Application of phase change materials in gypsum boards to meet building energy conservation goals
•The efficiency of PCM-impregnated gypsum boards to improve the thermal performance of buildings was studied by conducting various computational simulations.•Utilizing these boards was shown to be a promising strategy to achieve the governmental plans and buildings codes to decrease the energy consu...
Saved in:
Published in | Energy and buildings Vol. 138; pp. 455 - 467 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Lausanne
Elsevier B.V
01.03.2017
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •The efficiency of PCM-impregnated gypsum boards to improve the thermal performance of buildings was studied by conducting various computational simulations.•Utilizing these boards was shown to be a promising strategy to achieve the governmental plans and buildings codes to decrease the energy consumption in buildings.•Using these boards in new buildings, as well as existing buildings, increases the occupant comfort, and decreases the cost and energy required by the HVAC system.•Increasing the amount of the utilized PCM leads to diminishing returns on efficiency.
Energy consumption in buildings has increased drastically during the last two decades. Reducing the energy demand in buildings by improving their thermal performance has therefore been the subject of many governmental plans and building codes. This study aims to evaluate the efficiency of PCM-impregnated gypsum boards on improving the thermal performance of buildings in order to achieve such energy reduction goals. Computational simulations using Typical Meteorological Year data were conducted to study the performance of PCM-incorporated walls subjected to the real temperature profiles of different cities. Four different criteria were considered and a simplified cost analysis was performed. Utilizing PCM-incorporated gypsum boards was shown to be a promising strategy to achieve energy reduction goals for buildings. The results show that using a PCM with a melting point near the occupant comfort zone delays and reduces the inside peak temperature, increases the duration of time during which the inside temperature stays within the comfort zone, and decreases the cost and energy required by HVAC system to keep the inside temperature in this range. However, the efficiency of PCMs is completely dependent on the input temperature profile, and increasing the amount of the utilized PCM leads to diminishing returns on efficiency. |
---|---|
AbstractList | Energy consumption in buildings has increased drastically during the last two decades. Reducing the energy demand in buildings by improving their thermal performance has therefore been the subject of many governmental plans and building codes, This study aims to evaluate the efficiency of PCM-impregnated gypsum boards on improving the thermal performance of buildings in order to achieve such energy reduction goals. Computational simulations using Typical Meteorological Year data were conducted to study the performance of PCM-incorporated walls subjected to the real temperature profiles of different cities. Four different criteria were considered and a simplified cost analysis was performed. Utilizing PCM-incorporated gypsum boards was shown to be a promising strategy to achieve energy reduction goals for buildings. The results show that using a PCM with a melting point near the occupant comfort zone delays and reduces the inside peak temperature, increases the duration of time during which the inside temperature stays within the comfort zone, and decreases the cost and energy required by HVAC system to keep the inside temperature in this range. However, the efficiency of PCMs is completely dependent on the input temperature profile, and increasing the amount of the utilized KM leads to diminishing returns on efficiency. •The efficiency of PCM-impregnated gypsum boards to improve the thermal performance of buildings was studied by conducting various computational simulations.•Utilizing these boards was shown to be a promising strategy to achieve the governmental plans and buildings codes to decrease the energy consumption in buildings.•Using these boards in new buildings, as well as existing buildings, increases the occupant comfort, and decreases the cost and energy required by the HVAC system.•Increasing the amount of the utilized PCM leads to diminishing returns on efficiency. Energy consumption in buildings has increased drastically during the last two decades. Reducing the energy demand in buildings by improving their thermal performance has therefore been the subject of many governmental plans and building codes. This study aims to evaluate the efficiency of PCM-impregnated gypsum boards on improving the thermal performance of buildings in order to achieve such energy reduction goals. Computational simulations using Typical Meteorological Year data were conducted to study the performance of PCM-incorporated walls subjected to the real temperature profiles of different cities. Four different criteria were considered and a simplified cost analysis was performed. Utilizing PCM-incorporated gypsum boards was shown to be a promising strategy to achieve energy reduction goals for buildings. The results show that using a PCM with a melting point near the occupant comfort zone delays and reduces the inside peak temperature, increases the duration of time during which the inside temperature stays within the comfort zone, and decreases the cost and energy required by HVAC system to keep the inside temperature in this range. However, the efficiency of PCMs is completely dependent on the input temperature profile, and increasing the amount of the utilized PCM leads to diminishing returns on efficiency. |
Author | Sakulich, Aaron R. Sharifi, Naser P. Shaikh, Ahsan Aadil Nizam |
Author_xml | – sequence: 1 givenname: Naser P. surname: Sharifi fullname: Sharifi, Naser P. email: npourakbarsharif@wpi.edu – sequence: 2 givenname: Ahsan Aadil Nizam surname: Shaikh fullname: Shaikh, Ahsan Aadil Nizam email: arsakulich@wpi.edu – sequence: 3 givenname: Aaron R. surname: Sakulich fullname: Sakulich, Aaron R. email: ashaikh@wpi.edu |
