Supramolecular Host–Guest Inclusion for Distinguishing Cucurbit[7]uril‐Based Pseudorotaxanes from Small‐Molecule Ligands in Coordination Assembly with a Uranyl Center
Although the capability of supramolecular pseudorotaxane/rotaxane systems as ligands for coordination with actinides has been identified by the on‐going emerging of uranyl–organic polyrotaxane compounds, it is, however, still unknown how supramolecular inclusion affects the coordination assembly of...
Saved in:
Published in | Chemistry : a European journal Vol. 23; no. 56; pp. 13995 - 14003 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
09.10.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Although the capability of supramolecular pseudorotaxane/rotaxane systems as ligands for coordination with actinides has been identified by the on‐going emerging of uranyl–organic polyrotaxane compounds, it is, however, still unknown how supramolecular inclusion affects the coordination assembly of the simple “axle” ligand with uranyl species. Herein, a semi‐rigid organic dicarboxylate compound [BzBPCEt]Br2 (L1) is selected as a small‐molecule “axle” ligand and the corresponding cucurbit[7]uril (CB7)‐based [2]pseudorotaxane ligand, [BzBPCEt]Br2@CB7 (L1@CB7) has been also synthesized through CB7‐based inclusion in this work. A detailed comparison between uranyl complexes from the “axle” ligand L1 and those from pseudorotaxane L1@CB7 has been conducted, demonstrating the significant role of CB7‐based inclusion in distinguishing supramolecular pseudorotaxane ligands from small‐molecule dicarboxylates in uranyl coordination assembly. Notably, the impact of supramolecular inclusion on the “axle” linker in the system with cucurbituril macrocycles involved is established for the first time. Detailed structure decipherment suggests that the significant effect of CB7 is attributed to hydrothermal stabilization of the “axle” ligand or increased steric hindrance to the groups nearby originated from the bulky size of macrocyclic CB7.
Beyond small‐molecule‐based coordination assembly: Bulky cucurbit[7]uril macrocycle exerts significant influence on the groups of the guest ligand threading in it, and achieves structural diversity of as‐generated uranyl compounds by combined effects of improved stability and increased steric hindrance for the cucurbit[7]uril‐encapsulated pseudorotaxane linker. |
---|---|
AbstractList | Although the capability of supramolecular pseudorotaxane/rotaxane systems as ligands for coordination with actinides has been identified by the on-going emerging of uranyl-organic polyrotaxane compounds, it is, however, still unknown how supramolecular inclusion affects the coordination assembly of the simple "axle" ligand with uranyl species. Herein, a semi-rigid organic dicarboxylate compound [BzBPCEt]Br2 (L1) is selected as a small-molecule "axle" ligand and the corresponding cucurbit[7]uril (CB7)-based [2]pseudorotaxane ligand, [BzBPCEt]Br2@CB7 (L1@CB7) has been also synthesized through CB7-based inclusion in this work. A detailed comparison between uranyl complexes from the "axle" ligand L1 and those from pseudorotaxane L1@CB7 has been conducted, demonstrating the significant role of CB7-based inclusion in distinguishing supramolecular pseudorotaxane ligands from small-molecule dicarboxylates in uranyl coordination assembly. Notably, the impact of supramolecular inclusion on the "axle" linker in the