Supramolecular Host–Guest Inclusion for Distinguishing Cucurbit[7]uril‐Based Pseudorotaxanes from Small‐Molecule Ligands in Coordination Assembly with a Uranyl Center

Although the capability of supramolecular pseudorotaxane/rotaxane systems as ligands for coordination with actinides has been identified by the on‐going emerging of uranyl–organic polyrotaxane compounds, it is, however, still unknown how supramolecular inclusion affects the coordination assembly of...

Full description

Saved in:
Bibliographic Details
Published inChemistry : a European journal Vol. 23; no. 56; pp. 13995 - 14003
Main Authors Mei, Lei, Xie, Zhen‐Ni, Hu, Kong‐qiu, Yuan, Li‐Yong, Gao, Zeng‐Qiang, Chai, Zhi‐Fang, Shi, Wei‐Qun
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 09.10.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Although the capability of supramolecular pseudorotaxane/rotaxane systems as ligands for coordination with actinides has been identified by the on‐going emerging of uranyl–organic polyrotaxane compounds, it is, however, still unknown how supramolecular inclusion affects the coordination assembly of the simple “axle” ligand with uranyl species. Herein, a semi‐rigid organic dicarboxylate compound [BzBPCEt]Br2 (L1) is selected as a small‐molecule “axle” ligand and the corresponding cucurbit[7]uril (CB7)‐based [2]pseudorotaxane ligand, [BzBPCEt]Br2@CB7 (L1@CB7) has been also synthesized through CB7‐based inclusion in this work. A detailed comparison between uranyl complexes from the “axle” ligand L1 and those from pseudorotaxane L1@CB7 has been conducted, demonstrating the significant role of CB7‐based inclusion in distinguishing supramolecular pseudorotaxane ligands from small‐molecule dicarboxylates in uranyl coordination assembly. Notably, the impact of supramolecular inclusion on the “axle” linker in the system with cucurbituril macrocycles involved is established for the first time. Detailed structure decipherment suggests that the significant effect of CB7 is attributed to hydrothermal stabilization of the “axle” ligand or increased steric hindrance to the groups nearby originated from the bulky size of macrocyclic CB7. Beyond small‐molecule‐based coordination assembly: Bulky cucurbit[7]uril macrocycle exerts significant influence on the groups of the guest ligand threading in it, and achieves structural diversity of as‐generated uranyl compounds by combined effects of improved stability and increased steric hindrance for the cucurbit[7]uril‐encapsulated pseudorotaxane linker.
AbstractList Although the capability of supramolecular pseudorotaxane/rotaxane systems as ligands for coordination with actinides has been identified by the on-going emerging of uranyl-organic polyrotaxane compounds, it is, however, still unknown how supramolecular inclusion affects the coordination assembly of the simple "axle" ligand with uranyl species. Herein, a semi-rigid organic dicarboxylate compound [BzBPCEt]Br2 (L1) is selected as a small-molecule "axle" ligand and the corresponding cucurbit[7]uril (CB7)-based [2]pseudorotaxane ligand, [BzBPCEt]Br2@CB7 (L1@CB7) has been also synthesized through CB7-based inclusion in this work. A detailed comparison between uranyl complexes from the "axle" ligand L1 and those from pseudorotaxane L1@CB7 has been conducted, demonstrating the significant role of CB7-based inclusion in distinguishing supramolecular pseudorotaxane ligands from small-molecule dicarboxylates in uranyl coordination assembly. Notably, the impact of supramolecular inclusion on the "axle" linker in the system with cucurbituril macrocycles involved is established for the first time. Detailed structure decipherment suggests that the significant effect of CB7 is attributed to hydrothermal stabilization of the "axle" ligand or increased steric hindrance to the groups nearby originated from the bulky size of macrocyclic CB7.
Although the capability of supramolecular pseudorotaxane/rotaxane systems as ligands for coordination with actinides has been identified by the on‐going emerging of uranyl–organic polyrotaxane compounds, it is, however, still unknown how supramolecular inclusion affects the coordination assembly of the simple “axle” ligand with uranyl species. Herein, a semi‐rigid organic dicarboxylate compound [BzBPCEt]Br 2 ( L 1 ) is selected as a small‐molecule “axle” ligand and the corresponding cucurbit[7]uril ( CB7 )‐based [2]pseudorotaxane ligand, [BzBPCEt]Br 2 @ CB7 ( L 1 @ CB7 ) has been also synthesized through CB7 ‐based inclusion in this work. A detailed comparison between uranyl complexes from the “axle” ligand L 1 and those from pseudorotaxane L 1 @ CB7 has been conducted, demonstrating the significant role of CB7 ‐based inclusion in distinguishing supramolecular pseudorotaxane ligands from small‐molecule dicarboxylates in uranyl coordination assembly. Notably, the impact of supramolecular inclusion on the “axle” linker in the system with cucurbituril macrocycles involved is established for the first time. Detailed structure decipherment suggests that the significant effect of CB7 is attributed to hydrothermal stabilization of the “axle” ligand or increased steric hindrance to the groups nearby originated from the bulky size of macrocyclic CB7 .
