The g-C3N4 nanosheets decorated by plasmonic Au nanoparticles: A heterogeneous electrocatalyst for oxygen evolution reaction enhanced by sunlight illumination

A plasmonic-metal/semiconductor heterogeneous electrocatalyst composed of gold nanoparticles and graphitic carbon nitride sheets are prepared in this work for the purpose of showing off the improvement effect of surface plasmon resonance reinforcing photo-electro cooperation on the oxygen evolution...

Full description

Saved in:
Bibliographic Details
Published inElectrochimica acta Vol. 303; pp. 110 - 117
Main Authors Wang, Hairui, Sun, Tao, Chang, Limin, Nie, Ping, Zhang, Xuelin, Zhao, Cuimei, Xue, Xiangxin
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 20.04.2019
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A plasmonic-metal/semiconductor heterogeneous electrocatalyst composed of gold nanoparticles and graphitic carbon nitride sheets are prepared in this work for the purpose of showing off the improvement effect of surface plasmon resonance reinforcing photo-electro cooperation on the oxygen evolution reaction. It is found that gold nanoparticles with 15.3 nm average grain diameter are loaded on graphitic carbon nitride sheets forming a desirable plasmonic-metal/semiconductor structure. Under visible light illumination, the gold-graphitic carbon nitride catalyst exhibits a superior oxygen evolution reaction performance in alkaline electrolyte including a lower overpotential of 400 mV (10 mA cm−2 catalytic current density) and a smaller Tafel slope of 53 mV dec−1. And furthermore, the catalyst shows good stability. The improved oxygen evolution reaction property can be attributed to the synergistic effect between graphitic carbon nitride sheet and the gold nanoparticles under simulated sunlight illumination, including the photoelectric effect of graphitic carbon nitride sheet, the diffusion current drifting effect caused by the built-in electric field residing in the Schottky barrier zone (between the graphitic carbon nitride sheet and the gold nanoparticles), and most important, the surface plasmon resonance induced hot-electrons injection effect from plasmonic gold nanoparticles. [Display omitted] •Light illumination is available energy to improve OER catalytic activity.•Au/g-C3N4 heterogeneous catalyst exhibits superior OER activity under visible Light.•The plasmonic effects could be employed to enhance OER catalytic activity.
AbstractList A plasmonic-metal/semiconductor heterogeneous electrocatalyst composed of gold nanoparticles and graphitic carbon nitride sheets are prepared in this work for the purpose of showing off the improvement effect of surface plasmon resonance reinforcing photo-electro cooperation on the oxygen evolution reaction. It is found that gold nanoparticles with 15.3 nm average grain diameter are loaded on graphitic carbon nitride sheets forming a desirable plasmonic-metal/semiconductor structure. Under visible light illumination, the gold-graphitic carbon nitride catalyst exhibits a superior oxygen evolution reaction performance in alkaline electrolyte including a lower overpotential of 400 mV (10 mA cm−2 catalytic current density) and a smaller Tafel slope of 53 mV dec−1. And furthermore, the catalyst shows good stability. The improved oxygen evolution reaction property can be attributed to the synergistic effect between graphitic carbon nitride sheet and the gold nanoparticles under simulated sunlight illumination, including the photoelectric effect of graphitic carbon nitride sheet, the diffusion current drifting effect caused by the built-in electric field residing in the Schottky barrier zone (between the graphitic carbon nitride sheet and the gold nanoparticles), and most important, the surface plasmon resonance induced hot-electrons injection effect from plasmonic gold nanoparticles.
A plasmonic-metal/semiconductor heterogeneous electrocatalyst composed of gold nanoparticles and graphitic carbon nitride sheets are prepared in this work for the purpose of showing off the improvement effect of surface plasmon resonance reinforcing photo-electro cooperation on the oxygen evolution reaction. It is found that gold nanoparticles with 15.3 nm average grain diameter are loaded on graphitic carbon nitride sheets forming a desirable plasmonic-metal/semiconductor structure. Under visible light illumination, the gold-graphitic carbon nitride catalyst exhibits a superior oxygen evolution reaction performance in alkaline electrolyte including a lower overpotential of 400 mV (10 mA cm−2 catalytic current density) and a smaller Tafel slope of 53 mV dec−1. And furthermore, the catalyst shows good stability. The improved oxygen evolution reaction property can be attributed to the synergistic effect between graphitic carbon nitride sheet and the gold nanoparticles under simulated sunlight illumination, including the photoelectric effect of graphitic carbon nitride sheet, the diffusion current drifting effect caused by the built-in electric field residing in the Schottky barrier zone (between the graphitic carbon nitride sheet and the gold nanoparticles), and most important, the surface plasmon resonance induced hot-electrons injection effect from plasmonic gold nanoparticles. [Display omitted] •Light illumination is available energy to improve OER catalytic activity.•Au/g-C3N4 heterogeneous catalyst exhibits superior OER activity under visible Light.•The plasmonic effects could be employed to enhance OER catalytic activity.