system with cucurbituril macrocycles involved is established for the first time. Detailed structure decipherment suggests that the significant effect of CB7 is attributed to hydrothermal stabilization of the "axle" ligand or increased steric hindrance to the groups nearby originated from the bulky size of macrocyclic CB7. Although the capability of supramolecular pseudorotaxane/rotaxane systems as ligands for coordination with actinides has been identified by the on‐going emerging of uranyl–organic polyrotaxane compounds, it is, however, still unknown how supramolecular inclusion affects the coordination assembly of the simple “axle” ligand with uranyl species. Herein, a semi‐rigid organic dicarboxylate compound [BzBPCEt]Br 2 ( L 1 ) is selected as a small‐molecule “axle” ligand and the corresponding cucurbit[7]uril ( CB7 )‐based [2]pseudorotaxane ligand, [BzBPCEt]Br 2 @ CB7 ( L 1 @ CB7 ) has been also synthesized through CB7 ‐based inclusion in this work. A detailed comparison between uranyl complexes from the “axle” ligand L 1 and those from pseudorotaxane L 1 @ CB7 has been conducted, demonstrating the significant role of CB7 ‐based inclusion in distinguishing supramolecular pseudorotaxane ligands from small‐molecule dicarboxylates in uranyl coordination assembly. Notably, the impact of supramolecular inclusion on the “axle” linker in the system with cucurbituril macrocycles involved is established for the first time. Detailed structure decipherment suggests that the significant effect of CB7 is attributed to hydrothermal stabilization of the “axle” ligand or increased steric hindrance to the groups nearby originated from the bulky size of macrocyclic CB7 . Although the capability of supramolecular pseudorotaxane/rotaxane systems as ligands for coordination with actinides has been identified by the on‐going emerging of uranyl–organic polyrotaxane compounds, it is, however, still unknown how supramolecular inclusion affects the coordination assembly of the simple “axle” ligand with uranyl species. Herein, a semi‐rigid organic dicarboxylate compound [BzBPCEt]Br2 (L1) is selected as a small‐molecule “axle” ligand and the corresponding cucurbit[7]uril (CB7)‐based [2]pseudorotaxane ligand, [BzBPCEt]Br2@CB7 (L1@CB7) has been also synthesized through CB7‐based inclusion in this work. A detailed comparison between uranyl complexes from the “axle” ligand L1 and those from pseudorotaxane L1@CB7 has been conducted, demonstrating the significant role of CB7‐based inclusion in distinguishing supramolecular pseudorotaxane ligands from small‐molecule dicarboxylates in uranyl coordination assembly. Notably, the impact of supramolecular inclusion on the “axle” linker in the system with cucurbituril macrocycles involved is established for the first time. Detailed structure decipherment suggests that the significant effect of CB7 is attributed to hydrothermal stabilization of the “axle” ligand or increased steric hindrance to the groups nearby originated from the bulky size of macrocyclic CB7. Beyond small‐molecule‐based coordination assembly: Bulky cucurbit[7]uril macrocycle exerts significant influence on the groups of the guest ligand threading in it, and achieves structural diversity of as‐generated uranyl compounds by combined effects of improved stability and increased steric hindrance for the cucurbit[7]uril‐encapsulated pseudorotaxane linker. Although the capability of