A Transfer Learning and U-Net-based automatic detection of diabetic retinopathy from fundus images

Diabetic retinopathy (DR) is an ocular manifestation of diabetes and the leading cause of visual impairment and blindness across the globe. Early detection and treatment of DR can salvage from visual impairment. The manual screening of DR is a very laborious and time-intensive effort and heavily dep...

Full description

Saved in:
Bibliographic Details
Published inComputer methods in biomechanics and biomedical engineering. Vol. 10; no. 6; pp. 663 - 674
Main Authors Bilal, Anas, Sun, Guangmin, Mazhar, Sarah, Imran, Azhar, Latif, Jahanzaib
Format Journal Article
LanguageEnglish
Published Taylor & Francis 02.11.2022
Subjects
Online AccessGet full text
ISSN2168-1163
2168-1171
DOI10.1080/21681163.2021.2021111

Cover

Loading…
Abstract Diabetic retinopathy (DR) is an ocular manifestation of diabetes and the leading cause of visual impairment and blindness across the globe. Early detection and treatment of DR can salvage from visual impairment. The manual screening of DR is a very laborious and time-intensive effort and heavily dependent on professional ophthalmologists. In addition, the subtle distinction among various retinal biomarkers and different grades of DR makes this recognition very challenging. To address the aforementioned problem, deep neural networks have brought many revolutions in the last few years. In this study, we proposed a novel two-stage framework for automatic DR classification. In the first stage, we employed two distinct U-Net models for optic disc (OD) and blood vessel (BV) segmentation during the preprocessing. In the second stage, the enhanced retinal images after OD and BV extraction are used as an input of transfer learning-based model VGGNet, which performs DR detection by identifying retinal biomarkers such as microaneurysms (MA), haemorrhages (HM), and exudates (EX). The proposed model achieved state-of-the-art performance with an average accuracy of 96.60%, 93.95%, 92.25% evaluated on EyePACS-1, Messidor-2, and DIARETDB0, respectively. Extensive experiments and comparison with baseline methods demonstrate that the effectiveness of the proposed approach.
AbstractList Diabetic retinopathy (DR) is an ocular manifestation of diabetes and the leading cause of visual impairment and blindness across the globe. Early detection and treatment of DR can salvage from visual impairment. The manual screening of DR is a very laborious and time-intensive effort and heavily dependent on professional ophthalmologists. In addition, the subtle distinction among various retinal biomarkers and different grades of DR makes this recognition very challenging. To address the aforementioned problem, deep neural networks have brought many revolutions in the last few years. In this study, we proposed a novel two-stage framework for automatic DR classification. In the first stage, we employed two distinct U-Net models for optic disc (OD) and blood vessel (BV) segmentation during the preprocessing. In the second stage, the enhanced retinal images after OD and BV extraction are used as an input of transfer learning-based model VGGNet, which performs DR detection by identifying retinal biomarkers such as microaneurysms (MA), haemorrhages (HM), and exudates (EX). The proposed model achieved state-of-the-art performance with an average accuracy of 96.60%, 93.95%, 92.25% evaluated on EyePACS-1, Messidor-2, and DIARETDB0, respectively. Extensive experiments and comparison with baseline methods demonstrate that the effectiveness of the proposed approach.
Author Sun, Guangmin
Mazhar, Sarah
Latif, Jahanzaib
Bilal, Anas
Imran, Azhar
Author_xml – sequence: 1
  givenname: Anas
  orcidid: 0000-0002-7760-3374
  surname: Bilal
  fullname: Bilal, Anas
  organization: Beijing University of Technology
– sequence: 2
  givenname: Guangmin
  surname: Sun
  fullname: Sun, Guangmin
  email: gmsun@bjut.edu.cn
  organization: Beijing University of Technology
– sequence: 3
  givenname: Sarah
  surname: Mazhar
  fullname: Mazhar, Sarah
  organization: Beijing University of Technology
– sequence: 4
  givenname: Azhar
  orcidid: 0000-0003-3598-2780
  surname: Imran
  fullname: Imran, Azhar
  organization: Air University
– sequence: 5
  givenname: Jahanzaib
  surname: Latif
  fullname: Latif, Jahanzaib
  organization: Beijing University of Technology
BookMark eNqFkM1KAzEQgIMoWGsfQcgLbE022ewWL5biHxS91HOYzU-NbJOSpEjf3l1bPXjQOcwMA98w812gUx-8QeiKkiklDbkuqWgoFWxakpJ-pT5O0GiYF5TW9PSnF-wcTVJ6J300QjBRjVA7x6sIPlkT8dJA9M6vMXiNX4tnk4sWktEYdjlsIDuFtclGZRc8DhZrB60ZprHPPmwhv-2xjWGD7c7rXcJuA2uTLtGZhS6ZybGO0er-brV4LJYvD0-L-bJQrBa5sKXVLaMADQMAovisUlaXJedcCFsJU7W8YRxMpVpQNWnMrDaNAS56kis2RtVhrYohpWis3Mb-gLiXlMhBlfxWJQdL8qiq525-ccplGH7MEVz3L317oJ23IW7gI8ROywz7LkTbi1UuSfb3ik9_-IU8
CitedBy_id crossref_primary_10_1109_ACCESS_2023_3324670
crossref_primary_10_3390_app131910798
crossref_primary_10_1038_s41598_024_81132_4
crossref_primary_10_3390_diagnostics13010130
crossref_primary_10_1007_s00530_023_01169_9
crossref_primary_10_1080_10255842_2022_2145887
crossref_primary_10_3390_sym14071427
crossref_primary_10_3390_app14114428
crossref_primary_10_1088_2057_1976_ace789
crossref_primary_10_1038_s41598_023_45886_7
crossref_primary_10_1038_s41598_024_81049_y
crossref_primary_10_48084_etasr_6033
crossref_primary_10_1038_s41598_024_72375_2
crossref_primary_10_3390_math12142284
crossref_primary_10_1007_s11042_024_19241_5
crossref_primary_10_1080_13682199_2023_2178611
crossref_primary_10_29194_NJES_27020155
crossref_primary_10_1016_j_imavis_2024_105194
crossref_primary_10_1109_ACCESS_2024_3361944
crossref_primary_10_1007_s11760_023_02751_4
crossref_primary_10_1007_s42979_023_02417_5
crossref_primary_10_1007_s42979_024_03403_1
crossref_primary_10_38124_ijisrt_IJISRT24JUN1899
crossref_primary_10_3390_electronics12194094
crossref_primary_10_1007_s10462_024_10770_x
crossref_primary_10_1038_s41598_025_92665_7
crossref_primary_10_1109_ACCESS_2023_3275966
crossref_primary_10_1155_2022_1233068
crossref_primary_10_1080_21681163_2024_2361739
crossref_primary_10_3390_app13053108
crossref_primary_10_1007_s10278_022_00707_7
crossref_primary_10_1080_00051144_2023_2251231
crossref_primary_10_1038_s41598_023_40906_y
crossref_primary_10_3390_app13095685
crossref_primary_10_1007_s11042_023_15754_7
crossref_primary_10_1007_s42979_023_02034_2
crossref_primary_10_1038_s41598_024_61322_w
crossref_primary_10_1038_s41598_025_86671_y
crossref_primary_10_3390_s22249603
crossref_primary_10_1038_s41598_024_63292_5
crossref_primary_10_1038_s41598_024_54640_6
crossref_primary_10_1007_s11760_024_02996_7