Although the capability of supramolecular pseudorotaxane/rotaxane systems as ligands for coordination with actinides has been identified by the on‐going emerging of uranyl–organic polyrotaxane compounds, it is, however, still unknown how supramolecular inclusion affects the coordination assembly of the simple “axle” ligand with uranyl species. Herein, a semi‐rigid organic dicarboxylate compound [BzBPCEt]Br2 (L1) is selected as a small‐molecule “axle” ligand and the corresponding cucurbit[7]uril (CB7)‐based [2]pseudorotaxane ligand, [BzBPCEt]Br2@CB7 (L1@CB7) has been also synthesized through CB7‐based inclusion in this work. A detailed comparison between uranyl complexes from the “axle” ligand L1 and those from pseudorotaxane L1@CB7 has been conducted, demonstrating the significant role of CB7‐based inclusion in distinguishing supramolecular pseudorotaxane ligands from small‐molecule dicarboxylates in uranyl coordination assembly. Notably, the impact of supramolecular inclusion on the “axle” linker in the system with cucurbituril macrocycles involved is established for the first time. Detailed structure decipherment suggests that the significant effect of CB7 is attributed to hydrothermal stabilization of the “axle” ligand or increased steric hindrance to the groups nearby originated from the bulky size of macrocyclic CB7. Beyond small‐molecule‐based coordination assembly: Bulky cucurbit[7]uril macrocycle exerts significant influence on the groups of the guest ligand threading in it, and achieves structural diversity of as‐generated uranyl compounds by combined effects of improved stability and increased steric hindrance for the cucurbit[7]uril‐encapsulated pseudorotaxane linker.
Although the capability of supramolecular pseudorotaxane/rotaxane systems as ligands for coordination with actinides has been identified by the on-going emerging of uranyl-organic polyrotaxane compounds, it is, however, still unknown how supramolecular inclusion affects the coordination assembly of the simple "axle" ligand with uranyl species. Herein, a semi-rigid organic dicarboxylate compound [BzBPCEt]Br (L ) is selected as a small-molecule "axle" ligand and the corresponding cucurbit[7]uril (CB7)-based [2]pseudorotaxane ligand, [BzBPCEt]Br @CB7 (L @CB7) has been also synthesized through CB7-based inclusion in this work. A detailed comparison between uranyl complexes from the "axle" ligand L and those from pseudorotaxane L @CB7 has been conducted, demonstrating the significant role of CB7-based inclusion in distinguishing supramolecular pseudorotaxane ligands from small-molecule dicarboxylates in uranyl coordination assembly. Notably, the impact of supramolecular inclusion on the "axle" linker in the system with cucurbituril macrocycles involved is established for the first time. Detailed structure decipherment suggests that the significant effect of CB7 is attributed to hydrothermal stabilization of the "axle" ligand or increased steric hindrance to the groups nearby originated from the bulky size of macrocyclic CB7.