Author Wang, Hairui
Zhao, Cuimei
Chang, Limin
Nie, Ping
Sun, Tao
Zhang, Xuelin
Xue, Xiangxin
Author_xml – sequence: 1
  givenname: Hairui
  surname: Wang
  fullname: Wang, Hairui
  organization: Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China
– sequence: 2
  givenname: Tao
  surname: Sun
  fullname: Sun, Tao
  organization: Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China
– sequence: 3
  givenname: Limin
  surname: Chang
  fullname: Chang, Limin
  email: aaaa2139@163.com
  organization: Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China
– sequence: 4
  givenname: Ping
  surname: Nie
  fullname: Nie, Ping
  organization: Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China
– sequence: 5
  givenname: Xuelin
  surname: Zhang
  fullname: Zhang, Xuelin
  organization: MEMS Center, School of Astronautics, Harbin Institute of Technology, Harbin, 150001, PR China
– sequence: 6
  givenname: Cuimei
  surname: Zhao
  fullname: Zhao, Cuimei
  organization: Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China
– sequence: 7
  givenname: Xiangxin
  surname: Xue
  fullname: Xue, Xiangxin
  organization: Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China
BookMark eNqNUcGO0zAQtdAi0S18A5Y4J4zjrJMgcagqFpBWcFnOluuMG1euXWxnRX-Gb8VpEQcuIFkaS_Pem5n3bsmNDx4Jec2gZsDE20ONDnVW5dUNsKGGpgbBnpEV6zte8f5uuCErAMarVvTiBblN6QAAnehgRX4-Tkj31ZZ_aalXPqQJMSc6og5RZRzp7kxPTqVj8FbTzXwBnVTMVjtM7-iGTpgxhj16DHOil11i0Cord06ZmhBp-HEubYpPwc3ZBk8jlm2XD_pJeX2dkmbv7H7K1Do3H61XC-IleW6US_jqd12Tb_cfHrefqoevHz9vNw-V5p3I1ajRdAqaIoWgB94OI7R3u9HoBndcsVIF7AQfGA4CeyN606sBhUE0batHviZvrrqnGL7PmLI8hDn6MlI2DYOet10xc026K0rHkFJEI0_RHlU8SwZyCUMe5J8w5BKGhEaWMArz_V9MbfPlwhyVdf_B31z5WEx4shhl0hYX62wseDkG-0-NX4fEs4A
CitedBy_id crossref_primary_10_1016_j_apsusc_2023_156652
crossref_primary_10_1002_slct_202102241
crossref_primary_10_1016_j_apsusc_2019_145142
crossref_primary_10_1016_j_carbon_2023_118337
crossref_primary_10_1021_acssuschemeng_2c00359
crossref_primary_10_3390_molecules27206828
crossref_primary_10_1039_D2NJ03716E
crossref_primary_10_1002_smtd_202000494
crossref_primary_10_1016_j_jpcs_2020_109672
crossref_primary_10_1016_j_jcou_2021_101691
crossref_primary_10_3390_catal13030560
crossref_primary_10_1016_j_dyepig_2020_108568
crossref_primary_10_1016_j_aca_2022_340404
crossref_primary_10_1016_j_microc_2020_104922
crossref_primary_10_1021_acs_iecr_2c00152
crossref_primary_10_1016_j_mtchem_2020_100392
crossref_primary_10_1016_j_apsusc_2024_160906
crossref_primary_10_1016_j_bios_2022_114634
crossref_primary_10_1016_j_ccr_2022_214669
crossref_primary_10_1016_j_porgcoat_2021_106203
crossref_primary_10_1039_D1NJ02644E
crossref_primary_10_1021_acsami_0c12838
crossref_primary_10_1016_j_apsusc_2020_147278
crossref_primary_10_1016_j_apsusc_2022_154952
crossref_primary_10_1016_j_jallcom_2025_178603
crossref_primary_10_1016_j_jcis_2022_11_047
crossref_primary_10_1039_D2QM01064J
Cites_doi 10.1002/adma.201604437
10.1039/c2ee21494f
10.1016/j.electacta.2012.03.102
10.1039/C6TC04847A
10.1016/j.carbon.2016.08.020
10.1016/j.jpowsour.2016.11.023
10.1002/adfm.201300510
10.1021/jacs.6b05190
10.1016/j.jpowsour.2016.10.022
10.1002/adfm.201200993
10.1021/am201630s
10.1039/C6NR01491G
10.1021/acsami.5b01212
10.1149/1.2115565
10.1021/cr100246c
10.1016/j.electacta.2016.10.138
10.1515/nanoph-2016-0007
10.1002/anie.201300136
10.1016/j.electacta.2012.10.049
10.1039/C6RA08356K
10.1038/35104599
10.1002/adfm.201302940
10.1021/cm504265w
10.1021/ja901139r
10.1126/science.1223985
10.1002/cssc.201402118
10.1002/anie.201605591
10.1021/acsami.7b14541
10.1021/acscatal.5b02185
10.1002/adom.201700004
10.1021/am401802r
10.1038/ncomms12324
10.1021/ja502128j
10.1016/j.nanoen.2017.07.006
10.1038/nmat3151
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright Elsevier BV Apr 20, 2019
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright Elsevier BV Apr 20, 2019
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1016/j.electacta.2019.02.061