crossref_primary_10_1016_j_compbiomed_2023_107193
crossref_primary_10_3390_photonics10090957
Cites_doi 10.1109/JBHI.2013.2294635
10.1007/s11042-020-09630-x
10.1109/SSCI44817.2019.9002864
10.1021/acs.joc.5b00892
10.1016/j.optlastec.2019.105815
10.1016/j.media.2019.07.005
10.1007/s10916-017-0853-x
10.1109/ACCESS.2020.2974158
10.1155/2019/3926930
10.1109/ICCSP.2014.6950022
10.1016/j.cmpb.2015.01.004
10.1016/j.bspc.2016.09.009
10.1001/jama.2016.17216
10.1109/ICIP.2016.7532387
10.1109/TMI.2009.2037146
10.1162/neco_a_00990
10.1109/ACCESS.2020.3027794
10.1109/ACCESS.2020.2985543
10.1109/CVPR.2009.5206848
10.1109/ACCESS.2020.2979753
10.1007/s11517-016-1563-0
10.1038/s41598-020-71622-6
10.1109/ACCESS.2019.2947484
10.2337/diacare.27.2007.S84
10.1111/aos.14193
10.1109/ACCESS.2019.2903171
10.1016/j.compmedimag.2016.09.001
10.1016/j.compbiomed.2019.103537
10.1155/2019/8973287
10.1038/s41598-020-79139-8
10.1109/MICCCA.2008.4669845
10.1007/978-981-15-1483-8_16
10.1016/j.media.2014.05.004
10.1007/978-3-319-24574-4_28
10.1109/ACCESS.2020.2993937
10.1109/ACCESS.2020.3005044
10.1016/j.compbiomed.2010.02.008
10.1016/j.cmpb.2017.10.017
10.1007/s11042-020-10238-4
10.1007/s11517-017-1638-6
10.1016/j.media.2019.101631
10.1016/B978-0-12-817438-8.00007-9
10.1159/000502387
10.1016/j.compbiomed.2019.103345
10.1080/09500340903118517
10.1016/j.bspc.2015.10.012
10.1109/INCET49848.2020.9154014
10.1109/ACCESS.2020.3029117
ContentType Journal Article
Copyright 2022 Informa UK Limited, trading as Taylor & Francis Group 2022
Copyright_xml – notice: 2022 Informa UK Limited, trading as Taylor & Francis Group 2022
DBID AAYXX
CITATION
DOI 10.1080/21681163.2021.2021111
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2168-1171
EndPage 674
ExternalDocumentID 10_1080_21681163_2021_2021111
2021111
Genre Research Article
GroupedDBID 0BK
30N
4.4
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABLIJ
ABPAQ
ABXUL
ABXYU
ACGFS
ADCVX
ADGTB
AEISY
AGDLA
AHDZW
AIJEM
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
ARCSS
BLEHA
CCCUG
EBS
EUPTU
GTTXZ
H13
HZ~
KYCEM
LJTGL
M4Z
O9-
RIG
RNANH
ROSJB
RTWRZ
SNACF
SOJIQ
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TTHFI
TUROJ
AAGDL
AAYXX
ADMLS
ADYSH
AFRVT
AIYEW
CITATION
ID FETCH-LOGICAL-c376t-f2fdb31aa83aaa0c495cfd2244466f56e5b4834ae5cbac708e97e8ea46f2f4c3
ISSN 2168-1163
IngestDate Tue Jul 01 04:23:37 EDT 2025
Thu Apr 24 23:03:43 EDT 2025
Wed Dec 25 09:05:15 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c376t-f2fdb31aa83aaa0c495cfd2244466f56e5b4834ae5cbac708e97e8ea46f2f4c3
ORCID 0000-0002-7760-3374
0000-0003-3598-2780
PageCount 12
ParticipantIDs crossref_primary_10_1080_21681163_2021_2021111
crossref_citationtrail_10_1080_21681163_2021_2021111
informaworld_taylorfrancis_310_1080_21681163_2021_2021111
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-11-02
PublicationDateYYYYMMDD 2022-11-02
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-02
  day: 02
PublicationDecade 2020
PublicationTitle Computer methods in biomechanics and biomedical engineering.
