Occlusion-robust object tracking based on the confidence of online selected hierarchical features

In recent years, convolutional neural networks (CNNs) have been widely used for visual object tracking, especially in combination with correlation filters (CFs). However, the increasing complex CNN models introduce more useless information, which may decrease the tracking performance. This study pro...

Full description

Saved in:
Bibliographic Details
Published inIET image processing Vol. 12; no. 11; pp. 2023 - 2029
Main Authors Liu, Mingjie, Jin, Cheng-Bin, Yang, Bin, Cui, Xuenan, Kim, Hakil
Format Journal Article
LanguageEnglish
Published The Institution of Engineering and Technology 01.11.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In recent years, convolutional neural networks (CNNs) have been widely used for visual object tracking, especially in combination with correlation filters (CFs). However, the increasing complex CNN models introduce more useless information, which may decrease the tracking performance. This study proposes an online feature map selection method to remove noisy and irrelevant feature maps from different convolutional layers of CNN, which can reduce computation redundancy and improve tracking accuracy. Furthermore, a novel appearance model update strategy, which exploits the feedback from the peak value of response maps, is developed to avoid model corruption. Finally, an extensive evaluation of the proposed method was conducted over OTB-2013 and OTB-2015 datasets, and compared with different kinds of trackers, including deep learning-based trackers and CF-based trackers. The results demonstrate that the proposed method achieves a highly satisfactory performance.
AbstractList In recent years, convolutional neural networks (CNNs) have been widely used for visual object tracking, especially in combination with correlation filters (CFs). However, the increasing complex CNN models introduce more useless information, which may decrease the tracking performance. This study proposes an online feature map selection method to remove noisy and irrelevant feature maps from different convolutional layers of CNN, which can reduce computation redundancy and improve tracking accuracy. Furthermore, a novel appearance model update strategy, which exploits the feedback from the peak value of response maps, is developed to avoid model corruption. Finally, an extensive evaluation of the proposed method was conducted over OTB‐2013 and OTB‐2015 datasets, and compared with different kinds of trackers, including deep learning‐based trackers and CF‐based trackers. The results demonstrate that the proposed method achieves a highly satisfactory performance.
Author Jin, Cheng-Bin
Yang, Bin
Liu, Mingjie
Cui, Xuenan
Kim, Hakil
Author_xml – sequence: 1
  givenname: Mingjie
  surname: Liu
  fullname: Liu, Mingjie
  organization: Information and Communication Engineering, Inha University, 100 Inha-ro Nam-gu, Incheon, Republic of Korea
– sequence: 2
  givenname: Cheng-Bin
  orcidid: 0000-0001-8486-5738
  surname: Jin
  fullname: Jin, Cheng-Bin
  organization: Information and Communication Engineering, Inha University, 100 Inha-ro Nam-gu, Incheon, Republic of Korea
– sequence: 3
  givenname: Bin