BookMark | eNqFkE9LAzEUxINUsFU_ghDwvGuS7W5SPIiI_0Dw4j2kb9-uWbbJmqRCv73R9uSlp-HB-80wsyAz5x0ScsVZyRlvboYS3Xprx7YU-Sy5KNmyOSFzrqQoGi7VjMxZJVUhpVJnZBHjwBhrasnnxNxP02jBJOsd9R2dPk1ECp_G9Ug3JmGwZozUOtrvprjd0LU3oY00ebpBTPQv17qeosPQ7yh4FzF87_16n9kLctplwcuDnpOPp8ePh5fi7f359eH-rYBKNqlAYBIYM0bgUvJVVzdgEFcV56pDaNcCsKpaiSaXUqZbN1DLuoVWKgnIsDon13vbKfivLcakB78NLidqvqqEWKqVqPNXvf-C4GMM2Okp2I0JO82Z_h1TD_owpv4dU3Oh85iZu_3HgU1_JVMwdjxK3-1pzP2_LQYdwaIDbG1ASLr19ojDDy9cmL4 |
CitedBy_id | crossref_primary_10_1016_j_conbuildmat_2018_06_179 crossref_primary_10_1134_S0040601521040029 crossref_primary_10_1134_S1028335822060027 crossref_primary_10_1016_j_enconman_2018_03_041 crossref_primary_10_1007_s12273_018_0457_5 crossref_primary_10_1016_j_applthermaleng_2019_114772 crossref_primary_10_1016_j_enbuild_2024_114969 crossref_primary_10_1002_er_6143 crossref_primary_10_1016_j_seta_2021_101349 crossref_primary_10_1016_j_est_2024_111344 crossref_primary_10_3390_en16093725 crossref_primary_10_1016_j_ijheatmasstransfer_2019_118762 crossref_primary_10_1088_1757_899X_292_1_012114 crossref_primary_10_1016_j_conbuildmat_2022_127954 crossref_primary_10_1016_j_conbuildmat_2017_11_075 crossref_primary_10_3390_physchem2010003 crossref_primary_10_1016_j_conbuildmat_2023_133159 crossref_primary_10_1016_j_rser_2022_112134 crossref_primary_10_1016_j_applthermaleng_2019_114387 crossref_primary_10_1007_s12273_019_0529_1 crossref_primary_10_1016_j_enbuild_2017_08_007 crossref_primary_10_1016_j_conbuildmat_2018_05_269 crossref_primary_10_3390_app10061976 crossref_primary_10_1016_j_cscm_2023_e02016 crossref_primary_10_1016_j_esd_2021_12_015 crossref_primary_10_1016_j_ijthermalsci_2020_106410 crossref_primary_10_1016_j_rser_2017_10_002 crossref_primary_10_1016_j_ufug_2021_127104 crossref_primary_10_1016_j_conbuildmat_2021_125042 crossref_primary_10_1016_j_energy_2018_09_128 crossref_primary_10_3390_jcs8070251 crossref_primary_10_1016_j_enbuild_2017_10_097 crossref_primary_10_1016_j_est_2024_111923 crossref_primary_10_1108_IJBPA_05_2019_0050 crossref_primary_10_1016_j_apenergy_2018_07_068 crossref_primary_10_1139_cjce_2018_0334 crossref_primary_10_1016_j_mset_2021_05_001 crossref_primary_10_1088_1742_6596_1637_1_012084 crossref_primary_10_1002_slct_201801773 crossref_primary_10_1051_matecconf_201928202033 crossref_primary_10_1016_j_solener_2020_07_053 crossref_primary_10_1016_j_jclepro_2017_04_098 crossref_primary_10_1016_j_est_2023_108597 crossref_primary_10_1088_1757_899X_1116_1_012008 crossref_primary_10_1016_j_csite_2023_103207 crossref_primary_10_1016_j_energy_2017_08_045 crossref_primary_10_3390_buildings14113387 crossref_primary_10_1016_j_polymer_2020_122211 crossref_primary_10_1016_j_energy_2019_01_066 crossref_primary_10_1155_2024_2994221 crossref_primary_10_1039_C9RA00874H crossref_primary_10_1016_j_enbuild_2018_07_045 crossref_primary_10_1007_s10973_023_12355_2 crossref_primary_10_1016_j_rcradv_2024_200222 crossref_primary_10_3390_en12010075 crossref_primary_10_1016_j_jobe_2024_109928 crossref_primary_10_1557_s43578_020_00037_w crossref_primary_10_1007_s43979_023_00052_w crossref_primary_10_1016_j_applthermaleng_2022_118951 crossref_primary_10_1016_j_microc_2021_106913 crossref_primary_10_1016_j_energy_2021_121936 crossref_primary_10_1016_j_enbuild_2022_112746 crossref_primary_10_1016_j_cscm_2023_e02178 crossref_primary_10_1016_j_energy_2020_119213 crossref_primary_10_1016_j_enbuild_2022_112225 crossref_primary_10_1007_s10853_021_06659_7 crossref_primary_10_1080_01430750_2021_1873848 crossref_primary_10_1016_j_conbuildmat_2023_132312 crossref_primary_10_1016_j_jobe_2024_109061 crossref_primary_10_1016_j_buildenv_2019_106317 crossref_primary_10_3390_ma11112191 crossref_primary_10_1002_slct_202202684 crossref_primary_10_3390_ma17133271 crossref_primary_10_1016_j_ceramint_2021_02_169 crossref_primary_10_1016_j_scs_2019_101766 crossref_primary_10_1016_j_jobe_2020_101979 crossref_primary_10_1016_j_applthermaleng_2023_121042 crossref_primary_10_1016_j_jobe_2022_105813 crossref_primary_10_1080_14786451_2018_1543307 crossref_primary_10_1016_j_enbuild_2021_111369 crossref_primary_10_1016_j_solmat_2019_110081 crossref_primary_10_1016_j_enbuild_2017_02_027 crossref_primary_10_12677_MS_2019_95056 crossref_primary_10_1016_j_conbuildmat_2019_07_199 crossref_primary_10_4028_www_scientific_net_AMR_1151_29 crossref_primary_10_18186_thermal_766463 crossref_primary_10_1016_j_scs_2018_04_036 crossref_primary_10_3390_app9153091 crossref_primary_10_1016_j_apenergy_2024_123304 crossref_primary_10_1016_j_est_2023_107156 crossref_primary_10_1515_ntrev_2022_0559 crossref_primary_10_1021_acs_jpcc_9b03042 crossref_primary_10_1016_j_est_2020_101910 crossref_primary_10_1080_00038628_2022_2058459 crossref_primary_10_1021_acsomega_4c01481 crossref_primary_10_1016_j_est_2022_105880 crossref_primary_10_3390_technologies5040069 crossref_primary_10_1007_s10891_025_03079_1 crossref_primary_10_1016_j_apenergy_2019_03_002 crossref_primary_10_1016_j_solener_2020_07_092 crossref_primary_10_1016_j_enbuild_2018_05_028 crossref_primary_10_1016_j_ijheatmasstransfer_2018_09_126 crossref_primary_10_1002_htj_21422 crossref_primary_10_1021_acs_energyfuels_7b01271 crossref_primary_10_1680_jgrma_24_00056 crossref_primary_10_1016_j_est_2023_106773 crossref_primary_10_1016_j_est_2022_105406 crossref_primary_10_1016_j_est_2018_12_005 crossref_primary_10_1155_2017_2693526 crossref_primary_10_1016_j_conbuildmat_2019_03_277 crossref_primary_10_1016_j_gerr_2023_100010 crossref_primary_10_2139_ssrn_4129985 crossref_primary_10_1016_j_rser_2021_110751 crossref_primary_10_1016_j_applthermaleng_2019_114560 crossref_primary_10_1016_j_buildenv_2023_110711 crossref_primary_10_1186_s42162_024_00311_9 crossref_primary_10_3390_buildings11080357 crossref_primary_10_3390_micro4010005 crossref_primary_10_3390_ma13061268 |