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1873-3859
EndPage 117
ExternalDocumentID 10_1016_j_electacta_2019_02_061
S0013468619303135
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNUV
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSK
SSZ
T5K
TWZ
UPT
WH7
XPP
YK3
ZMT
~02
~G-
29G
41~
53G
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIDUJ
AIGII
AIIUN
AJQLL
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
HMU
HVGLF
HZ~
H~9
LPU
R2-
SC5
SCB
SCH
SEW
SSH
T9H
VH1
WUQ
XOL
ZY4
7SR
7U5
8BQ
8FD
EFKBS
JG9
L7M
ID FETCH-LOGICAL-c376t-dcef7a02cede0c9349d045bdfc2eb3a1fc260b6391e96e8f68f8a9e6feef44cd3
IEDL.DBID .~1
ISSN 0013-4686
IngestDate Sun Jul 13 05:32:28 EDT 2025
Tue Jul 01 03:01:53 EDT 2025
Thu Apr 24 23:00:55 EDT 2025
Fri Feb 23 02:26:20 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Au nanoparticles
Oxygen evolution reaction
Heterogeneous electrocatalyst
Graphitic carbon nitride
Plasmonic effects
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c376t-dcef7a02cede0c9349d045bdfc2eb3a1fc260b6391e96e8f68f8a9e6feef44cd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2210834787
PQPubID 2045485
PageCount 8
ParticipantIDs proquest_journals_2210834787
crossref_primary_10_1016_j_electacta_2019_02_061
crossref_citationtrail_10_1016_j_electacta_2019_02_061
elsevier_sciencedirect_doi_10_1016_j_electacta_2019_02_061
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-04-20
PublicationDateYYYYMMDD 2019-04-20
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-20
  day: 20
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Electrochimica acta
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Xu, Song, Hu (bib8) 2016; 7
Yu, Liu, Han, Huang, Zhao, Yang, Qiu (bib29) 2016; 110
Xue, Ma, Zhou, Zhang, He (bib23) 2015; 7
Yu, Zhong, Zhou, Shao (bib30) 2017; 338
Han, Wang, Gao, Qu (bib20) 2016; 55
Cook, Dogutan, Reece, Surendranath, Teets, Nocera (bib4) 2010; 110
Linic, Christopher, Ingram (bib13) 2011; 10
Bockris, Otagawa (bib11) 1984; 131
Narang, Sundararaman, Atwater (bib14) 2016; 5
Zeng, Song, Lv, Wang, Qina, Zeng (bib24) 2016; 6
Deng, Tang, Feng, Zeng, Wang, Lu, Liu, Yu, Chen, Zhou (bib21) 2017; 9
Ye, Li, Li, Li, Fan, Zhang, Chen, Tung, Wu (bib35) 2015; 5
Xu, Huang, Wang, Tian, Hu, Ma, Wang, Pan, Huang (bib34) 2015; 27
Duan, Chen, Dai, Qiao (bib32) 2014; 24
Du, Luo, Feng, Engelhard, Xie, Han, Sun, Zhang, Yin, Wang, Wang, Shao (bib10) 2017; 39
Kim, Lin, Son, Xu, Nam (bib15) 2017; 5
Liu, Li, Zhao, Wang, Kong, Liu, Zhang, Chang, Meng, Kako, Ye (bib16) 2016; 138
Jahan, Liu, Loh (bib33) 2013; 23
Yang, Kuznietsov, Lublow, Merschjann, Steigert, Klaer, Thomas, Schedel-Niedrig (bib25) 2013; 1
Lu, Gu, Wang, Wu, Liao, Li (bib9) 2017; 29
Li, Yan, Rao, Dong, Shang, Han, Chi, Hu, Liu, Chai, Liu (bib6) 2016; 220
Greiner, Chai, Helander, Tang, Lu (bib26) 2013; 23
Joya, Joya, Ocakoglu, Van de Krol (bib5) 2013; 52
Dresselhaus, Thomas (bib1) 2001; 414
Cheng, Tian, Liu, Ge, Qusti, Asiri, Al-Youbi, Sun (bib22) 2013; 5
Wang, Zhang (bib18) 2012; 71
Gao, Åkermark, Liu, Sun, Åkermark (bib12) 2009; 131
Wei, Shao, Li, Lu, Wang, Zhang, Liu (bib27) 2016; 8
Ye, Long, Huang, Xiong (bib36) 2017; 5
Zhang, Yu, Wang (bib28) 2012; 4
Peng, Freunberger, Chen, G Bruce (bib2) 2012; 337
Tian, Liu, Asiri, Alamry, Sun (bib19) 2014; 7
Cao, Lai, Du (bib3) 2012; 5
Bu, Chen, Yu, Li (bib17) 2013; 88
Chen, Ma, Zhu, Wang, Xiong, Xia (bib7) 2016; 334
Gao, Sheng, Zhuang, Fang, Gu, Jiang, Yan (bib31) 2014; 136
Cook (10.1016/j.electacta.2019.02.061_bib4) 2010; 110
Bockris (10.1016/j.electacta.2019.02.061_bib11) 1984; 131
Du (10.1016/j.electacta.2019.02.061_bib10) 2017; 39
Li (10.1016/j.electacta.2019.02.061_bib6) 2016; 220
Ye (10.1016/j.electacta.2019.02.061_bib35) 2015; 5
Lu (10.1016/j.electacta.2019.02.061_bib9) 2017; 29
Linic (10.1016/j.electacta.2019.02.061_bib13) 2011; 10
Jahan (10.1016/j.electacta.2019.02.061_bib33) 2013; 23
Zhang (10.1016/j.electacta.2019.02.061_bib28) 2012; 4
Cheng (10.1016/j.electacta.2019.02.061_bib22) 2013; 5
Yu (10.1016/j.electacta.2019.02.061_bib30) 2017; 338
Xue (10.1016/j.electacta.2019.02.061_bib23) 2015; 7
Ye (10.1016/j.electacta.2019.02.061_bib36) 2017; 5
Greiner (10.1016/j.electacta.2019.02.061_bib26) 2013; 23
Liu (10.1016/j.electacta.2019.02.061_bib16) 2016; 138
Zeng (10.1016/j.electacta.2019.02.061_bib24) 2016; 6
Yu (10.1016/j.electacta.2019.02.061_bib29) 2016; 110
Xu (10.1016/j.electacta.2019.02.061_bib8) 2016; 7
Xu (10.1016/j.electacta.2019.02.061_bib34) 2015; 27
Wang (10.1016/j.electacta.2019.02.061_bib18) 2012; 71
Chen (10.1016/j.electacta.2019.02.061_bib7) 2016; 334
Duan (10.1016/j.electacta.2019.02.061_bib32) 2014; 24
Narang (10.1016/j.electacta.2019.02.061_bib14) 2016; 5
Kim (10.1016/j.electacta.2019.02.061_bib15) 2017; 5
Wei (10.1016/j.electacta.2019.02.061_bib27) 2016; 8
Han (10.1016/j.electacta.2019.02.061_bib20) 2016; 55
Deng (10.1016/j.electacta.2019.02.061_bib21) 2017; 9
Joya (10.1016/j.electacta.2019.02.061_bib5) 2013; 52
Tian (10.1016/j.electacta.2019.02.061_bib19) 2014; 7
Dresselhaus (10.1016/j.electacta.2019.02.061_bib1) 2001; 414
Peng (10.1016/j.electacta.2019.02.061_bib2) 2012; 337
Cao (10.1016/j.electacta.2019.02.061_bib3) 2012; 5
Gao (10.1016/j.electacta.2019.02.061_bib12) 2009; 131
Bu (10.1016/j.electacta.2019.02.061_bib17) 2013; 88
Yang (10.1016/j.electacta.2019.02.061_bib25) 2013; 1
Gao (10.1016/j.electacta.2019.02.061_bib31) 2014; 136
References_xml – volume: 5
  start-page: 6973
  year: 2015
  end-page: 6979
  ident: bib35
  article-title: Enhanced driving force and charge separation efficiency of protonated g-C3N4 for photocatalytic O2 evolution
  publication-title: ACS Catal.
– volume: 338
  start-page: 26
  year: 2017
  end-page: 33
  ident: bib30
  article-title: Facile synthesis of nitrogen-doped carbon nanotubes encapsulating nickel cobalt alloys 3D networks for oxygen evolution reaction in an alkaline solution
  publication-title: J. Power Sources
– volume: 5
  start-page: 1008
  year: 2017
  end-page: 1021
  ident: bib36
  article-title: Plasmonic nanostructures in solar energy conversion
  publication-title: J. Mater. Chem. C
– volume: 110
  start-page: 6474
  year: 2010
  end-page: 6502
  ident: bib4
  article-title: Solar energy supply and storage for the legacy and nonlegacy worlds
  publication-title: Chem. Rev.
– volume: 8
  start-page: 11034
  year: 2016
  end-page: 11043
  ident: bib27
  article-title: Facile in situ synthesis of plasmonic nanoparticles decorated g-C3N4/TiO2 heterojunction nanofibers and comparison study of their photosynergistic effects for efficient photocatalytic H2 evolution
  publication-title: Nanoscale
– volume: 7
  start-page: 12324
  year: 2016
  ident: bib8
  article-title: A nickel iron diselenide-derived efficient oxygen-evolution catalyst
  publication-title: Nat. Commun.
– volume: 29
  year: 2017
  ident: bib9
  article-title: Bimetal-organic framework derived CoFe2O4/C porous hybrid nanorod arrays as high-performance electrocatalysts for oxygen evolution reaction
  publication-title: Adv. Mater.
– volume: 1
  start-page: 6407
  year: 2013
  end-page: 6415
  ident: bib25
  article-title: Solar hydrogen evolution using metal-free photocatalytic polymeric carbon nitride/CuInS2 composites as photocathodes
  publication-title: J. Mater. Chem.
– volume: 337
  start-page: 563
  year: 2012
  end-page: 566
  ident: bib2
  article-title: A reversible and higher-rate LiO2 battery
  publication-title: Science
– volume: 7
  start-page: 2125
  year: 2014
  end-page: 2132
  ident: bib19
  article-title: Ultrathin graphitic C3N4 nanosheets/graphene composites: efficient organic electrocatalyst for oxygen evolution reaction
  publication-title: ChemSusChem
– volume: 136
  start-page: 7077
  year: 2014
  end-page: 7084
  ident: bib31
  article-title: Efficient water oxidation using nanostructured α-nickel-hydroxide as an electrocatalyst
  publication-title: J. Am. Chem. Soc.
– volume: 131
  start-page: 8726
  year: 2009
  end-page: 8727
  ident: bib12
  article-title: Nucleophilic attack of hydroxide on a MnVOxo complex: a model of the O-O bond formation in the oxygen evolving complex of photosystem II
  publication-title: J. Am. Chem. Soc.
– volume: 6
  year: 2016
  ident: bib24
  article-title: Plasmonic photocatalyst Au/g-C3N4/NiFe2O4 nanocomposites for enhanced visible-light-driven photocatalytic hydrogen evolution
  publication-title: RSC Adv.
– volume: 71
  start-page: 10
  year: 2012
  end-page: 16
  ident: bib18
  article-title: Modification of TiO2 nanorod arrays by graphite-like C3N4 with high visible light photoelectrochemical activity
  publication-title: Electrochim. Acta
– volume: 5
  year: 2017
  ident: bib15
  article-title: Hot-electron-mediated photochemical reactions: principles, recent advances, and challenges
  publication-title: Adv. Opt. Mater.
– volume: 23
  start-page: 215
  year: 2013
  end-page: 226
  ident: bib26
  article-title: Metal/metal-oxide interfaces: how metal contacts affect the work function and band structure of MoO3
  publication-title: Adv. Funct. Mater.
– volume: 5
  start-page: 6815
  year: 2013
  end-page: 6819
  ident: bib22
  article-title: Au-nanoparticle-loaded graphitic carbon nitride nanosheets: green photocatalytic synthesis and application toward the degradation of organic pollutants
  publication-title: ACS Appl. Mater. Interfaces
– volume: 5
  start-page: 8134
  year: 2012
  end-page: 8157
  ident: bib3
  article-title: Catalytic water oxidation at single metal sites
  publication-title: Energy Environ. Sci.
– volume: 110
  start-page: 1
  year: 2016
  end-page: 7
  ident: bib29
  article-title: NiCo-layered double hydroxides vertically assembled on carbon fiber papers as binder-free high-active electrocatalysts for water oxidation
  publication-title: Carbon
– volume: 138
  start-page: 9128
  year: 2016
  end-page: 9136
  ident: bib16
  article-title: Promoting active species generation by plasmon-induced hot-electron excitation for efficient electrocatalytic oxygen evolution
  publication-title: J. Am. Chem. Soc.
– volume: 27
  start-page: 1612
  year: 2015
  end-page: 1621
  ident: bib34
  article-title: Insights into enhanced visible-light photocatalytic hydrogen evolution of g-C3N4 and highly reduced graphene oxide composite: the role of oxygen
  publication-title: Chem. Mater.
– volume: 334
  start-page: 112
  year: 2016
  end-page: 119
  ident: bib7
  article-title: Metal-organic- framework-derived Bi-metallic sulfide on N, S-co doped porous carbon nanocomposites as multifunctional electrocatalysts
  publication-title: J. Power Sources
– volume: 9
  start-page: 42816
  year: 2017
  end-page: 42828
  ident: bib21
  article-title: Construction of plasmonic Ag and nitrogen-doped graphene quantum dots codecorated ultrathin graphitic carbon nitride nanosheet composites with enhanced photocatalytic activity: full-spectrum response ability and mechanism insight
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  start-page: 9630
  year: 2015
  end-page: 9637
  ident: bib23
  article-title: Facile photochemical synthesis of Au/Pt/g-C3N4 with plasmon-enhanced photocatalytic activity for antibiotic degradation
  publication-title: ACS Appl. Mater. Interfaces
– volume: 10
  start-page: 911
  year: 2011
  end-page: 921
  ident: bib13
  article-title: Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy
  publication-title: Nat. Mater.
– volume: 52
  start-page: 10426
  year: 2013
  end-page: 10437
  ident: bib5
  article-title: Water-splitting catalysis and solar fuel devices: artificial leaves on the move
  publication-title: Angew. Chem. Int. Ed.
– volume: 5
  start-page: 96
  year: 2016
  end-page: 111
  ident: bib14
  article-title: Plasmonic hot carrier dynamics in solid-state and chemical systems for energy conversion
  publication-title: Nanophotonics
– volume: 4
  start-page: 990
  year: 2012
  end-page: 996
  ident: bib28
  article-title: Hierarchical top-porous/bottom-tubular TiO2 nanostructures decorated with Pd nanoparticles for efficient photoelectrocatalytic decomposition of synergistic pollutants
  publication-title: ACS Appl. Mater. Interfaces
– volume: 414
  start-page: 332
  year: 2001
  end-page: 337
  ident: bib1
  article-title: Overview alternative energy technologies
  publication-title: Nature
– volume: 131
  start-page: 290
  year: 1984
  end-page: 302
  ident: bib11
  article-title: The electrocatalysis of oxygen evolution on perovskitesv
  publication-title: J. Electrochem. Soc.
– volume: 220
  start-page: 536
  year: 2016
  end-page: 544
  ident: bib6
  article-title: Electrochemically activated NiSe-NixSy hybrid nanorods as efficient electrocatalysts for oxygen evolution reaction
  publication-title: Electrochim. Acta
– volume: 39
  start-page: 245
  year: 2017
  end-page: 252
  ident: bib10
  article-title: Nitrogen–doped graphitized carbon shell encapsulated NiFe nanoparticles: a highly durable oxygen evolution catalyst
  publication-title: Nano Energy
– volume: 23
  start-page: 5363
  year: 2013
  end-page: 5372
  ident: bib33
  article-title: A graphene oxide and copper-centered metal organic framework composite as a tri-functional catalyst for HER, OER, and ORR
  publication-title: Adv. Funct. Mater.
– volume: 88
  start-page: 294
  year: 2013
  end-page: 300
  ident: bib17
  article-title: A novel application of g-C3N4 thin film in photoelectrochemical anticorrosion
  publication-title: Electrochim. Acta
– volume: 55
  start-page: 10849
  year: 2016
  end-page: 10853
  ident: bib20
  article-title: Graphitic carbon nitride/nitrogen-rich carbon nanofibers: highly efficient photocatalytic hydrogen evolution without cocatalysts
  publication-title: Angew. Chem. Int. Ed.
– volume: 24
  start-page: 2072
  year: 2014
  end-page: 2078
  ident: bib32
  article-title: Shape control of Mn3O4 nanoparticles on nitrogen-doped graphene for enhanced oxygen reduction activity
  publication-title: Adv. Funct. Mater.
– volume: 29
  year: 2017
  ident: 10.1016/j.electacta.2019.02.061_bib9
  article-title: Bimetal-organic framework derived CoFe2O4/C porous hybrid nanorod arrays as high-performance electrocatalysts for oxygen evolution reaction
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201604437
– volume: 5
  start-page: 8134
  year: 2012
  ident: 10.1016/j.electacta.2019.02.061_bib3
  article-title: Catalytic water oxidation at single metal sites
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee21494f
– volume: 71
  start-page: 10
  year: 2012
  ident: 10.1016/j.electacta.2019.02.061_bib18
  article-title: Modification of TiO2 nanorod arrays by graphite-like C3N4 with high visible light photoelectrochemical activity
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2012.03.102
– volume: 5
  start-page: 1008
  year: 2017
  ident: 10.1016/j.electacta.2019.02.061_bib36
  article-title: Plasmonic nanostructures in solar energy conversion
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C6TC04847A
– volume: 110
  start-page: 1
  year: 2016
  ident: 10.1016/j.electacta.2019.02.061_bib29
  article-title: NiCo-layered double hydroxides vertically assembled on carbon fiber papers as binder-free high-active electrocatalysts for water oxidation
  publication-title: Carbon
  doi: 10.1016/j.carbon.2016.08.020
– volume: 338
  start-page: 26
  year: 2017
  ident: 10.1016/j.electacta.2019.02.061_bib30
  article-title: Facile synthesis of nitrogen-doped carbon nanotubes encapsulating nickel cobalt alloys 3D networks for oxygen evolution reaction in an alkaline solution
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.11.023
– volume: 23
  start-page: 5363
  year: 2013
  ident: 10.1016/j.electacta.2019.02.061_bib33
  article-title: A graphene oxide and copper-centered metal organic framework composite as a tri-functional catalyst for HER, OER, and ORR
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201300510
– volume: 138
  start-page: 9128
  year: 2016
  ident: 10.1016/j.electacta.2019.02.061_bib16
  article-title: Promoting active species generation by plasmon-induced hot-electron excitation for efficient electrocatalytic oxygen evolution
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b05190
– volume: 334
  start-page: 112
  year: 2016
  ident: 10.1016/j.electacta.2019.02.061_bib7
  article-title: Metal-organic- framework-derived Bi-metallic sulfide on N, S-co doped porous carbon nanocomposites as multifunctional electrocatalysts
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.10.022
– volume: 23
  start-page: 215
  year: 2013
  ident: 10.1016/j.electacta.2019.02.061_bib26
  article-title: Metal/metal-oxide interfaces: how metal contacts affect the work function and band structure of MoO3
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201200993
– volume: 4
  start-page: 990
  year: 2012
  ident: 10.1016/j.electacta.2019.02.061_bib28
  article-title: Hierarchical top-porous/bottom-tubular TiO2 nanostructures decorated with Pd nanoparticles for efficient photoelectrocatalytic decomposition of synergistic pollutants
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am201630s
– volume: 8
  start-page: 11034
  year: 2016
  ident: 10.1016/j.electacta.2019.02.061_bib27
  article-title: Facile in situ synthesis of plasmonic nanoparticles decorated g-C3N4/TiO2 heterojunction nanofibers and comparison study of their photosynergistic effects for efficient photocatalytic H2 evolution
  publication-title: Nanoscale
  doi: 10.1039/C6NR01491G
– volume: 7
  start-page: 9630
  year: 2015
  ident: 10.1016/j.electacta.2019.02.061_bib23
  article-title: Facile photochemical synthesis of Au/Pt/g-C3N4 with plasmon-enhanced photocatalytic activity for antibiotic degradation
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b01212
– volume: 131
  start-page: 290
  year: 1984
  ident: 10.1016/j.electacta.2019.02.061_bib11
  article-title: The electrocatalysis of oxygen evolution on perovskitesv
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2115565
– volume: 110
  start-page: 6474
  year: 2010
  ident: 10.1016/j.electacta.2019.02.061_bib4
  article-title: Solar energy supply and storage for the legacy and nonlegacy worlds
  publication-title: Chem. Rev.