  surname: Yang
  fullname: Yang, Bin
  organization: Information and Communication Engineering, Inha University, 100 Inha-ro Nam-gu, Incheon, Republic of Korea
– sequence: 4
  givenname: Xuenan
  surname: Cui
  fullname: Cui, Xuenan
  organization: Information and Communication Engineering, Inha University, 100 Inha-ro Nam-gu, Incheon, Republic of Korea
– sequence: 5
  givenname: Hakil
  orcidid: 0000-0003-4232-3804
  surname: Kim
  fullname: Kim, Hakil
  email: hikim@inha.ac.kr
  organization: Information and Communication Engineering, Inha University, 100 Inha-ro Nam-gu, Incheon, Republic of Korea
BookMark eNqFkFFLwzAQgINMcJv-AN_yBzqTtWla33Q4HQwmos8hTS8usyYjSZH9e1MmPvgw4eCO47477pugkXUWELqmZEZJUd8YiJnZ-9mc0GrGClacoTHljGZ1WfLRb83qCzQJYUcIq0nFxkhulOr6YJzNvGv6ELFrdqAijl6qD2PfcSMDtNhZHLeAlbPatGAVYKdTszMWcIAuEWloa8BLr7ZGyQ5rkLH3EC7RuZZdgKufPEVvy4fXxVO23jyuFnfrTOWc51nJiZaMg2YF560sS1a27VDUrFIsp4zXSklWN_MmBaNQcJXTQucs1w2reD5F_LhXeReCBy2UiTKmz9IrphOUiMGUSKZEMiUGU2IwlUj6h9x78yn94SRze2S-TAeH_wGxen6Z3y8JLcs8wdkRHsZ2rvc2iTlx7Bsx45M5
CitedBy_id crossref_primary_10_1007_s11042_020_10382_x
crossref_primary_10_1007_s00371_021_02304_1
crossref_primary_10_1109_TITS_2020_3046478
crossref_primary_10_1049_ipr2_12874
crossref_primary_10_1109_ACCESS_2019_2903121
crossref_primary_10_1166_jbn_2021_3184
Cites_doi 10.1109/TPAMI.2014.2345390
10.1109/CVPR.2017.513
10.1007/978-3-319-48881-3_56
10.1049/iet-ipr.2016.0931
10.1109/TPAMI.2016.2609928
10.1109/5.726791
10.1109/ICCV.2015.352
10.1109/CVPR.2010.5539960
10.1109/TPAMI.2013.230
10.1109/CVPR.2015.7299177
10.1109/TPAMI.2014.2388226
10.1109/ICCV.2015.490
10.1049/iet-cvi.2016.0241
10.1049/iet-ipr.2016.1062
10.1109/TPAMI.2015.2509974
10.1109/CVPR.2017.510
10.1007/s11263-007-0075-7
10.1023/A:1018628609742
10.1109/ICCV.2015.357
10.1109/ICCVW.2015.84
10.1109/CVPR.2017.531
ContentType Journal Article
Copyright The Institution of Engineering and Technology
2021 The Authors. IET Image Processing published by John Wiley & Sons, Ltd. on behalf of The Institution of Engineering and Technology
Copyright_xml – notice: The Institution of Engineering and Technology
– notice: 2021 The Authors. IET Image Processing published by John Wiley & Sons, Ltd. on behalf of The Institution of Engineering and Technology
DBID AAYXX
CITATION
DOI 10.1049/iet-ipr.2018.5454
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1751-9667
EndPage 2029
ExternalDocumentID 10_1049_iet_ipr_2018_5454
IPR2BF01663
Genre article
GrantInformation_xml – fundername: Industrial Technology Innovation Program
GroupedDBID 0R
24P
29I
4.4
5GY
6IK
8FE
8FG
8VB
AAJGR
ABJCF
ABPTK
ACGFS
ACIWK
AENEX
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BFFAM
BGLVJ
CS3
DU5
EBS
EJD
ESX
HCIFZ
HZ
IFIPE
IPLJI
JAVBF
L6V
LAI
M43
M7S
MS
O9-
OCL
P2P
P62
PTHSS
QWB
RIE
RNS
RUI
S0W
UNR
ZL0
.DC
0R~
1OC
AAHHS
AAHJG
ABQXS
ACCFJ
ACCMX
ACESK
ACXQS
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
ALUQN
AVUZU
CCPQU
GROUPED_DOAJ
HZ~
IAO
ITC
K1G
MCNEO
MS~
OK1
ROL
AAYXX
CITATION
IDLOA
PHGZM
PHGZT
ID FETCH-LOGICAL-c3773-670fa57ef5477da6656dd7da6958c531579cca59b2bb2b51e47c314f353fb5873
IEDL.DBID 24P
ISSN 1751-9659
IngestDate Tue Jul 01 05:11:40 EDT 2025
Thu Apr 24 23:00:10 EDT 2025
Wed Jan 22 16:32:38 EST 2025
Tue Jan 05 21:45:41 EST 2021