Author Gao, Zeng‐Qiang
Hu, Kong‐qiu
Shi, Wei‐Qun
Mei, Lei
Chai, Zhi‐Fang
Yuan, Li‐Yong
Xie, Zhen‐Ni
Author_xml – sequence: 1
  givenname: Lei
  orcidid: 0000-0002-2926-7265
  surname: Mei
  fullname: Mei, Lei
  organization: Chinese Academy of Sciences
– sequence: 2
  givenname: Zhen‐Ni
  surname: Xie
  fullname: Xie, Zhen‐Ni
  organization: Chinese Academy of Sciences
– sequence: 3
  givenname: Kong‐qiu
  orcidid: 0000-0002-8855-108X
  surname: Hu
  fullname: Hu, Kong‐qiu
  organization: Chinese Academy of Sciences
– sequence: 4
  givenname: Li‐Yong
  surname: Yuan
  fullname: Yuan, Li‐Yong
  organization: Chinese Academy of Sciences
– sequence: 5
  givenname: Zeng‐Qiang
  surname: Gao
  fullname: Gao, Zeng‐Qiang
  organization: Chinese Academy of Sciences
– sequence: 6
  givenname: Zhi‐Fang
  surname: Chai
  fullname: Chai, Zhi‐Fang
  organization: Soochow University
– sequence: 7
  givenname: Wei‐Qun
  orcidid: 0000-0001-9929-9732
  surname: Shi
  fullname: Shi, Wei‐Qun
  email: shiwq@ihep.ac.cn
  organization: Chinese Academy of Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28800189$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u1DAUhS1URKeFLUtkiXUGO4kdZ1nS0qk0FUilK4Qix7npuHLswT8qs-sjVOpr8FR9EiZMKRISYnU333ePdM4B2rPOAkKvKZlTQvJ3agXjPCe0InnF8mdoRllOs6LibA_NSF1WGWdFvY8OQrgmhNS8KF6g_VwIQqioZ-jHRVp7OToDKhnp8cKF-HB7f5ogRHxmlUlBO4sH5_GxDlHbq6TDantwk1TynY5fqq_Ja_Nwe_deBujxpwCpd95F-V1aCHjwbsQXozQTcr4LArzUV9L2AWuLG-d8r62MU9BRCDB2ZoNvdFxhiS-9tBuDG7AR_Ev0fJAmwKvHe4guP5x8bhbZ8uPpWXO0zFRRVXlG5SCEyMuBDUIy1RFK-qLkBXBVDR30RQcgaD3IHIgCVoqOKdIxzjjnpeRQHKK3u79r775NTbTXLnm7jWxpXYqiIoKSLfXmkUrdCH279nqUftP-LncLzHeA8i4ED8MTQkk7rddO67VP622F8i9B6firl-ilNv_W6p12ow1s_hPSNouT8z_uT83Hti0
CitedBy_id crossref_primary_10_1016_j_ccr_2024_215821
crossref_primary_10_1039_D3CC02636A
crossref_primary_10_1002_chem_201905156
crossref_primary_10_1016_j_jphotochem_2019_111945
crossref_primary_10_1002_chem_202003621
crossref_primary_10_1016_j_cclet_2022_03_092
crossref_primary_10_1021_acs_inorgchem_2c02426
crossref_primary_10_1002_chem_202100614
crossref_primary_10_1246_bcsj_20170418
crossref_primary_10_1021_acs_inorgchem_9b03215
crossref_primary_10_1039_D0RA09581H
crossref_primary_10_1021_acs_inorgchem_1c02872
crossref_primary_10_1021_acs_inorgchem_0c02904
crossref_primary_10_1021_acs_inorgchem_1c03204
crossref_primary_10_1071_CH24109
crossref_primary_10_1007_s10847_018_0828_7
crossref_primary_10_1039_D1CE01330K
crossref_primary_10_1039_C8CC05122D
crossref_primary_10_1021_acs_joc_8b02993
crossref_primary_10_1021_acs_orglett_9b03377
crossref_primary_10_1039_C9CC07121K
crossref_primary_10_1039_D1DT02505H
crossref_primary_10_1021_acs_inorgchem_0c00037
crossref_primary_10_1039_D3CE00845B
crossref_primary_10_1002_ejic_202300090
crossref_primary_10_1002_adfm_202303530
crossref_primary_10_1021_acs_cgd_8b00219
crossref_primary_10_1021_acs_jpcb_0c11383
crossref_primary_10_1039_C9CE00867E
crossref_primary_10_1515_ncrs_2021_0421
crossref_primary_10_1021_acs_inorgchem_8b02126
crossref_primary_10_1021_acs_inorgchem_8b03353
crossref_primary_10_1039_D2CE01187E
crossref_primary_10_1021_acs_inorgchem_1c01177
Cites_doi 10.1038/nature16530
10.1021/ol049140u
10.1002/chem.201601506
10.1021/acs.inorgchem.6b00786
10.1021/ja044153o
10.1039/B416609D
10.1021/cr300198m
10.1021/cr9900432
10.1038/nchem.1494
10.1038/nchem.1028
10.1039/c2cs35141b
10.1002/chem.201500343
10.1016/j.jssc.2007.06.036
10.1021/ic1000792
10.1021/ic202577z
10.1016/j.ccr.2015.05.010
10.1002/chem.201504831
10.1016/j.ccr.2012.03.029
10.1002/ange.201208015
10.1002/anie.201007963
10.1021/acs.inorgchem.5b01988
10.1039/b603463b
10.1021/ic100887c
10.1002/1521-3765(20020118)8:2<498::AID-CHEM498>3.0.CO;2-M
10.1021/cg060329h
10.1002/anie.201208015
10.1002/anie.201301007
10.1039/a900939f
10.1002/ange.201007963
10.1039/B615696G
10.1039/c1ce05934c
10.1021/acs.inorgchem.5b00013
10.1038/nature07372
10.1039/b900317g
10.1021/ja035388n
10.1021/jacs.5b04674
10.1039/C5CC04409J
10.1021/ja028342n
10.1039/C4CC00690A
10.1039/a704574c
10.1002/ange.201301007
10.1021/cr300202a
10.1021/acs.inorgchem.6b02515
10.1016/j.ccr.2013.08.038
10.1021/ic030196e
10.1002/1521-3773(20000804)39:15<2699::AID-ANIE2699>3.0.CO;2-Z
10.1080/000187399243419
10.1107/S1600536805009438
10.1021/ar200042t
10.1002/1521-3757(20000804)112:15<2811::AID-ANGE2811>3.0.CO;2-9
10.1039/C6DT02704K
10.1016/j.tet.2007.01.029
ContentType Journal Article
Copyright 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
K9.
