A Transfer Learning and U-Net-based automatic detection of diabetic retinopathy from fundus images
Diabetic retinopathy (DR) is an ocular manifestation of diabetes and the leading cause of visual impairment and blindness across the globe. Early detection and treatment of DR can salvage from visual impairment. The manual screening of DR is a very laborious and time-intensive effort and heavily dep...
Saved in:
Published in | Computer methods in biomechanics and biomedical engineering. Vol. 10; no. 6; pp. 663 - 674 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Taylor & Francis
02.11.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 2168-1163 2168-1171 |
DOI | 10.1080/21681163.2021.2021111 |
Cover
Loading…
Abstract | Diabetic retinopathy (DR) is an ocular manifestation of diabetes and the leading cause of visual impairment and blindness across the globe. Early detection and treatment of DR can salvage from visual impairment. The manual screening of DR is a very laborious and time-intensive effort and heavily dependent on professional ophthalmologists. In addition, the subtle distinction among various retinal biomarkers and different grades of DR makes this recognition very challenging. To address the aforementioned problem, deep neural networks have brought many revolutions in the last few years. In this study, we proposed a novel two-stage framework for automatic DR classification. In the first stage, we employed two distinct U-Net models for optic disc (OD) and blood vessel (BV) segmentation during the preprocessing. In the second stage, the enhanced retinal images after OD and BV extraction are used as an input of transfer learning-based model VGGNet, which performs DR detection by identifying retinal biomarkers such as microaneurysms (MA), haemorrhages (HM), and exudates (EX). The proposed model achieved state-of-the-art performance with an average accuracy of 96.60%, 93.95%, 92.25% evaluated on EyePACS-1, Messidor-2, and DIARETDB0, respectively. Extensive experiments and comparison with baseline methods demonstrate that the effectiveness of the proposed approach. |
---|---|
AbstractList | Diabetic retinopathy (DR) is an ocular manifestation of diabetes and the leading cause of visual impairment and blindness across the globe. Early detection and treatment of DR can salvage from visual impairment. The manual screening of DR is a very laborious and time-intensive effort and heavily dependent on professional ophthalmologists. In addition, the subtle distinction among various retinal biomarkers and different grades of DR makes this recognition very challenging. To address the aforementioned problem, deep neural networks have brought many revolutions in the last few years. In this study, we proposed a novel two-stage framework for automatic DR classification. In the first stage, we employed