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords CNN
deep learning-based trackers
useless information
tracking accuracy
CF-based trackers
object detection
occlusion-robust object tracking
model corruption
online selected hierarchical features
feature extraction
correlation filters
visual object tracking
feature map selection method
object tracking
appearance model update strategy
tracking performance
computation redundancy
convolutional neural networks
learning (artificial intelligence)
OTB-2015 datasets
convolutional layers
neural nets
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3773-670fa57ef5477da6656dd7da6958c531579cca59b2bb2b51e47c314f353fb5873
ORCID 0000-0001-8486-5738
0000-0003-4232-3804
OpenAccessLink https://ietresearch.onlinelibrary.wiley.com/doi/pdfdirect/10.1049/iet-ipr.2018.5454
PageCount 7
ParticipantIDs crossref_citationtrail_10_1049_iet_ipr_2018_5454
iet_journals_10_1049_iet_ipr_2018_5454
wiley_primary_10_1049_iet_ipr_2018_5454_IPR2BF01663
crossref_primary_10_1049_iet_ipr_2018_5454
ProviderPackageCode RUI
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20181100
November 2018
2018-11-00
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: 20181100
PublicationDecade 2010
PublicationTitle IET image processing
PublicationYear 2018
Publisher The Institution of Engineering and Technology
Publisher_xml – name: The Institution of Engineering and Technology
References Kang, B.; Zhu, W.-P.; Liang, D. (C4) 2017; 11
Liaw, A.; Wiener, M. (C15) 2002; 2
Quiñonero-Candela, J.; Rasmussen, C.E. (C13) 2005; 6
Danelljan, M.; Hager, G.; Khan, F.S. (C34) 2017; 39
Yilmza, A.; Javed, O.; Shah, M. (C1) 2006; 38
Li, F.; Zhang, R.; You, F. (C6) 2017; 10
Ross, D.A.; Lim, J.; Lin, R.-S. (C2) 2008; 77
LeCun, Y.; Bottou, L.; Bengio, Y. (C7) 1998; 86
Smeulders, A.W.M.; Chu, D.M.; Cucchiara, R. (C3) 2014; 36
Gu, X.; Huang, X.; Alade, T. (C22) 2017; 11
Hare, S.; Golodetz, S.; Saffari, A. (C5) 2016; 38
Wu, Y.; Lim, J.; Yang, M. H. (C9) 2015; 37
Suykens, J.A.; Vandewalle, J. (C14) 1999; 9
Henriques, J.F.; Caseiro, R.; Martins, P. (C17) 2015; 37
December 2015
2015; 37
October 2016
June 2010
2017; 39
July 2017
September 2014
2006; 38
2017; 11
June 2013
2017; 10
2002; 2
2014; 36
June 2015
2005; 6
June 2016
2008; 77
2016; 38
1998; 86
1999; 9
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
Liaw A. (e_1_2_8_16_1) 2002; 2
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
Quiñonero‐Candela J. (e_1_2_8_14_1) 2005; 6
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_35_1
e_1_2_8_15_1
Yilmza A. (e_1_2_8_2_1) 2006; 38
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 11
  start-page: 1172
  issue: 12
  year: 2017
  end-page: 1178
  ident: C4
  article-title: Robust multi-feature visual tracking via multi-task kernel-based sparse learning
  publication-title: IET Image Process.
– volume: 77
  start-page: 125
  year: 2008
  end-page: 141
  ident: C2
  article-title: Incremental learning for robust visual tracking
  publication-title: Int. J. Comput. Vis.
– volume: 10
  start-page: 833
  issue: 11
  year: 2017
  end-page: 840
  ident: C6
  article-title: Fast pedestrian detection and dynamic tracking for intelligent vehicles within V2V cooperative environment
  publication-title: IET Image Process.