PublicationYear 2022
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References cit0034
cit0031
cit0030
Wang L (cit0053) 2015
Sellahewa L (cit0047) 2014; 8
Shayma’a AH (cit0049) 2020
Kalyani G (cit0022) 2021
cit0039
cit0037
cit0038
cit0035
cit0036
Mann KS (cit0032) 2017; 1836
cit0020
cit0021
cit0060
cit0028
Kanimozhi J (cit0023) 2020
cit0029
cit0026
cit0024
cit0025
cit0011
cit0055
cit0012
cit0056
cit0010
cit0054
cit0051
cit0052
cit0050
cit0019
cit0017
cit0015
cit0059
cit0016
Math L (cit0033) 2020
cit0013
cit0057
cit0014
cit0058
cit0044
cit0001
cit0045
cit0042
cit0043
cit0040
cit0041
Aras RA (cit0006) 2016; 1
Imran A (cit0018) 2020
Lin M (cit0027) 2013
cit0008
cit0009
cit0007
cit0004
cit0048
cit0005
cit0002
cit0046
cit0003
References_xml – ident: cit0045
  doi: 10.1109/JBHI.2013.2294635
– ident: cit0002
  doi: 10.1007/s11042-020-09630-x
– ident: cit0019
  doi: 10.1109/SSCI44817.2019.9002864
– ident: cit0020
  doi: 10.1021/acs.joc.5b00892
– ident: cit0026
  doi: 10.1016/j.optlastec.2019.105815
– start-page: 1
  year: 2020
  ident: cit0023
  publication-title: J Ambient Intell Humaniz Comput
– ident: cit0024
  doi: 10.1016/j.media.2019.07.005
– ident: cit0050
  doi: 10.1007/s10916-017-0853-x
– ident: cit0014
  doi: 10.1109/ACCESS.2020.2974158
– ident: cit0029
  doi: 10.1155/2019/3926930
– ident: cit0030
  doi: 10.1109/ICCSP.2014.6950022
– ident: cit0017
  doi: 10.1016/j.cmpb.2015.01.004
– ident: cit0007
  doi: 10.1016/j.bspc.2016.09.009
– ident: cit0015
  doi: 10.1001/jama.2016.17216
– start-page: 1
  year: 2021
  ident: cit0022
  publication-title: Complex Intell Syst
– ident: cit0059
  doi: 10.1109/ICIP.2016.7532387
– ident: cit0003
  doi: 10.1109/TMI.2009.2037146
– ident: cit0035
– start-page: 150801667
  year: 2015
  ident: cit0053
  publication-title: arXiv
– ident: cit0043
  doi: 10.1162/neco_a_00990
– ident: cit0008
  doi: 10.1109/ACCESS.2020.3027794
– ident: cit0052
  doi: 10.1109/ACCESS.2020.2985543
– ident: cit0010
  doi: 10.1109/CVPR.2009.5206848
– volume: 1836
  start-page: 020026
  volume-title: AIP Conference Proceedings
  year: 2017
  ident: cit0032
– ident: cit0013
  doi: 10.1109/ACCESS.2020.2979753
– start-page: 1
  year: 2020
  ident: cit0033
  publication-title: Multimed Tools Appl
– ident: cit0005
  doi: 10.1007/s11517-016-1563-0
– ident: cit0021
  doi: 10.1038/s41598-020-71622-6
– ident: cit0041
  doi: 10.1109/ACCESS.2019.2947484
– ident: cit0012
  doi: 10.2337/diacare.27.2007.S84
– ident: cit0016
  doi: 10.1111/aos.14193
– ident: cit0056
  doi: 10.1109/ACCESS.2019.2903171
