Occlusion-robust object tracking based on the confidence of online selected hierarchical features
In recent years, convolutional neural networks (CNNs) have been widely used for visual object tracking, especially in combination with correlation filters (CFs). However, the increasing complex CNN models introduce more useless information, which may decrease the tracking performance. This study pro...
Saved in:
Published in | IET image processing Vol. 12; no. 11; pp. 2023 - 2029 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
The Institution of Engineering and Technology
01.11.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In recent years, convolutional neural networks (CNNs) have been widely used for visual object tracking, especially in combination with correlation filters (CFs). However, the increasing complex CNN models introduce more useless information, which may decrease the tracking performance. This study proposes an online feature map selection method to remove noisy and irrelevant feature maps from different convolutional layers of CNN, which can reduce computation redundancy and improve tracking accuracy. Furthermore, a novel appearance model update strategy, which exploits the feedback from the peak value of response maps, is developed to avoid model corruption. Finally, an extensive evaluation of the proposed method was conducted over OTB-2013 and OTB-2015 datasets, and compared with different kinds of trackers, including deep learning-based trackers and CF-based trackers. The results demonstrate that the proposed method achieves a highly satisfactory performance. |
---|---|
AbstractList | In recent years, convolutional neural networks (CNNs) have been widely used for visual object tracking, especially in combination with correlation filters (CFs). However, the increasing complex CNN models introduce more useless information, which may decrease the tracking performance. This study proposes an online feature map selection method to remove noisy and irrelevant feature maps from different convolutional layers of CNN, which can reduce computation redundancy and improve tracking accuracy. Furthermore, a novel appearance model update strategy, which exploits the feedback from the peak value of response maps, is developed to avoid model corruption. Finally, an extensive evaluation of the proposed method was conducted over OTB‐2013 and OTB‐2015 datasets, and compared with different kinds of trackers, including deep learning‐based trackers and CF‐based trackers. The results demonstrate that the proposed method achieves a highly satisfactory performance. |
Author | Jin, Cheng-Bin Yang, Bin Liu, Mingjie Cui, Xuenan Kim, Hakil |