– volume: 37
  start-page: 1834
  issue: 9
  year: 2015
  end-page: 1848
  ident: C9
  article-title: Object tracking benchmark
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 37
  start-page: 583
  issue: 3
  year: 2015
  end-page: 596
  ident: C17
  article-title: High-speed tracking with kernelized correlation filters
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 2
  start-page: 18
  issue: 3
  year: 2002
  end-page: 22
  ident: C15
  article-title: Classification and regression by random forest
  publication-title: R News
– volume: 9
  start-page: 293
  issue: 3
  year: 1999
  end-page: 300
  ident: C14
  article-title: Least squares support vector machine classifiers
  publication-title: Neural Process. Lett.
– volume: 36
  start-page: 1442
  issue: 7
  year: 2014
  end-page: 1468
  ident: C3
  article-title: Visual tracking: an experimental survey
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 38
  start-page: 1
  issue: 4
  year: 2006
  end-page: 45
  ident: C1
  article-title: Object tracking: a survey
  publication-title: ACM Comput. Surv.
– volume: 11
  start-page: 220
  issue: 3
  year: 2017
  end-page: 225
  ident: C22
  article-title: Multiscale spatially regularised correlation filters for visual tracking
  publication-title: IET Comput. Vis.
– volume: 39
  start-page: 1561
  issue: 8
  year: 2017
  end-page: 1575
  ident: C34
  article-title: Discriminative scale space tracking
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 86
  start-page: 2278
  issue: 11
  year: 1998
  end-page: 2324
  ident: C7
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
– volume: 38
  start-page: 2096
  issue: 10
  year: 2016
  end-page: 2109
  ident: C5
  article-title: Struck: structured output tracking with kernels
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 6
  start-page: 1939
  issue: 12
  year: 2005
  end-page: 1959
  ident: C13
  article-title: A unifying view of sparse approximate Gaussian process regression
  publication-title: J. Mach. Learn. Res.
– start-page: 58
  year: December 2015
  end-page: 66
– volume: 6
  start-page: 1939
  issue: 12
  year: 2005
  end-page: 1959
  article-title: A unifying view of sparse approximate Gaussian process regression
  publication-title: J. Mach. Learn. Res.
– start-page: 749
  year: June 2015
  end-page: 758
– start-page: 2544
  year: June 2010
  end-page: 2550
– start-page: 597
  year: June 2016
  end-page: 606
– volume: 38
  start-page: 2096
  issue: 10
  year: 2016
  end-page: 2109
  article-title: Struck: structured output tracking with kernels
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 37
  start-page: 1834
  issue: 9
  year: 2015
  end-page: 1848
  article-title: Object tracking benchmark
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 9
  start-page: 293
  issue: 3
  year: 1999
  end-page: 300
  article-title: Least squares support vector machine classifiers
  publication-title: Neural Process. Lett.
– volume: 37
  start-page: 583
  issue: 3
  year: 2015
  end-page: 596
  article-title: High‐speed tracking with kernelized correlation filters
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– year: July 2017
– start-page: 3119
  year: December 2015
  end-page: 3127
– start-page: 1420
  year: July 2017
  end-page: 1429
– start-page: 472
  year: October 2016
  end-page: 488
– start-page: 254
  year: September 2014
  end-page: 265
– volume: 11
  start-page: 220
  issue: 3
  year: 2017
  end-page: 225
  article-title: Multiscale spatially regularised correlation filters for visual tracking
  publication-title: IET Comput. Vis.
– start-page: 1430
  year: June 2016
  end-page: 1438
– start-page: 1401
  year: June 2016
  end-page: 1409
– volume: 2
  start-page: 18
  issue: 3
  year: 2002
  end-page: 22
  article-title: Classification and regression by random forest
  publication-title: R News
– volume: 10
  start-page: 833
  issue: 11
  year: 2017
  end-page: 840
  article-title: Fast pedestrian detection and dynamic tracking for intelligent vehicles within V2V cooperative environment
  publication-title: IET Image Process.
– start-page: 2411
  year: June 2013
  end-page: 2418
– volume: 39
  start-page: 1561
  issue: 8
  year: 2017
  end-page: 1575
  article-title: Discriminative scale space tracking
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 86
  start-page: 2278
  issue: 11
  year: 1998
  end-page: 2324
  article-title: Gradient‐based learning applied to document recognition
  publication-title: Proc. IEEE
– start-page: 3101
  year: December 2015
  end-page: 3109
– volume: 38
  start-page: 1
  issue: 4
  year: 2006
  end-page: 45
  article-title: Object tracking: a survey
  publication-title: ACM Comput. Surv.