DOI 10.1002/chem.201702752
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
DatabaseTitle CrossRef
PubMed
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database
CrossRef

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3765
EndPage 14003
ExternalDocumentID 28800189
10_1002_chem_201702752
CHEM201702752
Genre article
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 21671191, 11405186; 21577144, 91426302, 91326202
– fundername: Science Challenge Project of Ministry of Industry and Information Technology of China
  funderid: JCKY2016212A504
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
29B
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
702
77Q
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACUHS
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBD
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGC
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
TWZ
UB1
UPT
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YZZ
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
NPM
7SR
8BQ
8FD
JG9
K9.
ID FETCH-LOGICAL-c3772-1af88824f5f8a5cb010d3463e6c7fbed3bee819fa2e0ce548b5c0b5656664a6e3
IEDL.DBID DR2
ISSN 0947-6539
IngestDate Sun Jul 13 03:09:38 EDT 2025
Wed Feb 19 02:42:04 EST 2025
Thu Apr 24 23:01:20 EDT 2025
Tue Jul 01 02:47:48 EDT 2025
Wed Jan 22 16:21:31 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 56
Keywords actinide
uranium
rotaxanes
cucurbiturils
macrocycles
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3772-1af88824f5f8a5cb010d3463e6c7fbed3bee819fa2e0ce548b5c0b5656664a6e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8855-108X
0000-0001-9929-9732
0000-0002-2926-7265
PMID 28800189
PQID 1948370810
PQPubID 986340
PageCount 9
ParticipantIDs proquest_journals_1948370810
pubmed_primary_28800189
crossref_primary_10_1002_chem_201702752
crossref_citationtrail_10_1002_chem_201702752
wiley_primary_10_1002_chem_201702752_CHEM201702752
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 9, 2017
PublicationDateYYYYMMDD 2017-10-09
PublicationDate_xml – month: 10
  year: 2017
  text: October 9, 2017
  day: 09
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationSubtitle A European Journal
PublicationTitle Chemistry : a European journal
PublicationTitleAlternate Chemistry
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2001; 101
2015; 303
2000 2000; 39 112
2002; 31
2015; 51
1999; 48
2015; 54
2002; 8
1997
2004; 6
2006
2006; 6
2005
2011; 13
2005; 61
2011; 3
2013 2013; 52 125
2012; 51
2016; 55
2010; 49
2012; 256
2015; 137
2005; 127
2015; 21
2017; 56
2007; 9
2016; 530
2011; 44
2013; 113
2011 2011; 50 123
2007; 180
2008; 455
2007; 63
2003; 125
2012; 4
2014; 50
2009; 38
2003; 42
2014; 266
2012; 41
2016; 45
2016; 22
e_1_2_7_5_2
e_1_2_7_3_2
e_1_2_7_9_1
e_1_2_7_7_2
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_2
e_1_2_7_15_2
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_13_2
e_1_2_7_11_2
e_1_2_7_43_2
e_1_2_7_45_2
e_1_2_7_47_2
e_1_2_7_26_2
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_2
e_1_2_7_25_2
e_1_2_7_52_2
e_1_2_7_31_1
e_1_2_7_23_2
e_1_2_7_54_2
e_1_2_7_23_1
e_1_2_7_21_2
e_1_2_7_33_2
e_1_2_7_56_2
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_58_2
e_1_2_7_37_2
e_1_2_7_39_2
e_1_2_7_4_2
e_1_2_7_2_2
e_1_2_7_8_2
e_1_2_7_6_2
e_1_2_7_18_3
e_1_2_7_18_2
e_1_2_7_16_3
e_1_2_7_16_2
e_1_2_7_61_1
e_1_2_7_14_2
e_1_2_7_40_2
e_1_2_7_42_2
e_1_2_7_12_1
e_1_2_7_10_2
e_1_2_7_44_2
e_1_2_7_46_1
e_1_2_7_48_2
e_1_2_7_27_2
e_1_2_7_29_2
e_1_2_7_53_1
e_1_2_7_30_2
e_1_2_7_51_2
e_1_2_7_24_1
e_1_2_7_22_2
e_1_2_7_32_2
e_1_2_7_57_1
e_1_2_7_20_2
e_1_2_7_34_2
e_1_2_7_55_2
e_1_2_7_36_1
e_1_2_7_38_2
e_1_2_7_59_2
References_xml – volume: 49
  start-page: 8668
  year: 2010
  end-page: 8673
  publication-title: Inorg. Chem.