supramolecular pseudorotaxane/rotaxane systems as ligands for coordination with actinides has been identified by the on-going emerging of uranyl-organic polyrotaxane compounds, it is, however, still unknown how supramolecular inclusion affects the coordination assembly of the simple "axle" ligand with uranyl species. Herein, a semi-rigid organic dicarboxylate compound [BzBPCEt]Br (L ) is selected as a small-molecule "axle" ligand and the corresponding cucurbit[7]uril (CB7)-based [2]pseudorotaxane ligand, [BzBPCEt]Br @CB7 (L @CB7) has been also synthesized through CB7-based inclusion in this work. A detailed comparison between uranyl complexes from the "axle" ligand L and those from pseudorotaxane L @CB7 has been conducted, demonstrating the significant role of CB7-based inclusion in distinguishing supramolecular pseudorotaxane ligands from small-molecule dicarboxylates in uranyl coordination assembly. Notably, the impact of supramolecular inclusion on the "axle" linker in the system with cucurbituril macrocycles involved is established for the first time. Detailed structure decipherment suggests that the significant effect of CB7 is attributed to hydrothermal stabilization of the "axle" ligand or increased steric hindrance to the groups nearby originated from the bulky size of macrocyclic CB7. |
Author | Gao, Zeng‐Qiang Hu, Kong‐qiu Shi, Wei‐Qun Mei, Lei Chai, Zhi‐Fang Yuan, Li‐Yong Xie, Zhen‐Ni |
Author_xml | – sequence: 1 givenname: Lei orcidid: 0000-0002-2926-7265 surname: Mei fullname: Mei, Lei organization: Chinese Academy of Sciences – sequence: 2 givenname: Zhen‐Ni surname: Xie fullname: Xie, Zhen‐Ni organization: Chinese Academy of Sciences – sequence: 3 givenname: Kong‐qiu orcidid: 0000-0002-8855-108X surname: Hu fullname: Hu, Kong‐qiu organization: Chinese Academy of Sciences – sequence: 4 givenname: Li‐Yong surname: Yuan fullname: Yuan, Li‐Yong organization: Chinese Academy of Sciences – sequence: 5 givenname: Zeng‐Qiang surname: Gao fullname: Gao, Zeng‐Qiang organization: Chinese Academy of Sciences – sequence: 6 givenname: Zhi‐Fang surname: Chai fullname: Chai, Zhi‐Fang organization: Soochow University – sequence: 7 givenname: Wei‐Qun orcidid: 0000-0001-9929-9732 surname: Shi fullname: Shi, Wei‐Qun email: shiwq@ihep.ac.cn organization: Chinese Academy of Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28800189$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1u1DAUhS1URKeFLUtkiXUGO4kdZ1nS0qk0FUilK4Qix7npuHLswT8qs-sjVOpr8FR9EiZMKRISYnU333ePdM4B2rPOAkKvKZlTQvJ3agXjPCe0InnF8mdoRllOs6LibA_NSF1WGWdFvY8OQrgmhNS8KF6g_VwIQqioZ-jHRVp7OToDKhnp8cKF-HB7f5ogRHxmlUlBO4sH5_GxDlHbq6TDantwk1TynY5fqq_Ja_Nwe_deBujxpwCpd95F-V1aCHjwbsQXozQTcr4LArzUV9L2AWuLG-d8r62MU9BRCDB2ZoNvdFxhiS-9tBuDG7AR_Ev0fJAmwKvHe4guP5x8bhbZ8uPpWXO0zFRRVXlG5SCEyMuBDUIy1RFK-qLkBXBVDR30RQcgaD3IHIgCVoqOKdIxzjjnpeRQHKK3u79r775NTbTXLnm7jWxpXYqiIoKSLfXmkUrdCH279nqUftP-LncLzHeA8i4ED8MTQkk7rddO67VP622F8i9B6firl-ilNv_W6p12ow1s_hPSNouT8z_uT83Hti0 |