two distinct U-Net models for optic disc (OD) and blood vessel (BV) segmentation during the preprocessing. In the second stage, the enhanced retinal images after OD and BV extraction are used as an input of transfer learning-based model VGGNet, which performs DR detection by identifying retinal biomarkers such as microaneurysms (MA), haemorrhages (HM), and exudates (EX). The proposed model achieved state-of-the-art performance with an average accuracy of 96.60%, 93.95%, 92.25% evaluated on EyePACS-1, Messidor-2, and DIARETDB0, respectively. Extensive experiments and comparison with baseline methods demonstrate that the effectiveness of the proposed approach. |
Author | Sun, Guangmin Mazhar, Sarah Latif, Jahanzaib Bilal, Anas Imran, Azhar |
Author_xml | – sequence: 1 givenname: Anas orcidid: 0000-0002-7760-3374 surname: Bilal fullname: Bilal, Anas organization: Beijing University of Technology – sequence: 2 givenname: Guangmin surname: Sun fullname: Sun, Guangmin email: gmsun@bjut.edu.cn organization: Beijing University of Technology – sequence: 3 givenname: Sarah surname: Mazhar fullname: Mazhar, Sarah organization: Beijing University of Technology – sequence: 4 givenname: Azhar orcidid: 0000-0003-3598-2780 surname: Imran fullname: Imran, Azhar organization: Air University – sequence: 5 givenname: Jahanzaib surname: Latif fullname: Latif, Jahanzaib organization: Beijing University of Technology |
BookMark | eNqFkM1KAzEQgIMoWGsfQcgLbE022ewWL5biHxS91HOYzU-NbJOSpEjf3l1bPXjQOcwMA98w812gUx-8QeiKkiklDbkuqWgoFWxakpJ-pT5O0GiYF5TW9PSnF-wcTVJ6J300QjBRjVA7x6sIPlkT8dJA9M6vMXiNX4tnk4sWktEYdjlsIDuFtclGZRc8DhZrB60ZprHPPmwhv-2xjWGD7c7rXcJuA2uTLtGZhS6ZybGO0er-brV4LJYvD0-L-bJQrBa5sKXVLaMADQMAovisUlaXJedcCFsJU7W8YRxMpVpQNWnMrDaNAS56kis2RtVhrYohpWis3Mb-gLiXlMhBlfxWJQdL8qiq525-ccplGH7MEVz3L317oJ23IW7gI8ROywz7LkTbi1UuSfb3ik9_-IU8 |
CitedBy_id | crossref_primary_10_1109_ACCESS_2023_3324670 crossref_primary_10_3390_app131910798 crossref_primary_10_1038_s41598_024_81132_4 crossref_primary_10_3390_diagnostics13010130 crossref_primary_10_1007_s00530_023_01169_9 crossref_primary_10_1080_10255842_2022_2145887 crossref_primary_10_3390_sym14071427 crossref_primary_10_3390_app14114428 crossref_primary_10_1088_2057_1976_ace789 crossref_primary_10_1038_s41598_023_45886_7 crossref_primary_10_1038_s41598_024_81049_y crossref_primary_10_48084_etasr_6033 crossref_primary_10_1038_s41598_024_72375_2 crossref_primary_10_3390_math12142284 crossref_primary_10_1007_s11042_024_19241_5 crossref_primary_10_1080_13682199_2023_2178611 crossref_primary_10_29194_NJES_27020155 crossref_primary_10_1016_j_imavis_2024_105194 crossref_primary_10_1109_ACCESS_2024_3361944 crossref_primary_10_1007_s11760_023_02751_4 crossref_primary_10_1007_s42979_023_02417_5 crossref_primary_10_1007_s42979_024_03403_1 crossref_primary_10_38124_ijisrt_IJISRT24JUN1899 