– volume: 303
  start-page: 86
  year: 2015
  end-page: 109
  publication-title: Coord. Chem. Rev.
– start-page: 2501
  year: 2006
  end-page: 2516
  publication-title: Dalton Trans.
– volume: 51
  start-page: 11990
  year: 2015
  end-page: 11993
  publication-title: Chem. Commun.
– volume: 22
  start-page: 7479
  year: 2016
  end-page: 7484
  publication-title: Chem. Eur. J.
– volume: 51
  start-page: 3103
  year: 2012
  end-page: 3107
  publication-title: Inorg. Chem.
– volume: 180
  start-page: 2597
  year: 2007
  end-page: 2602
  publication-title: J. Solid State Chem.
– volume: 3
  start-page: 454
  year: 2011
  end-page: 460
  publication-title: Nat. Chem.
– volume: 61
  start-page: 816
  year: 2005
  end-page: 817
  publication-title: Acta Crystallogr. Sect. E
– volume: 39 112
  start-page: 2699 2811
  year: 2000 2000
  end-page: 2701 2813
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 41
  start-page: 5896
  year: 2012
  end-page: 5906
  publication-title: Chem. Soc. Rev.
– volume: 266
  start-page: 69
  year: 2014
  end-page: 109
  publication-title: Coord. Chem. Rev.
– volume: 125
  start-page: 4565
  year: 2003
  end-page: 4571
  publication-title: J. Am. Chem. Soc.
– volume: 54
  start-page: 3829
  year: 2015
  end-page: 3834
  publication-title: Inorg. Chem.
– volume: 137
  start-page: 9643
  year: 2015
  end-page: 9651
  publication-title: J. Am. Chem. Soc.
– volume: 44
  start-page: 531
  year: 2011
  end-page: 540
  publication-title: Acc. Chem. Res.
– volume: 125
  start-page: 9266
  year: 2003
  end-page: 9267
  publication-title: J. Am. Chem. Soc.
– volume: 48
  start-page: 537
  year: 1999
  end-page: 653
  publication-title: Adv. Phys.
– volume: 50 123
  start-page: 9260 9428
  year: 2011 2011
  end-page: 9327 9499
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 38
  start-page: 2385
  year: 2009
  end-page: 2396
  publication-title: Chem. Soc. Rev.
– volume: 9
  start-page: 15
  year: 2007
  end-page: 26
  publication-title: CrystEngComm
– volume: 6
  start-page: 2665
  year: 2004
  end-page: 2668
  publication-title: Org. Lett.
– volume: 4
  start-page: 1011
  year: 2012
  end-page: 1017
  publication-title: Nat. Chem.
– volume: 55
  start-page: 10125
  year: 2016
  end-page: 10134
  publication-title: Inorg. Chem.
– volume: 52 125
  start-page: 3430 3514
  year: 2013 2013
  end-page: 3433 3517
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 256
  start-page: 1583
  year: 2012
  end-page: 1603
  publication-title: Coord. Chem. Rev.
– start-page: 1511
  year: 2005
  end-page: 1518
  publication-title: Chem. Commun.
– volume: 455
  start-page: 341
  year: 2008
  end-page: 349
  publication-title: Nature
– volume: 22
  start-page: 11329
  year: 2016
  end-page: 11338
  publication-title: Chem. Eur. J.
– start-page: 2361
  year: 1997
  end-page: 2362
  publication-title: Chem. Commun.
– volume: 113
  start-page: 1121
  year: 2013
  end-page: 1136
  publication-title: Chem. Rev.
