Application of phase change materials in gypsum boards to meet building energy conservation goals

•The efficiency of PCM-impregnated gypsum boards to improve the thermal performance of buildings was studied by conducting various computational simulations.•Utilizing these boards was shown to be a promising strategy to achieve the governmental plans and buildings codes to decrease the energy consu...

Full description

Saved in:
Bibliographic Details
Published inEnergy and buildings Vol. 138; pp. 455 - 467
Main Authors Sharifi, Naser P., Shaikh, Ahsan Aadil Nizam, Sakulich, Aaron R.
Format Journal Article
LanguageEnglish
Published Lausanne Elsevier B.V 01.03.2017
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •The efficiency of PCM-impregnated gypsum boards to improve the thermal performance of buildings was studied by conducting various computational simulations.•Utilizing these boards was shown to be a promising strategy to achieve the governmental plans and buildings codes to decrease the energy consumption in buildings.•Using these boards in new buildings, as well as existing buildings, increases the occupant comfort, and decreases the cost and energy required by the HVAC system.•Increasing the amount of the utilized PCM leads to diminishing returns on efficiency. Energy consumption in buildings has increased drastically during the last two decades. Reducing the energy demand in buildings by improving their thermal performance has therefore been the subject of many governmental plans and building codes. This study aims to evaluate the efficiency of PCM-impregnated gypsum boards on improving the thermal performance of buildings in order to achieve such energy reduction goals. Computational simulations using Typical Meteorological Year data were conducted to study the performance of PCM-incorporated walls subjected to the real temperature profiles of different cities. Four different criteria were considered and a simplified cost analysis was performed. Utilizing PCM-incorporated gypsum boards was shown to be a promising strategy to achieve energy reduction goals for buildings. The results show that using a PCM with a melting point near the occupant comfort zone delays and reduces the inside peak temperature, increases the duration of time during which the inside temperature stays within the comfort zone, and decreases the cost and energy required by HVAC system to keep the inside temperature in this range. However, the efficiency of PCMs is completely dependent on the input temperature profile, and increasing the amount of the utilized PCM leads to diminishing returns on efficiency.
AbstractList Energy consumption in buildings has increased drastically during the last two decades. Reducing the energy demand in buildings by improving their thermal performance has therefore been the subject of many governmental plans and building codes, This study aims to evaluate the efficiency of PCM-impregnated gypsum boards on improving the thermal performance of buildings in order to achieve such energy reduction goals. Computational simulations using Typical Meteorological Year data were conducted to study the performance of PCM-incorporated walls subjected to the real temperature profiles of different cities. Four different criteria were considered and a simplified cost analysis was performed. Utilizing PCM-incorporated gypsum boards was shown to be a promising strategy to achieve energy reduction goals for buildings. The results show that using a PCM with a melting point near the occupant comfort zone delays and reduces the inside peak temperature, increases the duration of time during which the inside temperature stays within the comfort zone, and decreases the cost and energy required by HVAC system to keep the inside temperature in this range. However, the efficiency of PCMs is completely dependent on the input temperature profile, and increasing the amount of the utilized KM leads to diminishing returns on efficiency.
•The efficiency of PCM-impregnated gypsum boards to improve the thermal performance of buildings was studied by conducting various computational simulations.•Utilizing these boards was shown to be a promising strategy to achieve the governmental plans and buildings codes to decrease the energy consumption in buildings.•Using these boards in new buildings, as well as existing buildings, increases the occupant comfort, and decreases the cost and energy required by the HVAC system.•Increasing the amount of the utilized PCM leads to diminishing returns on efficiency. Energy consumption in buildings has increased drastically during the last two decades. Reducing the energy demand in buildings by improving their thermal performance has therefore been the subject of many governmental plans and building codes. This study aims to evaluate the efficiency of PCM-impregnated gypsum boards on improving the thermal performance of buildings in order to achieve such energy reduction goals. Computational simulations using Typical Meteorological Year data were conducted to study the performance of PCM-incorporated walls subjected to the real temperature profiles of different cities. Four different criteria were considered and a simplified cost analysis was performed. Utilizing PCM-incorporated gypsum boards was shown to be a promising strategy to achieve energy reduction goals for buildings. The results show that using a PCM with a melting point near the occupant comfort zone delays and reduces the inside peak temperature, increases the duration of time during which the inside temperature stays within the comfort zone, and decreases the cost and energy required by HVAC system to keep the inside temperature in this range. However, the efficiency of PCMs is completely dependent on the input temperature profile, and increasing the amount of the utilized PCM leads to diminishing returns on efficiency.
Author Sakulich, Aaron R.
Sharifi, Naser P.
Shaikh, Ahsan Aadil Nizam
Author_xml – sequence: 1
  givenname: Naser P.
  surname: Sharifi
  fullname: Sharifi, Naser P.
  email: npourakbarsharif@wpi.edu
– sequence: 2
  givenname: Ahsan Aadil Nizam
  surname: Shaikh
  fullname: Shaikh, Ahsan Aadil Nizam
  email: arsakulich@wpi.edu
– sequence: 3
  givenname: Aaron R.
  surname: Sakulich
  fullname: Sakulich, Aaron R.
  email: ashaikh@wpi.edu
BookMark eNqFkE9LAzEUxINUsFU_ghDwvGuS7W5SPIiI_0Dw4j2kb9-uWbbJmqRCv73R9uSlp-HB-80wsyAz5x0ScsVZyRlvboYS3Xprx7YU-Sy5KNmyOSFzrqQoGi7VjMxZJVUhpVJnZBHjwBhrasnnxNxP02jBJOsd9R2dPk1ECp_G9Ug3JmGwZozUOtrvprjd0LU3oY00ebpBTPQv17qeosPQ7yh4FzF87_16n9kLctplwcuDnpOPp8ePh5fi7f359eH-rYBKNqlAYBIYM0bgUvJVVzdgEFcV56pDaNcCsKpaiSaXUqZbN1DLuoVWKgnIsDon13vbKfivLcakB78NLidqvqqEWKqVqPNXvf-C4GMM2Okp2I0JO82Z_h1TD_owpv4dU3Oh85iZu_3HgU1_JVMwdjxK3-1pzP2_LQYdwaIDbG1ASLr19ojDDy9cmL4
CitedBy_id crossref_primary_10_1016_j_conbuildmat_2018_06_179
crossref_primary_10_1134_S0040601521040029
crossref_primary_10_1134_S1028335822060027
crossref_primary_10_1016_j_enconman_2018_03_041
crossref_primary_10_1007_s12273_018_0457_5
crossref_primary_10_1016_j_applthermaleng_2019_114772
crossref_primary_10_1016_j_enbuild_2024_114969
crossref_primary_10_1002_er_6143
crossref_primary_10_1016_j_seta_2021_101349
crossref_primary_10_1016_j_est_2024_111344
crossref_primary_10_3390_en16093725
crossref_primary_10_1016_j_ijheatmasstransfer_2019_118762
crossref_primary_10_1088_1757_899X_292_1_012114
crossref_primary_10_1016_j_conbuildmat_2022_127954
crossref_primary_10_1016_j_conbuildmat_2017_11_075
crossref_primary_10_3390_physchem2010003
crossref_primary_10_1016_j_conbuildmat_2023_133159
crossref_primary_10_1016_j_rser_2022_112134
crossref_primary_10_1016_j_applthermaleng_2019_114387
crossref_primary_10_1007_s12273_019_0529_1
crossref_primary_10_1016_j_enbuild_2017_08_007
crossref_primary_10_1016_j_conbuildmat_2018_05_269
crossref_primary_10_3390_app10061976
crossref_primary_10_1016_j_cscm_2023_e02016
crossref_primary_10_1016_j_esd_2021_12_015
crossref_primary_10_1016_j_ijthermalsci_2020_106410
crossref_primary_10_1016_j_rser_2017_10_002
crossref_primary_10_1016_j_ufug_2021_127104
crossref_primary_10_1016_j_conbuildmat_2021_125042
crossref_primary_10_1016_j_energy_2018_09_128
crossref_primary_10_3390_jcs8070251
crossref_primary_10_1016_j_enbuild_2017_10_097
crossref_primary_10_1016_j_est_2024_111923
crossref_primary_10_1108_IJBPA_05_2019_0050
crossref_primary_10_1016_j_apenergy_2018_07_068
crossref_primary_10_1139_cjce_2018_0334
crossref_primary_10_1016_j_mset_2021_05_001
crossref_primary_10_1088_1742_6596_1637_1_012084
crossref_primary_10_1002_slct_201801773
crossref_primary_10_1051_matecconf_201928202033
crossref_primary_10_1016_j_solener_2020_07_053
crossref_primary_10_1016_j_jclepro_2017_04_098
crossref_primary_10_1016_j_est_2023_108597
crossref_primary_10_1088_1757_899X_1116_1_012008
crossref_primary_10_1016_j_csite_2023_103207
crossref_primary_10_1016_j_energy_2017_08_045
crossref_primary_10_3390_buildings14113387
crossref_primary_10_1016_j_polymer_2020_122211
crossref_primary_10_1016_j_energy_2019_01_066
crossref_primary_10_1155_2024_2994221
crossref_primary_10_1039_C9RA00874H
crossref_primary_10_1016_j_enbuild_2018_07_045
crossref_primary_10_1007_s10973_023_12355_2
crossref_primary_10_1016_j_rcradv_2024_200222
crossref_primary_10_3390_en12010075
crossref_primary_10_1016_j_jobe_2024_109928
crossref_primary_10_1557_s43578_020_00037_w
crossref_primary_10_1007_s43979_023_00052_w
crossref_primary_10_1016_j_applthermaleng_2022_118951
crossref_primary_10_1016_j_microc_2021_106913
crossref_primary_10_1016_j_energy_2021_121936
crossref_primary_10_1016_j_enbuild_2022_112746
crossref_primary_10_1016_j_cscm_2023_e02178
crossref_primary_10_1016_j_energy_2020_119213
crossref_primary_10_1016_j_enbuild_2022_112225
crossref_primary_10_1007_s10853_021_06659_7
crossref_primary_10_1080_01430750_2021_1873848
crossref_primary_10_1016_j_conbuildmat_2023_132312
crossref_primary_10_1016_j_jobe_2024_109061
crossref_primary_10_1016_j_buildenv_2019_106317
crossref_primary_10_3390_ma11112191
crossref_primary_10_1002_slct_202202684
crossref_primary_10_3390_ma17133271
crossref_primary_10_1016_j_ceramint_2021_02_169
crossref_primary_10_1016_j_scs_2019_101766
crossref_primary_10_1016_j_jobe_2020_101979
crossref_primary_10_1016_j_applthermaleng_2023_121042
crossref_primary_10_1016_j_jobe_2022_105813
crossref_primary_10_1080_14786451_2018_1543307
crossref_primary_10_1016_j_enbuild_2021_111369
crossref_primary_10_1016_j_solmat_2019_110081
crossref_primary_10_1016_j_enbuild_2017_02_027
crossref_primary_10_12677_MS_2019_95056
crossref_primary_10_1016_j_conbuildmat_2019_07_199
crossref_primary_10_4028_www_scientific_net_AMR_1151_29
crossref_primary_10_18186_thermal_766463
crossref_primary_10_1016_j_scs_2018_04_036
crossref_primary_10_3390_app9153091
crossref_primary_10_1016_j_apenergy_2024_123304
crossref_primary_10_1016_j_est_2023_107156
crossref_primary_10_1515_ntrev_2022_0559
crossref_primary_10_1021_acs_jpcc_9b03042
crossref_primary_10_1016_j_est_2020_101910
crossref_primary_10_1080_00038628_2022_2058459
crossref_primary_10_1021_acsomega_4c01481
crossref_primary_10_1016_j_est_2022_105880
crossref_primary_10_3390_technologies5040069
crossref_primary_10_1007_s10891_025_03079_1
crossref_primary_10_1016_j_apenergy_2019_03_002
crossref_primary_10_1016_j_solener_2020_07_092
crossref_primary_10_1016_j_enbuild_2018_05_028
crossref_primary_10_1016_j_ijheatmasstransfer_2018_09_126
crossref_primary_10_1002_htj_21422
crossref_primary_10_1021_acs_energyfuels_7b01271
crossref_primary_10_1680_jgrma_24_00056
crossref_primary_10_1016_j_est_2023_106773
crossref_primary_10_1016_j_est_2022_105406
crossref_primary_10_1016_j_est_2018_12_005
crossref_primary_10_1155_2017_2693526
crossref_primary_10_1016_j_conbuildmat_2019_03_277
crossref_primary_10_1016_j_gerr_2023_100010
crossref_primary_10_2139_ssrn_4129985
crossref_primary_10_1016_j_rser_2021_110751
crossref_primary_10_1016_j_applthermaleng_2019_114560
crossref_primary_10_1016_j_buildenv_2023_110711
crossref_primary_10_1186_s42162_024_00311_9
crossref_primary_10_3390_buildings11080357
crossref_primary_10_3390_micro4010005
crossref_primary_10_3390_ma13061268
Cites_doi 10.1016/S0378-7788(01)00129-3
10.1061/(ASCE)MT.1943-5533.0000381
10.1016/j.enbuild.2004.01.004
10.1016/j.enbuild.2014.06.044
10.1016/j.applthermaleng.2013.11.050
10.1016/j.buildenv.2012.12.007
10.1016/j.enbuild.2013.03.048
10.1016/j.conbuildmat.2015.10.162
10.1016/S0360-1323(97)00009-7
10.1016/S0306-2619(03)00059-X
10.1016/j.apenergy.2015.03.027
10.1016/j.enbuild.2015.06.040
10.1002/er.869
10.1016/j.applthermaleng.2007.10.012
10.1016/S0038-092X(00)00015-3
10.1016/j.enbuild.2007.03.007
10.1016/S0378-7788(02)00006-3
10.1016/j.enbuild.2010.03.026
10.1016/j.enpol.2003.10.001
10.1016/j.rser.2006.05.010
10.1016/j.rser.2015.07.201
10.1016/j.enbuild.2003.08.003
10.1016/j.enbuild.2005.07.010
10.1016/S0360-1323(96)00041-8
10.1016/j.egypro.2015.12.274
10.1016/S0378-7788(98)00007-3
10.1016/j.rser.2007.05.001
10.1016/0165-1633(91)90021-C
10.1016/j.cemconcomp.2009.08.002
10.1016/j.enbuild.2014.04.028
10.1243/0957650991537455
10.1016/0378-7788(91)90009-R
10.1016/j.apenergy.2016.05.097
10.1016/j.rser.2010.06.011
10.1016/j.rser.2007.10.005
10.1016/j.rser.2016.04.057
10.1016/j.applthermaleng.2007.04.016
10.1016/j.rser.2014.08.039
10.1016/j.ijheatmasstransfer.2009.02.043
10.1016/S1359-4311(02)00192-8
10.1016/j.enbuild.2011.03.038
10.1016/j.applthermaleng.2016.04.056
10.1016/S0040-6031(98)00368-2
ContentType Journal Article
Copyright 2016 Elsevier B.V.
Copyright Elsevier BV Mar 1, 2017
Copyright_xml – notice: 2016 Elsevier B.V.
– notice: Copyright Elsevier BV Mar 1, 2017
DBID AAYXX
CITATION
7ST
8FD
C1K
F28
FR3
KR7
SOI
DOI 10.1016/j.enbuild.2016.12.046
DatabaseName CrossRef
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Civil Engineering Abstracts
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Environment Abstracts
ANTE: Abstracts in New Technology & Engineering
Environmental Sciences and Pollution Management
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-6178
EndPage 467
ExternalDocumentID 10_1016_j_enbuild_2016_12_046
S037877881631060X
Genre Feature
GroupedDBID --M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KCYFY
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
SDF
SDG
SES
SPC
SPCBC
SSJ
SSR
SST
SSZ
T5K
~02
~G-
--K
29G
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RPZ
SAC
SET
SEW
SSH
WUQ
ZMT
ZY4
7ST
8FD
C1K
EFKBS
F28
FR3
KR7
SOI
ID FETCH-LOGICAL-c376t-ec07c00aa2e4719f56caee93118fecdb2ce33d7ea8728afb6c575dcd787ce0e3
IEDL.DBID .~1
ISSN 0378-7788
IngestDate Wed Aug 13 06:11:34 EDT 2025
Tue Jul 01 01:12:45 EDT 2025
Thu Apr 24 22:58:54 EDT 2025
Fri Feb 23 02:27:56 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Phase change materials
Temperature changes in buildings
Occupant comfort
HVAC systems
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c376t-ec07c00aa2e4719f56caee93118fecdb2ce33d7ea8728afb6c575dcd787ce0e3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
PQID 1932248925
PQPubID 2045483
PageCount 13
ParticipantIDs proquest_journals_1932248925
crossref_primary_10_1016_j_enbuild_2016_12_046
crossref_citationtrail_10_1016_j_enbuild_2016_12_046
elsevier_sciencedirect_doi_10_1016_j_enbuild_2016_12_046
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-03-01
PublicationDateYYYYMMDD 2017-03-01
PublicationDate_xml – month: 03
  year: 2017
  text: 2017-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Energy and buildings
PublicationYear 2017
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References D.C. Hittle, Phase change materials in floor tiles for thermal energy storage, in Other Information: PBD: 1 Oct 2002. 2002. p. Medium: ED; Size: 42 pages.
Kuznik, Virgone, Noel (bib0130) 2008; 28
Farid, Chen (bib0205) 1999; 213
Incropera (bib0220) 2005
Sharifi, Sakulich (bib0225) 2015
Akbari, Konopacki (bib0065) 2005; 33
Zalba (bib0115) 2003; 23
Peippo, Kauranen, Lund (bib0325) 1991; 17
Florida Summary of Electricity Rates − https://www.duke-energy.com/- 2016.
Koo (bib0265) 2011; 43
Nevada Summary of Electricity Rates
Oregon Summary of Electricity Rates
Liu (bib0170) 2016; 62
Kim, Darkwa (bib0260) 2003; 27
Sharifi, Shaikh, Sakulich (bib0195) 2015
Sharifi, Freeman, Sakulich (bib0240) 2015
Kong (bib0030) 2014; 81
.
Laustsen (bib0035) 2008
ASHRAE Standard 55–2004. Thermal Environmental Conditions for Human Occupancy.
Sharifi, Sakulich, Mallick (bib0230) 2014; 10
Feldman (bib0330) 1991; 22
Baetens, Jelle, Gustavsen (bib0095) 2010; 42
CE Commission, Achieving energy savings in California buildings: Saving energy in existing buildings and achieving a zero-net-energy future. 2011, Draft Staff Report CEC‐400‐2011‐007‐SD. July.
New Hampshire Summary of Electricity Rates − https://www.eversource.com/- 2016
Feng (bib0080) 2004; 36
Omer (bib0090) 2008; 12
Mandilaras (bib0270) 2013; 61
Asan, Sancaktar (bib0245) 1998; 28
2011.
2012
Pasupathy (bib0280) 2008; 28
2010
Steiger (bib0075) 1967
2009
Jin, Medina, Zhang (bib0285) 2016; 103
Banu, Feldman, Hawes (bib0250) 1998; 317
Texas Summary of Electricity Rates
Heim, Clarke (bib0255) 2004; 36
Chwieduk (bib0005) 2003; 76
Sharifi, Sakulich (bib0105) 2013
Energy Efficiency- Building Strategy, Update 2014. Washington State Department of Commerce, State Energy Office, Olympia, WA.
Barzin (bib0275) 2015; 148
Esen (bib0160) 2000; 69
Pasupathy, Velraj, Seeniraj (bib0120) 2008; 12
Hunger (bib0125) 2009; 31
da Cunha, Eames (bib0165) 2016; 177
Silva, Vicente, Rodrigues (bib0175) 2016; 53
Pérez-Lombard, Ortiz, Pout (bib0060) 2008; 40
Tan (bib0190) 2009; 52
Ürge-Vorsatz (bib0050) 2015; 41
Sharifi (bib0140) 2016; 14
Sakulich, Bentz (bib0100) 2011; 24
Nagano (bib0155) 2006; 38
Dutil (bib0185) 2011; 15
Kissock (bib0345) 1998
Nicol, Humphreys (bib0085) 2002; 34
Sharma (bib0135) 2009; 13
Athienitis (bib0145) 1997; 32
Erlandsson, Levin, Myhre (bib0070) 1997; 32
Sage-Lauck, Sailor (bib0200) 2014; 79
Dirk, Kroese (bib0235) 2013
Raoux, Wuttig (bib0110) 2009
2016
2015
North Dakota Summary of Electricity Rates
Kong (bib0150) 2013; 62
Eddhahak-Ouni (bib0180) 2014; 64
Papadopoulos, Theodosiou, Karatzas (bib0010) 2002; 34
2016.
Bejan, Catalina (bib0335) 2016; 85
Ürge-Vorsatz (10.1016/j.enbuild.2016.12.046_bib0050) 2015; 41
Kong (10.1016/j.enbuild.2016.12.046_bib0030) 2014; 81
Sharifi (10.1016/j.enbuild.2016.12.046_bib0195) 2015
Nagano (10.1016/j.enbuild.2016.12.046_bib0155) 2006; 38
Sharifi (10.1016/j.enbuild.2016.12.046_bib0240) 2015
10.1016/j.enbuild.2016.12.046_bib0305
da Cunha (10.1016/j.enbuild.2016.12.046_bib0165) 2016; 177
10.1016/j.enbuild.2016.12.046_bib0025
Dirk (10.1016/j.enbuild.2016.12.046_bib0235) 2013
10.1016/j.enbuild.2016.12.046_bib0300
Chwieduk (10.1016/j.enbuild.2016.12.046_bib0005) 2003; 76
10.1016/j.enbuild.2016.12.046_bib0340
Farid (10.1016/j.enbuild.2016.12.046_bib0205) 1999; 213
10.1016/j.enbuild.2016.12.046_bib0020
Pasupathy (10.1016/j.enbuild.2016.12.046_bib0280) 2008; 28
Eddhahak-Ouni (10.1016/j.enbuild.2016.12.046_bib0180) 2014; 64
Akbari (10.1016/j.enbuild.2016.12.046_bib0065) 2005; 33
Steiger (10.1016/j.enbuild.2016.12.046_bib0075) 1967
Pérez-Lombard (10.1016/j.enbuild.2016.12.046_bib0060) 2008; 40
Koo (10.1016/j.enbuild.2016.12.046_bib0265) 2011; 43
Sage-Lauck (10.1016/j.enbuild.2016.12.046_bib0200) 2014; 79
10.1016/j.enbuild.2016.12.046_bib0215
10.1016/j.enbuild.2016.12.046_bib0015
10.1016/j.enbuild.2016.12.046_bib0210
Kim (10.1016/j.enbuild.2016.12.046_bib0260) 2003; 27
10.1016/j.enbuild.2016.12.046_bib0055
Raoux (10.1016/j.enbuild.2016.12.046_bib0110) 2009
Kissock (10.1016/j.enbuild.2016.12.046_bib0345) 1998
10.1016/j.enbuild.2016.12.046_bib0295
Sharifi (10.1016/j.enbuild.2016.12.046_bib0140) 2016; 14
Hunger (10.1016/j.enbuild.2016.12.046_bib0125) 2009; 31
Athienitis (10.1016/j.enbuild.2016.12.046_bib0145) 1997; 32
Banu (10.1016/j.enbuild.2016.12.046_bib0250) 1998; 317
Kuznik (10.1016/j.enbuild.2016.12.046_bib0130) 2008; 28
Bejan (10.1016/j.enbuild.2016.12.046_bib0335) 2016; 85
Liu (10.1016/j.enbuild.2016.12.046_bib0170) 2016; 62
Heim (10.1016/j.enbuild.2016.12.046_bib0255) 2004; 36
Feng (10.1016/j.enbuild.2016.12.046_bib0080) 2004; 36
Silva (10.1016/j.enbuild.2016.12.046_bib0175) 2016; 53
Tan (10.1016/j.enbuild.2016.12.046_bib0190) 2009; 52
10.1016/j.enbuild.2016.12.046_bib0045
Omer (10.1016/j.enbuild.2016.12.046_bib0090) 2008; 12
10.1016/j.enbuild.2016.12.046_bib0320
Zalba (10.1016/j.enbuild.2016.12.046_bib0115) 2003; 23
10.1016/j.enbuild.2016.12.046_bib0290
Sharifi (10.1016/j.enbuild.2016.12.046_bib0225) 2015
Nicol (10.1016/j.enbuild.2016.12.046_bib0085) 2002; 34
Esen (10.1016/j.enbuild.2016.12.046_bib0160) 2000; 69
Pasupathy (10.1016/j.enbuild.2016.12.046_bib0120) 2008; 12
Incropera (10.1016/j.enbuild.2016.12.046_bib0220) 2005
10.1016/j.enbuild.2016.12.046_bib0315
Laustsen (10.1016/j.enbuild.2016.12.046_bib0035) 2008
Erlandsson (10.1016/j.enbuild.2016.12.046_bib0070) 1997; 32
Papadopoulos (10.1016/j.enbuild.2016.12.046_bib0010) 2002; 34
Asan (10.1016/j.enbuild.2016.12.046_bib0245) 1998; 28
10.1016/j.enbuild.2016.12.046_bib0310
Sharifi (10.1016/j.enbuild.2016.12.046_bib0230) 2014; 10
Sharifi (10.1016/j.enbuild.2016.12.046_bib0105) 2013
Mandilaras (10.1016/j.enbuild.2016.12.046_bib0270) 2013; 61
Peippo (10.1016/j.enbuild.2016.12.046_bib0325) 1991; 17
Dutil (10.1016/j.enbuild.2016.12.046_bib0185) 2011; 15
10.1016/j.enbuild.2016.12.046_bib0040
Jin (10.1016/j.enbuild.2016.12.046_bib0285) 2016; 103
Feldman (10.1016/j.enbuild.2016.12.046_bib0330) 1991; 22
Sakulich (10.1016/j.enbuild.2016.12.046_bib0100) 2011; 24
Kong (10.1016/j.enbuild.2016.12.046_bib0150) 2013; 62
Sharma (10.1016/j.enbuild.2016.12.046_bib0135) 2009; 13
Baetens (10.1016/j.enbuild.2016.12.046_bib0095) 2010; 42
Barzin (10.1016/j.enbuild.2016.12.046_bib0275) 2015; 148
References_xml – volume: 22
  start-page: 231
  year: 1991
  end-page: 242
  ident: bib0330
  article-title: Obtaining an energy storing building material by direct incorporation of an organic phase change material in gypsum wallboard
  publication-title: Solar Energy Mater.
– reference: , 2012
– start-page: 433
  year: 1967
  end-page: 469
  ident: bib0075
  article-title: Lightweight insulating concrete for floors and roof decks
  publication-title: J. Am. Concr. Inst.
– volume: 177
  start-page: 227
  year: 2016
  end-page: 238
  ident: bib0165
  article-title: Thermal energy storage for low and medium temperature applications using phase change materials–a review
  publication-title: Appl. Energy
– reference: Oregon Summary of Electricity Rates −
– volume: 317
  start-page: 39
  year: 1998
  end-page: 45
  ident: bib0250
  article-title: Evaluation of thermal storage as latent heat in phase change material wallboard by differential scanning calorimetry and large scale thermal testing
  publication-title: Thermochim. Acta
– reference: CE Commission, Achieving energy savings in California buildings: Saving energy in existing buildings and achieving a zero-net-energy future. 2011, Draft Staff Report CEC‐400‐2011‐007‐SD. July.
– volume: 62
  start-page: 305
  year: 2016
  end-page: 317
  ident: bib0170
  article-title: Thermal conductivity enhancement of phase change materials for thermal energy storage: a review
  publication-title: Renew. Sustain. Energy Rev.
– volume: 36
  start-page: 795
  year: 2004
  end-page: 805
  ident: bib0255
  article-title: Numerical modelling and thermal simulation of PCM–gypsum composites with ESP-r
  publication-title: Energy Build.
– reference: - 2016.
– year: 2005
  ident: bib0220
  article-title: Introduction to Heat Transfer
– volume: 13
  start-page: 318
  year: 2009
  end-page: 345
  ident: bib0135
  article-title: Review on thermal energy storage with phase change materials and applications
  publication-title: Renew. Sustain. Energy Rev.
– volume: 52
  start-page: 3464
  year: 2009
  end-page: 3472
  ident: bib0190
  article-title: Experimental and computational study of constrained melting of phase change materials (PCM) inside a spherical capsule
  publication-title: Int. J. Heat Mass Transfer
– volume: 61
  start-page: 93
  year: 2013
  end-page: 103
  ident: bib0270
  article-title: Experimental thermal characterization of a Mediterranean residential building with PCM gypsum board walls
  publication-title: Build. Environ.t
– volume: 23
  start-page: 251
  year: 2003
  end-page: 283
  ident: bib0115
  article-title: Review on thermal energy storage with phase change: materials, heat transfer analysis and applications
  publication-title: Appl. Therm. Eng.
– volume: 62
  start-page: 597
  year: 2013
  end-page: 604
  ident: bib0150
  article-title: Experimental research on the use of phase change materials in perforated brick rooms for cooling storage
  publication-title: Energy Build.
– volume: 12
  start-page: 2265
  year: 2008
  end-page: 2300
  ident: bib0090
  article-title: Energy: environment and sustainable development
  publication-title: Renew. Sustain. Energy Rev.
– reference: ASHRAE Standard 55–2004. Thermal Environmental Conditions for Human Occupancy.
– volume: 10
  year: 2014
  ident: bib0230
  article-title: Experimental apparatuses for the determination of pavement material thermal properties
  publication-title: Bridges
– volume: 103
  start-page: 1057
  year: 2016
  end-page: 1063
  ident: bib0285
  article-title: Numerical analysis for the optimal location of a thin PCM layer in frame walls
  publication-title: Appl. Therm. Eng.
– reference: - , 2011.
– volume: 32
  start-page: 405
  year: 1997
  end-page: 410
  ident: bib0145
  article-title: Investigation of the thermal performance of a passive solar test-room with wall latent heat storage
  publication-title: Build. Environ.
– volume: 28
  start-page: 159
  year: 1998
  end-page: 166
  ident: bib0245
  article-title: Effects of wall's thermophysical properties on time lag and decrement factor
  publication-title: Energy Build.
– volume: 14
  start-page: 1
  year: 2016
  end-page: 21
  ident: bib0140
  article-title: Application of lightweight aggregate and rice husk ash to incorporate phase change materials into cementitious materials
  publication-title: J. Sustain. Cement-Based Mater.
– reference: Texas Summary of Electricity Rates −
– year: 2008
  ident: bib0035
  article-title: Energy Efficiency Requirements in Building Codes, Energy Efficiency Policies for New Buildings
– volume: 148
  start-page: 39
  year: 2015
  end-page: 48
  ident: bib0275
  article-title: Application of PCM underfloor heating in combination with PCM wallboards for space heating using price based control system
  publication-title: Appl. Energ.
– year: 2009
  ident: bib0110
  article-title: Phase Change Materials: Science and Applications
– volume: 36
  start-page: 1309
  year: 2004
  end-page: 1312
  ident: bib0080
  article-title: Thermal design standards for energy efficiency of residential buildings in hot summer/cold winter zones
  publication-title: Energy Build.
– year: 2013
  ident: bib0105
  article-title: Application of phase change materials in structures and pavements
  publication-title: Proceedings of the 2nd International Workshop on Design in Civil and Environmental Engineering
– start-page: 45
  year: 1998
  end-page: 52
  ident: bib0345
  article-title: Testing and simulation of phase change wallboard for thermal storage in buildings
  publication-title: Solar Eng.
– year: 2015
  ident: bib0195
  article-title: COMSOL modeling of temperature changes in building materials incorporating phase change materials
  publication-title: The Proceeding of the COMSOL Conferenc
– volume: 43
  start-page: 1947
  year: 2011
  end-page: 1951
  ident: bib0265
  article-title: Effects of wallboard design parameters on the thermal storage in buildings
  publication-title: Energy Build.
– volume: 76
  start-page: 211
  year: 2003
  end-page: 217
  ident: bib0005
  article-title: Towards sustainable-energy buildings
  publication-title: Appl. Energy
– reference: – 2016
– volume: 40
  start-page: 394
  year: 2008
  end-page: 398
  ident: bib0060
  article-title: A review on buildings energy consumption information
  publication-title: Energy and buildings
– year: 2013
  ident: bib0235
  article-title: Statistical Modeling and Computation
– volume: 17
  start-page: 259
  year: 1991
  end-page: 270
  ident: bib0325
  article-title: A multicomponent PCM wall optimized for passive solar heating
  publication-title: Energy Build.
– volume: 31
  start-page: 731
  year: 2009
  end-page: 743
  ident: bib0125
  article-title: The behavior of self-compacting concrete containing micro-encapsulated Phase Change Materials
  publication-title: Cem. Concr. Compos.
– volume: 79
  start-page: 32
  year: 2014
  end-page: 40
  ident: bib0200
  article-title: Evaluation of phase change materials for improving thermal comfort in a super-insulated residential building
  publication-title: Energy Build.
– year: 2015
  ident: bib0225
  article-title: Application of phase change materials to improve the thermal performance of cementitious material
  publication-title: Energy Build.
– volume: 64
  start-page: 32
  year: 2014
  end-page: 39
  ident: bib0180
  article-title: Experimental and multi-scale analysis of the thermal properties of Portland cement concretes embedded with microencapsulated Phase Change Materials (PCMs)
  publication-title: Appl. Therm. Eng.
– volume: 27
  start-page: 215
  year: 2003
  end-page: 223
  ident: bib0260
  article-title: Simulation of an integrated PCM–wallboard system
  publication-title: Int. J. Energy Res.
– volume: 81
  start-page: 404
  year: 2014
  end-page: 415
  ident: bib0030
  article-title: Numerical study on the thermal performance of building wall and roof incorporating phase change material panel for passive cooling application
  publication-title: Energy Build.
– reference: , 2009
– volume: 34
  start-page: 563
  year: 2002
  end-page: 572
  ident: bib0085
  article-title: Adaptive thermal comfort and sustainable thermal standards for buildings
  publication-title: Energy Build.
– volume: 28
  start-page: 1291
  year: 2008
  end-page: 1298
  ident: bib0130
  article-title: Optimization of a phase change material wallboard for building use
  publication-title: Appl. Therm. Eng.
– volume: 32
  start-page: 129
  year: 1997
  end-page: 136
  ident: bib0070
  article-title: Energy and environmental consequences of an additional wall insulation of a dwelling
  publication-title: Build. Environ.
– volume: 41
  start-page: 85
  year: 2015
  end-page: 98
  ident: bib0050
  article-title: Heating and cooling energy trends and drivers in buildings
  publication-title: Renew. Sustain. Energy Rev.
– volume: 34
  start-page: 455
  year: 2002
  end-page: 466
  ident: bib0010
  article-title: Feasibility of energy saving renovation measures in urban buildings: the impact of energy prices and the acceptable pay back time criterion
  publication-title: Energy Build.
– volume: 38
  start-page: 436
  year: 2006
  end-page: 446
  ident: bib0155
  article-title: Study of a floor supply air conditioning system using granular phase change material to augment building mass thermal storage—heat response in small scale experiments
  publication-title: Energy Build.
– volume: 12
  start-page: 39
  year: 2008
  end-page: 64
  ident: bib0120
  article-title: Phase change material-based building architecture for thermal management in residential and commercial establishments
  publication-title: Renew. Sustain. Energy Rev.