Author_xml | – sequence: 1 givenname: Mingjie surname: Liu fullname: Liu, Mingjie organization: Information and Communication Engineering, Inha University, 100 Inha-ro Nam-gu, Incheon, Republic of Korea – sequence: 2 givenname: Cheng-Bin orcidid: 0000-0001-8486-5738 surname: Jin fullname: Jin, Cheng-Bin organization: Information and Communication Engineering, Inha University, 100 Inha-ro Nam-gu, Incheon, Republic of Korea – sequence: 3 givenname: Bin surname: Yang fullname: Yang, Bin organization: Information and Communication Engineering, Inha University, 100 Inha-ro Nam-gu, Incheon, Republic of Korea – sequence: 4 givenname: Xuenan surname: Cui fullname: Cui, Xuenan organization: Information and Communication Engineering, Inha University, 100 Inha-ro Nam-gu, Incheon, Republic of Korea – sequence: 5 givenname: Hakil orcidid: 0000-0003-4232-3804 surname: Kim fullname: Kim, Hakil email: hikim@inha.ac.kr organization: Information and Communication Engineering, Inha University, 100 Inha-ro Nam-gu, Incheon, Republic of Korea |
BookMark | eNqFkFFLwzAQgINMcJv-AN_yBzqTtWla33Q4HQwmos8hTS8usyYjSZH9e1MmPvgw4eCO47477pugkXUWELqmZEZJUd8YiJnZ-9mc0GrGClacoTHljGZ1WfLRb83qCzQJYUcIq0nFxkhulOr6YJzNvGv6ELFrdqAijl6qD2PfcSMDtNhZHLeAlbPatGAVYKdTszMWcIAuEWloa8BLr7ZGyQ5rkLH3EC7RuZZdgKufPEVvy4fXxVO23jyuFnfrTOWc51nJiZaMg2YF560sS1a27VDUrFIsp4zXSklWN_MmBaNQcJXTQucs1w2reD5F_LhXeReCBy2UiTKmz9IrphOUiMGUSKZEMiUGU2IwlUj6h9x78yn94SRze2S-TAeH_wGxen6Z3y8JLcs8wdkRHsZ2rvc2iTlx7Bsx45M5 |
CitedBy_id | crossref_primary_10_1007_s11042_020_10382_x crossref_primary_10_1007_s00371_021_02304_1 crossref_primary_10_1109_TITS_2020_3046478 crossref_primary_10_1049_ipr2_12874 crossref_primary_10_1109_ACCESS_2019_2903121 crossref_primary_10_1166_jbn_2021_3184 |
Cites_doi | 10.1109/TPAMI.2014.2345390 10.1109/CVPR.2017.513 10.1007/978-3-319-48881-3_56 10.1049/iet-ipr.2016.0931 10.1109/TPAMI.2016.2609928 10.1109/5.726791 10.1109/ICCV.2015.352 10.1109/CVPR.2010.5539960 10.1109/TPAMI.2013.230 10.1109/CVPR.2015.7299177 10.1109/TPAMI.2014.2388226 10.1109/ICCV.2015.490 10.1049/iet-cvi.2016.0241 10.1049/iet-ipr.2016.1062 10.1109/TPAMI.2015.2509974 10.1109/CVPR.2017.510 10.1007/s11263-007-0075-7 10.1023/A:1018628609742 10.1109/ICCV.2015.357 10.1109/ICCVW.2015.84 10.1109/CVPR.2017.531 |
ContentType | Journal Article |
Copyright | The Institution of Engineering and Technology 2021 The Authors. IET Image Processing published by John Wiley & Sons, Ltd. on behalf of The Institution of Engineering and Technology |
Copyright_xml | – notice: The Institution of Engineering and Technology – notice: 2021 The Authors. IET Image Processing published by John Wiley & Sons, Ltd. on behalf of The Institution of Engineering and Technology |
DBID | AAYXX CITATION |
DOI | 10.1049/iet-ipr.2018.5454 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 1751-9667 |
EndPage | 2029 |
ExternalDocumentID | 10_1049_iet_ipr_2018_5454 IPR2BF01663 |
Genre | article |
GrantInformation_xml | – fundername: Industrial Technology Innovation Program |
GroupedDBID | 0R 24P 29I 4.4 5GY 6IK 8FE 8FG 8VB AAJGR ABJCF ABPTK ACGFS ACIWK AENEX AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BFFAM BGLVJ CS3 DU5 EBS EJD ESX HCIFZ HZ IFIPE IPLJI JAVBF L6V LAI M43 M7S MS O9- OCL P2P P62 PTHSS QWB RIE RNS RUI S0W UNR ZL0 .DC 0R~ 1OC AAHHS AAHJG ABQXS ACCFJ ACCMX ACESK ACXQS ADZOD AEEZP AEQDE AIWBW AJBDE ALUQN AVUZU CCPQU GROUPED_DOAJ HZ~ IAO ITC K1G MCNEO MS~ OK1 ROL AAYXX CITATION IDLOA PHGZM PHGZT |