– volume: 77
  start-page: 125
  year: 2008
  end-page: 141
  article-title: Incremental learning for robust visual tracking
  publication-title: Int. J. Comput. Vis.
– volume: 11
  start-page: 1172
  issue: 12
  year: 2017
  end-page: 1178
  article-title: Robust multi‐feature visual tracking via multi‐task kernel‐based sparse learning
  publication-title: IET Image Process.
– start-page: 850
  year: October 2016
  end-page: 865
– start-page: 3074
  year: December 2015
  end-page: 3082
– start-page: 4310
  year: December 2015
  end-page: 4318
– volume: 36
  start-page: 1442
  issue: 7
  year: 2014
  end-page: 1468
  article-title: Visual tracking: an experimental survey
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 5388
  year: June 2015
  end-page: 5396
– ident: e_1_2_8_18_1
  doi: 10.1109/TPAMI.2014.2345390
– ident: e_1_2_8_26_1
  doi: 10.1109/CVPR.2017.513
– ident: e_1_2_8_31_1
– ident: e_1_2_8_28_1
  doi: 10.1007/978-3-319-48881-3_56
– ident: e_1_2_8_25_1
– ident: e_1_2_8_33_1
– ident: e_1_2_8_7_1
  doi: 10.1049/iet-ipr.2016.0931
– ident: e_1_2_8_35_1
  doi: 10.1109/TPAMI.2016.2609928
– ident: e_1_2_8_32_1
– volume: 38
  start-page: 1
  issue: 4
  year: 2006
  ident: e_1_2_8_2_1
  article-title: Object tracking: a survey
  publication-title: ACM Comput. Surv.
– ident: e_1_2_8_21_1
– ident: e_1_2_8_8_1
  doi: 10.1109/5.726791
– ident: e_1_2_8_13_1
– volume: 2
  start-page: 18
  issue: 3
  year: 2002
  ident: e_1_2_8_16_1
  article-title: Classification and regression by random forest
  publication-title: R News
– ident: e_1_2_8_19_1
  doi: 10.1109/ICCV.2015.352
– ident: e_1_2_8_24_1
– ident: e_1_2_8_17_1
  doi: 10.1109/CVPR.2010.5539960
– ident: e_1_2_8_4_1
  doi: 10.1109/TPAMI.2013.230
– ident: e_1_2_8_34_1
  doi: 10.1109/CVPR.2015.7299177
– ident: e_1_2_8_10_1
  doi: 10.1109/TPAMI.2014.2388226
– ident: e_1_2_8_30_1
  doi: 10.1109/ICCV.2015.490
– ident: e_1_2_8_12_1
– ident: e_1_2_8_23_1
  doi: 10.1049/iet-cvi.2016.0241
– ident: e_1_2_8_5_1
  doi: 10.1049/iet-ipr.2016.1062
– ident: e_1_2_8_6_1
  doi: 10.1109/TPAMI.2015.2509974
– volume: 6
  start-page: 1939
  issue: 12
  year: 2005
  ident: e_1_2_8_14_1
  article-title: A unifying view of sparse approximate Gaussian process regression
  publication-title: J. Mach. Learn. Res.
– ident: e_1_2_8_22_1
  doi: 10.1109/CVPR.2017.510
– ident: e_1_2_8_9_1
– ident: e_1_2_8_3_1
  doi: 10.1007/s11263-007-0075-7
– ident: e_1_2_8_15_1
  doi: 10.1023/A:1018628609742
– ident: e_1_2_8_20_1
  doi: 10.1109/ICCV.2015.357
– ident: e_1_2_8_29_1
– ident: e_1_2_8_11_1
  doi: 10.1109/ICCVW.2015.84
– ident: e_1_2_8_27_1
  doi: 10.1109/CVPR.2017.531
SSID ssj0059085
Score 2.1751099
Snippet In recent years, convolutional neural networks (CNNs) have been widely used for visual object tracking, especially in combination with correlation filters...