CitedBy_id | crossref_primary_10_1016_j_ccr_2024_215821 crossref_primary_10_1039_D3CC02636A crossref_primary_10_1002_chem_201905156 crossref_primary_10_1016_j_jphotochem_2019_111945 crossref_primary_10_1002_chem_202003621 crossref_primary_10_1016_j_cclet_2022_03_092 crossref_primary_10_1021_acs_inorgchem_2c02426 crossref_primary_10_1002_chem_202100614 crossref_primary_10_1246_bcsj_20170418 crossref_primary_10_1021_acs_inorgchem_9b03215 crossref_primary_10_1039_D0RA09581H crossref_primary_10_1021_acs_inorgchem_1c02872 crossref_primary_10_1021_acs_inorgchem_0c02904 crossref_primary_10_1021_acs_inorgchem_1c03204 crossref_primary_10_1071_CH24109 crossref_primary_10_1007_s10847_018_0828_7 crossref_primary_10_1039_D1CE01330K crossref_primary_10_1039_C8CC05122D crossref_primary_10_1021_acs_joc_8b02993 crossref_primary_10_1021_acs_orglett_9b03377 crossref_primary_10_1039_C9CC07121K crossref_primary_10_1039_D1DT02505H crossref_primary_10_1021_acs_inorgchem_0c00037 crossref_primary_10_1039_D3CE00845B crossref_primary_10_1002_ejic_202300090 crossref_primary_10_1002_adfm_202303530 crossref_primary_10_1021_acs_cgd_8b00219 crossref_primary_10_1021_acs_jpcb_0c11383 crossref_primary_10_1039_C9CE00867E crossref_primary_10_1515_ncrs_2021_0421 crossref_primary_10_1021_acs_inorgchem_8b02126 crossref_primary_10_1021_acs_inorgchem_8b03353 crossref_primary_10_1039_D2CE01187E crossref_primary_10_1021_acs_inorgchem_1c01177 |
Cites_doi | 10.1038/nature16530 10.1021/ol049140u 10.1002/chem.201601506 10.1021/acs.inorgchem.6b00786 10.1021/ja044153o 10.1039/B416609D 10.1021/cr300198m 10.1021/cr9900432 10.1038/nchem.1494 10.1038/nchem.1028 10.1039/c2cs35141b 10.1002/chem.201500343 10.1016/j.jssc.2007.06.036 10.1021/ic1000792 10.1021/ic202577z 10.1016/j.ccr.2015.05.010 10.1002/chem.201504831 10.1016/j.ccr.2012.03.029 10.1002/ange.201208015 10.1002/anie.201007963 10.1021/acs.inorgchem.5b01988 10.1039/b603463b 10.1021/ic100887c 10.1002/1521-3765(20020118)8:2<498::AID-CHEM498>3.0.CO;2-M 10.1021/cg060329h 10.1002/anie.201208015 10.1002/anie.201301007 10.1039/a900939f 10.1002/ange.201007963 10.1039/B615696G 10.1039/c1ce05934c 10.1021/acs.inorgchem.5b00013 10.1038/nature07372 10.1039/b900317g 10.1021/ja035388n 10.1021/jacs.5b04674 10.1039/C5CC04409J 10.1021/ja028342n 10.1039/C4CC00690A 10.1039/a704574c 10.1002/ange.201301007 10.1021/cr300202a 10.1021/acs.inorgchem.6b02515 10.1016/j.ccr.2013.08.038 10.1021/ic030196e 10.1002/1521-3773(20000804)39:15<2699::AID-ANIE2699>3.0.CO;2-Z 10.1080/000187399243419 10.1107/S1600536805009438 10.1021/ar200042t 10.1002/1521-3757(20000804)112:15<2811::AID-ANGE2811>3.0.CO;2-9 10.1039/C6DT02704K 10.1016/j.tet.2007.01.029 |
ContentType | Journal Article |
Copyright | 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 K9. |
DOI | 10.1002/chem.201702752 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) |
DatabaseTitle | CrossRef PubMed Materials Research Database ProQuest Health & Medical Complete (Alumni) Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database CrossRef PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3765 |
EndPage | 14003 |
ExternalDocumentID | 28800189 10_1002_chem_201702752 CHEM201702752 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 21671191, 11405186; 21577144, 91426302, 91326202 – fundername: Science Challenge Project of Ministry of Industry and Information Technology of China funderid: JCKY2016212A504 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 29B 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6J9 702 77Q 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACNCT ACPOU ACUHS ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBD EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RGC RNS ROL RWI RX1 RYL SUPJJ TN5 TWZ UB1 UPT V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YZZ ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGYGG CITATION NPM 7SR 8BQ 8FD JG9 K9. |