– reference: Energy Efficiency- Building Strategy, Update 2014. Washington State Department of Commerce, State Energy Office, Olympia, WA.
– volume: 85
  start-page: 52
  year: 2016
  end-page: 59
  ident: bib0335
  article-title: The implementation of phase changing materials in energy-efficient buildings. case study: eFdeN project
  publication-title: Energy Procedia
– reference: , 2010
– volume: 213
  start-page: 83
  year: 1999
  end-page: 92
  ident: bib0205
  article-title: Domestic electrical space heating with heat storage
  publication-title: Proc. Inst. Mech. Eng. Part A: J. Power Energy
– reference: -, 2016.
– volume: 15
  start-page: 112
  year: 2011
  end-page: 130
  ident: bib0185
  article-title: A review on phase-change materials: mathematical modeling and simulations
  publication-title: Renew. Sustain. Energy Rev.
– year: 2015
  ident: bib0240
  article-title: Using COMSOL modeling to investigate the efficiency of PCMs at modifying temperature changes in cementitious Materials–Case study
  publication-title: Constr. Build. Mater.
– reference: , 2015
– reference: .
– reference: D.C. Hittle, Phase change materials in floor tiles for thermal energy storage, in Other Information: PBD: 1 Oct 2002. 2002. p. Medium: ED; Size: 42 pages.
– volume: 28
  start-page: 556
  year: 2008
  end-page: 565
  ident: bib0280
  article-title: Experimental investigation and numerical simulation analysis on the thermal performance of a building roof incorporating phase change material (PCM) for thermal management
  publication-title: Appl. Therm. Eng.
– reference: North Dakota Summary of Electricity Rates –
– volume: 24
  start-page: 1034
  year: 2011
  end-page: 1042
  ident: bib0100
  article-title: Increasing the service life of bridge decks by incorporating phase-change materials to reduce freeze-thaw cycles
  publication-title: J. Mater. Civil Eng.
– reference: New Hampshire Summary of Electricity Rates − https://www.eversource.com/- 2016
– reference: Nevada Summary of Electricity Rates –
– volume: 42
  start-page: 1361
  year: 2010
  end-page: 1368
  ident: bib0095
  article-title: Phase change materials for building applications: a state-of-the-art review
  publication-title: Energy Build.
– volume: 69
  start-page: 15
  year: 2000
  end-page: 25
  ident: bib0160
  article-title: Thermal performance of a solar-aided latent heat store used for space heating by heat pump
  publication-title: Solar Energy
– reference: Florida Summary of Electricity Rates − https://www.duke-energy.com/- 2016.
– volume: 33
  start-page: 721
  year: 2005
  end-page: 756
  ident: bib0065
  article-title: Calculating energy-saving potentials of heat-island reduction strategies
  publication-title: Energy Policy
– volume: 53
  start-page: 515
  year: 2016
  end-page: 535
  ident: bib0175
  article-title: Literature review on the use of phase change materials in glazing and shading solutions
  publication-title: Renew. Sustain. Energy Rev.
– ident: 10.1016/j.enbuild.2016.12.046_bib0055
– volume: 10
  year: 2014
  ident: 10.1016/j.enbuild.2016.12.046_bib0230
  article-title: Experimental apparatuses for the determination of pavement material thermal properties
  publication-title: Bridges
– ident: 10.1016/j.enbuild.2016.12.046_bib0305
– volume: 34
  start-page: 455
  issue: 5
  year: 2002
  ident: 10.1016/j.enbuild.2016.12.046_bib0010
  article-title: Feasibility of energy saving renovation measures in urban buildings: the impact of energy prices and the acceptable pay back time criterion
  publication-title: Energy Build.
  doi: 10.1016/S0378-7788(01)00129-3
– volume: 24
  start-page: 1034
  issue: 8
  year: 2011
  ident: 10.1016/j.enbuild.2016.12.046_bib0100
  article-title: Increasing the service life of bridge decks by incorporating phase-change materials to reduce freeze-thaw cycles
  publication-title: J. Mater. Civil Eng.
  doi: 10.1061/(ASCE)MT.1943-5533.0000381
– year: 2013
  ident: 10.1016/j.enbuild.2016.12.046_bib0235
– volume: 14
  start-page: 1
  year: 2016
  ident: 10.1016/j.enbuild.2016.12.046_bib0140
  article-title: Application of lightweight aggregate and rice husk ash to incorporate phase change materials into cementitious materials
  publication-title: J. Sustain. Cement-Based Mater.
– ident: 10.1016/j.enbuild.2016.12.046_bib0215
– volume: 36
  start-page: 795
  issue: 8
  year: 2004
  ident: 10.1016/j.enbuild.2016.12.046_bib0255
  article-title: Numerical modelling and thermal simulation of PCM–gypsum composites with ESP-r
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2004.01.004
– start-page: 45
  year: 1998
  ident: 10.1016/j.enbuild.2016.12.046_bib0345
  article-title: Testing and simulation of phase change wallboard for thermal storage in buildings
  publication-title: Solar Eng.
– volume: 81
  start-page: 404
  year: 2014
  ident: 10.1016/j.enbuild.2016.12.046_bib0030
  article-title: Numerical study on the thermal performance of building wall and roof incorporating phase change material panel for passive cooling application
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2014.06.044
– volume: 64
  start-page: 32
  issue: 1
  year: 2014
  ident: 10.1016/j.enbuild.2016.12.046_bib0180
  article-title: Experimental and multi-scale analysis of the thermal properties of Portland cement concretes embedded with microencapsulated Phase Change Materials (PCMs)
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2013.11.050
– volume: 61
  start-page: 93
  year: 2013
  ident: 10.1016/j.enbuild.2016.12.046_bib0270
  article-title: Experimental thermal characterization of a Mediterranean residential building with PCM gypsum board walls
  publication-title: Build. Environ.t
  doi: 10.1016/j.buildenv.2012.12.007
– ident: 10.1016/j.enbuild.2016.12.046_bib0315
– ident: 10.1016/j.enbuild.2016.12.046_bib0045
– ident: 10.1016/j.enbuild.2016.12.046_bib0320
– volume: 62
  start-page: 597
  year: 2013
  ident: 10.1016/j.enbuild.2016.12.046_bib0150
  article-title: Experimental research on the use of phase change materials in perforated brick rooms for cooling storage
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2013.03.048
– year: 2015
  ident: 10.1016/j.enbuild.2016.12.046_bib0240
  article-title: Using COMSOL modeling to investigate the efficiency of PCMs at modifying temperature changes in cementitious Materials–Case study
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2015.10.162
– volume: 32
  start-page: 405
  issue: 5
  year: 1997
  ident: 10.1016/j.enbuild.2016.12.046_bib0145
  article-title: Investigation of the thermal performance of a passive solar test-room with wall latent heat storage
  publication-title: Build. Environ.
  doi: 10.1016/S0360-1323(97)00009-7
– volume: 76
  start-page: 211
  issue: 1–3
  year: 2003
  ident: 10.1016/j.enbuild.2016.12.046_bib0005
  article-title: Towards sustainable-energy buildings
  publication-title: Appl. Energy
  doi: 10.1016/S0306-2619(03)00059-X
– volume: 148
  start-page: 39
  year: 2015
  ident: 10.1016/j.enbuild.2016.12.046_bib0275
  article-title: Application of PCM underfloor heating in combination with PCM wallboards for space heating using price based control system
  publication-title: Appl. Energ.
  doi: 10.1016/j.apenergy.2015.03.027
– year: 2015
  ident: 10.1016/j.enbuild.2016.12.046_bib0225
  article-title: Application of phase change materials to improve the thermal performance of cementitious material
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2015.06.040
– year: 2008
  ident: 10.1016/j.enbuild.2016.12.046_bib0035
– volume: 27
  start-page: 215
  issue: 3
  year: 2003
  ident: 10.1016/j.enbuild.2016.12.046_bib0260
  article-title: Simulation of an integrated PCM–wallboard system
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.869
– volume: 28
  start-page: 1291
  issue: 11
  year: 2008
  ident: 10.1016/j.enbuild.2016.12.046_bib0130
  article-title: Optimization of a phase change material wallboard for building use
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2007.10.012
– volume: 69
  start-page: 15
  issue: 1
  year: 2000
  ident: 10.1016/j.enbuild.2016.12.046_bib0160
  article-title: Thermal performance of a solar-aided latent heat store used for space heating by heat pump
  publication-title: Solar Energy
  doi: 10.1016/S0038-092X(00)00015-3
– volume: 40
  start-page: 394
  issue: 3
  year: 2008
  ident: 10.1016/j.enbuild.2016.12.046_bib0060
  article-title: A review on buildings energy consumption information
  publication-title: Energy and buildings
  doi: 10.1016/j.enbuild.2007.03.007
– volume: 34
  start-page: 563
  issue: 6
  year: 2002
  ident: 10.1016/j.enbuild.2016.12.046_bib0085
  article-title: Adaptive thermal comfort and sustainable thermal standards for buildings
  publication-title: Energy Build.
  doi: 10.1016/S0378-7788(02)00006-3
– volume: 42
  start-page: 1361
  issue: 9
  year: 2010
  ident: 10.1016/j.enbuild.2016.12.046_bib0095
  article-title: Phase change materials for building applications: a state-of-the-art review
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2010.03.026
– volume: 33
  start-page: 721
  issue: 6
  year: 2005
  ident: 10.1016/j.enbuild.2016.12.046_bib0065
  article-title: Calculating energy-saving potentials of heat-island reduction strategies
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2003.10.001
– volume: 12
  start-page: 39
  issue: 1
  year: 2008
  ident: 10.1016/j.enbuild.2016.12.046_bib0120
  article-title: Phase change material-based building architecture for thermal management in residential and commercial establishments
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2006.05.010
– volume: 53
  start-page: 515
  year: 2016
  ident: 10.1016/j.enbuild.2016.12.046_bib0175
  article-title: Literature review on the use of phase change materials in glazing and shading solutions
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2015.07.201
– volume: 36
  start-page: 1309
  issue: 12
  year: 2004
  ident: 10.1016/j.enbuild.2016.12.046_bib0080
  article-title: Thermal design standards for energy efficiency of residential buildings in hot summer/cold winter zones
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2003.08.003
– volume: 38
  start-page: 436
  issue: 5
  year: 2006
  ident: 10.1016/j.enbuild.2016.12.046_bib0155
  article-title: Study of a floor supply air conditioning system using granular phase change material to augment building mass thermal storage—heat response in small scale experiments
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2005.07.010
– year: 2005
  ident: 10.1016/j.enbuild.2016.12.046_bib0220
– volume: 32
  start-page: 129
  issue: 2
  year: 1997
  ident: 10.1016/j.enbuild.2016.12.046_bib0070
  article-title: Energy and environmental consequences of an additional wall insulation of a dwelling
  publication-title: Build. Environ.
  doi: 10.1016/S0360-1323(96)00041-8
– ident: 10.1016/j.enbuild.2016.12.046_bib0210
– ident: 10.1016/j.enbuild.2016.12.046_bib0340
– ident: 10.1016/j.enbuild.2016.12.046_bib0040
– volume: 85
  start-page: 52
  year: 2016
  ident: 10.1016/j.enbuild.2016.12.046_bib0335
  article-title: The implementation of phase changing materials in energy-efficient buildings. case study: eFdeN project
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2015.12.274
– volume: 28
  start-page: 159
  issue: 2
  year: 1998
  ident: 10.1016/j.enbuild.2016.12.046_bib0245
  article-title: Effects of wall's thermophysical properties on time lag and decrement factor
  publication-title: Energy Build.
  doi: 10.1016/S0378-7788(98)00007-3
– year: 2009
  ident: 10.1016/j.enbuild.2016.12.046_bib0110
– volume: 12
  start-page: 2265
  issue: 9
  year: 2008
  ident: 10.1016/j.enbuild.2016.12.046_bib0090
  article-title: Energy: environment and sustainable development
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2007.05.001
– volume: 22
  start-page: 231
  issue: 2–3
  year: 1991
  ident: 10.1016/j.enbuild.2016.12.046_bib0330
  article-title: Obtaining an energy storing building material by direct incorporation of an organic phase change material in gypsum wallboard
  publication-title: Solar Energy Mater.
  doi: 10.1016/0165-1633(91)90021-C
– volume: 31
  start-page: 731
  issue: 10
  year: 2009
  ident: 10.1016/j.enbuild.2016.12.046_bib0125
  article-title: The behavior of self-compacting concrete containing micro-encapsulated Phase Change Materials
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/j.cemconcomp.2009.08.002
– volume: 79
  start-page: 32
  year: 2014
  ident: 10.1016/j.enbuild.2016.12.046_bib0200
  article-title: Evaluation of phase change materials for improving thermal comfort in a super-insulated residential building
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2014.04.028
– ident: 10.1016/j.enbuild.2016.12.046_bib0290
– volume: 213
  start-page: 83
  issue: 2
  year: 1999
  ident: 10.1016/j.enbuild.2016.12.046_bib0205
  article-title: Domestic electrical space heating with heat storage
  publication-title: Proc. Inst. Mech. Eng. Part A: J. Power Energy
  doi: 10.1243/0957650991537455
– volume: 17
  start-page: 259
  issue: 4
  year: 1991
  ident: 10.1016/j.enbuild.2016.12.046_bib0325
  article-title: A multicomponent PCM wall optimized for passive solar heating
  publication-title: Energy Build.
  doi: 10.1016/0378-7788(91)90009-R
– volume: 177
  start-page: 227
  year: 2016
  ident: 10.1016/j.enbuild.2016.12.046_bib0165
  article-title: Thermal energy storage for low and medium temperature applications using phase change materials–a review
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.05.097
– start-page: 433
  year: 1967
  ident: 10.1016/j.enbuild.2016.12.046_bib0075
  article-title: Lightweight insulating concrete for floors and roof decks
  publication-title: J. Am. Concr. Inst.
– ident: 10.1016/j.enbuild.2016.12.046_bib0020
– volume: 15
  start-page: 112
  issue: 1
  year: 2011
  ident: 10.1016/j.enbuild.2016.12.046_bib0185
  article-title: A review on phase-change materials: mathematical modeling and simulations
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2010.06.011
– ident: 10.1016/j.enbuild.2016.12.046_bib0015
– volume: 13
  start-page: 318
  issue: 2
  year: 2009
  ident: 10.1016/j.enbuild.2016.12.046_bib0135
  article-title: Review on thermal energy storage with phase change materials and applications
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2007.10.005
– volume: 62
  start-page: 305
  year: 2016
  ident: 10.1016/j.enbuild.2016.12.046_bib0170
  article-title: Thermal conductivity enhancement of phase change materials for thermal energy storage: a review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2016.04.057
– volume: 28
  start-page: 556
  issue: 5
  year: 2008
  ident: 10.1016/j.enbuild.2016.12.046_bib0280
  article-title: Experimental investigation and numerical simulation analysis on the thermal performance of a building roof incorporating phase change material (PCM) for thermal management
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2007.04.016
– ident: 10.1016/j.enbuild.2016.12.046_bib0295
– volume: 41
  start-page: 85
  year: 2015
  ident: 10.1016/j.enbuild.2016.12.046_bib0050
  article-title: Heating and cooling energy trends and drivers in buildings
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2014.08.039
– volume: 52
  start-page: 3464
  issue: 15
  year: 2009
  ident: 10.1016/j.enbuild.2016.12.046_bib0190
  article-title: Experimental and computational study of constrained melting of phase change materials (PCM) inside a spherical capsule
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2009.02.043
– year: 2015
  ident: 10.1016/j.enbuild.2016.12.046_bib0195
  article-title: COMSOL modeling of temperature changes in building materials incorporating phase change materials
– ident: 10.1016/j.enbuild.2016.12.046_bib0310
– ident: 10.1016/j.enbuild.2016.12.046_bib0025
– ident: 10.1016/j.enbuild.2016.12.046_bib0300
– year: 2013
  ident: 10.1016/j.enbuild.2016.12.046_bib0105
  article-title: Application of phase change materials in structures and pavements
– volume: 23
  start-page: 251
  issue: 3
  year: 2003
  ident: 10.1016/j.enbuild.2016.12.046_bib0115
  article-title: Review on thermal energy storage with phase change: materials, heat transfer analysis and applications
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/S1359-4311(02)00192-8
– volume: 43
  start-page: 1947
  issue: 8
  year: 2011
  ident: 10.1016/j.enbuild.2016.12.046_bib0265
  article-title: Effects of wallboard design parameters on the thermal storage in buildings
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2011.03.038
– volume: 103
  start-page: 1057
  year: 2016
  ident: 10.1016/j.enbuild.2016.12.046_bib0285
  article-title: Numerical analysis for the optimal location of a thin PCM layer in frame walls
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2016.04.056
– volume: 317
  start-page: 39
  issue: 1
  year: 1998
  ident: 10.1016/j.enbuild.2016.12.046_bib0250
  article-title: Evaluation of thermal storage as latent heat in phase change material wallboard by differential scanning calorimetry and large scale thermal testing
  publication-title: Thermochim. Acta
  doi: 10.1016/S0040-6031(98)00368-2
SSID ssj0006571
Score 2.5349555
Snippet •The efficiency of PCM-impregnated gypsum boards to improve the thermal performance of buildings was studied by conducting various computational...
Energy consumption in buildings has increased drastically during the last two decades. Reducing the energy demand in buildings by improving their thermal...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 455
SubjectTerms Boards
Building codes
Buildings
Comfort
Computer applications
Computer simulation
Cost analysis
Data processing
Efficiency
Energy conservation
Energy consumption
Energy demand
Energy efficiency
Energy modeling
Gypsum
HVAC
HVAC equipment
HVAC systems
Melting point
Occupant comfort
Phase change materials
Temperature changes in buildings
Temperature effects
Temperature profiles
Temperature requirements
Title Application of phase change materials in gypsum boards to meet building energy conservation goals
URI https://dx.doi.org/10.1016/j.enbuild.2016.12.046
https://www.proquest.com/docview/1932248925
Volume 138
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGK1lj14TZtsmtexFEt9FdEKvS27m01taZOi8eDF3-5MsrEqQsFTIOyE8M1k5pvNzCwhF450Y9tWzAIyjC05jmNFUgaWF8Q6Sjxf-kW1-93IHz51ryfepEb6VS8MllUa31_69MJbmzsdg2ZnNZt1Hm0XjA2noftAUXx7gh3s3QCtvP2xLvPwvSLpwsUWrl538XTmbRwvMFvgwFDHL3YFkQf_HZ9-eeoi_Az2yK7hjbRXvto-qen0gOx8myZ4SERv_TOaZgldPUOEomVnLwViWtoanaV0-g658ZLKDDuuaJ7RpdY5leaEbKqLfkCqsNDabNnSaQayR2Q8uBz3h5Y5QcFS4DhySys7ULYtBNMQhBB7JbSOQCNholUsmdKuGwdagKJCkUhfAXuLVQzAKm1r95jU0yzVJ4Q6jlIySCQkMAlwLilZCLoXUegFIhSKNUi3go0rM10cD7lY8KqMbM4N2hzR5g7jgHaDtL_EVuV4jU0CYaUT_sNOOISATaLNSofcfKivHPkr64YR807__-Qzss0w2helaU1Sz1_e9DlwlVy2CmNska1e_-H2Hq9XN8PRJzu_7b0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGYAB8RSFAh5Y0yTOe6wqqgJtF4rUzbIdp6RqkwrCwMJv55w4FBBSJdbIF0Xfne8-O_dA6MbmTmxZghhAhlVJjm0bEeeB4QWxjBLP536Z7T4a-4Mn937qTRuoV9fCqLRK7fsrn156a_3E1GiaqzQ1Hy0HjE11Q_eBovjWdAttu7B91RiDzsc6z8P3ylOXWm2o5esyHnPeUf0F0oXqGGr75bWgIsJ_B6hfrrqMP_0DtK-JI-5W33aIGjI7Qnvf2gkeI9Zd_43GeYJXzxCicFXai4GZVsaG0wzP3uFwvMQ8VyVXuMjxUsoCcz0iG8uyIBALlWmt72zxLAfZEzTp3056A0OPUDAEeI7CkMIKhGUxRiREIQW-YFJGoJIwkSLmREjHiQPJQFMhS7gvgL7FIgZkhbSkc4qaWZ7JM4RtWwgeJBxOMAmQLs5JCMpnUegFLGSCtJBbw0aFbi-uplwsaJ1HNqcabarQpjahgHYLdb7EVlV_jU0CYa0T-sNQKMSATaLtWodU79RXqggsccOIeOf_f_M12hlMRkM6vBs_XKBdokJ_mafWRs3i5U1eAnEp-FVpmJ9B0u22
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+phase+change+materials+in+gypsum+boards+to+meet+building+energy+conservation+goals&rft.jtitle=Energy+and+buildings&rft.au=Sharifi%2C+Naser+P.&rft.au=Shaikh%2C+Ahsan+Aadil+Nizam&rft.au=Sakulich%2C+Aaron+R.&rft.date=2017-03-01&rft.pub=Elsevier+B.V&rft.issn=0378-7788&rft.volume=138&rft.spage=455&rft.epage=467&rft_id=info:doi/10.1016%2Fj.enbuild.2016.12.046&rft.externalDocID=S037877881631060X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7788&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7788&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7788&client=summon