crossref_primary_10_3390_electronics12194094 crossref_primary_10_1007_s10462_024_10770_x crossref_primary_10_1038_s41598_025_92665_7 crossref_primary_10_1109_ACCESS_2023_3275966 crossref_primary_10_1155_2022_1233068 crossref_primary_10_1080_21681163_2024_2361739 crossref_primary_10_3390_app13053108 crossref_primary_10_1007_s10278_022_00707_7 crossref_primary_10_1080_00051144_2023_2251231 crossref_primary_10_1038_s41598_023_40906_y crossref_primary_10_3390_app13095685 crossref_primary_10_1007_s11042_023_15754_7 crossref_primary_10_1007_s42979_023_02034_2 crossref_primary_10_1038_s41598_024_61322_w crossref_primary_10_1038_s41598_025_86671_y crossref_primary_10_3390_s22249603 crossref_primary_10_1038_s41598_024_63292_5 crossref_primary_10_1038_s41598_024_54640_6 crossref_primary_10_1007_s11760_024_02996_7 crossref_primary_10_1016_j_compbiomed_2023_107193 crossref_primary_10_3390_photonics10090957 |
Cites_doi | 10.1109/JBHI.2013.2294635 10.1007/s11042-020-09630-x 10.1109/SSCI44817.2019.9002864 10.1021/acs.joc.5b00892 10.1016/j.optlastec.2019.105815 10.1016/j.media.2019.07.005 10.1007/s10916-017-0853-x 10.1109/ACCESS.2020.2974158 10.1155/2019/3926930 10.1109/ICCSP.2014.6950022 10.1016/j.cmpb.2015.01.004 10.1016/j.bspc.2016.09.009 10.1001/jama.2016.17216 10.1109/ICIP.2016.7532387 10.1109/TMI.2009.2037146 10.1162/neco_a_00990 10.1109/ACCESS.2020.3027794 10.1109/ACCESS.2020.2985543 10.1109/CVPR.2009.5206848 10.1109/ACCESS.2020.2979753 10.1007/s11517-016-1563-0 10.1038/s41598-020-71622-6 10.1109/ACCESS.2019.2947484 10.2337/diacare.27.2007.S84 10.1111/aos.14193 10.1109/ACCESS.2019.2903171 10.1016/j.compmedimag.2016.09.001 10.1016/j.compbiomed.2019.103537 10.1155/2019/8973287 10.1038/s41598-020-79139-8 10.1109/MICCCA.2008.4669845 10.1007/978-981-15-1483-8_16 10.1016/j.media.2014.05.004 10.1007/978-3-319-24574-4_28 10.1109/ACCESS.2020.2993937 10.1109/ACCESS.2020.3005044 10.1016/j.compbiomed.2010.02.008 10.1016/j.cmpb.2017.10.017 10.1007/s11042-020-10238-4 10.1007/s11517-017-1638-6 10.1016/j.media.2019.101631 10.1016/B978-0-12-817438-8.00007-9 10.1159/000502387 10.1016/j.compbiomed.2019.103345 10.1080/09500340903118517 10.1016/j.bspc.2015.10.012 10.1109/INCET49848.2020.9154014 10.1109/ACCESS.2020.3029117 |
ContentType | Journal Article |
Copyright | 2022 Informa UK Limited, trading as Taylor & Francis Group 2022 |
Copyright_xml | – notice: 2022 Informa UK Limited, trading as Taylor & Francis Group 2022 |
DBID | AAYXX CITATION |
DOI | 10.1080/21681163.2021.2021111 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2168-1171 |
EndPage | 674 |
ExternalDocumentID | 10_1080_21681163_2021_2021111 2021111 |
Genre | Research Article |
GroupedDBID | 0BK 30N 4.4 AAJMT AALDU AAMIU AAPUL AAQRR ABLIJ ABPAQ ABXUL ABXYU ACGFS ADCVX ADGTB AEISY AGDLA AHDZW AIJEM AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU ARCSS BLEHA CCCUG EBS EUPTU GTTXZ H13 HZ~ KYCEM LJTGL M4Z O9- RIG RNANH ROSJB RTWRZ SNACF SOJIQ TBQAZ TDBHL TEN TFL TFT TFW TTHFI TUROJ AAGDL AAYXX ADMLS ADYSH AFRVT AIYEW CITATION |