ID | FETCH-LOGICAL-c3772-1af88824f5f8a5cb010d3463e6c7fbed3bee819fa2e0ce548b5c0b5656664a6e3 |
IEDL.DBID | DR2 |
ISSN | 0947-6539 |
IngestDate | Sun Jul 13 03:09:38 EDT 2025 Wed Feb 19 02:42:04 EST 2025 Thu Apr 24 23:01:20 EDT 2025 Tue Jul 01 02:47:48 EDT 2025 Wed Jan 22 16:21:31 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 56 |
Keywords | actinide uranium rotaxanes cucurbiturils macrocycles |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3772-1af88824f5f8a5cb010d3463e6c7fbed3bee819fa2e0ce548b5c0b5656664a6e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8855-108X 0000-0001-9929-9732 0000-0002-2926-7265 |
PMID | 28800189 |
PQID | 1948370810 |
PQPubID | 986340 |
PageCount | 9 |
ParticipantIDs | proquest_journals_1948370810 pubmed_primary_28800189 crossref_primary_10_1002_chem_201702752 crossref_citationtrail_10_1002_chem_201702752 wiley_primary_10_1002_chem_201702752_CHEM201702752 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 9, 2017 |
PublicationDateYYYYMMDD | 2017-10-09 |
PublicationDate_xml | – month: 10 year: 2017 text: October 9, 2017 day: 09 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationSubtitle | A European Journal |
PublicationTitle | Chemistry : a European journal |
PublicationTitleAlternate | Chemistry |
PublicationYear | 2017 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2001; 101 2015; 303 2000 2000; 39 112 2002; 31 2015; 51 1999; 48 2015; 54 2002; 8 1997 2004; 6 2006 2006; 6 2005 2011; 13 2005; 61 2011; 3 2013 2013; 52 125 2012; 51 2016; 55 2010; 49 2012; 256 2015; 137 2005; 127 2015; 21 2017; 56 2007; 9 2016; 530 2011; 44 2013; 113 2011 2011; 50 123 2007; 180 2008; 455 2007; 63 2003; 125 2012; 4 2014; 50 2009; 38 2003; 42 2014; 266 2012; 41 2016; 45 2016; 22 e_1_2_7_5_2 e_1_2_7_3_2 e_1_2_7_9_1 e_1_2_7_7_2 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_2 e_1_2_7_15_2 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_13_2 e_1_2_7_11_2 e_1_2_7_43_2 e_1_2_7_45_2 e_1_2_7_47_2 e_1_2_7_26_2 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_2 e_1_2_7_25_2 e_1_2_7_52_2 e_1_2_7_31_1 e_1_2_7_23_2 e_1_2_7_54_2 e_1_2_7_23_1 e_1_2_7_21_2 e_1_2_7_33_2 e_1_2_7_56_2 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_58_2 e_1_2_7_37_2 e_1_2_7_39_2 e_1_2_7_4_2 e_1_2_7_2_2 e_1_2_7_8_2 e_1_2_7_6_2 e_1_2_7_18_3 e_1_2_7_18_2 e_1_2_7_16_3 e_1_2_7_16_2 e_1_2_7_61_1 e_1_2_7_14_2 e_1_2_7_40_2 e_1_2_7_42_2 e_1_2_7_12_1 e_1_2_7_10_2 e_1_2_7_44_2 e_1_2_7_46_1 e_1_2_7_48_2 e_1_2_7_27_2 e_1_2_7_29_2 e_1_2_7_53_1 e_1_2_7_30_2 e_1_2_7_51_2 e_1_2_7_24_1 e_1_2_7_22_2 e_1_2_7_32_2 e_1_2_7_57_1 e_1_2_7_20_2 e_1_2_7_34_2 e_1_2_7_55_2 e_1_2_7_36_1 e_1_2_7_38_2 e_1_2_7_59_2 |
References_xml | – volume: 49 start-page: 8668 year: 2010 end-page: 8673 publication-title: Inorg. Chem. – volume: 303 start-page: 86 year: 2015 end-page: 109 publication-title: Coord. Chem. Rev. – start-page: 2501 year: 2006 end-page: 2516 publication-title: Dalton Trans. – volume: 51 start-page: 11990 year: 2015 end-page: 11993 publication-title: Chem. Commun. – volume: 22 start-page: 7479 year: 2016 end-page: 7484 publication-title: Chem. Eur. J. – volume: 51 start-page: 3103 year: 2012 end-page: 3107 publication-title: Inorg. Chem. – volume: 180 start-page: 2597 year: 2007 end-page: 2602 publication-title: J. Solid State Chem. – volume: 3 start-page: 454 year: 2011 end-page: 460 publication-title: Nat. Chem. – volume: 61 start-page: 816 year: 2005 