– start-page: 13124400
  year: 2013
  ident: cit0027
  publication-title: arXiv
– ident: cit0028
  doi: 10.1016/j.compmedimag.2016.09.001
– volume: 8
  start-page: 1345
  year: 2014
  ident: cit0047
  publication-title: Clin Ophthalmol (Auckland, NZ)
– ident: cit0055
  doi: 10.1016/j.compbiomed.2019.103537
– ident: cit0060
  doi: 10.1155/2019/8973287
– ident: cit0034
  doi: 10.1038/s41598-020-79139-8
– ident: cit0004
  doi: 10.1109/MICCCA.2008.4669845
– ident: cit0031
  doi: 10.1007/978-981-15-1483-8_16
– ident: cit0058
  doi: 10.1016/j.media.2014.05.004
– ident: cit0044
  doi: 10.1007/978-3-319-24574-4_28
– ident: cit0040
  doi: 10.1109/ACCESS.2020.2993937
– ident: cit0039
  doi: 10.1109/ACCESS.2020.3005044
– ident: cit0037
– ident: cit0057
  doi: 10.1016/j.compbiomed.2010.02.008
– ident: cit0036
  doi: 10.1016/j.cmpb.2017.10.017
– ident: cit0042
  doi: 10.1007/s11042-020-10238-4
– ident: cit0001
  doi: 10.1007/s11517-017-1638-6
– ident: cit0011
  doi: 10.1016/j.media.2019.101631
– ident: cit0048
  doi: 10.1016/B978-0-12-817438-8.00007-9
– ident: cit0054
  doi: 10.1159/000502387
– ident: cit0009
  doi: 10.1016/j.compbiomed.2019.103345
– ident: cit0051
  doi: 10.1080/09500340903118517
– ident: cit0046
  doi: 10.1016/j.bspc.2015.10.012
– ident: cit0038
  doi: 10.1109/INCET49848.2020.9154014
– start-page: 1
  year: 2020
  ident: cit0049
  publication-title: Multimed Tools Appl
– ident: cit0025
  doi: 10.1109/ACCESS.2020.3029117
– volume: 1
  issue: 1
  year: 2016
  ident: cit0006
  publication-title: Commun Sci Technol
– start-page: 1
  year: 2020
  ident: cit0018
  publication-title: Comput Methods Biomech Biomed Eng: Imaging & Visualization
SSID ssj0000866365
Score 2.465412
Snippet Diabetic retinopathy (DR) is an ocular manifestation of diabetes and the leading cause of visual impairment and blindness across the globe. Early detection and...
SourceID crossref
informaworld
SourceType Enrichment Source
Index Database
Publisher
StartPage 663
SubjectTerms automatic diagnosis
deep neural network
Diabetic retinopathy
fundus images
transfer learning
Title A Transfer Learning and U-Net-based automatic detection of diabetic retinopathy from fundus images
URI https://www.tandfonline.com/doi/abs/10.1080/21681163.2021.2021111
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDBay7rIdhj2xru2gw26FM7_ixzEoVnQDmstSoDdDkqktQOMUqXxYf9F-ZinJkhW02PMiODJkG-IXiiTIj4R8KAGtgrgso5Khb5KjyR4x1lZRjkcteh-SS9O073xRnF3kXy5nl5PJzyBrqVd8Km4frCv5F6niHMpVV8n-hWT9Q3ECr1G-OKKEcfwjGc8tN7mEreNJtQWHF9ECVKQPqPaY9WpjaVlbUCCcgWhjroa_Wa26jW5M_MPWmuBJ1_Y3x6s1apqb0HZ1DSCGrtMmkdZU7-viYUf2bMv5jeRhpDqcjrH4K2bTAjrmrfmvvVF9iNbu23rl0XrObr_b9O-dsPXn9dYGbef6dhi1QIdXR2JHH3d5r4HIqPfSpEDHNhn0HoRztluLV9xxANBQCxdurf1l2wDdOytscqV-sn7ZFL8yMYPT_rs03MOdR-Rxig6J7pWRxQsfzUPHsMhM31L_9a5crIo_PviOHUNohyY3MHCWz8mzwTOhcwuzF2QC3UvyNOCrfEX4nDrAUQc4ilKnAeCoBxz1gKMbSR3gaAA4qgFHLeCoBdxrsjz9tDw5i4YmHZHAs0lFMpUtzxLGqowxFgt0uIVs0TDUiQJyVsCM63g1g5ngTJRxBXUJFTDUA6nMRfaG7HWbDt4SWssSnXNeS95CDkJWRS0031yGyi6HtNgnuduwRgwE9rqPylWTDDy3bp8bvcXNsM_7ZOqXXVsGl98tqENpNMpgVVqYNtkv1777j7UH5Mn4Tzkke2rbwxFavIq_N2C7A1WVpdg
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQGYCBN6I8PbC65P0YK0RVoO3USt0i27ERAlLUJgP8eu6cpEqRgKFLhkiXx_nie-Tu-wi5CRVEBVYYspBDbuJByM44TyPmgauF7EMLbUj7hqOgP_Eep_60MQuDbZWYQ-sSKMLs1fhxYzG6bom7dewgsiGQgPTOsc3BxvHeTT8OQmQxcK3Rss4CIXvgGkZJlGIoVg_y_HalFRe1AmDacD29PSLrhy47Tl47RS468usHnuN6b7VPdqvIlHZLUzogGyo7JDsNvMIjIrrU-Dat5rQCZn2mcEM6YSOVM_SIKeVFPjM4sDRVuWn0yuhM07LIC2dxbDKbIRPyJ8XhFgquNS0W9OUdtrbFMRn37sd3fVaRNDAJe1POtKNT4dqcRy7n3JKQcEmdQmCAP4q1HyhfYL2SK18KLkMrUnGoIsXBDhztSfeEtLJZpk4JjXUIyZmItUiVp6SOglgi3pgLxu4pJ2gTr16WRFYA5sij8ZbYFc5prcEElZdUGmyTzlLso0Tw-E8gbq55kpvSiS55ThL3T9mzNWSvyVZ_PBwkg4fR0znZdnDOAuvXzgVp5fNCXUL0k4srY97fXpL06w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI7QkBAceCPGMweuGeu7PU7ANF4Vh03iViVpghDQTlt7gF-PnbbThgQcdumhkvtw3Piza38m5CJQgAq6QcACDrGJC5CdcZ6GzAVXC9GHFtoM7XuM_cHIvXv2mmrCaV1WiTG0rogizF6NH_c41U1F3KVt-aEFOAKiO9syBwu7e1d9JA_HLo5uPEuzAGL3HTNQEqUYijV9PL9dacFDLfCXznme_hYRzTNXBSdvnbIQHfn1g85xqZfaJps1LqW9ypB2yIrKdsnGHFvhHhE9ajybVhNa07K-ULgfHbFYFQz9YUp5WeSGBZamqjBlXhnNNa1SvHAWmyazHOcgf1JsbaHgWNNySl8_YGOb7pNh_2Z4NWD1iAYmYWcqmLZ1KhyL89DhnHclhFtSpwAL8Dex9nzlCcxWcuVJwWXQDVUUqFBxsAJbu9I5IK0sz9QhoZEOIDQTkRapcpXUoR9JZBtzwNRdZftt4jarksiavhynaLwnVs1y2mgwQeUltQbbpDMTG1f8Hf8JRPNLnhQmcaKrKSeJ86fs0RKy52Tt6bqfPNzG98dk3cYmC0xe2yekVUxKdQrQpxBnxri_AVe5848
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Transfer+Learning+and+U-Net-based+automatic+detection+of+diabetic+retinopathy+from+fundus+images&rft.jtitle=Computer+methods+in+biomechanics+and+biomedical+engineering.&rft.au=Bilal%2C+Anas&rft.au=Sun%2C+Guangmin&rft.au=Mazhar%2C+Sarah&rft.au=Imran%2C+Azhar&rft.date=2022-11-02&rft.pub=Taylor+%26+Francis&rft.issn=2168-1163&rft.eissn=2168-1171&rft.volume=10&rft.issue=6&rft.spage=663&rft.epage=674&rft_id=info:doi/10.1080%2F21681163.2021.2021111&rft.externalDocID=2021111
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-1163&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-1163&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-1163&client=summon