Cites_doi | 10.1016/S0378-7788(01)00129-3 10.1061/(ASCE)MT.1943-5533.0000381 10.1016/j.enbuild.2004.01.004 10.1016/j.enbuild.2014.06.044 10.1016/j.applthermaleng.2013.11.050 10.1016/j.buildenv.2012.12.007 10.1016/j.enbuild.2013.03.048 10.1016/j.conbuildmat.2015.10.162 10.1016/S0360-1323(97)00009-7 10.1016/S0306-2619(03)00059-X 10.1016/j.apenergy.2015.03.027 10.1016/j.enbuild.2015.06.040 10.1002/er.869 10.1016/j.applthermaleng.2007.10.012 10.1016/S0038-092X(00)00015-3 10.1016/j.enbuild.2007.03.007 10.1016/S0378-7788(02)00006-3 10.1016/j.enbuild.2010.03.026 10.1016/j.enpol.2003.10.001 10.1016/j.rser.2006.05.010 10.1016/j.rser.2015.07.201 10.1016/j.enbuild.2003.08.003 10.1016/j.enbuild.2005.07.010 10.1016/S0360-1323(96)00041-8 10.1016/j.egypro.2015.12.274 10.1016/S0378-7788(98)00007-3 10.1016/j.rser.2007.05.001 10.1016/0165-1633(91)90021-C 10.1016/j.cemconcomp.2009.08.002 10.1016/j.enbuild.2014.04.028 10.1243/0957650991537455 10.1016/0378-7788(91)90009-R 10.1016/j.apenergy.2016.05.097 10.1016/j.rser.2010.06.011 10.1016/j.rser.2007.10.005 10.1016/j.rser.2016.04.057 10.1016/j.applthermaleng.2007.04.016 10.1016/j.rser.2014.08.039 10.1016/j.ijheatmasstransfer.2009.02.043 10.1016/S1359-4311(02)00192-8 10.1016/j.enbuild.2011.03.038 10.1016/j.applthermaleng.2016.04.056 10.1016/S0040-6031(98)00368-2 |
ContentType | Journal Article |
Copyright | 2016 Elsevier B.V. Copyright Elsevier BV Mar 1, 2017 |
Copyright_xml | – notice: 2016 Elsevier B.V. – notice: Copyright Elsevier BV Mar 1, 2017 |
DBID | AAYXX CITATION 7ST 8FD C1K F28 FR3 KR7 SOI |
DOI | 10.1016/j.enbuild.2016.12.046 |
DatabaseName | CrossRef Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Civil Engineering Abstracts Environment Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Environment Abstracts ANTE: Abstracts in New Technology & Engineering Environmental Sciences and Pollution Management |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1872-6178 |
EndPage | 467 |
ExternalDocumentID | 10_1016_j_enbuild_2016_12_046 S037877881631060X |
Genre | Feature |
GroupedDBID | --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KCYFY KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL SDF SDG SES SPC SPCBC SSJ SSR SST SSZ T5K ~02 ~G- --K 29G AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HVGLF HZ~ R2- RPZ SAC SET SEW SSH WUQ ZMT ZY4 7ST 8FD C1K EFKBS F28 FR3 KR7 SOI |
ID | FETCH-LOGICAL-c376t-ec07c00aa2e4719f56caee93118fecdb2ce33d7ea8728afb6c575dcd787ce0e3 |
IEDL.DBID | .~1 |
ISSN | 0378-7788 |
IngestDate | Wed Aug 13 06:11:34 EDT 2025 Tue Jul 01 01:12:45 EDT 2025 Thu Apr 24 22:58:54 EDT 2025 Fri Feb 23 02:27:56 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Phase change materials Temperature changes in buildings Occupant comfort HVAC systems |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c376t-ec07c00aa2e4719f56caee93118fecdb2ce33d7ea8728afb6c575dcd787ce0e3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
PQID | 1932248925 |
PQPubID | 2045483 |
PageCount | 13 |
ParticipantIDs | proquest_journals_1932248925 crossref_primary_10_1016_j_enbuild_2016_12_046 crossref_citationtrail_10_1016_j_enbuild_2016_12_046 elsevier_sciencedirect_doi_10_1016_j_enbuild_2016_12_046 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-03-01 |
PublicationDateYYYYMMDD | 2017-03-01 |
PublicationDate_xml | – month: 03 year: 2017 text: 2017-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Lausanne |
PublicationPlace_xml | – name: Lausanne |
PublicationTitle | Energy and buildings |
PublicationYear | 2017 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | D.C. Hittle, Phase change materials in floor tiles for thermal energy storage, in Other Information: PBD: 1 Oct 2002. 2002. p. Medium: ED; Size: 42 pages. Kuznik, Virgone, Noel (bib0130) 2008; 28 Farid, Chen (bib0205) 1999; 213 Incropera (bib0220) 2005 Sharifi, Sakulich (bib0225) 2015 Akbari, Konopacki (bib0065) 2005; 33 Zalba (bib0115) 2003; 23 Peippo, Kauranen, Lund (bib0325) 1991; 17 Florida Summary of Electricity Rates − https://www.duke-energy.com/- 2016. Koo (bib0265) 2011; 43 Nevada Summary of Electricity Rates Oregon Summary of Electricity Rates Liu (bib0170) 2016; 62 Kim, Darkwa (bib0260) 2003; 27 Sharifi, Shaikh, Sakulich (bib0195) 2015 Sharifi, Freeman, Sakulich (bib0240) 2015 Kong (bib0030) 2014; 81 . Laustsen (bib0035) 2008 ASHRAE Standard 55–2004. Thermal Environmental Conditions for Human Occupancy. Sharifi, Sakulich, Mallick (bib0230) 2014; 10 Feldman (bib0330) 1991; 22 Baetens, Jelle, Gustavsen (bib0095) 2010; 42 CE Commission, Achieving energy savings in California buildings: Saving energy in existing buildings and achieving a zero-net-energy future. 2011, Draft Staff Report CEC‐400‐2011‐007‐SD. July. New Hampshire Summary of Electricity Rates − https://www.eversource.com/- 2016 Feng (bib0080) 2004; 36 Omer (bib0090) 2008; 12 Mandilaras (bib0270) 2013; 61 Asan, Sancaktar (bib0245) 1998; 28 2011. 2012 Pasupathy (bib0280) 2008; 28 2010 Steiger (bib0075) 1967 2009 Jin, Medina, Zhang (bib0285) 2016; 103 Banu, Feldman, Hawes (bib0250) 1998; 317 Texas Summary of Electricity Rates Heim, Clarke (bib0255) 2004; 36 Chwieduk (bib0005) 2003; 76 Sharifi, Sakulich (bib0105) 2013 Energy Efficiency- Building Strategy, Update 2014. Washington State Department of Commerce, State Energy Office, Olympia, WA. Barzin (bib0275) 2015; 148 Esen (bib0160) 2000; 69 Pasupathy, Velraj, Seeniraj (bib0120) 2008; 12 Hunger (bib0125) 2009; 31 da Cunha, Eames (bib0165) 2016; 177 Silva, Vicente, Rodrigues (bib0175) 2016; 53 Pérez-Lombard, Ortiz, Pout (bib0060) 2008; 40 Tan (bib0190) 2009; 52 Ürge-Vorsatz (bib0050) 2015; 41 Sharifi (bib0140) 2016; 14 Sakulich, Bentz (bib0100) 2011; 24 Nagano (bib0155) 2006; 38 Dutil (bib0185) 2011; 15 Kissock (bib0345) 1998 Nicol, Humphreys (bib0085) 2002; 34 Sharma (bib0135) 2009; 13 Athienitis (bib0145) 1997; 32 Erlandsson, Levin, Myhre (bib0070) 1997; 32 Sage-Lauck, Sailor (bib0200) 2014; 79 Dirk, Kroese (bib0235) 2013 Raoux, Wuttig (bib0110) 2009 2016 2015 North Dakota Summary of Electricity Rates Kong (bib0150) 2013; 62 Eddhahak-Ouni (bib0180) 2014; 64 Papadopoulos, Theodosiou, Karatzas (bib0010) 2002; 34 2016. Bejan, Catalina (bib0335) 2016; 85 Ürge-Vorsatz (10.1016/j.enbuild.2016.12.046_bib0050) 2015; 41 Kong (10.1016/j.enbuild.2016.12.046_bib0030) 2014; 81 Sharifi (10.1016/j.enbuild.2016.12.046_bib0195) 2015 Nagano (10.1016/j.enbuild.2016.12.046_bib0155) 2006; 38 Sharifi (10.1016/j.enbuild.2016.12.046_bib0240) 2015 10.1016/j.enbuild.2016.12.046_bib0305 da Cunha (10.1016/j.enbuild.2016.12.046_bib0165) 2016; 177 10.1016/j.enbuild.2016.12.046_bib0025 Dirk (10.1016/j.enbuild.2016.12.046_bib0235) 2013 10.1016/j.enbuild.2016.12.046_bib0300 Chwieduk (10.1016/j.enbuild.2016.12.046_bib0005) 2003; 76 10.1016/j.enbuild.2016.12.046_bib0340 Farid (10.1016/j.enbuild.2016.12.046_bib0205) 1999; 213 10.1016/j.enbuild.2016.12.046_bib0020 Pasupathy (10.1016/j.enbuild.2016.12.046_bib0280) 2008; 28 Eddhahak-Ouni (10.1016/j.enbuild.2016.12.046_bib0180) 2014; 64 Akbari (10.1016/j.enbuild.2016.12.046_bib0065) 2005; 33 Steiger (10.1016/j.enbuild.2016.12.046_bib0075) 1967 Pérez-Lombard (10.1016/j.enbuild.2016.12.046_bib0060) 2008; 40 Koo (10.1016/j.enbuild.2016.12.046_bib0265) 2011; 43 Sage-Lauck (10.1016/j.enbuild.2016.12.046_bib0200) 2014; 79 10.1016/j.enbuild.2016.12.046_bib0215 10.1016/j.enbuild.2016.12.046_bib0015 10.1016/j.enbuild.2016.12.046_bib0210 Kim (10.1016/j.enbuild.2016.12.046_bib0260) 2003; 27 10.1016/j.enbuild.2016.12.046_bib0055 Raoux (10.1016/j.enbuild.2016.12.046_bib0110) 2009 Kissock (10.1016/j.enbuild.2016.12.046_bib0345) 1998 10.1016/j.enbuild.2016.12.046_bib0295 Sharifi (10.1016/j.enbuild.2016.12.046_bib0140) 2016; 14 Hunger (10.1016/j.enbuild.2016.12.046_bib0125) 2009; 31 Athienitis (10.1016/j.enbuild.2016.12.046_bib0145) 1997; 32 Banu (10.1016/j.enbuild.2016.12.046_bib0250) 1998; 317 Kuznik (10.1016/j.enbuild.2016.12.046_bib0130) 2008; 28 Bejan (10.1016/j.enbuild.2016.12.046_bib0335) 2016; 85 Liu (10.1016/j.enbuild.2016.12.046_bib0170) 2016; 62 Heim (10.1016/j.enbuild.2016.12.046_bib0255) 2004; 36 Feng (10.1016/j.enbuild.2016.12.046_bib0080) 2004; 36 Silva (10.1016/j.enbuild.2016.12.046_bib0175) 2016; 53 Tan (10.1016/j.enbuild.2016.12.046_bib0190) 2009; 52 10.1016/j.enbuild.2016.12.046_bib0045 Omer (10.1016/j.enbuild.2016.12.046_bib0090) 2008; 12 10.1016/j.enbuild.2016.12.046_bib0320 Zalba (10.1016/j.enbuild.2016.12.046_bib0115) 2003; 23 10.1016/j.enbuild.2016.12.046_bib0290 Sharifi (10.1016/j.enbuild.2016.12.046_bib0225) 2015 Nicol (10.1016/j.enbuild.2016.12.046_bib0085) 2002; 34 Esen (10.1016/j.enbuild.2016.12.046_bib0160) 2000; 69 Pasupathy (10.1016/j.enbuild.2016.12.046_bib0120) 2008; 12 Incropera (10.1016/j.enbuild.2016.12.046_bib0220) 2005 10.1016/j.enbuild.2016.12.046_bib0315 Laustsen (10.1016/j.enbuild.2016.12.046_bib0035) 2008 Erlandsson (10.1016/j.enbuild.2016.12.046_bib0070) 1997; 32 Papadopoulos (10.1016/j.enbuild.2016.12.046_bib0010) 2002; 34 Asan (10.1016/j.enbuild.2016.12.046_bib0245) 1998; 28 10.1016/j.enbuild.2016.12.046_bib0310 Sharifi (10.1016/j.enbuild.2016.12.046_bib0230) 2014; 10 Sharifi (10.1016/j.enbuild.2016.12.046_bib0105) 2013 Mandilaras (10.1016/j.enbuild.2016.12.046_bib0270) 2013; 61 Peippo (10.1016/j.enbuild.2016.12.046_bib0325) 1991; 17 Dutil (10.1016/j.enbuild.2016.12.046_bib0185) 2011; 15 10.1016/j.enbuild.2016.12.046_bib0040 Jin (10.1016/j.enbuild.2016.12.046_bib0285) 2016; 103 Feldman (10.1016/j.enbuild.2016.12.046_bib0330) 1991; 22 Sakulich (10.1016/j.enbuild.2016.12.046_bib0100) 2011; 24 Kong (10.1016/j.enbuild.2016.12.046_bib0150) 2013; 62 Sharma (10.1016/j.enbuild.2016.12.046_bib0135) 2009; 13 Baetens (10.1016/j.enbuild.2016.12.046_bib0095) 2010; 42 Barzin (10.1016/j.enbuild.2016.12.046_bib0275) 2015; 148 |
References_xml | – volume: 22 start-page: 231 year: 1991 end-page: 242 ident: bib0330 article-title: Obtaining an energy storing building material by direct incorporation of an organic phase change material in gypsum wallboard publication-title: Solar Energy Mater. – reference: , 2012 – start-page: 433 year: 1967 end-page: 469 ident: bib0075 article-title: Lightweight insulating concrete for floors and roof decks publication-title: J. Am. Concr. Inst. – volume: 177 start-page: 227 year: 2016 end-page: 238 ident: bib0165 article-title: Thermal energy storage for low and medium temperature applications using phase change materials–a review publication-title: Appl. Energy – reference: Oregon Summary of Electricity Rates − – volume: 317 start-page: 39 year: 1998 end-page: 45 ident: bib0250 article-title: Evaluation of thermal storage as latent heat in phase change material wallboard by differential scanning calorimetry and large scale thermal testing publication-title: Thermochim. Acta – reference: CE Commission, Achieving energy savings in California buildings: Saving energy in existing buildings and achieving a zero-net-energy future. 2011, Draft Staff Report CEC‐400‐2011‐007‐SD. July. – volume: 62 start-page: 305 year: 2016 end-page: 317 ident: bib0170 article-title: Thermal conductivity enhancement of phase change materials for thermal energy storage: a review publication-title: Renew. Sustain. Energy Rev. – volume: 36 start-page: 795 year: 2004 end-page: 805 ident: bib0255 article-title: Numerical modelling and thermal simulation of PCM–gypsum composites with ESP-r publication-title: Energy Build. – reference: - 2016. – year: 2005 ident: bib0220 article-title: Introduction to Heat Transfer – volume: 13 start-page: 318 year: 2009 end-page: 345 ident: bib0135 article-title: Review on thermal energy storage with phase change materials and applications publication-title: Renew. Sustain. Energy Rev. – volume: 52 start-page: 3464 year: 2009 end-page: 3472 ident: bib0190 article-title: Experimental and computational study of constrained melting of phase change materials (PCM) inside a spherical capsule publication-title: Int. J. Heat Mass Transfer – volume: 61 start-page: 93 year: 2013 end-page: 103 ident: bib0270 article-title: Experimental thermal characterization of a Mediterranean residential building with PCM gypsum board walls publication-title: Build. Environ.t – volume: 23 start-page: 251 year: 2003 end-page: 283 ident: bib0115 article-title: Review on thermal energy storage with phase change: materials, heat transfer analysis and applications publication-title: Appl. Therm. Eng. – volume: 62 start-page: 597 year: 2013 end-page: 604 ident: bib0150 article-title: Experimental research on the use of phase change materials in perforated brick rooms for cooling storage publication-title: Energy Build. – volume: 12 start-page: 2265 year: 2008 end-page: 2300 ident: bib0090 article-title: Energy: environment and sustainable development publication-title: Renew. Sustain. Energy Rev. – reference: ASHRAE Standard 55–2004. Thermal Environmental Conditions for Human Occupancy. – volume: 10 year: 2014 ident: bib0230 article-title: Experimental apparatuses for the determination of pavement material thermal properties publication-title: Bridges – volume: 103 start-page: 1057 year: 2016 end-page: 1063 ident: bib0285 article-title: Numerical analysis for the optimal location of a thin PCM layer in frame walls publication-title: Appl. Therm. Eng. – reference: - , 2011. – volume: 32 start-page: 405 year: 1997 end-page: 410 ident: bib0145 article-title: Investigation of the thermal performance of a passive solar test-room with wall latent heat storage publication-title: Build. Environ. – volume: 28 start-page: 159 year: 1998 end-page: 166 ident: bib0245 article-title: Effects of wall's thermophysical properties on time lag and decrement factor publication-title: Energy Build. – volume: 14 start-page: 1 year: 2016 end-page: 21 ident: bib0140 article-title: Application of lightweight aggregate and rice husk ash to incorporate phase change materials into cementitious materials publication-title: J. Sustain. Cement-Based Mater. – reference: Texas Summary of Electricity Rates − – year: 2008 ident: bib0035 article-title: Energy Efficiency Requirements in Building Codes, Energy Efficiency Policies for New Buildings – volume: 148 start-page: 39 year: 2015 end-page: 48 ident: bib0275 article-title: Application of PCM underfloor heating in combination with PCM wallboards for space heating using price based control system publication-title: Appl. Energ. – year: 2009 ident: bib0110 article-title: Phase Change Materials: Science and Applications – volume: 36 start-page: 1309 year: 2004 end-page: 1312 ident: bib0080 article-title: Thermal design standards for energy efficiency of residential buildings in hot summer/cold winter zones publication-title: Energy Build. – year: 2013 ident: bib0105 article-title: Application of phase change materials in structures and pavements publication-title: Proceedings of the 2nd International Workshop on Design in Civil and Environmental Engineering – start-page: 45 year: 1998 end-page: 52 ident: bib0345 article-title: Testing and simulation of phase change wallboard for thermal storage in buildings publication-title: Solar Eng. – year: 2015 ident: bib0195 article-title: COMSOL modeling of temperature changes in building materials incorporating phase change materials publication-title: The Proceeding of the COMSOL Conferenc – volume: 43 start-page: 1947 year: 2011 end-page: 1951 ident: bib0265 article-title: Effects of wallboard design parameters on the thermal storage in buildings publication-title: Energy Build. – volume: 76 start-page: 211 year: 2003 end-page: 217 ident: bib0005 article-title: Towards sustainable-energy buildings publication-title: Appl. Energy – reference: – 2016 – volume: 40 start-page: 394 year: 2008 end-page: 398 ident: bib0060 article-title: A review on buildings energy consumption information publication-title: Energy and buildings – year: 2013 ident: bib0235 article-title: Statistical Modeling and Computation – volume: 17 start-page: 259 year: 1991 end-page: 270 ident: bib0325 article-title: A multicomponent PCM wall optimized for passive solar heating publication-title: Energy Build. – volume: 31 start-page: 731 year: 2009 end-page: 743 ident: bib0125 article-title: The behavior of self-compacting concrete containing micro-encapsulated Phase Change Materials publication-title: Cem. Concr. Compos. – volume: 79 start-page: 32 year: 2014 end-page: 40 ident: bib0200 article-title: Evaluation of phase change materials for improving thermal comfort in a super-insulated residential building publication-title: Energy Build. – year: 2015 ident: bib0225 article-title: Application of phase change materials to improve the thermal performance of cementitious material publication-title: Energy Build. – volume: 64 start-page: 32 year: 2014 end-page: 39 ident: bib0180 article-title: Experimental and multi-scale analysis of the thermal properties of Portland cement concretes embedded with microencapsulated Phase Change Materials (PCMs) publication-title: Appl. Therm. Eng. – volume: 27 start-page: 215 year: 2003 end-page: 223 ident: bib0260 article-title: Simulation of an integrated PCM–wallboard system publication-title: Int. J. Energy Res. – volume: 81 start-page: 404 year: 2014 end-page: 415 ident: bib0030 article-title: Numerical study on the thermal performance of building wall and roof incorporating phase change material panel for passive cooling application publication-title: Energy Build. – reference: , 2009 – volume: 34 start-page: 563 year: 2002 end-page: 572 ident: bib0085 article-title: Adaptive thermal comfort and sustainable thermal standards for buildings publication-title: Energy Build. – volume: 28 start-page: 1291 year: 2008 end-page: 1298 ident: bib0130 article-title: Optimization of a phase change material wallboard for building use publication-title: Appl. Therm. Eng. – volume: 32 start-page: 129 year: 1997 end-page: 136 ident: bib0070 article-title: Energy and environmental consequences of an additional wall insulation of a dwelling publication-title: Build. Environ. – volume: 41 start-page: 85 year: 2015 end-page: 98 ident: bib0050 article-title: Heating and cooling energy trends and drivers in buildings publication-title: Renew. Sustain. Energy Rev. – volume: 34 start-page: 455 year: 2002 end-page: 466 ident: bib0010 article-title: Feasibility of energy saving renovation measures in urban buildings: the impact of energy prices and the acceptable pay back time criterion publication-title: Energy Build. – volume: 38 start-page: 436 year: 2006 end-page: 446 ident: bib0155 article-title: Study of a floor supply air conditioning system using granular phase change material to augment building mass thermal storage—heat response in small scale experiments publication-title: Energy Build. – volume: 12 start-page: 39 year: 2008 end-page: 64 ident: bib0120 article-title: Phase change material-based building architecture for thermal management in residential and commercial establishments publication-title: Renew. Sustain. Energy Rev. – reference: Energy Efficiency- Building Strategy, Update 2014. Washington State Department of Commerce, State Energy Office, Olympia, WA. – volume: 85 start-page: 52 year: 2016 end-page: 59 ident: bib0335 article-title: The implementation of phase changing materials in energy-efficient buildings. case study: eFdeN project publication-title: Energy Procedia – reference: , 2010 – volume: 213 start-page: 83 year: 1999 end-page: 92 ident: bib0205 article-title: Domestic electrical space heating with heat storage publication-title: Proc. Inst. Mech. Eng. Part A: J. Power Energy – reference: -, 2016. – volume: 15 start-page: 112 year: 2011 end-page: 130 ident: bib0185 article-title: A review on phase-change materials: mathematical modeling and simulations publication-title: Renew. Sustain. Energy Rev. – year: 2015 ident: bib0240 article-title: Using COMSOL modeling to investigate the efficiency of PCMs at modifying temperature changes in cementitious Materials–Case study publication-title: Constr. Build. Mater. – reference: , 2015 – reference: . – reference: D.C. Hittle, Phase change materials in floor tiles for thermal energy storage, in Other Information: PBD: 1 Oct 2002. 2002. p. Medium: ED; Size: 42 pages. – volume: 28 start-page: 556 year: 2008 end-page: 565 ident: bib0280 article-title: Experimental investigation and numerical simulation analysis on the thermal performance of a building roof incorporating phase change material (PCM) for thermal management publication-title: Appl. Therm. Eng. – reference: North Dakota Summary of Electricity Rates – – volume: 24 start-page: 1034 year: 2011 end-page: 1042 ident: bib0100 article-title: Increasing the service life of bridge decks by incorporating phase-change materials to reduce freeze-thaw cycles publication-title: J. Mater. Civil Eng. – reference: New Hampshire Summary of Electricity Rates − https://www.eversource.com/- 2016 – reference: Nevada Summary of Electricity Rates – – volume: 42 start-page: 1361 year: 2010 end-page: 1368 ident: bib0095 article-title: Phase change materials for building applications: a state-of-the-art review publication-title: Energy Build. – volume: 69 start-page: 15 year: 2000 end-page: 25 ident: bib0160 article-title: Thermal performance of a solar-aided latent heat store used for space heating by heat pump publication-title: Solar Energy – reference: Florida Summary of Electricity Rates − https://www.duke-energy.com/- 2016. – volume: 33 start-page: 721 year: 2005 end-page: 756 ident: bib0065 article-title: Calculating energy-saving potentials of heat-island reduction strategies publication-title: Energy Policy – volume: 53 start-page: 515 year: 2016 end-page: 535 ident: bib0175 article-title: Literature review on the use of phase change materials in glazing and shading solutions publication-title: Renew. Sustain. Energy Rev. – ident: 10.1016/j.enbuild.2016.12.046_bib0055 – volume: 10 year: 2014 ident: 10.1016/j.enbuild.2016.12.046_bib0230 article-title: Experimental apparatuses for the determination of pavement material thermal properties publication-title: Bridges – ident: 10.1016/j.enbuild.2016.12.046_bib0305 – volume: 34 start-page: 455 issue: 5 year: 2002 ident: 10.1016/j.enbuild.2016.12.046_bib0010 article-title: Feasibility of energy saving renovation measures in urban buildings: the impact of energy prices and the acceptable pay back time criterion publication-title: Energy Build. doi: 10.1016/S0378-7788(01)00129-3 – volume: 24 start-page: 1034 issue: 8 year: 2011 ident: 10.1016/j.enbuild.2016.12.046_bib0100 article-title: Increasing the service life of bridge decks by incorporating phase-change materials to reduce freeze-thaw cycles publication-title: J. Mater. Civil Eng. doi: 10.1061/(ASCE)MT.1943-5533.0000381 – year: 2013 ident: 10.1016/j.enbuild.2016.12.046_bib0235 – volume: 14 start-page: 1 year: 2016 ident: 10.1016/j.enbuild.2016.12.046_bib0140 article-title: Application of lightweight aggregate and rice husk ash to incorporate phase change materials into cementitious materials publication-title: J. Sustain. Cement-Based Mater. – ident: 10.1016/j.enbuild.2016.12.046_bib0215 – volume: 36 start-page: 795 issue: 8 year: 2004 ident: 10.1016/j.enbuild.2016.12.046_bib0255 article-title: Numerical modelling and thermal simulation of PCM–gypsum composites with ESP-r publication-title: Energy Build. doi: 10.1016/j.enbuild.2004.01.004 – start-page: 45 year: 1998 ident: 10.1016/j.enbuild.2016.12.046_bib0345 article-title: Testing and simulation of phase change wallboard for thermal storage in buildings publication-title: Solar Eng. – volume: 81 start-page: 404 year: 2014 ident: 10.1016/j.enbuild.2016.12.046_bib0030 article-title: Numerical study on the thermal performance of building wall and roof incorporating phase change material panel for passive cooling application publication-title: Energy Build. doi: 10.1016/j.enbuild.2014.06.044 – volume: 64 start-page: 32 issue: 1 year: 2014 ident: 10.1016/j.enbuild.2016.12.046_bib0180 article-title: Experimental and multi-scale analysis of the thermal properties of Portland cement concretes embedded with microencapsulated Phase Change Materials (PCMs) publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2013.11.050 – volume: 61 start-page: 93 year: 2013 ident: 10.1016/j.enbuild.2016.12.046_bib0270 article-title: Experimental thermal characterization of a Mediterranean residential building with PCM gypsum board walls publication-title: Build. Environ.t doi: 10.1016/j.buildenv.2012.12.007 – ident: 10.1016/j.enbuild.2016.12.046_bib0315 – ident: 10.1016/j.enbuild.2016.12.046_bib0045 – ident: 10.1016/j.enbuild.2016.12.046_bib0320 – volume: 62 start-page: 597 year: 2013 ident: 10.1016/j.enbuild.2016.12.046_bib0150 article-title: Experimental research on the use of phase change materials in perforated brick rooms for cooling storage publication-title: Energy Build. doi: 10.1016/j.enbuild.2013.03.048 – year: 2015 ident: 10.1016/j.enbuild.2016.12.046_bib0240 article-title: Using COMSOL modeling to investigate the efficiency of PCMs at modifying temperature changes in cementitious Materials–Case study publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2015.10.162 – volume: 32 start-page: 405 issue: 5 year: 1997 ident: 10.1016/j.enbuild.2016.12.046_bib0145 article-title: Investigation of the thermal performance of a passive solar test-room with wall latent heat storage publication-title: Build. Environ. doi: 10.1016/S0360-1323(97)00009-7 – volume: 76 start-page: 211 issue: 1–3 year: 2003 ident: 10.1016/j.enbuild.2016.12.046_bib0005 article-title: Towards sustainable-energy buildings publication-title: Appl. Energy doi: 10.1016/S0306-2619(03)00059-X – volume: 148 start-page: 39 year: 2015 ident: 10.1016/j.enbuild.2016.12.046_bib0275 article-title: Application of PCM underfloor heating in combination with PCM wallboards for space heating using price based control system publication-title: Appl. Energ. doi: 10.1016/j.apenergy.2015.03.027 – year: 2015 ident: 10.1016/j.enbuild.2016.12.046_bib0225 article-title: Application of phase change materials to improve the thermal performance of cementitious material publication-title: Energy Build. doi: 10.1016/j.enbuild.2015.06.040 – year: 2008 ident: 10.1016/j.enbuild.2016.12.046_bib0035 – volume: 27 start-page: 215 issue: 3 year: 2003 ident: 10.1016/j.enbuild.2016.12.046_bib0260 article-title: Simulation of an integrated PCM–wallboard system publication-title: Int. J. Energy Res. doi: 10.1002/er.869 – volume: 28 start-page: 1291 issue: 11 year: 2008 ident: 10.1016/j.enbuild.2016.12.046_bib0130 article-title: Optimization of a phase change material wallboard for building use publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2007.10.012 – volume: 69 start-page: 15 issue: 1 year: 2000 ident: 10.1016/j.enbuild.2016.12.046_bib0160 article-title: Thermal performance of a solar-aided latent heat store used for space heating by heat pump publication-title: Solar Energy doi: 10.1016/S0038-092X(00)00015-3 – volume: 40 start-page: 394 issue: 3 year: 2008 ident: 10.1016/j.enbuild.2016.12.046_bib0060 article-title: A review on buildings energy consumption information publication-title: Energy and buildings doi: 10.1016/j.enbuild.2007.03.007 – volume: 34 start-page: 563 issue: 6 year: 2002 ident: 10.1016/j.enbuild.2016.12.046_bib0085 article-title: Adaptive thermal comfort and sustainable thermal standards for buildings publication-title: Energy Build. doi: 10.1016/S0378-7788(02)00006-3 – volume: 42 start-page: 1361 issue: 9 year: 2010 ident: 10.1016/j.enbuild.2016.12.046_bib0095 article-title: Phase change materials for building applications: a state-of-the-art review publication-title: Energy Build. doi: 10.1016/j.enbuild.2010.03.026 – volume: 33 start-page: 721 issue: 6 year: 2005 ident: 10.1016/j.enbuild.2016.12.046_bib0065 article-title: Calculating energy-saving potentials of heat-island reduction strategies publication-title: Energy Policy doi: 10.1016/j.enpol.2003.10.001 – volume: 12 start-page: 39 issue: 1 year: 2008 ident: 10.1016/j.enbuild.2016.12.046_bib0120 article-title: Phase change material-based building architecture for thermal management in residential and commercial establishments publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2006.05.010 – volume: 53 start-page: 515 year: 2016 ident: 10.1016/j.enbuild.2016.12.046_bib0175 article-title: Literature review on the use of phase change materials in glazing and shading solutions publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2015.07.201 – volume: 36 start-page: 1309 issue: 12 year: 2004 ident: 10.1016/j.enbuild.2016.12.046_bib0080 article-title: Thermal design standards for energy efficiency of residential buildings in hot summer/cold winter zones publication-title: Energy Build. doi: 10.1016/j.enbuild.2003.08.003 – volume: 38 start-page: 436 issue: 5 year: 2006 ident: 10.1016/j.enbuild.2016.12.046_bib0155 article-title: Study of a floor supply air conditioning system using granular phase change material to augment building mass thermal storage—heat response in small scale experiments publication-title: Energy Build. doi: 10.1016/j.enbuild.2005.07.010 – year: 2005 ident: 10.1016/j.enbuild.2016.12.046_bib0220 – volume: 32 start-page: 129 issue: 2 year: 1997 ident: 10.1016/j.enbuild.2016.12.046_bib0070 article-title: Energy and environmental consequences of an additional wall insulation of a dwelling publication-title: Build. Environ. doi: 10.1016/S0360-1323(96)00041-8 – ident: 10.1016/j.enbuild.2016.12.046_bib0210 – ident: 10.1016/j.enbuild.2016.12.046_bib0340 – ident: 10.1016/j.enbuild.2016.12.046_bib0040 – volume: 85 start-page: 52 year: 2016 ident: 10.1016/j.enbuild.2016.12.046_bib0335 article-title: The implementation of phase changing materials in energy-efficient buildings. case study: eFdeN project publication-title: Energy Procedia doi: 10.1016/j.egypro.2015.12.274 – volume: 28 start-page: 159 issue: 2 year: 1998 ident: 10.1016/j.enbuild.2016.12.046_bib0245 article-title: Effects of wall's thermophysical properties on time lag and decrement factor publication-title: Energy Build. doi: 10.1016/S0378-7788(98)00007-3 – year: 2009 ident: 10.1016/j.enbuild.2016.12.046_bib0110 – volume: 12 start-page: 2265 issue: 9 year: 2008 ident: 10.1016/j.enbuild.2016.12.046_bib0090 article-title: Energy: environment and sustainable development publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2007.05.001 – volume: 22 start-page: 231 issue: 2–3 year: 1991 ident: 10.1016/j.enbuild.2016.12.046_bib0330 article-title: Obtaining an energy storing building material by direct incorporation of an organic phase change material in gypsum wallboard publication-title: Solar Energy Mater. doi: 10.1016/0165-1633(91)90021-C – volume: 31 start-page: 731 issue: 10 year: 2009 ident: 10.1016/j.enbuild.2016.12.046_bib0125 article-title: The behavior of self-compacting concrete containing micro-encapsulated Phase Change Materials publication-title: Cem. Concr. Compos. doi: 10.1016/j.cemconcomp.2009.08.002 – volume: 79 start-page: 32 year: 2014 ident: 10.1016/j.enbuild.2016.12.046_bib0200 article-title: Evaluation of phase change materials for improving thermal comfort in a super-insulated residential building publication-title: Energy Build. doi: 10.1016/j.enbuild.2014.04.028 – ident: 10.1016/j.enbuild.2016.12.046_bib0290 – volume: 213 start-page: 83 issue: 2 year: 1999 ident: 10.1016/j.enbuild.2016.12.046_bib0205 article-title: Domestic electrical space heating with heat storage publication-title: Proc. Inst. Mech. Eng. Part A: J. Power Energy doi: 10.1243/0957650991537455 – volume: 17 start-page: 259 issue: 4 year: 1991 ident: 10.1016/j.enbuild.2016.12.046_bib0325 article-title: A multicomponent PCM wall optimized for passive solar heating publication-title: Energy Build. doi: 10.1016/0378-7788(91)90009-R – volume: 177 start-page: 227 year: 2016 ident: 10.1016/j.enbuild.2016.12.046_bib0165 article-title: Thermal energy storage for low and medium temperature applications using phase change materials–a review publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.05.097 – start-page: 433 year: 1967 ident: 10.1016/j.enbuild.2016.12.046_bib0075 article-title: Lightweight insulating concrete for floors and roof decks publication-title: J. Am. Concr. Inst. – ident: 10.1016/j.enbuild.2016.12.046_bib0020 – volume: 15 start-page: 112 issue: 1 year: 2011 ident: 10.1016/j.enbuild.2016.12.046_bib0185 article-title: A review on phase-change materials: mathematical modeling and simulations publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2010.06.011 – ident: 10.1016/j.enbuild.2016.12.046_bib0015 – volume: 13 start-page: 318 issue: 2 year: 2009 ident: 10.1016/j.enbuild.2016.12.046_bib0135 article-title: Review on thermal energy storage with phase change materials and applications publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2007.10.005 – volume: 62 start-page: 305 year: 2016 ident: 10.1016/j.enbuild.2016.12.046_bib0170 article-title: Thermal conductivity enhancement of phase change materials for thermal energy storage: a review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2016.04.057 – volume: 28 start-page: 556 issue: 5 year: 2008 ident: 10.1016/j.enbuild.2016.12.046_bib0280 article-title: Experimental investigation and numerical simulation analysis on the thermal performance of a building roof incorporating phase change material (PCM) for thermal management publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2007.04.016 – ident: 10.1016/j.enbuild.2016.12.046_bib0295 – volume: 41 start-page: 85 year: 2015 ident: 10.1016/j.enbuild.2016.12.046_bib0050 article-title: Heating and cooling energy trends and drivers in buildings publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2014.08.039 – volume: 52 start-page: 3464 issue: 15 year: 2009 ident: 10.1016/j.enbuild.2016.12.046_bib0190 article-title: Experimental and computational study of constrained melting of phase change materials (PCM) inside a spherical capsule publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2009.02.043 – year: 2015 ident: 10.1016/j.enbuild.2016.12.046_bib0195 article-title: COMSOL modeling of temperature changes in building materials incorporating phase change materials – ident: 10.1016/j.enbuild.2016.12.046_bib0310 – ident: 10.1016/j.enbuild.2016.12.046_bib0025 – ident: 10.1016/j.enbuild.2016.12.046_bib0300 – year: 2013 ident: 10.1016/j.enbuild.2016.12.046_bib0105 article-title: Application of phase change materials in structures and pavements – volume: 23 start-page: 251 issue: 3 year: 2003 ident: 10.1016/j.enbuild.2016.12.046_bib0115 article-title: Review on thermal energy storage with phase change: materials, heat transfer analysis and applications publication-title: Appl. Therm. Eng. doi: 10.1016/S1359-4311(02)00192-8 – volume: 43 start-page: 1947 issue: 8 year: 2011 ident: 10.1016/j.enbuild.2016.12.046_bib0265 article-title: Effects of wallboard design parameters on the thermal storage in buildings publication-title: Energy Build. doi: 10.1016/j.enbuild.2011.03.038 – volume: 103 start-page: 1057 year: 2016 ident: 10.1016/j.enbuild.2016.12.046_bib0285 article-title: Numerical analysis for the optimal location of a thin PCM layer in frame walls publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.04.056 – volume: 317 start-page: 39 issue: 1 year: 1998 ident: 10.1016/j.enbuild.2016.12.046_bib0250 article-title: Evaluation of thermal storage as latent heat in phase change material wallboard by differential scanning calorimetry and large scale thermal testing publication-title: Thermochim. Acta doi: 10.1016/S0040-6031(98)00368-2 |
SSID | ssj0006571 |
Score | 2.5349555 |
Snippet | •The efficiency of PCM-impregnated gypsum boards to improve the thermal performance of buildings was studied by conducting various computational... Energy consumption in buildings has increased drastically during the last two decades. Reducing the energy demand in buildings by improving their thermal... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 455 |
SubjectTerms | Boards Building codes Buildings Comfort Computer applications Computer simulation Cost analysis Data processing Efficiency Energy conservation Energy consumption Energy demand Energy efficiency Energy modeling Gypsum HVAC HVAC equipment HVAC systems Melting point Occupant comfort Phase change materials Temperature changes in buildings Temperature effects Temperature profiles Temperature requirements |
Title | Application of phase change materials in gypsum boards to meet building energy conservation goals |
URI | https://dx.doi.org/10.1016/j.enbuild.2016.12.046 https://www.proquest.com/docview/1932248925 |
Volume | 138 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGK1lj14TZtsmtexFEt9FdEKvS27m01taZOi8eDF3-5MsrEqQsFTIOyE8M1k5pvNzCwhF450Y9tWzAIyjC05jmNFUgaWF8Q6Sjxf-kW1-93IHz51ryfepEb6VS8MllUa31_69MJbmzsdg2ZnNZt1Hm0XjA2noftAUXx7gh3s3QCtvP2xLvPwvSLpwsUWrl538XTmbRwvMFvgwFDHL3YFkQf_HZ9-eeoi_Az2yK7hjbRXvto-qen0gOx8myZ4SERv_TOaZgldPUOEomVnLwViWtoanaV0-g658ZLKDDuuaJ7RpdY5leaEbKqLfkCqsNDabNnSaQayR2Q8uBz3h5Y5QcFS4DhySys7ULYtBNMQhBB7JbSOQCNholUsmdKuGwdagKJCkUhfAXuLVQzAKm1r95jU0yzVJ4Q6jlIySCQkMAlwLilZCLoXUegFIhSKNUi3go0rM10cD7lY8KqMbM4N2hzR5g7jgHaDtL_EVuV4jU0CYaUT_sNOOISATaLNSofcfKivHPkr64YR807__-Qzss0w2helaU1Sz1_e9DlwlVy2CmNska1e_-H2Hq9XN8PRJzu_7b0 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGYAB8RSFAh5Y0yTOe6wqqgJtF4rUzbIdp6RqkwrCwMJv55w4FBBSJdbIF0Xfne8-O_dA6MbmTmxZghhAhlVJjm0bEeeB4QWxjBLP536Z7T4a-4Mn937qTRuoV9fCqLRK7fsrn156a_3E1GiaqzQ1Hy0HjE11Q_eBovjWdAttu7B91RiDzsc6z8P3ylOXWm2o5esyHnPeUf0F0oXqGGr75bWgIsJ_B6hfrrqMP_0DtK-JI-5W33aIGjI7Qnvf2gkeI9Zd_43GeYJXzxCicFXai4GZVsaG0wzP3uFwvMQ8VyVXuMjxUsoCcz0iG8uyIBALlWmt72zxLAfZEzTp3056A0OPUDAEeI7CkMIKhGUxRiREIQW-YFJGoJIwkSLmREjHiQPJQFMhS7gvgL7FIgZkhbSkc4qaWZ7JM4RtWwgeJBxOMAmQLs5JCMpnUegFLGSCtJBbw0aFbi-uplwsaJ1HNqcabarQpjahgHYLdb7EVlV_jU0CYa0T-sNQKMSATaLtWodU79RXqggsccOIeOf_f_M12hlMRkM6vBs_XKBdokJ_mafWRs3i5U1eAnEp-FVpmJ9B0u22 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+phase+change+materials+in+gypsum+boards+to+meet+building+energy+conservation+goals&rft.jtitle=Energy+and+buildings&rft.au=Sharifi%2C+Naser+P.&rft.au=Shaikh%2C+Ahsan+Aadil+Nizam&rft.au=Sakulich%2C+Aaron+R.&rft.date=2017-03-01&rft.pub=Elsevier+B.V&rft.issn=0378-7788&rft.volume=138&rft.spage=455&rft.epage=467&rft_id=info:doi/10.1016%2Fj.enbuild.2016.12.046&rft.externalDocID=S037877881631060X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7788&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7788&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7788&client=summon |