end-page: 817 publication-title: Acta Crystallogr. Sect. E – volume: 39 112 start-page: 2699 2811 year: 2000 2000 end-page: 2701 2813 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 41 start-page: 5896 year: 2012 end-page: 5906 publication-title: Chem. Soc. Rev. – volume: 266 start-page: 69 year: 2014 end-page: 109 publication-title: Coord. Chem. Rev. – volume: 125 start-page: 4565 year: 2003 end-page: 4571 publication-title: J. Am. Chem. Soc. – volume: 54 start-page: 3829 year: 2015 end-page: 3834 publication-title: Inorg. Chem. – volume: 137 start-page: 9643 year: 2015 end-page: 9651 publication-title: J. Am. Chem. Soc. – volume: 44 start-page: 531 year: 2011 end-page: 540 publication-title: Acc. Chem. Res. – volume: 125 start-page: 9266 year: 2003 end-page: 9267 publication-title: J. Am. Chem. Soc. – volume: 48 start-page: 537 year: 1999 end-page: 653 publication-title: Adv. Phys. – volume: 50 123 start-page: 9260 9428 year: 2011 2011 end-page: 9327 9499 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 38 start-page: 2385 year: 2009 end-page: 2396 publication-title: Chem. Soc. Rev. – volume: 9 start-page: 15 year: 2007 end-page: 26 publication-title: CrystEngComm – volume: 6 start-page: 2665 year: 2004 end-page: 2668 publication-title: Org. Lett. – volume: 4 start-page: 1011 year: 2012 end-page: 1017 publication-title: Nat. Chem. – volume: 55 start-page: 10125 year: 2016 end-page: 10134 publication-title: Inorg. Chem. – volume: 52 125 start-page: 3430 3514 year: 2013 2013 end-page: 3433 3517 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 256 start-page: 1583 year: 2012 end-page: 1603 publication-title: Coord. Chem. Rev. – start-page: 1511 year: 2005 end-page: 1518 publication-title: Chem. Commun. – volume: 455 start-page: 341 year: 2008 end-page: 349 publication-title: Nature – volume: 22 start-page: 11329 year: 2016 end-page: 11338 publication-title: Chem. Eur. J. – start-page: 2361 year: 1997 end-page: 2362 publication-title: Chem. Commun. – volume: 113 start-page: 1121 year: 2013 end-page: 1136 publication-title: Chem. Rev. – volume: 52 125 start-page: 4921 5021 year: 2013 2013 end-page: 4924 5024 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 56 start-page: 3227 year: 2017 end-page: 3237 publication-title: Inorg. Chem. – volume: 54 start-page: 10934 year: 2015 end-page: 10945 publication-title: Inorg. Chem. – volume: 127 start-page: 1338 year: 2005 end-page: 1339 publication-title: J. Am. Chem. Soc. – volume: 45 start-page: 13304 year: 2016 end-page: 13307 publication-title: Dalton Trans. – volume: 49 start-page: 6716 year: 2010 end-page: 6724 publication-title: Inorg. Chem. – volume: 530 start-page: 317 year: 2016 end-page: 321 publication-title: Nature – volume: 6 start-page: 2241 year: 2006 end-page: 2247 publication-title: Cryst. Growth Des. – volume: 42 start-page: 7041 year: 2003 end-page: 7045 publication-title: Inorg. Chem. – volume: 63 start-page: 2875 year: 2007 end-page: 2881 publication-title: Tetrahedron – volume: 31 start-page: 96 year: 2002 end-page: 107 publication-title: Chem. Soc. Rev. – volume: 113 start-page: 1137 year: 2013 end-page: 1198 publication-title: Chem. Rev. – volume: 13 start-page: 7068 year: 2011 end-page: 7078 publication-title: CrystEngComm – volume: 101 start-page: 1629 year: 2001 end-page: 1658 publication-title: Chem. Rev. – volume: 8 start-page: 498 year: 2002 end-page: 508 publication-title: Chem. Eur. J. – volume: 21 start-page: 10226 year: 2015 end-page: 10235 publication-title: Chem. Eur. J. – volume: 50 start-page: 3612 year: 2014 end-page: 3615 publication-title: Chem. Commun. – ident: e_1_2_7_22_2 doi: 10.1038/nature16530 – ident: e_1_2_7_61_1 doi: 10.1021/ol049140u – ident: e_1_2_7_33_2 doi: 10.1002/chem.201601506 – ident: e_1_2_7_45_2 doi: 10.1021/acs.inorgchem.6b00786 – ident: e_1_2_7_8_2 doi: 10.1021/ja044153o – ident: e_1_2_7_25_2 doi: 10.1039/B416609D – ident: e_1_2_7_2_2 doi: 10.1021/cr300198m – ident: e_1_2_7_48_2 doi: 10.1021/cr9900432 – ident: e_1_2_7_17_2 doi: 10.1038/nchem.1494 – ident: e_1_2_7_15_2 doi: 10.1038/nchem.1028 – ident: e_1_2_7_27_2 doi: 10.1039/c2cs35141b – ident: e_1_2_7_29_2 doi: 10.1002/chem.201500343 – ident: e_1_2_7_40_2 doi: 10.1016/j.jssc.2007.06.036 – ident: e_1_2_7_39_2 doi: 10.1021/ic1000792 – ident: e_1_2_7_42_2 doi: 10.1021/ic202577z – ident: e_1_2_7_7_2 doi: 10.1016/j.ccr.2015.05.010 – ident: e_1_2_7_58_2 doi: 10.1002/chem.201504831 – ident: e_1_2_7_11_2 doi: 10.1016/j.ccr.2012.03.029 – ident: e_1_2_7_18_3 doi: 10.1002/ange.201208015 – ident: e_1_2_7_41_1 – ident: e_1_2_7_24_1 – ident: e_1_2_7_23_1 doi: 10.1002/anie.201007963 – ident: e_1_2_7_19_1 – ident: e_1_2_7_43_2 doi: 10.1021/acs.inorgchem.5b01988 – ident: e_1_2_7_21_2 doi: 10.1039/b603463b – ident: e_1_2_7_38_2 doi: 10.1021/ic100887c – ident: e_1_2_7_46_1 – ident: e_1_2_7_55_2 doi: 10.1002/1521-3765(20020118)8:2<498::AID-CHEM498>3.0.CO;2-M – ident: e_1_2_7_49_1 – ident: e_1_2_7_51_2 doi: 10.1021/cg060329h – ident: e_1_2_7_18_2 doi: 10.1002/anie.201208015 – ident: e_1_2_7_57_1 – ident: e_1_2_7_16_2 doi: 10.1002/anie.201301007 – ident: e_1_2_7_26_2 doi: 10.1039/a900939f – ident: e_1_2_7_23_2 doi: 10.1002/ange.201007963 – ident: e_1_2_7_3_2 doi: 10.1039/B615696G – ident: e_1_2_7_37_2 doi: 10.1039/c1ce05934c – ident: e_1_2_7_44_2 doi: 10.1021/acs.inorgchem.5b00013 – ident: e_1_2_7_20_2 doi: 10.1038/nature07372 – ident: e_1_2_7_28_1 – ident: e_1_2_7_47_2 doi: 10.1039/b900317g – ident: e_1_2_7_10_2 doi: 10.1021/ja035388n – ident: e_1_2_7_1_1 – ident: e_1_2_7_59_2 doi: 10.1021/jacs.5b04674 – ident: e_1_2_7_36_1 – ident: e_1_2_7_32_2 doi: 10.1039/C5CC04409J – ident: e_1_2_7_14_2 doi: 10.1021/ja028342n – ident: e_1_2_7_30_2 doi: 10.1039/C4CC00690A – ident: e_1_2_7_54_2 doi: 10.1039/a704574c – ident: e_1_2_7_16_3 doi: 10.1002/ange.201301007 – ident: e_1_2_7_4_2 doi: 10.1021/cr300202a – ident: e_1_2_7_34_2 doi: 10.1021/acs.inorgchem.6b02515 – ident: e_1_2_7_5_2 doi: 10.1016/j.ccr.2013.08.038 – ident: e_1_2_7_50_2 doi: 10.1021/ic030196e – ident: e_1_2_7_56_1 doi: 10.1002/1521-3773(20000804)39:15<2699::AID-ANIE2699>3.0.CO;2-Z – ident: e_1_2_7_13_2 doi: 10.1080/000187399243419 – ident: e_1_2_7_52_2 doi: 10.1107/S1600536805009438 – ident: e_1_2_7_53_1 – ident: e_1_2_7_6_2 doi: 10.1021/ar200042t – ident: e_1_2_7_56_2 doi: 10.1002/1521-3757(20000804)112:15<2811::AID-ANGE2811>3.0.CO;2-9 – ident: e_1_2_7_9_1 – ident: e_1_2_7_35_1 doi: 10.1039/C6DT02704K – ident: e_1_2_7_12_1 – ident: e_1_2_7_31_1 – ident: e_1_2_7_60_1 doi: 10.1016/j.tet.2007.01.029 |
SSID | ssj0009633 |
Score | 2.4048343 |
Snippet | Although the capability of supramolecular pseudorotaxane/rotaxane systems as ligands for coordination with actinides has been identified by the on‐going... Although the capability of supramolecular pseudorotaxane/rotaxane systems as ligands for coordination with actinides has been identified by the on-going... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 13995 |
SubjectTerms | actinide Actinides Assembly Chemistry Coordination compounds cucurbiturils Ligands macrocycles rotaxanes Steric hindrance uranium |
Title | Supramolecular Host–Guest Inclusion for Distinguishing Cucurbit[7]uril‐Based Pseudorotaxanes from Small‐Molecule Ligands in Coordination Assembly with a Uranyl Center |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.201702752 https://www.ncbi.nlm.nih.gov/pubmed/28800189 https://www.proquest.com/docview/1948370810 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NatwwEBYll_TSJunfpmmYQ6AnJ_KP_HNstkmXkpbSdCFQipFkOZh47eC1oOkpjxDIa-Sp8iTRWGun21IK7c02km2h0eib0cw3hOxEsfQZZvRQRgV6q3wnyWTkJDnLQpqzUPIu2uJjOJkG70_YyU9Z_JYfYnC44cro9DUucC7me_ekoWZMmEnuRnjwhkoYA7YQFX2-548y0mVryQeRgxysPWsj9faWuy_vSr9BzWXk2m09h48J73_aRpyc7epW7Mofv_A5_s-o1sijBS6FN1aQ1skDVW2Q1XFfDu4JuTnW5w2f9dV0YVLP29vL63c4AjBaptTodwODgeEt6o3qVFv3Foy11I0o2q_RN90U5e3l1b7ZOjP4NFc6q5u65d-5UbiAmS5wPOMlNvlgP6TgqDjFbGQoKhjXxlIurPsS8LR6JsoLQE8ycJiaTfeiBPRWq-YpmR4efBlPnEWpB0f6Bt87Ls-NKe4FOctjzqQwVmLmB6GvQhnlQmW-UMpgl5x7ikplrCzBJBUdGA0DHir_GVmp6kq9IKA4PvNkLGgesIwjInZVEvtKYukANSJOP9WpXPCgYzmOMrUMzl6Kc5AOczAir4f255YB5I8tt3rJSReaYJ66CXL2G-BFR-S5labhNZ5RntSNkxHxOpn4y_tTZMkY7jb_pdNL8hCvu2jEZIustI1WrwyqasV2t3LuAD6yHvg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZQeygXWv63LTAHJE5pnR_n5wgLZYFthWhXQkIosh2nisgmVTaWWk59BCReg6fqk-CJN6kWhJDgmMh2Ynk8_mY88w0hT6NY-gwzeiijAr1VvpNkMnKSnGUhzVkoeRdtcRROZsHbj6yPJsRcGMsPMTjccGd0-ho3ODqk969ZQ82kMJXcjfDmzWjhdSzr3VlVH64ZpIx82WryQeQgC2vP20i9_dX-q-fSb2BzFbt2h8_BJhH9b9uYky97uhV78usvjI7_Na8tcmsJTeG5laXb5Iaq7pCNcV8R7i75cazPGj7vC-rCpF60V5ffX-MUwCiaUqPrDQwMhpeoOqpTbT1cMNZSN6JoP0WfdVOUV5ffXpjTM4P3C6Wzuqlbfs6NzgVMdoHjOS-xyaH9kIJpcYoJyVBUMK6NsVxYDybghfVclBeAzmTgMDPn7kUJ6LBWzT0yO3h1Mp44y2oPjvQNxHdcnhtr3AtylsecSWEMxcwPQl-FMsqFynyhlIEvOfcUlcoYWoJJKjo8GgY8VP59slbVlXpIQHF858lY0DxgGUdQ7Kok9pXE6gFqRJx-rVO5pELHihxlakmcvRTXIB3WYESeDe3PLAnIH1vu9qKTLpXBInUTpO032IuOyAMrTsMwntGf1I2TEfE6ofjL-CkSZQxP2__S6QnZmJwcTtPpm6N3O-Qmvu-CE5NdstY2Wj0yIKsVj7tt9BMMYCMT |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bbtQwELVQkYAX7peFAvOAxFNa5-JcHmGXZYFSVZSVKiEU2Y5dRWSTVTaRKE_9BCR-g6_ql-CJNykLQkjwmMh2Ynk8c2bsOUPIkyiWPsOMHsqowGiV7ySZjJxEsyykmoWSd7ct9sPZPHh9xI5-yuK3_BBDwA13RqevcYMvM717Thpq5oSZ5G6EB29GCV8MQhqjXE_enRNIGfGyxeSDyEES1p62kXq7m_03zdJvWHMTuna2Z3qN8P6v7ZWTTzttI3bkl18IHf9nWtfJ1TUwhWdWkm6QC6q8SS6P-3pwt8j3w3ZZ80VfThdm1ao5O_32EmcARs0ULQbewIBgmKDiKI9bG9-CcSvbWuTNh-hjW-fF2enX58Z2ZnCwUm1W1VXDP3OjcQFTXeBwwQts8tZ-SMFefozpyJCXMK6Mq5zb-CXgcfVCFCeAoWTgMDdW96QADFer-jaZT1-8H8-cda0HR_oG4Dsu18YX9wLNdMyZFMZNzPwg9FUoIy1U5gulDHjR3FNUKuNmCSap6NBoGPBQ-XfIVlmV6h4BxfGdJ2NBdcAyjpDYVUnsK4m1A9SIOP1Sp3JNhI71OIrUUjh7Ka5BOqzBiDwd2i8tBcgfW273kpOuVcEqdRMk7TfIi47IXStNwzCe0Z7UjZMR8TqZ-Mv4KdJkDE_3_6XTY3LpYDJN917tv3lAruDr7mZisk22mrpVDw3CasSjbhP9AK-nIcs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Supramolecular+Host-Guest+Inclusion+for+Distinguishing+Cucurbit%5B7%5Duril-Based+Pseudorotaxanes+from+Small-Molecule+Ligands+in+Coordination+Assembly+with+a+Uranyl+Center&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Mei%2C+Lei&rft.au=Xie%2C+Zhen-Ni&rft.au=Hu%2C+Kong-qiu&rft.au=Yuan%2C+Li-Yong&rft.date=2017-10-09&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=23&rft.issue=56&rft.spage=13995&rft_id=info:doi/10.1002%2Fchem.201702752&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon |