Bending angle prediction and control of soft pneumatic actuators with embedded flex sensors – A data-driven approach

•A purely data-driven approach for modelling the bending of soft pneumatic actuators.•Evaluation of the feedback from an embedded flex sensor at different operating conditions.•Accurate bending angle prediction at variable input pressures and even pressure leaks.•Comparing the prediction accuracy of...

Full description

Saved in:
Bibliographic Details
Published inMechatronics (Oxford) Vol. 50; pp. 234 - 247
Main Authors Elgeneidy, Khaled, Lohse, Niels, Jackson, Michael
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.04.2018
Subjects
Online AccessGet full text
ISSN0957-4158
1873-4006
DOI10.1016/j.mechatronics.2017.10.005

Cover

Loading…
Abstract •A purely data-driven approach for modelling the bending of soft pneumatic actuators.•Evaluation of the feedback from an embedded flex sensor at different operating conditions.•Accurate bending angle prediction at variable input pressures and even pressure leaks.•Comparing the prediction accuracy of regression analysis and neural network methods.•A PID controller is used to control the bending angle based on multi-sensory feedback. In this paper, a purely data-driven modelling approach is presented for predicting and controlling the free bending angle response of a typical soft pneumatic actuator (SPA), embedded with a resistive flex sensor. An experimental setup was constructed to test the SPA at different input pressure values and orientations, while recording the resulting feedback from the embedded flex sensor and on-board pressure sensor. A calibrated high speed camera captures image frames during the actuation, which are then analysed using an image processing program to calculate the actual bending angle and synchronise it with the recorded sensory feedback. Empirical models were derived based on the generated experimental data using two common data-driven modelling techniques; regression analysis and artificial neural networks. Both techniques were validated using a new dataset at untrained operating conditions to evaluate their prediction accuracy. Furthermore, the derived empirical model was used as part of a closed-loop PID controller to estimate and control the bending angle of the tested SPA based on the real-time sensory feedback generated. The tuned PID controller allowed the bending SPA to accurately follow stepped and sinusoidal reference signals, even in the presence of pressure leaks in the pneumatic supply. This work demonstrates how purely data-driven models can be effectively used in controlling the bending of SPAs under different operating conditions, avoiding the need for complex analytical modelling and material characterisation. Ultimately, the aim is to create more controllable soft grippers based on such SPAs with embedded sensing capabilities, to be used in applications requiring both a ‘soft touch’ as well as a more controllable object manipulation.
AbstractList •A purely data-driven approach for modelling the bending of soft pneumatic actuators.•Evaluation of the feedback from an embedded flex sensor at different operating conditions.•Accurate bending angle prediction at variable input pressures and even pressure leaks.•Comparing the prediction accuracy of regression analysis and neural network methods.•A PID controller is used to control the bending angle based on multi-sensory feedback. In this paper, a purely data-driven modelling approach is presented for predicting and controlling the free bending angle response of a typical soft pneumatic actuator (SPA), embedded with a resistive flex sensor. An experimental setup was constructed to test the SPA at different input pressure values and orientations, while recording the resulting feedback from the embedded flex sensor and on-board pressure sensor. A calibrated high speed camera captures image frames during the actuation, which are then analysed using an image processing program to calculate the actual bending angle and synchronise it with the recorded sensory feedback. Empirical models were derived based on the generated experimental data using two common data-driven modelling techniques; regression analysis and artificial neural networks. Both techniques were validated using a new dataset at untrained operating conditions to evaluate their prediction accuracy. Furthermore, the derived empirical model was used as part of a closed-loop PID controller to estimate and control the bending angle of the tested SPA based on the real-time sensory feedback generated. The tuned PID controller allowed the bending SPA to accurately follow stepped and sinusoidal reference signals, even in the presence of pressure leaks in the pneumatic supply. This work demonstrates how purely data-driven models can be effectively used in controlling the bending of SPAs under different operating conditions, avoiding the need for complex analytical modelling and material characterisation. Ultimately, the aim is to create more controllable soft grippers based on such SPAs with embedded sensing capabilities, to be used in applications requiring both a ‘soft touch’ as well as a more controllable object manipulation.
Author Jackson, Michael
Elgeneidy, Khaled
Lohse, Niels
Author_xml – sequence: 1
  givenname: Khaled
  surname: Elgeneidy
  fullname: Elgeneidy, Khaled
  email: mmkame@lboro.ac.uk, KElgeneidy@lincoln.ac.uk
– sequence: 2
  givenname: Niels
  surname: Lohse
  fullname: Lohse, Niels
– sequence: 3
  givenname: Michael
  surname: Jackson
  fullname: Jackson, Michael
BookMark eNqNkEtOwzAQhi0EEuVxB4t9ip04cWDF-yEhsYF15I7HravUjmxTYMcduCEnwREsEKt6M5L_mU8z3x7Zdt4hIUecTTnjzfFyukJYqBS8sxCnJeMyB1PG6i0y4a2sCsFYs00m7KSWheB1u0v2Ylyy3Mi5nJD1BTpt3ZwqN--RDgG1hWS9yx-agncZ3VNvaPQm0cHhy0olC1RBelHJh0hfbVpQXM1Qa9TU9PhGI7o4Rl8fn_ScapVUoYNdY4YOQ_AKFgdkx6g-4uFv3SfPN9dPl3fFw-Pt_eX5QwGVbFJhTM0Fm_FyBpUQwgA2qqlkiU0NtZSiMbN8ngLU2Jiy1G0tqkq07QnIss2v2ienP1wIPsaAphuCXanw3nHWjQa7ZffXYDcaHLNsMA-f_RsGm9QoJwVl-80QVz8IzEeuLYYugkWXF7YBIXXa200w3_U1m_U
CitedBy_id crossref_primary_10_1115_1_4065522
crossref_primary_10_3390_s21020493
crossref_primary_10_1177_0954411920911277
crossref_primary_10_3390_machines10100871
crossref_primary_10_1371_journal_pone_0246102
crossref_primary_10_1039_D2SM01197B
crossref_primary_10_1088_2631_8695_ad8720
crossref_primary_10_1007_s42235_022_00322_w
crossref_primary_10_1002_adfm_202210353
crossref_primary_10_1007_s00170_024_14216_0
crossref_primary_10_3390_electronics10232994
crossref_primary_10_3390_s23136189
crossref_primary_10_1088_1361_665X_aab579
crossref_primary_10_3390_act11090246
crossref_primary_10_1007_s13369_024_08730_2
crossref_primary_10_1109_LRA_2024_3421794
crossref_primary_10_3390_robotics11060132
crossref_primary_10_1109_TIE_2019_2962493
crossref_primary_10_1088_1361_665X_ad4f39
crossref_primary_10_3390_app10093020
crossref_primary_10_1016_j_robot_2025_104944
crossref_primary_10_1109_ACCESS_2024_3480834
crossref_primary_10_1080_01691864_2020_1777197
crossref_primary_10_1002_adma_201906564
crossref_primary_10_1109_ACCESS_2022_3194153
crossref_primary_10_1177_02783649241272120
crossref_primary_10_3390_act11060168
crossref_primary_10_1109_JSEN_2019_2896596
crossref_primary_10_1126_scirobotics_abd5483
crossref_primary_10_1109_TNNLS_2021_3070631
crossref_primary_10_1016_j_eml_2022_101914
crossref_primary_10_1109_TRO_2021_3060971
crossref_primary_10_1002_aisy_201900027
crossref_primary_10_1007_s42235_019_0031_6
crossref_primary_10_1089_soro_2018_0093
crossref_primary_10_7746_jkros_2021_16_1_017
crossref_primary_10_1016_j_ifacol_2020_12_1424
crossref_primary_10_1007_s11370_023_00484_4
crossref_primary_10_3390_s24010184
crossref_primary_10_1016_j_ijmecsci_2020_106181
crossref_primary_10_1016_j_mechmachtheory_2019_103590
crossref_primary_10_3390_mi11050485
crossref_primary_10_1126_scirobotics_aav1488
crossref_primary_10_3390_act9010003
crossref_primary_10_1109_TMECH_2020_2997743
crossref_primary_10_3390_agriculture12111871
crossref_primary_10_1002_aisy_202000025
crossref_primary_10_1016_j_eml_2020_101079
crossref_primary_10_1016_j_simpat_2023_102787
crossref_primary_10_1016_j_procir_2020_02_180
crossref_primary_10_1089_soro_2022_0224
crossref_primary_10_1109_TMECH_2020_3009365
crossref_primary_10_1177_09544062211028266
crossref_primary_10_3389_frobt_2021_742885
crossref_primary_10_35848_1347_4065_abec60
crossref_primary_10_1089_soro_2022_0188
crossref_primary_10_3390_machines11100936
crossref_primary_10_1007_s12541_019_00231_9
crossref_primary_10_1177_09544062241281558
crossref_primary_10_1088_2631_8695_ac58e7
crossref_primary_10_14232_analecta_2024_2_11_21
crossref_primary_10_1017_S0263574721001533
crossref_primary_10_1088_1757_899X_1116_1_012109
crossref_primary_10_1016_j_mechatronics_2023_102980
crossref_primary_10_1002_admt_202302027
crossref_primary_10_1109_JSEN_2023_3322155
crossref_primary_10_1089_soro_2020_0024
crossref_primary_10_1108_IR_02_2022_0041
crossref_primary_10_1109_ACCESS_2022_3179589
crossref_primary_10_3390_act13120476
crossref_primary_10_1016_j_sna_2021_112774
crossref_primary_10_1007_s11370_023_00506_1
crossref_primary_10_3389_frobt_2022_868682
crossref_primary_10_1016_j_engappai_2023_107174
crossref_primary_10_3390_s22207705
crossref_primary_10_1016_j_mattod_2021_05_008
crossref_primary_10_1016_j_mechatronics_2022_102797
crossref_primary_10_3390_act11120346
crossref_primary_10_1002_adsr_202300108
crossref_primary_10_3390_act11020058
crossref_primary_10_1080_01691864_2021_1911846
crossref_primary_10_1109_LRA_2023_3300226
crossref_primary_10_3390_biomimetics8020221
crossref_primary_10_1002_admt_202201453
crossref_primary_10_1088_1361_665X_ac383a
crossref_primary_10_1109_TMECH_2021_3078263
crossref_primary_10_1088_1748_3190_ac1b6f
crossref_primary_10_3390_mi12020181
crossref_primary_10_1109_TMECH_2023_3340152
crossref_primary_10_1177_0278364919879493
crossref_primary_10_3389_frobt_2022_810328
crossref_primary_10_3390_app9152967
crossref_primary_10_1080_17452759_2020_1795209
crossref_primary_10_1109_LRA_2022_3187268
crossref_primary_10_1007_s40997_023_00596_3
crossref_primary_10_1109_JSEN_2023_3297402
crossref_primary_10_1007_s12008_021_00809_6
crossref_primary_10_1109_TMAG_2024_3427630
crossref_primary_10_3390_s23187905
crossref_primary_10_1002_adfm_201806057
crossref_primary_10_1007_s42235_024_00582_8
crossref_primary_10_1088_2631_8695_ac45e0
crossref_primary_10_1109_TMECH_2019_2929818
crossref_primary_10_1016_j_compscitech_2020_108133
crossref_primary_10_1109_LRA_2024_3487499
crossref_primary_10_1088_1748_3190_abbc73
crossref_primary_10_1063_5_0238161
crossref_primary_10_1016_j_mechatronics_2021_102573
crossref_primary_10_1109_LRA_2022_3187832
crossref_primary_10_1089_soro_2020_0172
crossref_primary_10_1109_TIM_2025_3529055
crossref_primary_10_1089_soro_2023_0111
crossref_primary_10_1089_soro_2020_0176
crossref_primary_10_1016_j_mechmachtheory_2023_105472
crossref_primary_10_1002_aisy_202000223
crossref_primary_10_1109_JSEN_2022_3216278
crossref_primary_10_1089_rorep_2023_0019
crossref_primary_10_1016_j_sna_2024_115095
crossref_primary_10_1002_aisy_202000187
crossref_primary_10_1109_LRA_2022_3192630
crossref_primary_10_1109_TMECH_2022_3155790
crossref_primary_10_7735_ksmte_2020_29_3_195
crossref_primary_10_1016_j_sna_2023_114689
crossref_primary_10_1109_TBME_2021_3111891
crossref_primary_10_1109_TRO_2021_3115257
crossref_primary_10_1177_0020294019866850
crossref_primary_10_3390_polym14194235
crossref_primary_10_1016_j_sna_2020_112272
crossref_primary_10_1109_JSEN_2022_3220020
crossref_primary_10_1002_mame_202100813
crossref_primary_10_1016_j_matdes_2019_108411
crossref_primary_10_1088_2631_8695_acb5f0
crossref_primary_10_1007_s11431_023_2619_7
crossref_primary_10_1109_TRO_2024_3410130
crossref_primary_10_3389_frobt_2018_00002
crossref_primary_10_1002_aisy_201900002
crossref_primary_10_1109_LRA_2020_2967293
crossref_primary_10_1016_j_sna_2021_112978
crossref_primary_10_1089_soro_2020_0190
crossref_primary_10_1002_aisy_202300233
crossref_primary_10_1109_TMECH_2021_3090838
crossref_primary_10_3390_computation10100178
crossref_primary_10_3389_frobt_2022_818187
crossref_primary_10_1109_TMECH_2019_2949151
crossref_primary_10_3390_robotics12030083
crossref_primary_10_1088_1674_1056_acfaf8
crossref_primary_10_5802_crmeca_167
Cites_doi 10.1109/JSEN.2013.2272320
10.1109/ICRA.2016.7487707
10.1198/tech.2007.s499
10.1109/TRO.2007.906248
10.1002/adfm.200701216
10.1109/IROS.2015.7353690
10.1016/j.eswa.2012.05.072
10.1109/TRO.2015.2428504
10.1089/soro.2015.0019
10.1007/s00170-013-5085-8
10.1088/0964-1726/20/10/105017
10.1088/0960-1317/20/12/125029
10.1109/JSEN.2012.2200790
10.1089/soro.2013.0011
10.1109/TRO.2015.2428511
10.1002/anie.201006464
10.1089/soro.2013.0005
10.1002/adma.201400334
10.1088/0964-1726/25/1/013001
10.1088/0964-1726/25/4/045018
10.1089/soro.2013.0007
10.1115/1.4029497
ContentType Journal Article
Copyright 2017 The Authors
Copyright_xml – notice: 2017 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.mechatronics.2017.10.005
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-4006
EndPage 247
ExternalDocumentID 10_1016_j_mechatronics_2017_10_005
S0957415817301496
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
VOH
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c376t-ff5140b12bc3444fce6a6372e65c57746fb006acede6f22d854334889c7288883
IEDL.DBID .~1
ISSN 0957-4158
IngestDate Tue Jul 01 03:54:03 EDT 2025
Thu Apr 24 23:11:16 EDT 2025
Fri Feb 23 02:28:20 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Soft pneumatic actuators
Regression analysis
PID control
Artificial neural networks
Soft grippers
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c376t-ff5140b12bc3444fce6a6372e65c57746fb006acede6f22d854334889c7288883
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0957415817301496
PageCount 14
ParticipantIDs crossref_primary_10_1016_j_mechatronics_2017_10_005
crossref_citationtrail_10_1016_j_mechatronics_2017_10_005
elsevier_sciencedirect_doi_10_1016_j_mechatronics_2017_10_005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2018
2018-04-00
PublicationDateYYYYMMDD 2018-04-01
PublicationDate_xml – month: 04
  year: 2018
  text: April 2018
PublicationDecade 2010
PublicationTitle Mechatronics (Oxford)
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Deimel, Brock (bib0003) 2013
Memarian, Gorbet, Kulic (bib0027) 2015
She, Li, Cleary, Su (bib0026) 2015; 7
Giorelli, Renda, Calisti, Arienti, Ferri, Laschi (bib0029) 2015; 31
Petković, Issa, Pavlović, Zentner, Ćojbašić (bib0014) 2012; 39
Case, White, Kramer (bib0022) 2016; 25
Ilievski, Mazzeo, Shepherd, Chen, Whitesides (bib0001) 2011; 50
Sun, Song, Paik (bib0006) 2013
Park, Chen, Wood (bib0018) 2012; 12
Park, Majidi, Kramer, Bérard, Wood (bib0020) 2010; 20
Issa, Petkovic, Pavlovic, Zentner (bib0013) 2013; 69
Deimel, Brock (bib0002) 2015
Muth, Vogt, Truby, Mengüç, Kolesky, Wood (bib0015) 2014
Morrow J, Shin H, Torrey J, Larkins R, Dang S, Phillips-grafflin C, et al. Improving soft pneumatic actuator fingers through integration of soft sensors, Position Force Control Rigid Fingernails 2016:5024–31.
Vogt, Park, Wood (bib0017) 2013; 13
Majidi, Kramer, Wood (bib0019) 2011; 20
Bilodeau RA, White EL, Kramer RK. Monolithic fabrication of sensors and actuators in a soft robotic gripper. 2015 IEEE/RSJ int conf intell robot syst 2015:2324–9. doi
Levenberg (bib0031) 1977; 630
Lu, Kim (bib0012) 2014; 1
Saggio, Riillo, Sbernini, Quitadamo (bib0024) 2016; 25
Dickey, Chiechi, Larsen, Weiss, Weitz, Whitesides (bib0016) 2008; 18
Homberg, Katzschmann, Dogar, Rus (bib0025) 2015
Luo, Agheli, Onal (bib0009) 2014; 1
Polygerinos, Wang, Overvelde, Galloway, Wood, Bertoldi (bib0010) 2015; 31
Galloway, Becker, Phillips, Kirby, Licht, Tchernov (bib0004) 2016
.
Elgeneidy, Lohse, Jackson (bib0011) 2016; vol. 49
Lipson (bib0005) 2014; 1
Braganza, Dawson, Walker, Nath (bib0030) 2007; 23
Elgeneidy, Lohse (bib0007) 2016
Elsayed, Vincensi, Lekakou, Geng, Saaj, Ranzani (bib0008) 2014; 2
Montgomery DC, Peck EA, Geoffrey Vinning G. Introduction to linear regression analysis. 2006. doi
Ziegler, Nichols (bib0032) 1942; 64
Ziegler (10.1016/j.mechatronics.2017.10.005_bib0032) 1942; 64
Deimel (10.1016/j.mechatronics.2017.10.005_bib0003) 2013
10.1016/j.mechatronics.2017.10.005_bib0021
Elgeneidy (10.1016/j.mechatronics.2017.10.005_bib0011) 2016; vol. 49
Elgeneidy (10.1016/j.mechatronics.2017.10.005_bib0007) 2016
10.1016/j.mechatronics.2017.10.005_bib0023
10.1016/j.mechatronics.2017.10.005_bib0028
Elsayed (10.1016/j.mechatronics.2017.10.005_bib0008) 2014; 2
Ilievski (10.1016/j.mechatronics.2017.10.005_bib0001) 2011; 50
Lipson (10.1016/j.mechatronics.2017.10.005_bib0005) 2014; 1
Giorelli (10.1016/j.mechatronics.2017.10.005_bib0029) 2015; 31
Park (10.1016/j.mechatronics.2017.10.005_bib0020) 2010; 20
Braganza (10.1016/j.mechatronics.2017.10.005_bib0030) 2007; 23
Deimel (10.1016/j.mechatronics.2017.10.005_bib0002) 2015
Galloway (10.1016/j.mechatronics.2017.10.005_bib0004) 2016
Homberg (10.1016/j.mechatronics.2017.10.005_bib0025) 2015
Petković (10.1016/j.mechatronics.2017.10.005_bib0014) 2012; 39
Case (10.1016/j.mechatronics.2017.10.005_bib0022) 2016; 25
Sun (10.1016/j.mechatronics.2017.10.005_bib0006) 2013
Muth (10.1016/j.mechatronics.2017.10.005_bib0015) 2014
Saggio (10.1016/j.mechatronics.2017.10.005_bib0024) 2016; 25
Issa (10.1016/j.mechatronics.2017.10.005_bib0013) 2013; 69
Vogt (10.1016/j.mechatronics.2017.10.005_bib0017) 2013; 13
She (10.1016/j.mechatronics.2017.10.005_bib0026) 2015; 7
Lu (10.1016/j.mechatronics.2017.10.005_bib0012) 2014; 1
Polygerinos (10.1016/j.mechatronics.2017.10.005_bib0010) 2015; 31
Majidi (10.1016/j.mechatronics.2017.10.005_bib0019) 2011; 20
Dickey (10.1016/j.mechatronics.2017.10.005_bib0016) 2008; 18
Luo (10.1016/j.mechatronics.2017.10.005_bib0009) 2014; 1
Park (10.1016/j.mechatronics.2017.10.005_bib0018) 2012; 12
Memarian (10.1016/j.mechatronics.2017.10.005_bib0027) 2015
Levenberg (10.1016/j.mechatronics.2017.10.005_bib0031) 1977; 630
References_xml – volume: 20
  year: 2011
  ident: bib0019
  article-title: A non-differential elastomer curvature sensor for softer-than-skin electronics
  publication-title: Smart Mater Struct
– year: 2015
  ident: bib0002
  article-title: A novel type of compliant and underactuated robotic hand for dexterous grasping
  publication-title: Int J Rob Res
– volume: 25
  start-page: 45018
  year: 2016
  ident: bib0022
  article-title: Sensor enabled closed-loop bending control of soft beams
  publication-title: Smart Mater Struct
– year: 2016
  ident: bib0004
  article-title: Soft robotic grippers for biological sampling on deep reefs
  publication-title: Soft Robot
– volume: 13
  start-page: 4056
  year: 2013
  end-page: 4064
  ident: bib0017
  article-title: Design and characterization of a soft multi-axis force sensor using embedded microfluidic channels
  publication-title: IEEE Sens J
– reference: Montgomery DC, Peck EA, Geoffrey Vinning G. Introduction to linear regression analysis. 2006. doi:
– start-page: 1691
  year: 2015
  end-page: 1697
  ident: bib0027
  article-title: Control of soft pneumatic finger-like actuators for affective motion generation
  publication-title: IEEE int conf intell robot syst
– volume: 7
  start-page: 21007
  year: 2015
  ident: bib0026
  article-title: Design and fabrication of a soft robotic hand with embedded actuators and sensors
  publication-title: J Mech Robot
– volume: 31
  start-page: 823
  year: 2015
  end-page: 834
  ident: bib0029
  article-title: Neural network and jacobian method for solving the inverse statics of a cable-driven soft arm with nonconstant curvature
  publication-title: IEEE Trans Robot
– start-page: 2047
  year: 2013
  end-page: 2053
  ident: bib0003
  article-title: A compliant hand based on a novel pneumatic actuator
  publication-title: Proc - IEEE Int conf robot autom
– volume: 31
  start-page: 778
  year: 2015
  end-page: 789
  ident: bib0010
  article-title: Modeling of soft fiber-reinforced bending actuators
  publication-title: IEEE Trans Robot
– volume: 64
  start-page: 759
  year: 1942
  end-page: 768
  ident: bib0032
  article-title: Optimum settings for automatic controllers
  publication-title: ASME Trans
– reference: Bilodeau RA, White EL, Kramer RK. Monolithic fabrication of sensors and actuators in a soft robotic gripper. 2015 IEEE/RSJ int conf intell robot syst 2015:2324–9. doi:
– volume: 23
  start-page: 1270
  year: 2007
  end-page: 1277
  ident: bib0030
  article-title: A neural network controller for continuum robots
  publication-title: IEEE Trans Robot
– start-page: 1
  year: 2016
  end-page: 10
  ident: bib0007
  article-title: Experimental analysis of the bending response of soft gripper fingers
  publication-title: Proc ASME 2016 int des eng tech conf comput inf eng conf
– volume: 69
  start-page: 1527
  year: 2013
  end-page: 1536
  ident: bib0013
  article-title: Sensor elements made of conductive silicone rubber for passively compliant gripper
  publication-title: Int J Adv Manuf Technol
– volume: 1
  start-page: 21
  year: 2014
  end-page: 27
  ident: bib0005
  article-title: Challenges and opportunities for design, simulation, and fabrication of soft robots
  publication-title: Soft Robot
– volume: 39
  start-page: 13295
  year: 2012
  end-page: 13304
  ident: bib0014
  article-title: Adaptive neuro fuzzy controller for adaptive compliant robotic gripper
  publication-title: Expert Syst Appl
– volume: 12
  start-page: 2711
  year: 2012
  end-page: 2718
  ident: bib0018
  article-title: Design and fabrication of soft artificial skin using embedded microchannels and liquid conductors
  publication-title: IEEE Sens J
– start-page: 4446
  year: 2013
  end-page: 4453
  ident: bib0006
  article-title: Characterization of silicone rubber based soft pneumatic actuators
  publication-title: IEEE int conf intell robot syst
– reference: .
– volume: 1
  start-page: 53
  year: 2014
  end-page: 62
  ident: bib0012
  article-title: Flexible and stretchable electronics paving the way for soft robotics
  publication-title: Soft Robot
– volume: vol. 49
  start-page: 513
  year: 2016
  end-page: 520
  ident: bib0011
  article-title: Data-driven bending angle prediction of soft pneumatic actuators with embedded flex sensors
  publication-title: IFAC-PapersOnLine
– volume: 630
  start-page: 105
  year: 1977
  end-page: 116
  ident: bib0031
  article-title: Marquardt algorithm: implementation and theory
  publication-title: Numer Anal
– volume: 18
  start-page: 1097
  year: 2008
  end-page: 1104
  ident: bib0016
  article-title: Eutectic gallium–indium (EGaIn): a liquid metal alloy for the formation of stable structures in microchannels at room temperature
  publication-title: Adv Funct Mater
– volume: 20
  year: 2010
  ident: bib0020
  article-title: Hyperelastic pressure sensing with a liquid-embedded elastomer
  publication-title: J Micromech Microeng
– reference: Morrow J, Shin H, Torrey J, Larkins R, Dang S, Phillips-grafflin C, et al. Improving soft pneumatic actuator fingers through integration of soft sensors, Position Force Control Rigid Fingernails 2016:5024–31.
– volume: 50
  start-page: 1890
  year: 2011
  end-page: 1895
  ident: bib0001
  article-title: Soft robotics for chemists
  publication-title: Angew Chemie - Int Ed
– start-page: 1698
  year: 2015
  end-page: 1705
  ident: bib0025
  article-title: Haptic identification of objects using a modular soft robotic gripper
  publication-title: 2015 IEEE/RSJ int conf intell robot syst
– volume: 2
  year: 2014
  ident: bib0008
  article-title: Finite element analysis and design optimization of a pneumatically actuating silicone module for robotic surgery applications
  publication-title: Soft Robot
– start-page: 6307
  year: 2014
  end-page: 6312
  ident: bib0015
  article-title: Embedded 3D printing of strain sensors within highly stretchable elastomers
  publication-title: Adv Mater
– volume: 25
  start-page: 13001
  year: 2016
  ident: bib0024
  article-title: Resistive flex sensors: a survey
  publication-title: Smart Mater Struct
– volume: 1
  start-page: 136
  year: 2014
  end-page: 146
  ident: bib0009
  article-title: Theoretical modeling and experimental analysis of a pressure-operated soft robotic snake
  publication-title: Soft Robot
– volume: 13
  start-page: 4056
  year: 2013
  ident: 10.1016/j.mechatronics.2017.10.005_bib0017
  article-title: Design and characterization of a soft multi-axis force sensor using embedded microfluidic channels
  publication-title: IEEE Sens J
  doi: 10.1109/JSEN.2013.2272320
– year: 2015
  ident: 10.1016/j.mechatronics.2017.10.005_bib0002
  article-title: A novel type of compliant and underactuated robotic hand for dexterous grasping
  publication-title: Int J Rob Res
– ident: 10.1016/j.mechatronics.2017.10.005_bib0021
  doi: 10.1109/ICRA.2016.7487707
– ident: 10.1016/j.mechatronics.2017.10.005_bib0028
  doi: 10.1198/tech.2007.s499
– volume: 630
  start-page: 105
  year: 1977
  ident: 10.1016/j.mechatronics.2017.10.005_bib0031
  article-title: Marquardt algorithm: implementation and theory
  publication-title: Numer Anal
– volume: 23
  start-page: 1270
  year: 2007
  ident: 10.1016/j.mechatronics.2017.10.005_bib0030
  article-title: A neural network controller for continuum robots
  publication-title: IEEE Trans Robot
  doi: 10.1109/TRO.2007.906248
– volume: 18
  start-page: 1097
  year: 2008
  ident: 10.1016/j.mechatronics.2017.10.005_bib0016
  article-title: Eutectic gallium–indium (EGaIn): a liquid metal alloy for the formation of stable structures in microchannels at room temperature
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.200701216
– ident: 10.1016/j.mechatronics.2017.10.005_bib0023
  doi: 10.1109/IROS.2015.7353690
– volume: 39
  start-page: 13295
  year: 2012
  ident: 10.1016/j.mechatronics.2017.10.005_bib0014
  article-title: Adaptive neuro fuzzy controller for adaptive compliant robotic gripper
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2012.05.072
– start-page: 4446
  year: 2013
  ident: 10.1016/j.mechatronics.2017.10.005_bib0006
  article-title: Characterization of silicone rubber based soft pneumatic actuators
– volume: 2
  year: 2014
  ident: 10.1016/j.mechatronics.2017.10.005_bib0008
  article-title: Finite element analysis and design optimization of a pneumatically actuating silicone module for robotic surgery applications
  publication-title: Soft Robot
– volume: 31
  start-page: 778
  year: 2015
  ident: 10.1016/j.mechatronics.2017.10.005_bib0010
  article-title: Modeling of soft fiber-reinforced bending actuators
  publication-title: IEEE Trans Robot
  doi: 10.1109/TRO.2015.2428504
– year: 2016
  ident: 10.1016/j.mechatronics.2017.10.005_bib0004
  article-title: Soft robotic grippers for biological sampling on deep reefs
  publication-title: Soft Robot
  doi: 10.1089/soro.2015.0019
– volume: 69
  start-page: 1527
  year: 2013
  ident: 10.1016/j.mechatronics.2017.10.005_bib0013
  article-title: Sensor elements made of conductive silicone rubber for passively compliant gripper
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-013-5085-8
– start-page: 1698
  year: 2015
  ident: 10.1016/j.mechatronics.2017.10.005_bib0025
  article-title: Haptic identification of objects using a modular soft robotic gripper
– volume: 20
  year: 2011
  ident: 10.1016/j.mechatronics.2017.10.005_bib0019
  article-title: A non-differential elastomer curvature sensor for softer-than-skin electronics
  publication-title: Smart Mater Struct
  doi: 10.1088/0964-1726/20/10/105017
– volume: 20
  year: 2010
  ident: 10.1016/j.mechatronics.2017.10.005_bib0020
  article-title: Hyperelastic pressure sensing with a liquid-embedded elastomer
  publication-title: J Micromech Microeng
  doi: 10.1088/0960-1317/20/12/125029
– volume: 12
  start-page: 2711
  year: 2012
  ident: 10.1016/j.mechatronics.2017.10.005_bib0018
  article-title: Design and fabrication of soft artificial skin using embedded microchannels and liquid conductors
  publication-title: IEEE Sens J
  doi: 10.1109/JSEN.2012.2200790
– volume: 1
  start-page: 136
  year: 2014
  ident: 10.1016/j.mechatronics.2017.10.005_bib0009
  article-title: Theoretical modeling and experimental analysis of a pressure-operated soft robotic snake
  publication-title: Soft Robot
  doi: 10.1089/soro.2013.0011
– volume: 31
  start-page: 823
  year: 2015
  ident: 10.1016/j.mechatronics.2017.10.005_bib0029
  article-title: Neural network and jacobian method for solving the inverse statics of a cable-driven soft arm with nonconstant curvature
  publication-title: IEEE Trans Robot
  doi: 10.1109/TRO.2015.2428511
– volume: vol. 49
  start-page: 513
  year: 2016
  ident: 10.1016/j.mechatronics.2017.10.005_bib0011
  article-title: Data-driven bending angle prediction of soft pneumatic actuators with embedded flex sensors
– volume: 50
  start-page: 1890
  year: 2011
  ident: 10.1016/j.mechatronics.2017.10.005_bib0001
  article-title: Soft robotics for chemists
  publication-title: Angew Chemie - Int Ed
  doi: 10.1002/anie.201006464
– volume: 1
  start-page: 53
  year: 2014
  ident: 10.1016/j.mechatronics.2017.10.005_bib0012
  article-title: Flexible and stretchable electronics paving the way for soft robotics
  publication-title: Soft Robot
  doi: 10.1089/soro.2013.0005
– start-page: 2047
  year: 2013
  ident: 10.1016/j.mechatronics.2017.10.005_bib0003
  article-title: A compliant hand based on a novel pneumatic actuator
– start-page: 6307
  year: 2014
  ident: 10.1016/j.mechatronics.2017.10.005_bib0015
  article-title: Embedded 3D printing of strain sensors within highly stretchable elastomers
  publication-title: Adv Mater
  doi: 10.1002/adma.201400334
– volume: 25
  start-page: 13001
  year: 2016
  ident: 10.1016/j.mechatronics.2017.10.005_bib0024
