Two-stage unmanned aerial vehicle localization method based on multi-category semantic segmentation and template matching
With advancements in unmanned aerial vehicle (UAV) technology, UAV applications are rapidly growing, and their operations are becoming increasingly intelligent. Localization of UAVs commonly relies on global navigation satellite systems combined with inertial navigation systems through sensor fusion...
Saved in:
Published in | Journal of applied remote sensing Vol. 19; no. 1; p. 014503 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Society of Photo-Optical Instrumentation Engineers
01.01.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 1931-3195 1931-3195 |
DOI | 10.1117/1.JRS.19.014503 |
Cover
Loading…
Abstract | With advancements in unmanned aerial vehicle (UAV) technology, UAV applications are rapidly growing, and their operations are becoming increasingly intelligent. Localization of UAVs commonly relies on global navigation satellite systems combined with inertial navigation systems through sensor fusion. However, this approach is vulnerable to significant risks, such as signal spoofing. In military conflicts, signal spoofing by hackers poses a severe security threat with potentially catastrophic outcomes. To address this issue, we propose a two-stage vision-based UAV localization method. This approach utilizes multi-category semantic segmentation and template matching to establish a connection between heterogeneous sensors. Experimental results demonstrate the method’s effectiveness in accurately identifying the UAV’s location within extensive geographical areas captured in remote sensing images. In addition, it achieves high precision in aligning UAV locations with Baidu maps, offering robust and accurate localization capabilities. |
---|---|
AbstractList | With advancements in unmanned aerial vehicle (UAV) technology, UAV applications are rapidly growing, and their operations are becoming increasingly intelligent. Localization of UAVs commonly relies on global navigation satellite systems combined with inertial navigation systems through sensor fusion. However, this approach is vulnerable to significant risks, such as signal spoofing. In military conflicts, signal spoofing by hackers poses a severe security threat with potentially catastrophic outcomes. To address this issue, we propose a two-stage vision-based UAV localization method. This approach utilizes multi-category semantic segmentation and template matching to establish a connection between heterogeneous sensors. Experimental results demonstrate the method’s effectiveness in accurately identifying the UAV’s location within extensive geographical areas captured in remote sensing images. In addition, it achieves high precision in aligning UAV locations with Baidu maps, offering robust and accurate localization capabilities. |
Author | Jin, Hu Ren, Kan Chen, Qian |
Author_xml | – sequence: 1 givenname: Hu surname: Jin fullname: Jin, Hu email: 1072911810@qq.com organization: Nanjing University of Science and Technology, Jiangsu Key Laboratory of Spectral Imaging and Intelligent Sense, Nanjing, China – sequence: 2 givenname: Kan orcidid: 0000-0003-3391-5795 surname: Ren fullname: Ren, Kan email: k.ren@njust.edu.cn organization: Nanjing University of Science and Technology, Jiangsu Key Laboratory of Spectral Imaging and Intelligent Sense, Nanjing, China – sequence: 3 givenname: Qian surname: Chen fullname: Chen, Qian email: chenq@njust.edu.cn organization: Nanjing University of Science and Technology, Jiangsu Key Laboratory of Spectral Imaging and Intelligent Sense, Nanjing, China |
BookMark | eNqNkFFv2yAUhdHUSmvTPe-VHzCnYExiP1bd0jVK1arNpL2ha7hOiGywDOmU_PqSeQ972KQ-cdH9zuFwLsmZ8w4J-czZlHM-v-bT5fPLlFdTxgvJxAdywSvBM8ErefbX_JFchrBjTIqynF-Qw_qXz0KEDdK968A5NBRwsNDSV9xa3SJtvYbWHiFa72iHcesNrSEk8HTft9FmGiJu_HCgAZNHtDoNmw5dHEXgDI3Y9W3CaAdRb63bXJHzBtqAn_6cE_Jj8W19-z1bPd7d396sMi3ms5gZLGaFhtqUuWxMLXMzL0HnvABZ6LRhgommnkENKDEvtWRGm0agkXVe6VktJuR69NWDD2HARvWD7WA4KM7UqTnFVWpO8UqNzSWFGxWht6h2fj-4FFAtbxL16tsTydVi8C7-fFilvz19Xaij7Ufg93I0ehfTp7AT8uVfD_4v3xuo-Jpn |
Cites_doi | 10.1016/j.coastaleng.2016.03.011 10.1109/CVPRW.2018.00201 10.1155/2023/8614117 10.3390/drones5010015 10.3390/rs70404026 10.1109/CVPR.2019.01182 10.1007/978-3-319-24574-4_28 10.1177/15485129211031668 10.1007/978-3-030-01234-2_49 10.5244/C.30.118 10.1109/TPAMI.2020.2983686 10.1139/as-2016-0008 10.1109/CVPR.2015.7298813 10.1007/s11263-021-01515-2 10.1109/ICARSC58346.2023.10129575 10.1109/SSRR.2017.8088163 10.1016/j.robot.2020.103666 10.1109/TASE.2022.3232025 |
ContentType | Journal Article |
Copyright | 2024 Society of Photo-Optical Instrumentation Engineers (SPIE) |
Copyright_xml | – notice: 2024 Society of Photo-Optical Instrumentation Engineers (SPIE) |
DBID | AAYXX CITATION |
DOI | 10.1117/1.JRS.19.014503 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 1931-3195 |
EndPage | 014503 |
ExternalDocumentID | 10_1117_1_JRS_19_014503 |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62175111 – fundername: Fundamental Research Funds for the Central Universities grantid: 30922010715 |
GroupedDBID | 0R~ 29J 5GY ABJNI ACGFO ACGFS ADMLS AENEX AKROS ALMA_UNASSIGNED_HOLDINGS CS3 DU5 EBS FQ0 HZ~ O9- RNS SPBNH AAYXX CITATION M4X |
ID | FETCH-LOGICAL-c376t-de464cabd825fdb52d78ac214a54c64c0303fb6abae5e28c50dcdf3ed5b29c6b3 |
ISSN | 1931-3195 |
IngestDate | Tue Jul 01 04:10:04 EDT 2025 Thu May 08 04:45:41 EDT 2025 Thu May 08 04:46:02 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | template matching remote sensing semantic segmentation unmanned aerial vehicle localization GPS-denied |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c376t-de464cabd825fdb52d78ac214a54c64c0303fb6abae5e28c50dcdf3ed5b29c6b3 |
ORCID | 0000-0003-3391-5795 |
PageCount | 1 |
ParticipantIDs | spie_journals_10_1117_1_JRS_19_014503 crossref_primary_10_1117_1_JRS_19_014503 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-01-01 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Journal of applied remote sensing |
PublicationTitleAlternate | J. Appl. Remote Sens |
PublicationYear | 2025 |
Publisher | Society of Photo-Optical Instrumentation Engineers |
Publisher_xml | – name: Society of Photo-Optical Instrumentation Engineers |
References | r2 r3 Poudel (r21) r4 r5 r6 r7 r8 Hofmann-Wellenhof (r9) 2007 Marcu (r15) Wang (r20) r10 r12 r23 r11 r22 Wang (r17) r16 Ayoul (r13) 2017 r18 Costea (r14) r19 r1 |
References_xml | – ident: r5 doi: 10.1016/j.coastaleng.2016.03.011 – ident: r17 article-title: LoveDA: a remote sensing land-cover dataset for domain adaptive semantic segmentation – ident: r16 doi: 10.1109/CVPRW.2018.00201 – ident: r3 doi: 10.1155/2023/8614117 – ident: r21 article-title: Fast-SCNN: fast semantic segmentation network – ident: r4 doi: 10.3390/drones5010015 – ident: r7 doi: 10.3390/rs70404026 – ident: r23 doi: 10.1109/CVPR.2019.01182 – ident: r18 doi: 10.1007/978-3-319-24574-4_28 – ident: r2 doi: 10.1177/15485129211031668 – ident: r12 doi: 10.1007/978-3-030-01234-2_49 – start-page: 7 year: 2017 ident: r13 article-title: UAV navigation above roads using convolutional neural networks – ident: r14 article-title: Aerial image geolocalization from recognition and matching of roads and intersections doi: 10.5244/C.30.118 – ident: r20 article-title: Deep high-resolution representation learning for visual recognition doi: 10.1109/TPAMI.2020.2983686 – ident: r6 doi: 10.1139/as-2016-0008 – ident: r22 doi: 10.1109/CVPR.2015.7298813 – ident: r19 doi: 10.1007/s11263-021-01515-2 – year: 2007 ident: r9 – ident: r1 doi: 10.1109/ICARSC58346.2023.10129575 – ident: r11 doi: 10.1109/SSRR.2017.8088163 – ident: r10 doi: 10.1016/j.robot.2020.103666 – ident: r8 doi: 10.1109/TASE.2022.3232025 – ident: r15 article-title: A multi-stage multi-task neural network for aerial scene interpretation and geolocalization |
SSID | ssj0053887 |
Score | 2.3460996 |
Snippet | With advancements in unmanned aerial vehicle (UAV) technology, UAV applications are rapidly growing, and their operations are becoming increasingly... |
SourceID | crossref spie |
SourceType | Index Database Enrichment Source Publisher |
StartPage | 014503 |
Title | Two-stage unmanned aerial vehicle localization method based on multi-category semantic segmentation and template matching |
URI | http://www.dx.doi.org/10.1117/1.JRS.19.014503 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdb-rC9jH2ybt3QwwYDY8_flh5DuxCyZmxrC3kzkiW3hdYNdbLS_vU7fTkfJJDtxSTScRa6n-5O1t0JoU-MgF0uZOwzVsAGRS1FmhMJ64oQUdCaFvoesvGPfHiWjibZZBFWpLNLZjyoHjbmlfyPVKEN5KqyZP9Bsh1TaIDfIF94goThuZuM72588O5g3z9vrpnSmB7T7_X-yAtF7GlTZVMt7W3RnjJcQh0S6GBCX4VEqTQVr5XAQ9VvbeX5tU1JMqHKqn7VFZB54N7q2MstLi2zLu2tBABI4NO0jlgF6ZhyBcN5d8hjVN73BUAPba7ILwda-z0izpa-RxgVSpMINLu5OjOQG9qc3qXr-NqgznVBgGD0-ySIaKCOQMNkYbncaf2aQevCDM0GpyijEhiUES0Ng8doL4ZNRdhDe_2j8fGJs9yg-_WFit1obSkoYPF1bQwrXkyvnV7KJa_k9Dl6Zuce9w02XqBHsnmJntib7S_uX6H7DiPYYQQbjGCLEbyMEWwwgjVGsPq_ghHsMIKXMYIBI9hhBDuMvEZng2-nh0PfXrfhV2BlZr6QaZ5WjAsSZ7XgWSwKwqo4SlmWVtAD5iCpec44k5mMSZWFohJ1IkXGY1rlPHmDes1NI98inId1UkeFAF-xSCVhnNAqkUVW05oIFvJ99MVNXzk1VVXKLcLaR5_V9JZ22bXb6c5X6UZ96AaoKZKoHKhyIJPxMUzIz6NB-XA5NQS603DYiWYq6ne7D_49erpYIgeoN7udyw_gxM74R4u9v0C1nxg |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-stage+unmanned+aerial+vehicle+localization+method+based+on+multi-category+semantic+segmentation+and+template+matching&rft.jtitle=Journal+of+applied+remote+sensing&rft.au=Jin%2C+Hu&rft.au=Ren%2C+Kan&rft.au=Chen%2C+Qian&rft.date=2025-01-01&rft.issn=1931-3195&rft.eissn=1931-3195&rft.volume=19&rft.issue=1&rft_id=info:doi/10.1117%2F1.JRS.19.014503&rft.externalDBID=n%2Fa&rft.externalDocID=10_1117_1_JRS_19_014503 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1931-3195&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1931-3195&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1931-3195&client=summon |