ID | FETCH-LOGICAL-c376t-f2fdb31aa83aaa0c495cfd2244466f56e5b4834ae5cbac708e97e8ea46f2f4c3 |
ISSN | 2168-1163 |
IngestDate | Tue Jul 01 04:23:37 EDT 2025 Thu Apr 24 23:03:43 EDT 2025 Wed Dec 25 09:05:15 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c376t-f2fdb31aa83aaa0c495cfd2244466f56e5b4834ae5cbac708e97e8ea46f2f4c3 |
ORCID | 0000-0002-7760-3374 0000-0003-3598-2780 |
PageCount | 12 |
ParticipantIDs | crossref_primary_10_1080_21681163_2021_2021111 crossref_citationtrail_10_1080_21681163_2021_2021111 informaworld_taylorfrancis_310_1080_21681163_2021_2021111 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-11-02 |
PublicationDateYYYYMMDD | 2022-11-02 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-02 day: 02 |
PublicationDecade | 2020 |
PublicationTitle | Computer methods in biomechanics and biomedical engineering. |
PublicationYear | 2022 |
Publisher | Taylor & Francis |
Publisher_xml | – name: Taylor & Francis |
References | cit0034 cit0031 cit0030 Wang L (cit0053) 2015 Sellahewa L (cit0047) 2014; 8 Shayma’a AH (cit0049) 2020 Kalyani G (cit0022) 2021 cit0039 cit0037 cit0038 cit0035 cit0036 Mann KS (cit0032) 2017; 1836 cit0020 cit0021 cit0060 cit0028 Kanimozhi J (cit0023) 2020 cit0029 cit0026 cit0024 cit0025 cit0011 cit0055 cit0012 cit0056 cit0010 cit0054 cit0051 cit0052 cit0050 cit0019 cit0017 cit0015 cit0059 cit0016 Math L (cit0033) 2020 cit0013 cit0057 cit0014 cit0058 cit0044 cit0001 cit0045 cit0042 cit0043 cit0040 cit0041 Aras RA (cit0006) 2016; 1 Imran A (cit0018) 2020 Lin M (cit0027) 2013 cit0008 cit0009 cit0007 cit0004 cit0048 cit0005 cit0002 cit0046 cit0003 |
References_xml | – ident: cit0045 doi: 10.1109/JBHI.2013.2294635 – ident: cit0002 doi: 10.1007/s11042-020-09630-x – ident: cit0019 doi: 10.1109/SSCI44817.2019.9002864 – ident: cit0020 doi: 10.1021/acs.joc.5b00892 – ident: cit0026 doi: 10.1016/j.optlastec.2019.105815 – start-page: 1 year: 2020 ident: cit0023 publication-title: J Ambient Intell Humaniz Comput – ident: cit0024 doi: 10.1016/j.media.2019.07.005 – ident: cit0050 doi: 10.1007/s10916-017-0853-x – ident: cit0014 doi: 10.1109/ACCESS.2020.2974158 – ident: cit0029 doi: 10.1155/2019/3926930 – ident: cit0030 doi: 10.1109/ICCSP.2014.6950022 – ident: cit0017 doi: 10.1016/j.cmpb.2015.01.004 – ident: cit0007 doi: 10.1016/j.bspc.2016.09.009 – ident: cit0015 doi: 10.1001/jama.2016.17216 – start-page: 1 year: 2021 ident: cit0022 publication-title: Complex Intell Syst – ident: cit0059 doi: 10.1109/ICIP.2016.7532387 – ident: cit0003 doi: 10.1109/TMI.2009.2037146 – ident: cit0035 – start-page: 150801667 year: 2015 ident: cit0053 publication-title: arXiv – ident: cit0043 doi: 10.1162/neco_a_00990 – ident: cit0008 doi: 10.1109/ACCESS.2020.3027794 – ident: cit0052 doi: 10.1109/ACCESS.2020.2985543 – ident: cit0010 doi: 10.1109/CVPR.2009.5206848 – volume: 1836 start-page: 020026 volume-title: AIP Conference Proceedings year: 2017 ident: cit0032 – ident: cit0013 doi: 10.1109/ACCESS.2020.2979753 – start-page: 1 year: 2020 ident: cit0033 publication-title: Multimed Tools Appl – ident: cit0005 doi: 10.1007/s11517-016-1563-0 – ident: cit0021 doi: 10.1038/s41598-020-71622-6 – ident: cit0041 doi: 10.1109/ACCESS.2019.2947484 – ident: cit0012 doi: 10.2337/diacare.27.2007.S84 – ident: cit0016 doi: 10.1111/aos.14193 – ident: cit0056 doi: 10.1109/ACCESS.2019.2903171 – start-page: 13124400 year: 2013 ident: cit0027 publication-title: arXiv – ident: cit0028 doi: 10.1016/j.compmedimag.2016.09.001 – volume: 8 start-page: 1345 year: 2014 ident: cit0047 publication-title: Clin Ophthalmol (Auckland, NZ) – ident: cit0055 doi: 10.1016/j.compbiomed.2019.103537 – ident: cit0060 doi: 10.1155/2019/8973287 – ident: cit0034 doi: 10.1038/s41598-020-79139-8 – ident: cit0004 doi: 10.1109/MICCCA.2008.4669845 – ident: cit0031 doi: 10.1007/978-981-15-1483-8_16 – ident: cit0058 doi: 10.1016/j.media.2014.05.004 – ident: cit0044 doi: 10.1007/978-3-319-24574-4_28 – ident: cit0040 doi: 10.1109/ACCESS.2020.2993937 – ident: cit0039 doi: 10.1109/ACCESS.2020.3005044 – ident: cit0037 – ident: cit0057 doi: 10.1016/j.compbiomed.2010.02.008 – ident: cit0036 doi: 10.1016/j.cmpb.2017.10.017 – ident: cit0042 doi: 10.1007/s11042-020-10238-4 – ident: cit0001 doi: 10.1007/s11517-017-1638-6 – ident: cit0011 doi: 10.1016/j.media.2019.101631 – ident: cit0048 doi: 10.1016/B978-0-12-817438-8.00007-9 – ident: cit0054 doi: 10.1159/000502387 – ident: cit0009 doi: 10.1016/j.compbiomed.2019.103345 – ident: cit0051 doi: 10.1080/09500340903118517 – ident: cit0046 doi: 10.1016/j.bspc.2015.10.012 – ident: cit0038 doi: 10.1109/INCET49848.2020.9154014 – start-page: 1 year: 2020 ident: cit0049 publication-title: Multimed Tools Appl – ident: cit0025 doi: 10.1109/ACCESS.2020.3029117 – volume: 1 issue: 1 year: 2016 ident: cit0006 publication-title: Commun Sci Technol – start-page: 1 year: 2020 ident: cit0018 publication-title: Comput Methods Biomech Biomed Eng: Imaging & Visualization |
SSID | ssj0000866365 |
Score | 2.465412 |
Snippet | Diabetic retinopathy (DR) is an ocular manifestation of diabetes and the leading cause of visual impairment and blindness across the globe. Early detection and... |
SourceID | crossref informaworld |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 663 |
SubjectTerms | automatic diagnosis deep neural network Diabetic retinopathy fundus images transfer learning |
Title | A Transfer Learning and U-Net-based automatic detection of diabetic retinopathy from fundus images |
URI | https://www.tandfonline.com/doi/abs/10.1080/21681163.2021.2021111 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDBay7rIdhj2xru2gw26FM7_ixzEoVnQDmstSoDdDkqktQOMUqXxYf9F-ZinJkhW02PMiODJkG-IXiiTIj4R8KAGtgrgso5Khb5KjyR4x1lZRjkcteh-SS9O073xRnF3kXy5nl5PJzyBrqVd8Km4frCv5F6niHMpVV8n-hWT9Q3ECr1G-OKKEcfwjGc8tN7mEreNJtQWHF9ECVKQPqPaY9WpjaVlbUCCcgWhjroa_Wa26jW5M_MPWmuBJ1_Y3x6s1apqb0HZ1DSCGrtMmkdZU7-viYUf2bMv5jeRhpDqcjrH4K2bTAjrmrfmvvVF9iNbu23rl0XrObr_b9O-dsPXn9dYGbef6dhi1QIdXR2JHH3d5r4HIqPfSpEDHNhn0HoRztluLV9xxANBQCxdurf1l2wDdOytscqV-sn7ZFL8yMYPT_rs03MOdR-Rxig6J7pWRxQsfzUPHsMhM31L_9a5crIo_PviOHUNohyY3MHCWz8mzwTOhcwuzF2QC3UvyNOCrfEX4nDrAUQc4ilKnAeCoBxz1gKMbSR3gaAA4qgFHLeCoBdxrsjz9tDw5i4YmHZHAs0lFMpUtzxLGqowxFgt0uIVs0TDUiQJyVsCM63g1g5ngTJRxBXUJFTDUA6nMRfaG7HWbDt4SWssSnXNeS95CDkJWRS0031yGyi6HtNgnuduwRgwE9rqPylWTDDy3bp8bvcXNsM_7ZOqXXVsGl98tqENpNMpgVVqYNtkv1777j7UH5Mn4Tzkke2rbwxFavIq_N2C7A1WVpdg |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQGYCBN6I8PbC65P0YK0RVoO3USt0i27ERAlLUJgP8eu6cpEqRgKFLhkiXx_nie-Tu-wi5CRVEBVYYspBDbuJByM44TyPmgauF7EMLbUj7hqOgP_Eep_60MQuDbZWYQ-sSKMLs1fhxYzG6bom7dewgsiGQgPTOsc3BxvHeTT8OQmQxcK3Rss4CIXvgGkZJlGIoVg_y_HalFRe1AmDacD29PSLrhy47Tl47RS468usHnuN6b7VPdqvIlHZLUzogGyo7JDsNvMIjIrrU-Dat5rQCZn2mcEM6YSOVM_SIKeVFPjM4sDRVuWn0yuhM07LIC2dxbDKbIRPyJ8XhFgquNS0W9OUdtrbFMRn37sd3fVaRNDAJe1POtKNT4dqcRy7n3JKQcEmdQmCAP4q1HyhfYL2SK18KLkMrUnGoIsXBDhztSfeEtLJZpk4JjXUIyZmItUiVp6SOglgi3pgLxu4pJ2gTr16WRFYA5sij8ZbYFc5prcEElZdUGmyTzlLso0Tw-E8gbq55kpvSiS55ThL3T9mzNWSvyVZ_PBwkg4fR0znZdnDOAuvXzgVp5fNCXUL0k4srY97fXpL06w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI7QkBAceCPGMweuGeu7PU7ANF4Vh03iViVpghDQTlt7gF-PnbbThgQcdumhkvtw3Piza38m5CJQgAq6QcACDrGJC5CdcZ6GzAVXC9GHFtoM7XuM_cHIvXv2mmrCaV1WiTG0rogizF6NH_c41U1F3KVt-aEFOAKiO9syBwu7e1d9JA_HLo5uPEuzAGL3HTNQEqUYijV9PL9dacFDLfCXznme_hYRzTNXBSdvnbIQHfn1g85xqZfaJps1LqW9ypB2yIrKdsnGHFvhHhE9ajybVhNa07K-ULgfHbFYFQz9YUp5WeSGBZamqjBlXhnNNa1SvHAWmyazHOcgf1JsbaHgWNNySl8_YGOb7pNh_2Z4NWD1iAYmYWcqmLZ1KhyL89DhnHclhFtSpwAL8Dex9nzlCcxWcuVJwWXQDVUUqFBxsAJbu9I5IK0sz9QhoZEOIDQTkRapcpXUoR9JZBtzwNRdZftt4jarksiavhynaLwnVs1y2mgwQeUltQbbpDMTG1f8Hf8JRPNLnhQmcaKrKSeJ86fs0RKy52Tt6bqfPNzG98dk3cYmC0xe2yekVUxKdQrQpxBnxri_AVe5848 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Transfer+Learning+and+U-Net-based+automatic+detection+of+diabetic+retinopathy+from+fundus+images&rft.jtitle=Computer+methods+in+biomechanics+and+biomedical+engineering.&rft.au=Bilal%2C+Anas&rft.au=Sun%2C+Guangmin&rft.au=Mazhar%2C+Sarah&rft.au=Imran%2C+Azhar&rft.date=2022-11-02&rft.pub=Taylor+%26+Francis&rft.issn=2168-1163&rft.eissn=2168-1171&rft.volume=10&rft.issue=6&rft.spage=663&rft.epage=674&rft_id=info:doi/10.1080%2F21681163.2021.2021111&rft.externalDocID=2021111 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-1163&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-1163&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-1163&client=summon |