ID | FETCH-LOGICAL-c3773-670fa57ef5477da6656dd7da6958c531579cca59b2bb2b51e47c314f353fb5873 |
IEDL.DBID | 24P |
ISSN | 1751-9659 |
IngestDate | Tue Jul 01 05:11:40 EDT 2025 Thu Apr 24 23:00:10 EDT 2025 Wed Jan 22 16:32:38 EST 2025 Tue Jan 05 21:45:41 EST 2021 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | CNN deep learning-based trackers useless information tracking accuracy CF-based trackers object detection occlusion-robust object tracking model corruption online selected hierarchical features feature extraction correlation filters visual object tracking feature map selection method object tracking appearance model update strategy tracking performance computation redundancy convolutional neural networks learning (artificial intelligence) OTB-2015 datasets convolutional layers neural nets |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3773-670fa57ef5477da6656dd7da6958c531579cca59b2bb2b51e47c314f353fb5873 |
ORCID | 0000-0001-8486-5738 0000-0003-4232-3804 |
OpenAccessLink | https://ietresearch.onlinelibrary.wiley.com/doi/pdfdirect/10.1049/iet-ipr.2018.5454 |
PageCount | 7 |
ParticipantIDs | crossref_citationtrail_10_1049_iet_ipr_2018_5454 iet_journals_10_1049_iet_ipr_2018_5454 wiley_primary_10_1049_iet_ipr_2018_5454_IPR2BF01663 crossref_primary_10_1049_iet_ipr_2018_5454 |
ProviderPackageCode | RUI CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20181100 November 2018 2018-11-00 |
PublicationDateYYYYMMDD | 2018-11-01 |
PublicationDate_xml | – month: 11 year: 2018 text: 20181100 |
PublicationDecade | 2010 |
PublicationTitle | IET image processing |
PublicationYear | 2018 |
Publisher | The Institution of Engineering and Technology |
Publisher_xml | – name: The Institution of Engineering and Technology |
References | Kang, B.; Zhu, W.-P.; Liang, D. (C4) 2017; 11 Liaw, A.; Wiener, M. (C15) 2002; 2 Quiñonero-Candela, J.; Rasmussen, C.E. (C13) 2005; 6 Danelljan, M.; Hager, G.; Khan, F.S. (C34) 2017; 39 Yilmza, A.; Javed, O.; Shah, M. (C1) 2006; 38 Li, F.; Zhang, R.; You, F. (C6) 2017; 10 Ross, D.A.; Lim, J.; Lin, R.-S. (C2) 2008; 77 LeCun, Y.; Bottou, L.; Bengio, Y. (C7) 1998; 86 Smeulders, A.W.M.; Chu, D.M.; Cucchiara, R. (C3) 2014; 36 Gu, X.; Huang, X.; Alade, T. (C22) 2017; 11 Hare, S.; Golodetz, S.; Saffari, A. (C5) 2016; 38 Wu, Y.; Lim, J.; Yang, M. H. (C9) 2015; 37 Suykens, J.A.; Vandewalle, J. (C14) 1999; 9 Henriques, J.F.; Caseiro, R.; Martins, P. (C17) 2015; 37 December 2015 2015; 37 October 2016 June 2010 2017; 39 July 2017 September 2014 2006; 38 2017; 11 June 2013 2017; 10 2002; 2 2014; 36 June 2015 2005; 6 June 2016 2008; 77 2016; 38 1998; 86 1999; 9 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 Liaw A. (e_1_2_8_16_1) 2002; 2 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 Quiñonero‐Candela J. (e_1_2_8_14_1) 2005; 6 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_35_1 e_1_2_8_15_1 Yilmza A. (e_1_2_8_2_1) 2006; 38 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – volume: 11 start-page: 1172 issue: 12 year: 2017 end-page: 1178 ident: C4 article-title: Robust multi-feature visual tracking via multi-task kernel-based sparse learning publication-title: IET Image Process. – volume: 77 start-page: 125 year: 2008 end-page: 141 ident: C2 article-title: Incremental learning for robust visual tracking publication-title: Int. J. Comput. Vis. – volume: 10 start-page: 833 issue: 11 year: 2017 end-page: 840 ident: C6 article-title: Fast pedestrian detection and dynamic tracking for intelligent vehicles within V2V cooperative environment publication-title: IET Image Process. – volume: 37 start-page: 1834 issue: 9 year: 2015 end-page: 1848 ident: C9 article-title: Object tracking benchmark publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 37 start-page: 583 issue: 3 year: 2015 end-page: 596 ident: C17 article-title: High-speed tracking with kernelized correlation filters publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 2 start-page: 18 issue: 3 year: 2002 end-page: 22 ident: C15 article-title: Classification and regression by random forest publication-title: R News – volume: 9 start-page: 293 issue: 3 year: 1999 end-page: 300 ident: C14 article-title: Least squares support vector machine classifiers publication-title: Neural Process. Lett. – volume: 36 start-page: 1442 issue: 7 year: 2014 end-page: 1468 ident: C3 article-title: Visual tracking: an experimental survey publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 38 start-page: 1 issue: 4 year: 2006 end-page: 45 ident: C1 article-title: Object tracking: a survey publication-title: ACM Comput. Surv. – volume: 11 start-page: 220 issue: 3 year: 2017 end-page: 225 ident: C22 article-title: Multiscale spatially regularised correlation filters for visual tracking publication-title: IET Comput. Vis. – volume: 39 start-page: 1561 issue: 8 year: 2017 end-page: 1575 ident: C34 article-title: Discriminative scale space tracking publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 86 start-page: 2278 issue: 11 year: 1998 end-page: 2324 ident: C7 article-title: Gradient-based learning applied to document recognition publication-title: Proc. IEEE – volume: 38 start-page: 2096 issue: 10 year: 2016 end-page: 2109 ident: C5 article-title: Struck: structured output tracking with kernels publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 6 start-page: 1939 issue: 12 year: 2005 end-page: 1959 ident: C13 article-title: A unifying view of sparse approximate Gaussian process regression publication-title: J. Mach. Learn. Res. – start-page: 58 year: December 2015 end-page: 66 – volume: 6 start-page: 1939 issue: 12 year: 2005 end-page: 1959 article-title: A unifying view of sparse approximate Gaussian process regression publication-title: J. Mach. Learn. Res. – start-page: 749 year: June 2015 end-page: 758 – start-page: 2544 year: June 2010 end-page: 2550 – start-page: 597 year: June 2016 end-page: 606 – volume: 38 start-page: 2096 issue: 10 year: 2016 end-page: 2109 article-title: Struck: structured output tracking with kernels publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 37 start-page: 1834 issue: 9 year: 2015 end-page: 1848 article-title: Object tracking benchmark publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 9 start-page: 293 issue: 3 year: 1999 end-page: 300 article-title: Least squares support vector machine classifiers publication-title: Neural Process. Lett. – volume: 37 start-page: 583 issue: 3 year: 2015 end-page: 596 article-title: High‐speed tracking with kernelized correlation filters publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – year: July 2017 – start-page: 3119 year: December 2015 end-page: 3127 – start-page: 1420 year: July 2017 end-page: 1429 – start-page: 472 year: October 2016 end-page: 488 – start-page: 254 year: September 2014 end-page: 265 – volume: 11 start-page: 220 issue: 3 year: 2017 end-page: 225 article-title: Multiscale spatially regularised correlation filters for visual tracking publication-title: IET Comput. Vis. – start-page: 1430 year: June 2016 end-page: 1438 – start-page: 1401 year: June 2016 end-page: 1409 – volume: 2 start-page: 18 issue: 3 year: 2002 end-page: 22 article-title: Classification and regression by random forest publication-title: R News – volume: 10 start-page: 833 issue: 11 year: 2017 end-page: 840 article-title: Fast pedestrian detection and dynamic tracking for intelligent vehicles within V2V cooperative environment publication-title: IET Image Process. – start-page: 2411 year: June 2013 end-page: 2418 – volume: 39 start-page: 1561 issue: 8 year: 2017 end-page: 1575 article-title: Discriminative scale space tracking publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 86 start-page: 2278 issue: 11 year: 1998 end-page: 2324 article-title: Gradient‐based learning applied to document recognition publication-title: Proc. IEEE – start-page: 3101 year: December 2015 end-page: 3109 – volume: 38 start-page: 1 issue: 4 year: 2006 end-page: 45 article-title: Object tracking: a survey publication-title: ACM Comput. Surv. – volume: 77 start-page: 125 year: 2008 end-page: 141 article-title: Incremental learning for robust visual tracking publication-title: Int. J. Comput. Vis. – volume: 11 start-page: 1172 issue: 12 year: 2017 end-page: 1178 article-title: Robust multi‐feature visual tracking via multi‐task kernel‐based sparse learning publication-title: IET Image Process. – start-page: 850 year: October 2016 end-page: 865 – start-page: 3074 year: December 2015 end-page: 3082 – start-page: 4310 year: December 2015 end-page: 4318 – volume: 36 start-page: 1442 issue: 7 year: 2014 end-page: 1468 article-title: Visual tracking: an experimental survey publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 5388 year: June 2015 end-page: 5396 – ident: e_1_2_8_18_1 doi: 10.1109/TPAMI.2014.2345390 – ident: e_1_2_8_26_1 doi: 10.1109/CVPR.2017.513 – ident: e_1_2_8_31_1 – ident: e_1_2_8_28_1 doi: 10.1007/978-3-319-48881-3_56 – ident: e_1_2_8_25_1 – ident: e_1_2_8_33_1 – ident: e_1_2_8_7_1 doi: 10.1049/iet-ipr.2016.0931 – ident: e_1_2_8_35_1 doi: 10.1109/TPAMI.2016.2609928 – ident: e_1_2_8_32_1 – volume: 38 start-page: 1 issue: 4 year: 