SourceID crossref
wiley
iet
SourceType Enrichment Source
Index Database
Publisher
StartPage 2023
SubjectTerms appearance model update strategy
CF‐based trackers
CNN
computation redundancy
convolutional layers
convolutional neural networks
correlation filters
deep learning‐based trackers
feature extraction
feature map selection method
learning (artificial intelligence)
model corruption
neural nets
object detection
object tracking
occlusion‐robust object tracking
online selected hierarchical features
OTB‐2015 datasets
Research Article
tracking accuracy
tracking performance
useless information
visual object tracking
SummonAdditionalLinks – databaseName: IET Digital Library Open Access
  dbid: IDLOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZS8QwEA66vvjiLd7kQXwQ4m6bpGkevRYVL0Rh30pOWZCt7PH_nWm7yoKsQh9COw1kJsfXmc58hBxHEaMUQTNjnGZCyZRpHTosj4lTFvCFiZjv_PCY3byJu57s_aRH-_47cmWwqccNveWhzjzAX7dhH243Oq4JSQDftkGA9T-xtmeSnwEgEItkKVUqkS2ydHt1j59Y9c6M9N6ySpBEavlM6u8o5y-dzJxTi_B4Fr1Wx093jaw0uJGe14ZeJwthsEFWGwxJmxU62iTmybmPCbrA2LC0k9GYlhZdLXQ8NA7d4hTPLU_LAYVRUxhurGlFaRlpXTaDjipuHBBCnuwq0gCGpDFUNUBHW-Ste_16ecMaGgXmuFKcZaoTjVQBbKKUNxkgOO-xoWXuYAlKpcGMUtvUwiWTIJTjiYhc8mhlrvg2aQ3KQdghVASfeKT0M4kRgLSszoL3iUi9ijm3apd0pkorXFNjHKkuPooq1i10AYosQM8F6rlAPe-S0-9XPusCG_OET_DedArME-SVsf7usrh9fkkvuoB8M7733-73yTK265zEA9IaDyfhEMDJ2B41c-4LPTThLA
  priority: 102
  providerName: Institution of Engineering and Technology
Title Occlusion-robust object tracking based on the confidence of online selected hierarchical features
URI http://digital-library.theiet.org/content/journals/10.1049/iet-ipr.2018.5454
https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-ipr.2018.5454
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZ5XHppmqSlSZtFh9BDwO3akizruHksSUizS-iW0IvREwJhHdbee35Cf2N-SWZk78ISSCBgsJElHWY80qcZz3yEHAYeguBeJVpblXApskQp30-KkFppAF_ogPnOv6_z8wm_vBW3a-RkkQvT1odYOtzQMuJ6jQauTctCAqAWlHjnm-TuAUt6psVPwAF8nWxiii3-15fx8WI5Rk5vEbMikU8-F2oZ2lS_Xkyxsjmtw-tVyBr3nOEn8rEDi3TQanebrPnpDtnqgCPtzLLeJXZk7f0c_V5Pj_9nlZnXDa0MelhoM9MWveEUtytHqykFxEfhEBxaNlFaBdpKg9aREgc6IT12DDCA_mjwsfRn_ZlMhmd_Ts6Tjj0hsUxKluSyH7SQHlQhpdM5ADfn8EGJwoLlCalAe0KZzMAlUs-lZSkPTLBgRCHZF7Ixrab-K6Hcu9Qhk59ONQeAZVTunUt55mQomJF7pL8QW2m70uLIcHFfxhA3VyWIsgRJlyjpEiW9R46WQx7auhqvdf6BbZ111a91ZFFdb09ZXoxvsuMhAN6c7b9r1DfyAdvbvMTvZKOZzf0BAJTG9OIH2CObg7-TfxO4X5xejQbPc2vkVg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEB7yODSXpmkSmr6iQ5pDwe3akizr0EPaZtnNqyVkS-jFsV4QCOuw9hJ660_oj-kv6i_pjO1dCIEUCgEfjD0S8mhG82nkmQHYCSIEKbyOisLqSCiZRFr7XpSF2CqD-KIIFO98fJIORuLgXJ4vwO9ZLEybH2LucCPNaNZrUnBySLcbTkFJMi99HV1eU07POHuHQEB0v1Ye-h83uHGrPgw_4yy_SZL-_tmnQdTVFogsV4pHqeqFQiqPA1XKFSnCGufoRsvMolxKpfHbpDaJwUvGXijLYxG45MHITHHsdxGWCU2hLi3vfRt9H80sAJURl00gJpWwT6Wen6bq93cGfcseLuLr2yi5MXP9J_C4w6dsrxWoNVjw46ew2mFV1q0E1TrYL9ZeTcnV9ufnr0lpplXNSkNOHVZPCksOeEYW0rFyzBBkMtx3h7aAKSsDayeAVU0VHiSiitzNmQaKDAu-yTZabcDoQZi6CUvjcuyfARPexY6KBxZxIRDTGZ1652KROBUybtQW9GZsy22XzZyKalzlzam60DmyMkdO58TpnDi9BW_nTa7bVB73Ee_Ss06hq_sIeTNd_-4yH349TT72EWOn_Pl_tdqGR4Oz46P8aHhy-AJWiKYNi3wJS_Vk6l8hPqrN604cGVw8tAb8BU4rH4g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NatwwEB6SDZRekv7S_LTRoe2h4HZtSZZ1yCFtsmSbNg2lW0IvrvUHgbBe1l5CbnmEvEveKE_SGdu7EAopFAI-GHsk5NGM5tPIMwPwOogQpPA6KgqrI6FkEmnt-1EWYqsM4osiULzz16P0YCQ-n8iTJbiex8K0-SEWDjfSjGa9JgWfuNDuNwXlyDz1dXQ6oZSecfYecYDo_qw89BfnuG-rdoZ7OMlvkmSw_-PTQdSVFogsV4pHqeqHQiqP41TKFSmiGufoRsvMolhKpfHTpDaJwUvGXijLYxG45MHITHHsdxlWJFrDfg9Wdn-Ofo3mBoCqiMsmDpMq2KdSLw5T9Ye_Bn3LHC7j69sgubFyg0ew2sFTttvK02NY8uMnsNZBVdYtBNVTsN-sPZuRp-3m8mpamllVs9KQT4fV08KS_52RgXSsHDPEmAy33aGtX8rKwFr-s6opwoNEVJC7OdJAiWHBN8lGq2cwuhemPofeuBz7F8CEd7Gj2oFFXAiEdEan3rlYJE6FjBu1Dv0523LbJTOnmhpneXOoLnSOrMyR0zlxOidOr8O7RZNJm8njLuK39KzT5-ouQt5M17-7zIfH35OPA4TYKd_4r1bb8OB4b5B_GR4dbsJDImmDIregV09n_iWio9q86qSRwe_7VoA_MtgeqA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Occlusion%E2%80%90robust+object+tracking+based+on+the+confidence+of+online+selected+hierarchical+features&rft.jtitle=IET+image+processing&rft.au=Liu%2C+Mingjie&rft.au=Jin%2C+Cheng%E2%80%90Bin&rft.au=Yang%2C+Bin&rft.au=Cui%2C+Xuenan&rft.date=2018-11-01&rft.pub=The+Institution+of+Engineering+and+Technology&rft.issn=1751-9659&rft.eissn=1751-9667&rft.volume=12&rft.issue=11&rft.spage=2023&rft.epage=2029&rft_id=info:doi/10.1049%2Fiet-ipr.2018.5454&rft.externalDBID=10.1049%252Fiet-ipr.2018.5454&rft.externalDocID=IPR2BF01663
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-9659&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-9659&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-9659&client=summon