  article-title: Resistive flex sensors: a survey
  publication-title: Smart Mater Struct
  doi: 10.1088/0964-1726/25/1/013001
– start-page: 1691
  year: 2015
  ident: 10.1016/j.mechatronics.2017.10.005_bib0027
  article-title: Control of soft pneumatic finger-like actuators for affective motion generation
– volume: 25
  start-page: 45018
  year: 2016
  ident: 10.1016/j.mechatronics.2017.10.005_bib0022
  article-title: Sensor enabled closed-loop bending control of soft beams
  publication-title: Smart Mater Struct
  doi: 10.1088/0964-1726/25/4/045018
– volume: 1
  start-page: 21
  year: 2014
  ident: 10.1016/j.mechatronics.2017.10.005_bib0005
  article-title: Challenges and opportunities for design, simulation, and fabrication of soft robots
  publication-title: Soft Robot
  doi: 10.1089/soro.2013.0007
– start-page: 1
  year: 2016
  ident: 10.1016/j.mechatronics.2017.10.005_bib0007
  article-title: Experimental analysis of the bending response of soft gripper fingers
– volume: 7
  start-page: 21007
  year: 2015
  ident: 10.1016/j.mechatronics.2017.10.005_bib0026
  article-title: Design and fabrication of a soft robotic hand with embedded actuators and sensors
  publication-title: J Mech Robot
  doi: 10.1115/1.4029497
– volume: 64
  start-page: 759
  year: 1942
  ident: 10.1016/j.mechatronics.2017.10.005_bib0032
  article-title: Optimum settings for automatic controllers
  publication-title: ASME Trans
SSID ssj0017117
Score 2.5768945
Snippet •A purely data-driven approach for modelling the bending of soft pneumatic actuators.•Evaluation of the feedback from an embedded flex sensor at different...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 234
SubjectTerms Artificial neural networks
PID control
Regression analysis
Soft grippers
Soft pneumatic actuators
Title Bending angle prediction and control of soft pneumatic actuators with embedded flex sensors – A data-driven approach
URI https://dx.doi.org/10.1016/j.mechatronics.2017.10.005
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQWWBAPEV5VB5YTZs0cZyBoVRUBQQLVOoW2c6Zh9pQlRYxIf4D_5Bfwl0eqEgMSIyxfVJ0vtyd4---Y-woltCS1inhMLcQgTNG4LE5FaBV6oWRacWOCpyvrmV_EFwMw-ES61a1MASrLH1_4dNzb12ONEttNicPD80bTA4oHCqPjDSIiXab2OvQpo_fvmEeXuTlXXdpsaDVFfFojvEag73XRa8Zou72ouMc6RX-HqQWAk9vna2VGSPvFC-1wZYg22SrCzyCW-zlFPLiFK6zuxHwyZRuX0jjOJDyEo3Onxx_RqfLJxnMc6JWrql6hNrtcPody2FsAP1Qyt0IXvkzHnBp6vP9g3c4IUlFOiXfyCse8m026J3ddvuibKggLPqRmXAO06OW8Xxj20EQOAtSy3bkgwxtiHslHX2EGlUP0vl-qsKACnVVbCMfT8qqvcNq2VMGu4z7JtYu8mLjbBxYZ7UEq_00Uq4FkbKyzuJKg4kt2cap6cUoqWBlj8mi9hPSPs2h9uus_S07KTg3_iR1Um1U8sOCEgwOf5Df-6f8PlvBJ1Wgeg5YbTadwyEmLDPTyC2ywZY755f96y8iAvEL
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BOQAHxCp2fOBq2qSO4xw4FAQqWy-AxC2ynTGLSqhKQRz5B_6QL8GTBRWJAxJXOyNFY-fNOH7zBmA3kdiS1inufG7BhTOG-2NzxlGrLIhi00ocFThf9GT3WpzeRDcTcFjXwhCtssL-EtMLtK5GmpU3m4P7--alTw4oHKqANqlI5CRMkTqVaMBU5-Ss2_u-TIiDovEuPc_JoNYeLWhej2jvdNluhtS7g3ivIHtFv8epsdhzPA9zVdLIOuV7LcAE5oswOyYluASvB1jUpzCd3_aRDYZ0AUNO9wMZqwjp7MmxZ4-7bJDjS6HVyjQVkFDHHUZ_ZBk-GvRQlDHXxzf27M-4NPX5_sE6jMikPBsSPLJainwZro-Prg67vOqpwK2HkhF3zmdILROExraFEM6i1LIdhygjG_nlko6-Q-29j9KFYaYiQbW6KrFx6A_Lqr0Cjfwpx1VgoUm0i4PEOJsI66yWaHWYxcq1MFZWrkFSezC1leA49b3opzWz7CEd935K3qc57_01aH_bDkrZjT9Z7dcLlf7YRKmPD3-wX_-n_Q5Md68uztPzk97ZBsz4GVWSfDahMRq-4JbPX0Zmu9qfX1in87w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bending+angle+prediction+and+control+of+soft+pneumatic+actuators+with+embedded+flex+sensors+%E2%80%93+A+data-driven+approach&rft.jtitle=Mechatronics+%28Oxford%29&rft.au=Elgeneidy%2C+Khaled&rft.au=Lohse%2C+Niels&rft.au=Jackson%2C+Michael&rft.date=2018-04-01&rft.pub=Elsevier+Ltd&rft.issn=0957-4158&rft.eissn=1873-4006&rft.volume=50&rft.spage=234&rft.epage=247&rft_id=info:doi/10.1016%2Fj.mechatronics.2017.10.005&rft.externalDocID=S0957415817301496
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4158&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4158&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4158&client=summon