– volume: 52 125
  start-page: 4921 5021
  year: 2013 2013
  end-page: 4924 5024
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 56
  start-page: 3227
  year: 2017
  end-page: 3237
  publication-title: Inorg. Chem.
– volume: 54
  start-page: 10934
  year: 2015
  end-page: 10945
  publication-title: Inorg. Chem.
– volume: 127
  start-page: 1338
  year: 2005
  end-page: 1339
  publication-title: J. Am. Chem. Soc.
– volume: 45
  start-page: 13304
  year: 2016
  end-page: 13307
  publication-title: Dalton Trans.
– volume: 49
  start-page: 6716
  year: 2010
  end-page: 6724
  publication-title: Inorg. Chem.
– volume: 530
  start-page: 317
  year: 2016
  end-page: 321
  publication-title: Nature
– volume: 6
  start-page: 2241
  year: 2006
  end-page: 2247
  publication-title: Cryst. Growth Des.
– volume: 42
  start-page: 7041
  year: 2003
  end-page: 7045
  publication-title: Inorg. Chem.
– volume: 63
  start-page: 2875
  year: 2007
  end-page: 2881
  publication-title: Tetrahedron
– volume: 31
  start-page: 96
  year: 2002
  end-page: 107
  publication-title: Chem. Soc. Rev.
– volume: 113
  start-page: 1137
  year: 2013
  end-page: 1198
  publication-title: Chem. Rev.
– volume: 13
  start-page: 7068
  year: 2011
  end-page: 7078
  publication-title: CrystEngComm
– volume: 101
  start-page: 1629
  year: 2001
  end-page: 1658
  publication-title: Chem. Rev.
– volume: 8
  start-page: 498
  year: 2002
  end-page: 508
  publication-title: Chem. Eur. J.
– volume: 21
  start-page: 10226
  year: 2015
  end-page: 10235
  publication-title: Chem. Eur. J.
– volume: 50
  start-page: 3612
  year: 2014
  end-page: 3615
  publication-title: Chem. Commun.
– ident: e_1_2_7_22_2
  doi: 10.1038/nature16530
– ident: e_1_2_7_61_1
  doi: 10.1021/ol049140u
– ident: e_1_2_7_33_2
  doi: 10.1002/chem.201601506
– ident: e_1_2_7_45_2
  doi: 10.1021/acs.inorgchem.6b00786
– ident: e_1_2_7_8_2
  doi: 10.1021/ja044153o
– ident: e_1_2_7_25_2
  doi: 10.1039/B416609D
– ident: e_1_2_7_2_2
  doi: 10.1021/cr300198m
– ident: e_1_2_7_48_2
  doi: 10.1021/cr9900432
– ident: e_1_2_7_17_2
  doi: 10.1038/nchem.1494
– ident: e_1_2_7_15_2
  doi: 10.1038/nchem.1028
– ident: e_1_2_7_27_2
  doi: 10.1039/c2cs35141b
– ident: e_1_2_7_29_2
  doi: 10.1002/chem.201500343
– ident: e_1_2_7_40_2
  doi: 10.1016/j.jssc.2007.06.036
– ident: e_1_2_7_39_2
  doi: 10.1021/ic1000792
– ident: e_1_2_7_42_2
  doi: 10.1021/ic202577z
– ident: e_1_2_7_7_2
  doi: 10.1016/j.ccr.2015.05.010
– ident: e_1_2_7_58_2
  doi: 10.1002/chem.201504831
– ident: e_1_2_7_11_2
  doi: 10.1016/j.ccr.2012.03.029
– ident: e_1_2_7_18_3
  doi: 10.1002/ange.201208015
– ident: e_1_2_7_41_1
– ident: e_1_2_7_24_1
– ident: e_1_2_7_23_1
  doi: 10.1002/anie.201007963
– ident: e_1_2_7_19_1
– ident: e_1_2_7_43_2
  doi: 10.1021/acs.inorgchem.5b01988