  doi: 10.1021/cr100246c
– volume: 220
  start-page: 536
  year: 2016
  ident: 10.1016/j.electacta.2019.02.061_bib6
  article-title: Electrochemically activated NiSe-NixSy hybrid nanorods as efficient electrocatalysts for oxygen evolution reaction
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.10.138
– volume: 5
  start-page: 96
  year: 2016
  ident: 10.1016/j.electacta.2019.02.061_bib14
  article-title: Plasmonic hot carrier dynamics in solid-state and chemical systems for energy conversion
  publication-title: Nanophotonics
  doi: 10.1515/nanoph-2016-0007
– volume: 52
  start-page: 10426
  year: 2013
  ident: 10.1016/j.electacta.2019.02.061_bib5
  article-title: Water-splitting catalysis and solar fuel devices: artificial leaves on the move
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201300136
– volume: 88
  start-page: 294
  year: 2013
  ident: 10.1016/j.electacta.2019.02.061_bib17
  article-title: A novel application of g-C3N4 thin film in photoelectrochemical anticorrosion
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2012.10.049
– volume: 6
  year: 2016
  ident: 10.1016/j.electacta.2019.02.061_bib24
  article-title: Plasmonic photocatalyst Au/g-C3N4/NiFe2O4 nanocomposites for enhanced visible-light-driven photocatalytic hydrogen evolution
  publication-title: RSC Adv.
  doi: 10.1039/C6RA08356K
– volume: 414
  start-page: 332
  year: 2001
  ident: 10.1016/j.electacta.2019.02.061_bib1
  article-title: Overview alternative energy technologies
  publication-title: Nature
  doi: 10.1038/35104599
– volume: 24
  start-page: 2072
  year: 2014
  ident: 10.1016/j.electacta.2019.02.061_bib32
  article-title: Shape control of Mn3O4 nanoparticles on nitrogen-doped graphene for enhanced oxygen reduction activity
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201302940
– volume: 27
  start-page: 1612
  year: 2015
  ident: 10.1016/j.electacta.2019.02.061_bib34
  article-title: Insights into enhanced visible-light photocatalytic hydrogen evolution of g-C3N4 and highly reduced graphene oxide composite: the role of oxygen
  publication-title: Chem. Mater.
  doi: 10.1021/cm504265w
– volume: 131
  start-page: 8726
  year: 2009
  ident: 10.1016/j.electacta.2019.02.061_bib12
  article-title: Nucleophilic attack of hydroxide on a MnVOxo complex: a model of the O-O bond formation in the oxygen evolving complex of photosystem II
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja901139r
– volume: 337
  start-page: 563
  year: 2012
  ident: 10.1016/j.electacta.2019.02.061_bib2
  article-title: A reversible and higher-rate LiO2 battery
  publication-title: Science
  doi: 10.1126/science.1223985
– volume: 7
  start-page: 2125
  year: 2014
  ident: 10.1016/j.electacta.2019.02.061_bib19
  article-title: Ultrathin graphitic C3N4 nanosheets/graphene composites: efficient organic electrocatalyst for oxygen evolution reaction
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201402118
– volume: 55
  start-page: 10849
  year: 2016
  ident: 10.1016/j.electacta.2019.02.061_bib20
  article-title: Graphitic carbon nitride/nitrogen-rich carbon nanofibers: highly efficient photocatalytic hydrogen evolution without cocatalysts
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201605591
– volume: 9
  start-page: 42816
  issue: 49
  year: 2017
  ident: 10.1016/j.electacta.2019.02.061_bib21
  article-title: Construction of plasmonic Ag and nitrogen-doped graphene quantum dots codecorated ultrathin graphitic carbon nitride nanosheet composites with enhanced photocatalytic activity: full-spectrum response ability and mechanism insight
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b14541
– volume: 5
  start-page: 6973
  year: 2015
  ident: 10.1016/j.electacta.2019.02.061_bib35
  article-title: Enhanced driving force and charge separation efficiency of protonated g-C3N4 for photocatalytic O2 evolution
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b02185
– volume: 5
  year: 2017
  ident: 10.1016/j.electacta.2019.02.061_bib15
  article-title: Hot-electron-mediated photochemical reactions: principles, recent advances, and challenges
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201700004
– volume: 1
  start-page: 6407
  year: 2013
  ident: 10.1016/j.electacta.2019.02.061_bib25
  article-title: Solar hydrogen evolution using metal-free photocatalytic polymeric carbon nitride/CuInS2 composites as photocathodes
  publication-title: J. Mater. Chem.
– volume: 5
  start-page: 6815
  year: 2013
  ident: 10.1016/j.electacta.2019.02.061_bib22
  article-title: Au-nanoparticle-loaded graphitic carbon nitride nanosheets: green photocatalytic synthesis and application toward the degradation of organic pollutants
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am401802r
– volume: 7
  start-page: 12324
  year: 2016
  ident: 10.1016/j.electacta.2019.02.061_bib8
  article-title: A nickel iron diselenide-derived efficient oxygen-evolution catalyst
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12324
– volume: 136
  start-page: 7077
  year: 2014
  ident: 10.1016/j.electacta.2019.02.061_bib31
  article-title: Efficient water oxidation using nanostructured α-nickel-hydroxide as an electrocatalyst
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja502128j
– volume: 39
  start-page: 245
  year: 2017
  ident: 10.1016/j.electacta.2019.02.061_bib10
  article-title: Nitrogen–doped graphitized carbon shell encapsulated NiFe nanoparticles: a highly durable oxygen evolution catalyst
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.07.006
– volume: 10
  start-page: 911
  year: 2011
  ident: 10.1016/j.electacta.2019.02.061_bib13
  article-title: Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3151
SSID ssj0007670
Score 2.4215817
Snippet A plasmonic-metal/semiconductor heterogeneous electrocatalyst composed of gold nanoparticles and graphitic carbon nitride sheets are prepared in this work for...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 110
SubjectTerms Au nanoparticles
Carbon
Carbon nitride
Catalysis
Catalysts
Diffusion effects
Electric fields
Gold
Graphitic carbon nitride
Heterogeneous electrocatalyst
Illumination
Light
Nanoparticles
Nanosheets
Oxygen evolution reaction
Oxygen evolution reactions
Photoelectric effect
Photoelectricity
Plasmonic effects
Sheets
Sunlight
Synergistic effect
Title The g-C3N4 nanosheets decorated by plasmonic Au nanoparticles: A heterogeneous electrocatalyst for oxygen evolution reaction enhanced by sunlight illumination
URI https://dx.doi.org/10.1016/j.electacta.2019.02.061
https://www.proquest.com/docview/2210834787
Volume 303
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQHNoeENBWhQLyodeUJDZOwm21Ai1U3VORuFl2PO5uRZNVk626l_6U_lZmvA4FpIpDpUhRHpNEmcnMN5N5MPaBbKJ3pz5xvoBEelclhtprixqxLBgEJIYC-p-nanItr25ObzbYeKiFobTKqPvXOj1o67jnJL7Nk8V8TjW-mZCqRA9AUANCKjSXsiAp__j7b5pHoYp0mGJAZz_K8QqjZgwulONVheadKvuXhXqiq4MButhh2xE58tH64XbZBjR77MV4GNi2x1496C34mv1BAeBfk7GYSt6Ypu1mAH3HHbmbiC8dtyu-QOj8nXrj8tEynLQY8uTO-IjPKFOmRQGDdtnxOC8nhHtWXc8R7PL21woPc_gZ5ZcjAg11EhyaWUgtoLt0y-aWQgB8TlOV5-vw4xt2fXH-ZTxJ4jCGpEYd1CeuBl-YNEdSSOtKyMohGrTO1zn64ybDtUot4p0MKgWlV6UvTQXKA3gpayfess2mbeAd4z6HVJQGVYGqEY0J68D6XBZOWWNtpvaZGhig69ipnAZm3OohJe2bvuecJs7pNNfIuX2W3hMu1s06nic5GzisH8mdRpPyPPHhIBM6fvqdztGJLgX1PDr4n2u_Zy9pi35c5ekh2-x_LOEI8U9vj4OAH7Ot0eWnyfQOy6YL9A
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3BbtNAEB2V9FA4ICggCgX2wNWq7XXWdm9RRJXSNqdW6m21650lQcWOsIPIz_CtzDjriCKhHpAsWfJ6bMsznnmznn0D8JFjondjHzmfY5R5V0aG6bVlRVgWDQESwxP6V3M1u8k-345v92A6rIXhssrg-7c-vffW4chJeJsnq-WS1_gmMlMFZQCSCQjHj2Cf2anGI9ifnF_M5juHnKs8HhoZsMC9Mq--24yhjcu8yp6_UyX_ClJ_ues-Bp09g6cBPIrJ9vmewx7Wh3AwHXq2HcKTP-gFX8AvsgHxJZrKeSZqUzftArFrheOMkyCmE3YjVoSevzE9rpis-5NWQ6ncqZiIBRfLNGRj2KxbEVrm9DM-m7YThHdF83NDwwJ_BBMWBEL7pRIC60VfXcB3adf1Hc8CiCU3Vl5uZyBfws3Zp-vpLAr9GKKK3FAXuQp9buKURDGuSpmVjgChdb5KKSU3Ce1VbAnyJFgqLLwqfGFKVB7RZ1nl5CsY1U2Nr0H4FGNZGPIGqiJAJq1D69Msd8oaaxN1BGpQgK4CWTn3zLjTQ1XaV73TnGbN6TjVpLkjiHeCqy1fx8Mip4OG9T3T0xRVHhY-HmxCh6-_1Snl0YVk2qM3_3PtD3Awu7661Jfn84u38JhH-D9WGh_DqPu-xncEhzr7Ppj7b99NDqU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+g-C3N4+nanosheets+decorated+by+plasmonic+Au+nanoparticles%3A+A+heterogeneous+electrocatalyst+for+oxygen+evolution+reaction+enhanced+by+sunlight+illumination&rft.jtitle=Electrochimica+acta&rft.au=Wang%2C+Hairui&rft.au=Sun%2C+Tao&rft.au=Chang%2C+Limin&rft.au=Nie%2C+Ping&rft.date=2019-04-20&rft.pub=Elsevier+BV&rft.issn=0013-4686&rft.eissn=1873-3859&rft.volume=303&rft.spage=110&rft_id=info:doi/10.1016%2Fj.electacta.2019.02.061&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-4686&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-4686&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-4686&client=summon