft_id=info:doi/10.1049%2Fiet-ipr.2018.5613&rft.externalDBID=10.1049%252Fiet-ipr.2018.5613&rft.externalDocID=IPR2BF01893
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-9659&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-9659&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-9659&client=summon