2006 ident: e_1_2_8_2_1 article-title: Object tracking: a survey publication-title: ACM Comput. Surv. – ident: e_1_2_8_21_1 – ident: e_1_2_8_8_1 doi: 10.1109/5.726791 – ident: e_1_2_8_13_1 – volume: 2 start-page: 18 issue: 3 year: 2002 ident: e_1_2_8_16_1 article-title: Classification and regression by random forest publication-title: R News – ident: e_1_2_8_19_1 doi: 10.1109/ICCV.2015.352 – ident: e_1_2_8_24_1 – ident: e_1_2_8_17_1 doi: 10.1109/CVPR.2010.5539960 – ident: e_1_2_8_4_1 doi: 10.1109/TPAMI.2013.230 – ident: e_1_2_8_34_1 doi: 10.1109/CVPR.2015.7299177 – ident: e_1_2_8_10_1 doi: 10.1109/TPAMI.2014.2388226 – ident: e_1_2_8_30_1 doi: 10.1109/ICCV.2015.490 – ident: e_1_2_8_12_1 – ident: e_1_2_8_23_1 doi: 10.1049/iet-cvi.2016.0241 – ident: e_1_2_8_5_1 doi: 10.1049/iet-ipr.2016.1062 – ident: e_1_2_8_6_1 doi: 10.1109/TPAMI.2015.2509974 – volume: 6 start-page: 1939 issue: 12 year: 2005 ident: e_1_2_8_14_1 article-title: A unifying view of sparse approximate Gaussian process regression publication-title: J. Mach. Learn. Res. – ident: e_1_2_8_22_1 doi: 10.1109/CVPR.2017.510 – ident: e_1_2_8_9_1 – ident: e_1_2_8_3_1 doi: 10.1007/s11263-007-0075-7 – ident: e_1_2_8_15_1 doi: 10.1023/A:1018628609742 – ident: e_1_2_8_20_1 doi: 10.1109/ICCV.2015.357 – ident: e_1_2_8_29_1 – ident: e_1_2_8_11_1 doi: 10.1109/ICCVW.2015.84 – ident: e_1_2_8_27_1 doi: 10.1109/CVPR.2017.531 |
SSID | ssj0059085 |
Score | 2.1751099 |
Snippet | In recent years, convolutional neural networks (CNNs) have been widely used for visual object tracking, especially in combination with correlation filters... |
SourceID | crossref wiley iet |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 2023 |
SubjectTerms | appearance model update strategy CF‐based trackers CNN computation redundancy convolutional layers convolutional neural networks correlation filters deep learning‐based trackers feature extraction feature map selection method learning (artificial intelligence) model corruption neural nets object detection object tracking occlusion‐robust object tracking online selected hierarchical features OTB‐2015 datasets Research Article tracking accuracy tracking performance useless information visual object tracking |
SummonAdditionalLinks | – databaseName: IET Digital Library Open Access dbid: IDLOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZS8QwEA66vvjiLd7kQXwQ4m6bpGkevRYVL0Rh30pOWZCt7PH_nWm7yoKsQh9COw1kJsfXmc58hBxHEaMUQTNjnGZCyZRpHTosj4lTFvCFiZjv_PCY3byJu57s_aRH-_47cmWwqccNveWhzjzAX7dhH243Oq4JSQDftkGA9T-xtmeSnwEgEItkKVUqkS2ydHt1j59Y9c6M9N6ySpBEavlM6u8o5y-dzJxTi_B4Fr1Wx093jaw0uJGe14ZeJwthsEFWGwxJmxU62iTmybmPCbrA2LC0k9GYlhZdLXQ8NA7d4hTPLU_LAYVRUxhurGlFaRlpXTaDjipuHBBCnuwq0gCGpDFUNUBHW-Ste_16ecMaGgXmuFKcZaoTjVQBbKKUNxkgOO-xoWXuYAlKpcGMUtvUwiWTIJTjiYhc8mhlrvg2aQ3KQdghVASfeKT0M4kRgLSszoL3iUi9ijm3apd0pkorXFNjHKkuPooq1i10AYosQM8F6rlAPe-S0-9XPusCG_OET_DedArME-SVsf7usrh9fkkvuoB8M7733-73yTK265zEA9IaDyfhEMDJ2B41c-4LPTThLA priority: 102 providerName: Institution of Engineering and Technology |
Title | Occlusion-robust object tracking based on the confidence of online selected hierarchical features |
URI | http://digital-library.theiet.org/content/journals/10.1049/iet-ipr.2018.5454 https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-ipr.2018.5454 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZ5XHppmqSlSZtFh9BDwO3akizruHksSUizS-iW0IvREwJhHdbee35Cf2N-SWZk78ISSCBgsJElHWY80qcZz3yEHAYeguBeJVpblXApskQp30-KkFppAF_ogPnOv6_z8wm_vBW3a-RkkQvT1odYOtzQMuJ6jQauTctCAqAWlHjnm-TuAUt6psVPwAF8nWxiii3-15fx8WI5Rk5vEbMikU8-F2oZ2lS_Xkyxsjmtw-tVyBr3nOEn8rEDi3TQanebrPnpDtnqgCPtzLLeJXZk7f0c_V5Pj_9nlZnXDa0MelhoM9MWveEUtytHqykFxEfhEBxaNlFaBdpKg9aREgc6IT12DDCA_mjwsfRn_ZlMhmd_Ts6Tjj0hsUxKluSyH7SQHlQhpdM5ADfn8EGJwoLlCalAe0KZzMAlUs-lZSkPTLBgRCHZF7Ixrab-K6Hcu9Qhk59ONQeAZVTunUt55mQomJF7pL8QW2m70uLIcHFfxhA3VyWIsgRJlyjpEiW9R46WQx7auhqvdf6BbZ111a91ZFFdb09ZXoxvsuMhAN6c7b9r1DfyAdvbvMTvZKOZzf0BAJTG9OIH2CObg7-TfxO4X5xejQbPc2vkVg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEB7yODSXpmkSmr6iQ5pDwe3akizr0EPaZtnNqyVkS-jFsV4QCOuw9hJ660_oj-kv6i_pjO1dCIEUCgEfjD0S8mhG82nkmQHYCSIEKbyOisLqSCiZRFr7XpSF2CqD-KIIFO98fJIORuLgXJ4vwO9ZLEybH2LucCPNaNZrUnBySLcbTkFJMi99HV1eU07POHuHQEB0v1Ye-h83uHGrPgw_4yy_SZL-_tmnQdTVFogsV4pHqeqFQiqPA1XKFSnCGufoRsvMolxKpfHbpDaJwUvGXijLYxG45MHITHHsdxGWCU2hLi3vfRt9H80sAJURl00gJpWwT6Wen6bq93cGfcseLuLr2yi5MXP9J_C4w6dsrxWoNVjw46ew2mFV1q0E1TrYL9ZeTcnV9ufnr0lpplXNSkNOHVZPCksOeEYW0rFyzBBkMtx3h7aAKSsDayeAVU0VHiSiitzNmQaKDAu-yTZabcDoQZi6CUvjcuyfARPexY6KBxZxIRDTGZ1652KROBUybtQW9GZsy22XzZyKalzlzam60DmyMkdO58TpnDi9BW_nTa7bVB73Ee_Ss06hq_sIeTNd_-4yH349TT72EWOn_Pl_tdqGR4Oz46P8aHhy-AJWiKYNi3wJS_Vk6l8hPqrN604cGVw8tAb8BU4rH4g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NatwwEB6SDZRekv7S_LTRoe2h4HZtSZZ1yCFtsmSbNg2lW0IvrvUHgbBe1l5CbnmEvEveKE_SGdu7EAopFAI-GHsk5NGM5tPIMwPwOogQpPA6KgqrI6FkEmnt-1EWYqsM4osiULzz16P0YCQ-n8iTJbiex8K0-SEWDjfSjGa9JgWfuNDuNwXlyDz1dXQ6oZSecfYecYDo_qw89BfnuG-rdoZ7OMlvkmSw_-PTQdSVFogsV4pHqeqHQiqP41TKFSmiGufoRsvMolhKpfHTpDaJwUvGXijLYxG45MHITHHsdxlWJFrDfg9Wdn-Ofo3mBoCqiMsmDpMq2KdSLw5T9Ye_Bn3LHC7j69sgubFyg0ew2sFTttvK02NY8uMnsNZBVdYtBNVTsN-sPZuRp-3m8mpamllVs9KQT4fV08KS_52RgXSsHDPEmAy33aGtX8rKwFr-s6opwoNEVJC7OdJAiWHBN8lGq2cwuhemPofeuBz7F8CEd7Gj2oFFXAiEdEan3rlYJE6FjBu1Dv0523LbJTOnmhpneXOoLnSOrMyR0zlxOidOr8O7RZNJm8njLuK39KzT5-ouQt5M17-7zIfH35OPA4TYKd_4r1bb8OB4b5B_GR4dbsJDImmDIregV09n_iWio9q86qSRwe_7VoA_MtgeqA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Occlusion%E2%80%90robust+object+tracking+based+on+the+confidence+of+online+selected+hierarchical+features&rft.jtitle=IET+image+processing&rft.au=Liu%2C+Mingjie&rft.au=Jin%2C+Cheng%E2%80%90Bin&rft.au=Yang%2C+Bin&rft.au=Cui%2C+Xuenan&rft.date=2018-11-01&rft.pub=The+Institution+of+Engineering+and+Technology&rft.issn=1751-9659&rft.eissn=1751-9667&rft.volume=12&rft.issue=11&rft.spage=2023&rft.epage=2029&rft_id=info:doi/10.1049%2Fiet-ipr.2018.5454&rft.externalDBID=10.1049%252Fiet-ipr.2018.5454&rft.externalDocID=IPR2BF01663 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-9659&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-9659&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-9659&client=summon |