Two-stage unmanned aerial vehicle localization method based on multi-category semantic segmentation and template matching

With advancements in unmanned aerial vehicle (UAV) technology, UAV applications are rapidly growing, and their operations are becoming increasingly intelligent. Localization of UAVs commonly relies on global navigation satellite systems combined with inertial navigation systems through sensor fusion...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied remote sensing Vol. 19; no. 1; p. 014503
Main Authors Jin, Hu, Ren, Kan, Chen, Qian
Format Journal Article
LanguageEnglish
Published Society of Photo-Optical Instrumentation Engineers 01.01.2025
Subjects
Online AccessGet full text
ISSN1931-3195
1931-3195
DOI10.1117/1.JRS.19.014503

Cover

Loading…
Abstract With advancements in unmanned aerial vehicle (UAV) technology, UAV applications are rapidly growing, and their operations are becoming increasingly intelligent. Localization of UAVs commonly relies on global navigation satellite systems combined with inertial navigation systems through sensor fusion. However, this approach is vulnerable to significant risks, such as signal spoofing. In military conflicts, signal spoofing by hackers poses a severe security threat with potentially catastrophic outcomes. To address this issue, we propose a two-stage vision-based UAV localization method. This approach utilizes multi-category semantic segmentation and template matching to establish a connection between heterogeneous sensors. Experimental results demonstrate the method’s effectiveness in accurately identifying the UAV’s location within extensive geographical areas captured in remote sensing images. In addition, it achieves high precision in aligning UAV locations with Baidu maps, offering robust and accurate localization capabilities.
AbstractList With advancements in unmanned aerial vehicle (UAV) technology, UAV applications are rapidly growing, and their operations are becoming increasingly intelligent. Localization of UAVs commonly relies on global navigation satellite systems combined with inertial navigation systems through sensor fusion. However, this approach is vulnerable to significant risks, such as signal spoofing. In military conflicts, signal spoofing by hackers poses a severe security threat with potentially catastrophic outcomes. To address this issue, we propose a two-stage vision-based UAV localization method. This approach utilizes multi-category semantic segmentation and template matching to establish a connection between heterogeneous sensors. Experimental results demonstrate the method’s effectiveness in accurately identifying the UAV’s location within extensive geographical areas captured in remote sensing images. In addition, it achieves high precision in aligning UAV locations with Baidu maps, offering robust and accurate localization capabilities.
Author Jin, Hu
Ren, Kan
Chen, Qian
Author_xml – sequence: 1
  givenname: Hu
  surname: Jin
  fullname: Jin, Hu
  email: 1072911810@qq.com
  organization: Nanjing University of Science and Technology, Jiangsu Key Laboratory of Spectral Imaging and Intelligent Sense, Nanjing, China
– sequence: 2
  givenname: Kan
  orcidid: 0000-0003-3391-5795
  surname: Ren
  fullname: Ren, Kan
  email: k.ren@njust.edu.cn
  organization: Nanjing University of Science and Technology, Jiangsu Key Laboratory of Spectral Imaging and Intelligent Sense, Nanjing, China
– sequence: 3
  givenname: Qian
  surname: Chen
  fullname: Chen, Qian
  email: chenq@njust.edu.cn
  organization: Nanjing University of Science and Technology, Jiangsu Key Laboratory of Spectral Imaging and Intelligent Sense, Nanjing, China
BookMark eNqNkFFv2yAUhdHUSmvTPe-VHzCnYExiP1bd0jVK1arNpL2ha7hOiGywDOmU_PqSeQ972KQ-cdH9zuFwLsmZ8w4J-czZlHM-v-bT5fPLlFdTxgvJxAdywSvBM8ErefbX_JFchrBjTIqynF-Qw_qXz0KEDdK968A5NBRwsNDSV9xa3SJtvYbWHiFa72iHcesNrSEk8HTft9FmGiJu_HCgAZNHtDoNmw5dHEXgDI3Y9W3CaAdRb63bXJHzBtqAn_6cE_Jj8W19-z1bPd7d396sMi3ms5gZLGaFhtqUuWxMLXMzL0HnvABZ6LRhgommnkENKDEvtWRGm0agkXVe6VktJuR69NWDD2HARvWD7WA4KM7UqTnFVWpO8UqNzSWFGxWht6h2fj-4FFAtbxL16tsTydVi8C7-fFilvz19Xaij7Ufg93I0ehfTp7AT8uVfD_4v3xuo-Jpn
Cites_doi 10.1016/j.coastaleng.2016.03.011
10.1109/CVPRW.2018.00201
10.1155/2023/8614117
10.3390/drones5010015
10.3390/rs70404026
10.1109/CVPR.2019.01182
10.1007/978-3-319-24574-4_28
10.1177/15485129211031668
10.1007/978-3-030-01234-2_49
10.5244/C.30.118
10.1109/TPAMI.2020.2983686
10.1139/as-2016-0008
10.1109/CVPR.2015.7298813
10.1007/s11263-021-01515-2
10.1109/ICARSC58346.2023.10129575
10.1109/SSRR.2017.8088163
10.1016/j.robot.2020.103666
10.1109/TASE.2022.3232025
ContentType Journal Article
Copyright 2024 Society of Photo-Optical Instrumentation Engineers (SPIE)
Copyright_xml – notice: 2024 Society of Photo-Optical Instrumentation Engineers (SPIE)
DBID AAYXX
CITATION
DOI 10.1117/1.JRS.19.014503
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1931-3195
EndPage 014503
ExternalDocumentID 10_1117_1_JRS_19_014503
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62175111
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 30922010715
GroupedDBID 0R~
29J
5GY
ABJNI
ACGFO
ACGFS
ADMLS
AENEX
AKROS
ALMA_UNASSIGNED_HOLDINGS
CS3
DU5
EBS
FQ0
HZ~
O9-
RNS
SPBNH
AAYXX
CITATION
M4X
ID FETCH-LOGICAL-c376t-de464cabd825fdb52d78ac214a54c64c0303fb6abae5e28c50dcdf3ed5b29c6b3
ISSN 1931-3195
IngestDate Tue Jul 01 04:10:04 EDT 2025
Thu May 08 04:45:41 EDT 2025
Thu May 08 04:46:02 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords template matching
remote sensing
semantic segmentation
unmanned aerial vehicle localization
GPS-denied
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c376t-de464cabd825fdb52d78ac214a54c64c0303fb6abae5e28c50dcdf3ed5b29c6b3
ORCID 0000-0003-3391-5795
PageCount 1
ParticipantIDs spie_journals_10_1117_1_JRS_19_014503
crossref_primary_10_1117_1_JRS_19_014503
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of applied remote sensing
PublicationTitleAlternate J. Appl. Remote Sens
PublicationYear 2025
Publisher Society of Photo-Optical Instrumentation Engineers
Publisher_xml – name: Society of Photo-Optical Instrumentation Engineers
References r2
r3
Poudel (r21)
r4
r5
r6
r7
r8
Hofmann-Wellenhof (r9) 2007
Marcu (r15)
Wang (r20)
r10
r12
r23
r11
r22
Wang (r17)
r16
Ayoul (r13) 2017
r18
Costea (r14)
r19
r1
References_xml – ident: r5
  doi: 10.1016/j.coastaleng.2016.03.011
– ident: r17
  article-title: LoveDA: a remote sensing land-cover dataset for domain adaptive semantic segmentation
– ident: r16
  doi: 10.1109/CVPRW.2018.00201
– ident: r3
  doi: 10.1155/2023/8614117
– ident: r21
  article-title: Fast-SCNN: fast semantic segmentation network
– ident: r4
  doi: 10.3390/drones5010015
– ident: r7
  doi: 10.3390/rs70404026
– ident: r23
  doi: 10.1109/CVPR.2019.01182
– ident: r18
  doi: 10.1007/978-3-319-24574-4_28
– ident: r2
  doi: 10.1177/15485129211031668
– ident: r12
  doi: 10.1007/978-3-030-01234-2_49
– start-page: 7
  year: 2017
  ident: r13
  article-title: UAV navigation above roads using convolutional neural networks
– ident: r14
  article-title: Aerial image geolocalization from recognition and matching of roads and intersections
  doi: 10.5244/C.30.118
– ident: r20
  article-title: Deep high-resolution representation learning for visual recognition
  doi: 10.1109/TPAMI.2020.2983686
– ident: r6
  doi: 10.1139/as-2016-0008
– ident: r22
  doi: 10.1109/CVPR.2015.7298813
– ident: r19
  doi: 10.1007/s11263-021-01515-2
– year: 2007
  ident: r9
– ident: r1
  doi: 10.1109/ICARSC58346.2023.10129575
– ident: r11
  doi: 10.1109/SSRR.2017.8088163
– ident: r10
  doi: 10.1016/j.robot.2020.103666
– ident: r8
  doi: 10.1109/TASE.2022.3232025
– ident: r15
  article-title: A multi-stage multi-task neural network for aerial scene interpretation and geolocalization
SSID ssj0053887
Score 2.3460996
Snippet With advancements in unmanned aerial vehicle (UAV) technology, UAV applications are rapidly growing, and their operations are becoming increasingly...
SourceID crossref
spie
SourceType Index Database
Enrichment Source
Publisher
StartPage 014503
Title Two-stage unmanned aerial vehicle localization method based on multi-category semantic segmentation and template matching
URI http://www.dx.doi.org/10.1117/1.JRS.19.014503
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdb-rC9jH2ybt3QwwYDY8_flh5DuxCyZmxrC3kzkiW3hdYNdbLS_vU7fTkfJJDtxSTScRa6n-5O1t0JoU-MgF0uZOwzVsAGRS1FmhMJ64oQUdCaFvoesvGPfHiWjibZZBFWpLNLZjyoHjbmlfyPVKEN5KqyZP9Bsh1TaIDfIF94goThuZuM72588O5g3z9vrpnSmB7T7_X-yAtF7GlTZVMt7W3RnjJcQh0S6GBCX4VEqTQVr5XAQ9VvbeX5tU1JMqHKqn7VFZB54N7q2MstLi2zLu2tBABI4NO0jlgF6ZhyBcN5d8hjVN73BUAPba7ILwda-z0izpa-RxgVSpMINLu5OjOQG9qc3qXr-NqgznVBgGD0-ySIaKCOQMNkYbncaf2aQevCDM0GpyijEhiUES0Ng8doL4ZNRdhDe_2j8fGJs9yg-_WFit1obSkoYPF1bQwrXkyvnV7KJa_k9Dl6Zuce9w02XqBHsnmJntib7S_uX6H7DiPYYQQbjGCLEbyMEWwwgjVGsPq_ghHsMIKXMYIBI9hhBDuMvEZng2-nh0PfXrfhV2BlZr6QaZ5WjAsSZ7XgWSwKwqo4SlmWVtAD5iCpec44k5mMSZWFohJ1IkXGY1rlPHmDes1NI98inId1UkeFAF-xSCVhnNAqkUVW05oIFvJ99MVNXzk1VVXKLcLaR5_V9JZ22bXb6c5X6UZ96AaoKZKoHKhyIJPxMUzIz6NB-XA5NQS603DYiWYq6ne7D_49erpYIgeoN7udyw_gxM74R4u9v0C1nxg
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-stage+unmanned+aerial+vehicle+localization+method+based+on+multi-category+semantic+segmentation+and+template+matching&rft.jtitle=Journal+of+applied+remote+sensing&rft.au=Jin%2C+Hu&rft.au=Ren%2C+Kan&rft.au=Chen%2C+Qian&rft.date=2025-01-01&rft.issn=1931-3195&rft.eissn=1931-3195&rft.volume=19&rft.issue=1&rft_id=info:doi/10.1117%2F1.JRS.19.014503&rft.externalDBID=n%2Fa&rft.externalDocID=10_1117_1_JRS_19_014503
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1931-3195&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1931-3195&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1931-3195&client=summon