– ident: e_1_2_7_21_2
  doi: 10.1039/b603463b
– ident: e_1_2_7_38_2
  doi: 10.1021/ic100887c
– ident: e_1_2_7_46_1
– ident: e_1_2_7_55_2
  doi: 10.1002/1521-3765(20020118)8:2<498::AID-CHEM498>3.0.CO;2-M
– ident: e_1_2_7_49_1
– ident: e_1_2_7_51_2
  doi: 10.1021/cg060329h
– ident: e_1_2_7_18_2
  doi: 10.1002/anie.201208015
– ident: e_1_2_7_57_1
– ident: e_1_2_7_16_2
  doi: 10.1002/anie.201301007
– ident: e_1_2_7_26_2
  doi: 10.1039/a900939f
– ident: e_1_2_7_23_2
  doi: 10.1002/ange.201007963
– ident: e_1_2_7_3_2
  doi: 10.1039/B615696G
– ident: e_1_2_7_37_2
  doi: 10.1039/c1ce05934c
– ident: e_1_2_7_44_2
  doi: 10.1021/acs.inorgchem.5b00013
– ident: e_1_2_7_20_2
  doi: 10.1038/nature07372
– ident: e_1_2_7_28_1
– ident: e_1_2_7_47_2
  doi: 10.1039/b900317g
– ident: e_1_2_7_10_2
  doi: 10.1021/ja035388n
– ident: e_1_2_7_1_1
– ident: e_1_2_7_59_2
  doi: 10.1021/jacs.5b04674
– ident: e_1_2_7_36_1
– ident: e_1_2_7_32_2
  doi: 10.1039/C5CC04409J
– ident: e_1_2_7_14_2
  doi: 10.1021/ja028342n
– ident: e_1_2_7_30_2
  doi: 10.1039/C4CC00690A
– ident: e_1_2_7_54_2
  doi: 10.1039/a704574c
– ident: e_1_2_7_16_3
  doi: 10.1002/ange.201301007
– ident: e_1_2_7_4_2
  doi: 10.1021/cr300202a
– ident: e_1_2_7_34_2
  doi: 10.1021/acs.inorgchem.6b02515
– ident: e_1_2_7_5_2
  doi: 10.1016/j.ccr.2013.08.038
– ident: e_1_2_7_50_2
  doi: 10.1021/ic030196e
– ident: e_1_2_7_56_1
  doi: 10.1002/1521-3773(20000804)39:15<2699::AID-ANIE2699>3.0.CO;2-Z
– ident: e_1_2_7_13_2
  doi: 10.1080/000187399243419
– ident: e_1_2_7_52_2
  doi: 10.1107/S1600536805009438
– ident: e_1_2_7_53_1
– ident: e_1_2_7_6_2
  doi: 10.1021/ar200042t
– ident: e_1_2_7_56_2
  doi: 10.1002/1521-3757(20000804)112:15<2811::AID-ANGE2811>3.0.CO;2-9
– ident: e_1_2_7_9_1
– ident: e_1_2_7_35_1
  doi: 10.1039/C6DT02704K
– ident: e_1_2_7_12_1
– ident: e_1_2_7_31_1
– ident: e_1_2_7_60_1
  doi: 10.1016/j.tet.2007.01.029
SSID ssj0009633
Score 2.4048343
Snippet Although the capability of supramolecular pseudorotaxane/rotaxane systems as ligands for coordination with actinides has been identified by the on‐going...
Although the capability of supramolecular pseudorotaxane/rotaxane systems as ligands for coordination with actinides has been identified by the on-going...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 13995
SubjectTerms actinide
Actinides
Assembly
Chemistry
Coordination compounds
cucurbiturils
Ligands
macrocycles
rotaxanes
Steric hindrance
uranium
Title Supramolecular Host–Guest Inclusion for Distinguishing Cucurbit[7]uril‐Based Pseudorotaxanes from Small‐Molecule Ligands in Coordination Assembly with a Uranyl Center
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.201702752
https://www.ncbi.nlm.nih.gov/pubmed/28800189
https://www.proquest.com/docview/1948370810
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NatwwEBYll_TSJunfpmmYQ6AnJ_KP_HNstkmXkpbSdCFQipFkOZh47eC1oOkpjxDIa-Sp8iTRWGun21IK7c02km2h0eib0cw3hOxEsfQZZvRQRgV6q3wnyWTkJDnLQpqzUPIu2uJjOJkG70_YyU9Z_JYfYnC44cro9DUucC7me_ekoWZMmEnuRnjwhkoYA7YQFX2-548y0mVryQeRgxysPWsj9faWuy_vSr9BzWXk2m09h48J73_aRpyc7epW7Mofv_A5_s-o1sijBS6FN1aQ1skDVW2Q1XFfDu4JuTnW5w2f9dV0YVLP29vL63c4AjBaptTodwODgeEt6o3qVFv3Foy11I0o2q_RN90U5e3l1b7ZOjP4NFc6q5u65d-5UbiAmS5wPOMlNvlgP6TgqDjFbGQoKhjXxlIurPsS8LR6JsoLQE8ycJiaTfeiBPRWq-YpmR4efBlPnEWpB0f6Bt87Ls-NKe4FOctjzqQwVmLmB6GvQhnlQmW-UMpgl5x7ikplrCzBJBUdGA0DHir_GVmp6kq9IKA4PvNkLGgesIwjInZVEvtKYukANSJOP9WpXPCgYzmOMrUMzl6Kc5AOczAir4f255YB5I8tt3rJSReaYJ66CXL2G-BFR-S5labhNZ5RntSNkxHxOpn4y_tTZMkY7jb_pdNL8hCvu2jEZIustI1WrwyqasV2t3LuAD6yHvg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZQeygXWv63LTAHJE5pnR_n5wgLZYFthWhXQkIosh2nisgmVTaWWk59BCReg6fqk-CJN6kWhJDgmMh2Ynk8_mY88w0hT6NY-gwzeiijAr1VvpNkMnKSnGUhzVkoeRdtcRROZsHbj6yPJsRcGMsPMTjccGd0-ho3ODqk969ZQ82kMJXcjfDmzWjhdSzr3VlVH64ZpIx82WryQeQgC2vP20i9_dX-q-fSb2BzFbt2h8_BJhH9b9uYky97uhV78usvjI7_Na8tcmsJTeG5laXb5Iaq7pCNcV8R7i75cazPGj7vC-rCpF60V5ffX-MUwCiaUqPrDQwMhpeoOqpTbT1cMNZSN6JoP0WfdVOUV5ffXpjTM4P3C6Wzuqlbfs6NzgVMdoHjOS-xyaH9kIJpcYoJyVBUMK6NsVxYDybghfVclBeAzmTgMDPn7kUJ6LBWzT0yO3h1Mp44y2oPjvQNxHdcnhtr3AtylsecSWEMxcwPQl-FMsqFynyhlIEvOfcUlcoYWoJJKjo8GgY8VP59slbVlXpIQHF858lY0DxgGUdQ7Kok9pXE6gFqRJx-rVO5pELHihxlakmcvRTXIB3WYESeDe3PLAnIH1vu9qKTLpXBInUTpO032IuOyAMrTsMwntGf1I2TEfE6ofjL-CkSZQxP2__S6QnZmJwcTtPpm6N3O-Qmvu-CE5NdstY2Wj0yIKsVj7tt9BMMYCMT
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bbtQwELVQkYAX7peFAvOAxFNa5-JcHmGXZYFSVZSVKiEU2Y5dRWSTVTaRKE_9BCR-g6_ql-CJNykLQkjwmMh2Ynk8c2bsOUPIkyiWPsOMHsqowGiV7ySZjJxEsyykmoWSd7ct9sPZPHh9xI5-yuK3_BBDwA13RqevcYMvM717Thpq5oSZ5G6EB29GCV8MQhqjXE_enRNIGfGyxeSDyEES1p62kXq7m_03zdJvWHMTuna2Z3qN8P6v7ZWTTzttI3bkl18IHf9nWtfJ1TUwhWdWkm6QC6q8SS6P-3pwt8j3w3ZZ80VfThdm1ao5O_32EmcARs0ULQbewIBgmKDiKI9bG9-CcSvbWuTNh-hjW-fF2enX58Z2ZnCwUm1W1VXDP3OjcQFTXeBwwQts8tZ-SMFefozpyJCXMK6Mq5zb-CXgcfVCFCeAoWTgMDdW96QADFer-jaZT1-8H8-cda0HR_oG4Dsu18YX9wLNdMyZFMZNzPwg9FUoIy1U5gulDHjR3FNUKuNmCSap6NBoGPBQ-XfIVlmV6h4BxfGdJ2NBdcAyjpDYVUnsK4m1A9SIOP1Sp3JNhI71OIrUUjh7Ka5BOqzBiDwd2i8tBcgfW273kpOuVcEqdRMk7TfIi47IXStNwzCe0Z7UjZMR8TqZ-Mv4KdJkDE_3_6XTY3LpYDJN917tv3lAruDr7mZisk22mrpVDw3CasSjbhP9AK-nIcs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Supramolecular+Host-Guest+Inclusion+for+Distinguishing+Cucurbit%5B7%5Duril-Based+Pseudorotaxanes+from+Small-Molecule+Ligands+in+Coordination+Assembly+with+a+Uranyl+Center&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Mei%2C+Lei&rft.au=Xie%2C+Zhen-Ni&rft.au=Hu%2C+Kong-qiu&rft.au=Yuan%2C+Li-Yong&rft.date=2017-10-09&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=23&rft.issue=56&rft.spage=13995&rft_id=info:doi/10.1002%2Fchem.201702752&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon