The g-C3N4 nanosheets decorated by plasmonic Au nanoparticles: A heterogeneous electrocatalyst for oxygen evolution reaction enhanced by sunlight illumination
A plasmonic-metal/semiconductor heterogeneous electrocatalyst composed of gold nanoparticles and graphitic carbon nitride sheets are prepared in this work for the purpose of showing off the improvement effect of surface plasmon resonance reinforcing photo-electro cooperation on the oxygen evolution...
Saved in:
Published in | Electrochimica acta Vol. 303; pp. 110 - 117 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
20.04.2019
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A plasmonic-metal/semiconductor heterogeneous electrocatalyst composed of gold nanoparticles and graphitic carbon nitride sheets are prepared in this work for the purpose of showing off the improvement effect of surface plasmon resonance reinforcing photo-electro cooperation on the oxygen evolution reaction. It is found that gold nanoparticles with 15.3 nm average grain diameter are loaded on graphitic carbon nitride sheets forming a desirable plasmonic-metal/semiconductor structure. Under visible light illumination, the gold-graphitic carbon nitride catalyst exhibits a superior oxygen evolution reaction performance in alkaline electrolyte including a lower overpotential of 400 mV (10 mA cm−2 catalytic current density) and a smaller Tafel slope of 53 mV dec−1. And furthermore, the catalyst shows good stability. The improved oxygen evolution reaction property can be attributed to the synergistic effect between graphitic carbon nitride sheet and the gold nanoparticles under simulated sunlight illumination, including the photoelectric effect of graphitic carbon nitride sheet, the diffusion current drifting effect caused by the built-in electric field residing in the Schottky barrier zone (between the graphitic carbon nitride sheet and the gold nanoparticles), and most important, the surface plasmon resonance induced hot-electrons injection effect from plasmonic gold nanoparticles.
[Display omitted]
•Light illumination is available energy to improve OER catalytic activity.•Au/g-C3N4 heterogeneous catalyst exhibits superior OER activity under visible Light.•The plasmonic effects could be employed to enhance OER catalytic activity. |
---|---|
AbstractList | A plasmonic-metal/semiconductor heterogeneous electrocatalyst composed of gold nanoparticles and graphitic carbon nitride sheets are prepared in this work for the purpose of showing off the improvement effect of surface plasmon resonance reinforcing photo-electro cooperation on the oxygen evolution reaction. It is found that gold nanoparticles with 15.3 nm average grain diameter are loaded on graphitic carbon nitride sheets forming a desirable plasmonic-metal/semiconductor structure. Under visible light illumination, the gold-graphitic carbon nitride catalyst exhibits a superior oxygen evolution reaction performance in alkaline electrolyte including a lower overpotential of 400 mV (10 mA cm−2 catalytic current density) and a smaller Tafel slope of 53 mV dec−1. And furthermore, the catalyst shows good stability. The improved oxygen evolution reaction property can be attributed to the synergistic effect between graphitic carbon nitride sheet and the gold nanoparticles under simulated sunlight illumination, including the photoelectric effect of graphitic carbon nitride sheet, the diffusion current drifting effect caused by the built-in electric field residing in the Schottky barrier zone (between the graphitic carbon nitride sheet and the gold nanoparticles), and most important, the surface plasmon resonance induced hot-electrons injection effect from plasmonic gold nanoparticles. A plasmonic-metal/semiconductor heterogeneous electrocatalyst composed of gold nanoparticles and graphitic carbon nitride sheets are prepared in this work for the purpose of showing off the improvement effect of surface plasmon resonance reinforcing photo-electro cooperation on the oxygen evolution reaction. It is found that gold nanoparticles with 15.3 nm average grain diameter are loaded on graphitic carbon nitride sheets forming a desirable plasmonic-metal/semiconductor structure. Under visible light illumination, the gold-graphitic carbon nitride catalyst exhibits a superior oxygen evolution reaction performance in alkaline electrolyte including a lower overpotential of 400 mV (10 mA cm−2 catalytic current density) and a smaller Tafel slope of 53 mV dec−1. And furthermore, the catalyst shows good stability. The improved oxygen evolution reaction property can be attributed to the synergistic effect between graphitic carbon nitride sheet and the gold nanoparticles under simulated sunlight illumination, including the photoelectric effect of graphitic carbon nitride sheet, the diffusion current drifting effect caused by the built-in electric field residing in the Schottky barrier zone (between the graphitic carbon nitride sheet and the gold nanoparticles), and most important, the surface plasmon resonance induced hot-electrons injection effect from plasmonic gold nanoparticles. [Display omitted] •Light illumination is available energy to improve OER catalytic activity.•Au/g-C3N4 heterogeneous catalyst exhibits superior OER activity under visible Light.•The plasmonic effects could be employed to enhance OER catalytic activity. |
Author | Wang, Hairui Zhao, Cuimei Chang, Limin Nie, Ping Sun, Tao Zhang, Xuelin Xue, Xiangxin |
Author_xml | – sequence: 1 givenname: Hairui surname: Wang fullname: Wang, Hairui organization: Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China – sequence: 2 givenname: Tao surname: Sun fullname: Sun, Tao organization: Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China – sequence: 3 givenname: Limin surname: Chang fullname: Chang, Limin email: aaaa2139@163.com organization: Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China – sequence: 4 givenname: Ping surname: Nie fullname: Nie, Ping organization: Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China – sequence: 5 givenname: Xuelin surname: Zhang fullname: Zhang, Xuelin organization: MEMS Center, School of Astronautics, Harbin Institute of Technology, Harbin, 150001, PR China – sequence: 6 givenname: Cuimei surname: Zhao fullname: Zhao, Cuimei organization: Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China – sequence: 7 givenname: Xiangxin surname: Xue fullname: Xue, Xiangxin organization: Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China |
BookMark | eNqNUcGO0zAQtdAi0S18A5Y4J4zjrJMgcagqFpBWcFnOluuMG1euXWxnRX-Gb8VpEQcuIFkaS_Pem5n3bsmNDx4Jec2gZsDE20ONDnVW5dUNsKGGpgbBnpEV6zte8f5uuCErAMarVvTiBblN6QAAnehgRX4-Tkj31ZZ_aalXPqQJMSc6og5RZRzp7kxPTqVj8FbTzXwBnVTMVjtM7-iGTpgxhj16DHOil11i0Cord06ZmhBp-HEubYpPwc3ZBk8jlm2XD_pJeX2dkmbv7H7K1Do3H61XC-IleW6US_jqd12Tb_cfHrefqoevHz9vNw-V5p3I1ajRdAqaIoWgB94OI7R3u9HoBndcsVIF7AQfGA4CeyN606sBhUE0batHviZvrrqnGL7PmLI8hDn6MlI2DYOet10xc026K0rHkFJEI0_RHlU8SwZyCUMe5J8w5BKGhEaWMArz_V9MbfPlwhyVdf_B31z5WEx4shhl0hYX62wseDkG-0-NX4fEs4A |
CitedBy_id | crossref_primary_10_1016_j_apsusc_2023_156652 crossref_primary_10_1002_slct_202102241 crossref_primary_10_1016_j_apsusc_2019_145142 crossref_primary_10_1016_j_carbon_2023_118337 crossref_primary_10_1021_acssuschemeng_2c00359 crossref_primary_10_3390_molecules27206828 crossref_primary_10_1039_D2NJ03716E crossref_primary_10_1002_smtd_202000494 crossref_primary_10_1016_j_jpcs_2020_109672 crossref_primary_10_1016_j_jcou_2021_101691 crossref_primary_10_3390_catal13030560 crossref_primary_10_1016_j_dyepig_2020_108568 crossref_primary_10_1016_j_aca_2022_340404 crossref_primary_10_1016_j_microc_2020_104922 crossref_primary_10_1021_acs_iecr_2c00152 crossref_primary_10_1016_j_mtchem_2020_100392 crossref_primary_10_1016_j_apsusc_2024_160906 crossref_primary_10_1016_j_bios_2022_114634 crossref_primary_10_1016_j_ccr_2022_214669 crossref_primary_10_1016_j_porgcoat_2021_106203 crossref_primary_10_1039_D1NJ02644E crossref_primary_10_1021_acsami_0c12838 crossref_primary_10_1016_j_apsusc_2020_147278 crossref_primary_10_1016_j_apsusc_2022_154952 crossref_primary_10_1016_j_jallcom_2025_178603 crossref_primary_10_1016_j_jcis_2022_11_047 crossref_primary_10_1039_D2QM01064J |
Cites_doi | 10.1002/adma.201604437 10.1039/c2ee21494f 10.1016/j.electacta.2012.03.102 10.1039/C6TC04847A 10.1016/j.carbon.2016.08.020 10.1016/j.jpowsour.2016.11.023 10.1002/adfm.201300510 10.1021/jacs.6b05190 10.1016/j.jpowsour.2016.10.022 10.1002/adfm.201200993 10.1021/am201630s 10.1039/C6NR01491G 10.1021/acsami.5b01212 10.1149/1.2115565 10.1021/cr100246c 10.1016/j.electacta.2016.10.138 10.1515/nanoph-2016-0007 10.1002/anie.201300136 10.1016/j.electacta.2012.10.049 10.1039/C6RA08356K 10.1038/35104599 10.1002/adfm.201302940 10.1021/cm504265w 10.1021/ja901139r 10.1126/science.1223985 10.1002/cssc.201402118 10.1002/anie.201605591 10.1021/acsami.7b14541 10.1021/acscatal.5b02185 10.1002/adom.201700004 10.1021/am401802r 10.1038/ncomms12324 10.1021/ja502128j 10.1016/j.nanoen.2017.07.006 10.1038/nmat3151 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd Copyright Elsevier BV Apr 20, 2019 |
Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright Elsevier BV Apr 20, 2019 |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1016/j.electacta.2019.02.061 |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1873-3859 |
EndPage | 117 |
ExternalDocumentID | 10_1016_j_electacta_2019_02_061 S0013468619303135 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABNUV ABYKQ ACBEA ACDAQ ACGFO ACGFS ACIWK ACNCT ACRLP ADBBV ADECG ADEWK ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM M36 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSK SSZ T5K TWZ UPT WH7 XPP YK3 ZMT ~02 ~G- 29G 41~ 53G AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIDUJ AIGII AIIUN AJQLL AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB HMU HVGLF HZ~ H~9 LPU R2- SC5 SCB SCH SEW SSH T9H VH1 WUQ XOL ZY4 7SR 7U5 8BQ 8FD EFKBS JG9 L7M |
ID | FETCH-LOGICAL-c376t-dcef7a02cede0c9349d045bdfc2eb3a1fc260b6391e96e8f68f8a9e6feef44cd3 |
IEDL.DBID | .~1 |
ISSN | 0013-4686 |
IngestDate | Sun Jul 13 05:32:28 EDT 2025 Tue Jul 01 03:01:53 EDT 2025 Thu Apr 24 23:00:55 EDT 2025 Fri Feb 23 02:26:20 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Au nanoparticles Oxygen evolution reaction Heterogeneous electrocatalyst Graphitic carbon nitride Plasmonic effects |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c376t-dcef7a02cede0c9349d045bdfc2eb3a1fc260b6391e96e8f68f8a9e6feef44cd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2210834787 |
PQPubID | 2045485 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2210834787 crossref_primary_10_1016_j_electacta_2019_02_061 crossref_citationtrail_10_1016_j_electacta_2019_02_061 elsevier_sciencedirect_doi_10_1016_j_electacta_2019_02_061 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-04-20 |
PublicationDateYYYYMMDD | 2019-04-20 |
PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-20 day: 20 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Electrochimica acta |
PublicationYear | 2019 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Xu, Song, Hu (bib8) 2016; 7 Yu, Liu, Han, Huang, Zhao, Yang, Qiu (bib29) 2016; 110 Xue, Ma, Zhou, Zhang, He (bib23) 2015; 7 Yu, Zhong, Zhou, Shao (bib30) 2017; 338 Han, Wang, Gao, Qu (bib20) 2016; 55 Cook, Dogutan, Reece, Surendranath, Teets, Nocera (bib4) 2010; 110 Linic, Christopher, Ingram (bib13) 2011; 10 Bockris, Otagawa (bib11) 1984; 131 Narang, Sundararaman, Atwater (bib14) 2016; 5 Zeng, Song, Lv, Wang, Qina, Zeng (bib24) 2016; 6 Deng, Tang, Feng, Zeng, Wang, Lu, Liu, Yu, Chen, Zhou (bib21) 2017; 9 Ye, Li, Li, Li, Fan, Zhang, Chen, Tung, Wu (bib35) 2015; 5 Xu, Huang, Wang, Tian, Hu, Ma, Wang, Pan, Huang (bib34) 2015; 27 Duan, Chen, Dai, Qiao (bib32) 2014; 24 Du, Luo, Feng, Engelhard, Xie, Han, Sun, Zhang, Yin, Wang, Wang, Shao (bib10) 2017; 39 Kim, Lin, Son, Xu, Nam (bib15) 2017; 5 Liu, Li, Zhao, Wang, Kong, Liu, Zhang, Chang, Meng, Kako, Ye (bib16) 2016; 138 Jahan, Liu, Loh (bib33) 2013; 23 Yang, Kuznietsov, Lublow, Merschjann, Steigert, Klaer, Thomas, Schedel-Niedrig (bib25) 2013; 1 Lu, Gu, Wang, Wu, Liao, Li (bib9) 2017; 29 Li, Yan, Rao, Dong, Shang, Han, Chi, Hu, Liu, Chai, Liu (bib6) 2016; 220 Greiner, Chai, Helander, Tang, Lu (bib26) 2013; 23 Joya, Joya, Ocakoglu, Van de Krol (bib5) 2013; 52 Dresselhaus, Thomas (bib1) 2001; 414 Cheng, Tian, Liu, Ge, Qusti, Asiri, Al-Youbi, Sun (bib22) 2013; 5 Wang, Zhang (bib18) 2012; 71 Gao, Åkermark, Liu, Sun, Åkermark (bib12) 2009; 131 Wei, Shao, Li, Lu, Wang, Zhang, Liu (bib27) 2016; 8 Ye, Long, Huang, Xiong (bib36) 2017; 5 Zhang, Yu, Wang (bib28) 2012; 4 Peng, Freunberger, Chen, G Bruce (bib2) 2012; 337 Tian, Liu, Asiri, Alamry, Sun (bib19) 2014; 7 Cao, Lai, Du (bib3) 2012; 5 Bu, Chen, Yu, Li (bib17) 2013; 88 Chen, Ma, Zhu, Wang, Xiong, Xia (bib7) 2016; 334 Gao, Sheng, Zhuang, Fang, Gu, Jiang, Yan (bib31) 2014; 136 Cook (10.1016/j.electacta.2019.02.061_bib4) 2010; 110 Bockris (10.1016/j.electacta.2019.02.061_bib11) 1984; 131 Du (10.1016/j.electacta.2019.02.061_bib10) 2017; 39 Li (10.1016/j.electacta.2019.02.061_bib6) 2016; 220 Ye (10.1016/j.electacta.2019.02.061_bib35) 2015; 5 Lu (10.1016/j.electacta.2019.02.061_bib9) 2017; 29 Linic (10.1016/j.electacta.2019.02.061_bib13) 2011; 10 Jahan (10.1016/j.electacta.2019.02.061_bib33) 2013; 23 Zhang (10.1016/j.electacta.2019.02.061_bib28) 2012; 4 Cheng (10.1016/j.electacta.2019.02.061_bib22) 2013; 5 Yu (10.1016/j.electacta.2019.02.061_bib30) 2017; 338 Xue (10.1016/j.electacta.2019.02.061_bib23) 2015; 7 Ye (10.1016/j.electacta.2019.02.061_bib36) 2017; 5 Greiner (10.1016/j.electacta.2019.02.061_bib26) 2013; 23 Liu (10.1016/j.electacta.2019.02.061_bib16) 2016; 138 Zeng (10.1016/j.electacta.2019.02.061_bib24) 2016; 6 Yu (10.1016/j.electacta.2019.02.061_bib29) 2016; 110 Xu (10.1016/j.electacta.2019.02.061_bib8) 2016; 7 Xu (10.1016/j.electacta.2019.02.061_bib34) 2015; 27 Wang (10.1016/j.electacta.2019.02.061_bib18) 2012; 71 Chen (10.1016/j.electacta.2019.02.061_bib7) 2016; 334 Duan (10.1016/j.electacta.2019.02.061_bib32) 2014; 24 Narang (10.1016/j.electacta.2019.02.061_bib14) 2016; 5 Kim (10.1016/j.electacta.2019.02.061_bib15) 2017; 5 Wei (10.1016/j.electacta.2019.02.061_bib27) 2016; 8 Han (10.1016/j.electacta.2019.02.061_bib20) 2016; 55 Deng (10.1016/j.electacta.2019.02.061_bib21) 2017; 9 Joya (10.1016/j.electacta.2019.02.061_bib5) 2013; 52 Tian (10.1016/j.electacta.2019.02.061_bib19) 2014; 7 Dresselhaus (10.1016/j.electacta.2019.02.061_bib1) 2001; 414 Peng (10.1016/j.electacta.2019.02.061_bib2) 2012; 337 Cao (10.1016/j.electacta.2019.02.061_bib3) 2012; 5 Gao (10.1016/j.electacta.2019.02.061_bib12) 2009; 131 Bu (10.1016/j.electacta.2019.02.061_bib17) 2013; 88 Yang (10.1016/j.electacta.2019.02.061_bib25) 2013; 1 Gao (10.1016/j.electacta.2019.02.061_bib31) 2014; 136 |
References_xml | – volume: 5 start-page: 6973 year: 2015 end-page: 6979 ident: bib35 article-title: Enhanced driving force and charge separation efficiency of protonated g-C3N4 for photocatalytic O2 evolution publication-title: ACS Catal. – volume: 338 start-page: 26 year: 2017 end-page: 33 ident: bib30 article-title: Facile synthesis of nitrogen-doped carbon nanotubes encapsulating nickel cobalt alloys 3D networks for oxygen evolution reaction in an alkaline solution publication-title: J. Power Sources – volume: 5 start-page: 1008 year: 2017 end-page: 1021 ident: bib36 article-title: Plasmonic nanostructures in solar energy conversion publication-title: J. Mater. Chem. C – volume: 110 start-page: 6474 year: 2010 end-page: 6502 ident: bib4 article-title: Solar energy supply and storage for the legacy and nonlegacy worlds publication-title: Chem. Rev. – volume: 8 start-page: 11034 year: 2016 end-page: 11043 ident: bib27 article-title: Facile in situ synthesis of plasmonic nanoparticles decorated g-C3N4/TiO2 heterojunction nanofibers and comparison study of their photosynergistic effects for efficient photocatalytic H2 evolution publication-title: Nanoscale – volume: 7 start-page: 12324 year: 2016 ident: bib8 article-title: A nickel iron diselenide-derived efficient oxygen-evolution catalyst publication-title: Nat. Commun. – volume: 29 year: 2017 ident: bib9 article-title: Bimetal-organic framework derived CoFe2O4/C porous hybrid nanorod arrays as high-performance electrocatalysts for oxygen evolution reaction publication-title: Adv. Mater. – volume: 1 start-page: 6407 year: 2013 end-page: 6415 ident: bib25 article-title: Solar hydrogen evolution using metal-free photocatalytic polymeric carbon nitride/CuInS2 composites as photocathodes publication-title: J. Mater. Chem. – volume: 337 start-page: 563 year: 2012 end-page: 566 ident: bib2 article-title: A reversible and higher-rate LiO2 battery publication-title: Science – volume: 7 start-page: 2125 year: 2014 end-page: 2132 ident: bib19 article-title: Ultrathin graphitic C3N4 nanosheets/graphene composites: efficient organic electrocatalyst for oxygen evolution reaction publication-title: ChemSusChem – volume: 136 start-page: 7077 year: 2014 end-page: 7084 ident: bib31 article-title: Efficient water oxidation using nanostructured α-nickel-hydroxide as an electrocatalyst publication-title: J. Am. Chem. Soc. – volume: 131 start-page: 8726 year: 2009 end-page: 8727 ident: bib12 article-title: Nucleophilic attack of hydroxide on a MnVOxo complex: a model of the O-O bond formation in the oxygen evolving complex of photosystem II publication-title: J. Am. Chem. Soc. – volume: 6 year: 2016 ident: bib24 article-title: Plasmonic photocatalyst Au/g-C3N4/NiFe2O4 nanocomposites for enhanced visible-light-driven photocatalytic hydrogen evolution publication-title: RSC Adv. – volume: 71 start-page: 10 year: 2012 end-page: 16 ident: bib18 article-title: Modification of TiO2 nanorod arrays by graphite-like C3N4 with high visible light photoelectrochemical activity publication-title: Electrochim. Acta – volume: 5 year: 2017 ident: bib15 article-title: Hot-electron-mediated photochemical reactions: principles, recent advances, and challenges publication-title: Adv. Opt. Mater. – volume: 23 start-page: 215 year: 2013 end-page: 226 ident: bib26 article-title: Metal/metal-oxide interfaces: how metal contacts affect the work function and band structure of MoO3 publication-title: Adv. Funct. Mater. – volume: 5 start-page: 6815 year: 2013 end-page: 6819 ident: bib22 article-title: Au-nanoparticle-loaded graphitic carbon nitride nanosheets: green photocatalytic synthesis and application toward the degradation of organic pollutants publication-title: ACS Appl. Mater. Interfaces – volume: 5 start-page: 8134 year: 2012 end-page: 8157 ident: bib3 article-title: Catalytic water oxidation at single metal sites publication-title: Energy Environ. Sci. – volume: 110 start-page: 1 year: 2016 end-page: 7 ident: bib29 article-title: NiCo-layered double hydroxides vertically assembled on carbon fiber papers as binder-free high-active electrocatalysts for water oxidation publication-title: Carbon – volume: 138 start-page: 9128 year: 2016 end-page: 9136 ident: bib16 article-title: Promoting active species generation by plasmon-induced hot-electron excitation for efficient electrocatalytic oxygen evolution publication-title: J. Am. Chem. Soc. – volume: 27 start-page: 1612 year: 2015 end-page: 1621 ident: bib34 article-title: Insights into enhanced visible-light photocatalytic hydrogen evolution of g-C3N4 and highly reduced graphene oxide composite: the role of oxygen publication-title: Chem. Mater. – volume: 334 start-page: 112 year: 2016 end-page: 119 ident: bib7 article-title: Metal-organic- framework-derived Bi-metallic sulfide on N, S-co doped porous carbon nanocomposites as multifunctional electrocatalysts publication-title: J. Power Sources – volume: 9 start-page: 42816 year: 2017 end-page: 42828 ident: bib21 article-title: Construction of plasmonic Ag and nitrogen-doped graphene quantum dots codecorated ultrathin graphitic carbon nitride nanosheet composites with enhanced photocatalytic activity: full-spectrum response ability and mechanism insight publication-title: ACS Appl. Mater. Interfaces – volume: 7 start-page: 9630 year: 2015 end-page: 9637 ident: bib23 article-title: Facile photochemical synthesis of Au/Pt/g-C3N4 with plasmon-enhanced photocatalytic activity for antibiotic degradation publication-title: ACS Appl. Mater. Interfaces – volume: 10 start-page: 911 year: 2011 end-page: 921 ident: bib13 article-title: Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy publication-title: Nat. Mater. – volume: 52 start-page: 10426 year: 2013 end-page: 10437 ident: bib5 article-title: Water-splitting catalysis and solar fuel devices: artificial leaves on the move publication-title: Angew. Chem. Int. Ed. – volume: 5 start-page: 96 year: 2016 end-page: 111 ident: bib14 article-title: Plasmonic hot carrier dynamics in solid-state and chemical systems for energy conversion publication-title: Nanophotonics – volume: 4 start-page: 990 year: 2012 end-page: 996 ident: bib28 article-title: Hierarchical top-porous/bottom-tubular TiO2 nanostructures decorated with Pd nanoparticles for efficient photoelectrocatalytic decomposition of synergistic pollutants publication-title: ACS Appl. Mater. Interfaces – volume: 414 start-page: 332 year: 2001 end-page: 337 ident: bib1 article-title: Overview alternative energy technologies publication-title: Nature – volume: 131 start-page: 290 year: 1984 end-page: 302 ident: bib11 article-title: The electrocatalysis of oxygen evolution on perovskitesv publication-title: J. Electrochem. Soc. – volume: 220 start-page: 536 year: 2016 end-page: 544 ident: bib6 article-title: Electrochemically activated NiSe-NixSy hybrid nanorods as efficient electrocatalysts for oxygen evolution reaction publication-title: Electrochim. Acta – volume: 39 start-page: 245 year: 2017 end-page: 252 ident: bib10 article-title: Nitrogen–doped graphitized carbon shell encapsulated NiFe nanoparticles: a highly durable oxygen evolution catalyst publication-title: Nano Energy – volume: 23 start-page: 5363 year: 2013 end-page: 5372 ident: bib33 article-title: A graphene oxide and copper-centered metal organic framework composite as a tri-functional catalyst for HER, OER, and ORR publication-title: Adv. Funct. Mater. – volume: 88 start-page: 294 year: 2013 end-page: 300 ident: bib17 article-title: A novel application of g-C3N4 thin film in photoelectrochemical anticorrosion publication-title: Electrochim. Acta – volume: 55 start-page: 10849 year: 2016 end-page: 10853 ident: bib20 article-title: Graphitic carbon nitride/nitrogen-rich carbon nanofibers: highly efficient photocatalytic hydrogen evolution without cocatalysts publication-title: Angew. Chem. Int. Ed. – volume: 24 start-page: 2072 year: 2014 end-page: 2078 ident: bib32 article-title: Shape control of Mn3O4 nanoparticles on nitrogen-doped graphene for enhanced oxygen reduction activity publication-title: Adv. Funct. Mater. – volume: 29 year: 2017 ident: 10.1016/j.electacta.2019.02.061_bib9 article-title: Bimetal-organic framework derived CoFe2O4/C porous hybrid nanorod arrays as high-performance electrocatalysts for oxygen evolution reaction publication-title: Adv. Mater. doi: 10.1002/adma.201604437 – volume: 5 start-page: 8134 year: 2012 ident: 10.1016/j.electacta.2019.02.061_bib3 article-title: Catalytic water oxidation at single metal sites publication-title: Energy Environ. Sci. doi: 10.1039/c2ee21494f – volume: 71 start-page: 10 year: 2012 ident: 10.1016/j.electacta.2019.02.061_bib18 article-title: Modification of TiO2 nanorod arrays by graphite-like C3N4 with high visible light photoelectrochemical activity publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2012.03.102 – volume: 5 start-page: 1008 year: 2017 ident: 10.1016/j.electacta.2019.02.061_bib36 article-title: Plasmonic nanostructures in solar energy conversion publication-title: J. Mater. Chem. C doi: 10.1039/C6TC04847A – volume: 110 start-page: 1 year: 2016 ident: 10.1016/j.electacta.2019.02.061_bib29 article-title: NiCo-layered double hydroxides vertically assembled on carbon fiber papers as binder-free high-active electrocatalysts for water oxidation publication-title: Carbon doi: 10.1016/j.carbon.2016.08.020 – volume: 338 start-page: 26 year: 2017 ident: 10.1016/j.electacta.2019.02.061_bib30 article-title: Facile synthesis of nitrogen-doped carbon nanotubes encapsulating nickel cobalt alloys 3D networks for oxygen evolution reaction in an alkaline solution publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.11.023 – volume: 23 start-page: 5363 year: 2013 ident: 10.1016/j.electacta.2019.02.061_bib33 article-title: A graphene oxide and copper-centered metal organic framework composite as a tri-functional catalyst for HER, OER, and ORR publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201300510 – volume: 138 start-page: 9128 year: 2016 ident: 10.1016/j.electacta.2019.02.061_bib16 article-title: Promoting active species generation by plasmon-induced hot-electron excitation for efficient electrocatalytic oxygen evolution publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b05190 – volume: 334 start-page: 112 year: 2016 ident: 10.1016/j.electacta.2019.02.061_bib7 article-title: Metal-organic- framework-derived Bi-metallic sulfide on N, S-co doped porous carbon nanocomposites as multifunctional electrocatalysts publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.10.022 – volume: 23 start-page: 215 year: 2013 ident: 10.1016/j.electacta.2019.02.061_bib26 article-title: Metal/metal-oxide interfaces: how metal contacts affect the work function and band structure of MoO3 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201200993 – volume: 4 start-page: 990 year: 2012 ident: 10.1016/j.electacta.2019.02.061_bib28 article-title: Hierarchical top-porous/bottom-tubular TiO2 nanostructures decorated with Pd nanoparticles for efficient photoelectrocatalytic decomposition of synergistic pollutants publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am201630s – volume: 8 start-page: 11034 year: 2016 ident: 10.1016/j.electacta.2019.02.061_bib27 article-title: Facile in situ synthesis of plasmonic nanoparticles decorated g-C3N4/TiO2 heterojunction nanofibers and comparison study of their photosynergistic effects for efficient photocatalytic H2 evolution publication-title: Nanoscale doi: 10.1039/C6NR01491G – volume: 7 start-page: 9630 year: 2015 ident: 10.1016/j.electacta.2019.02.061_bib23 article-title: Facile photochemical synthesis of Au/Pt/g-C3N4 with plasmon-enhanced photocatalytic activity for antibiotic degradation publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b01212 – volume: 131 start-page: 290 year: 1984 ident: 10.1016/j.electacta.2019.02.061_bib11 article-title: The electrocatalysis of oxygen evolution on perovskitesv publication-title: J. Electrochem. Soc. doi: 10.1149/1.2115565 – volume: 110 start-page: 6474 year: 2010 ident: 10.1016/j.electacta.2019.02.061_bib4 article-title: Solar energy supply and storage for the legacy and nonlegacy worlds publication-title: Chem. Rev. doi: 10.1021/cr100246c – volume: 220 start-page: 536 year: 2016 ident: 10.1016/j.electacta.2019.02.061_bib6 article-title: Electrochemically activated NiSe-NixSy hybrid nanorods as efficient electrocatalysts for oxygen evolution reaction publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.10.138 – volume: 5 start-page: 96 year: 2016 ident: 10.1016/j.electacta.2019.02.061_bib14 article-title: Plasmonic hot carrier dynamics in solid-state and chemical systems for energy conversion publication-title: Nanophotonics doi: 10.1515/nanoph-2016-0007 – volume: 52 start-page: 10426 year: 2013 ident: 10.1016/j.electacta.2019.02.061_bib5 article-title: Water-splitting catalysis and solar fuel devices: artificial leaves on the move publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201300136 – volume: 88 start-page: 294 year: 2013 ident: 10.1016/j.electacta.2019.02.061_bib17 article-title: A novel application of g-C3N4 thin film in photoelectrochemical anticorrosion publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2012.10.049 – volume: 6 year: 2016 ident: 10.1016/j.electacta.2019.02.061_bib24 article-title: Plasmonic photocatalyst Au/g-C3N4/NiFe2O4 nanocomposites for enhanced visible-light-driven photocatalytic hydrogen evolution publication-title: RSC Adv. doi: 10.1039/C6RA08356K – volume: 414 start-page: 332 year: 2001 ident: 10.1016/j.electacta.2019.02.061_bib1 article-title: Overview alternative energy technologies publication-title: Nature doi: 10.1038/35104599 – volume: 24 start-page: 2072 year: 2014 ident: 10.1016/j.electacta.2019.02.061_bib32 article-title: Shape control of Mn3O4 nanoparticles on nitrogen-doped graphene for enhanced oxygen reduction activity publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201302940 – volume: 27 start-page: 1612 year: 2015 ident: 10.1016/j.electacta.2019.02.061_bib34 article-title: Insights into enhanced visible-light photocatalytic hydrogen evolution of g-C3N4 and highly reduced graphene oxide composite: the role of oxygen publication-title: Chem. Mater. doi: 10.1021/cm504265w – volume: 131 start-page: 8726 year: 2009 ident: 10.1016/j.electacta.2019.02.061_bib12 article-title: Nucleophilic attack of hydroxide on a MnVOxo complex: a model of the O-O bond formation in the oxygen evolving complex of photosystem II publication-title: J. Am. Chem. Soc. doi: 10.1021/ja901139r – volume: 337 start-page: 563 year: 2012 ident: 10.1016/j.electacta.2019.02.061_bib2 article-title: A reversible and higher-rate LiO2 battery publication-title: Science doi: 10.1126/science.1223985 – volume: 7 start-page: 2125 year: 2014 ident: 10.1016/j.electacta.2019.02.061_bib19 article-title: Ultrathin graphitic C3N4 nanosheets/graphene composites: efficient organic electrocatalyst for oxygen evolution reaction publication-title: ChemSusChem doi: 10.1002/cssc.201402118 – volume: 55 start-page: 10849 year: 2016 ident: 10.1016/j.electacta.2019.02.061_bib20 article-title: Graphitic carbon nitride/nitrogen-rich carbon nanofibers: highly efficient photocatalytic hydrogen evolution without cocatalysts publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201605591 – volume: 9 start-page: 42816 issue: 49 year: 2017 ident: 10.1016/j.electacta.2019.02.061_bib21 article-title: Construction of plasmonic Ag and nitrogen-doped graphene quantum dots codecorated ultrathin graphitic carbon nitride nanosheet composites with enhanced photocatalytic activity: full-spectrum response ability and mechanism insight publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b14541 – volume: 5 start-page: 6973 year: 2015 ident: 10.1016/j.electacta.2019.02.061_bib35 article-title: Enhanced driving force and charge separation efficiency of protonated g-C3N4 for photocatalytic O2 evolution publication-title: ACS Catal. doi: 10.1021/acscatal.5b02185 – volume: 5 year: 2017 ident: 10.1016/j.electacta.2019.02.061_bib15 article-title: Hot-electron-mediated photochemical reactions: principles, recent advances, and challenges publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201700004 – volume: 1 start-page: 6407 year: 2013 ident: 10.1016/j.electacta.2019.02.061_bib25 article-title: Solar hydrogen evolution using metal-free photocatalytic polymeric carbon nitride/CuInS2 composites as photocathodes publication-title: J. Mater. Chem. – volume: 5 start-page: 6815 year: 2013 ident: 10.1016/j.electacta.2019.02.061_bib22 article-title: Au-nanoparticle-loaded graphitic carbon nitride nanosheets: green photocatalytic synthesis and application toward the degradation of organic pollutants publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am401802r – volume: 7 start-page: 12324 year: 2016 ident: 10.1016/j.electacta.2019.02.061_bib8 article-title: A nickel iron diselenide-derived efficient oxygen-evolution catalyst publication-title: Nat. Commun. doi: 10.1038/ncomms12324 – volume: 136 start-page: 7077 year: 2014 ident: 10.1016/j.electacta.2019.02.061_bib31 article-title: Efficient water oxidation using nanostructured α-nickel-hydroxide as an electrocatalyst publication-title: J. Am. Chem. Soc. doi: 10.1021/ja502128j – volume: 39 start-page: 245 year: 2017 ident: 10.1016/j.electacta.2019.02.061_bib10 article-title: Nitrogen–doped graphitized carbon shell encapsulated NiFe nanoparticles: a highly durable oxygen evolution catalyst publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.07.006 – volume: 10 start-page: 911 year: 2011 ident: 10.1016/j.electacta.2019.02.061_bib13 article-title: Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy publication-title: Nat. Mater. doi: 10.1038/nmat3151 |
SSID | ssj0007670 |
Score | 2.4215817 |
Snippet | A plasmonic-metal/semiconductor heterogeneous electrocatalyst composed of gold nanoparticles and graphitic carbon nitride sheets are prepared in this work for... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 110 |
SubjectTerms | Au nanoparticles Carbon Carbon nitride Catalysis Catalysts Diffusion effects Electric fields Gold Graphitic carbon nitride Heterogeneous electrocatalyst Illumination Light Nanoparticles Nanosheets Oxygen evolution reaction Oxygen evolution reactions Photoelectric effect Photoelectricity Plasmonic effects Sheets Sunlight Synergistic effect |
Title | The g-C3N4 nanosheets decorated by plasmonic Au nanoparticles: A heterogeneous electrocatalyst for oxygen evolution reaction enhanced by sunlight illumination |
URI | https://dx.doi.org/10.1016/j.electacta.2019.02.061 https://www.proquest.com/docview/2210834787 |
Volume | 303 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQHNoeENBWhQLyodeUJDZOwm21Ai1U3VORuFl2PO5uRZNVk626l_6U_lZmvA4FpIpDpUhRHpNEmcnMN5N5MPaBbKJ3pz5xvoBEelclhtprixqxLBgEJIYC-p-nanItr25ObzbYeKiFobTKqPvXOj1o67jnJL7Nk8V8TjW-mZCqRA9AUANCKjSXsiAp__j7b5pHoYp0mGJAZz_K8QqjZgwulONVheadKvuXhXqiq4MButhh2xE58tH64XbZBjR77MV4GNi2x1496C34mv1BAeBfk7GYSt6Ypu1mAH3HHbmbiC8dtyu-QOj8nXrj8tEynLQY8uTO-IjPKFOmRQGDdtnxOC8nhHtWXc8R7PL21woPc_gZ5ZcjAg11EhyaWUgtoLt0y-aWQgB8TlOV5-vw4xt2fXH-ZTxJ4jCGpEYd1CeuBl-YNEdSSOtKyMohGrTO1zn64ybDtUot4p0MKgWlV6UvTQXKA3gpayfess2mbeAd4z6HVJQGVYGqEY0J68D6XBZOWWNtpvaZGhig69ipnAZm3OohJe2bvuecJs7pNNfIuX2W3hMu1s06nic5GzisH8mdRpPyPPHhIBM6fvqdztGJLgX1PDr4n2u_Zy9pi35c5ekh2-x_LOEI8U9vj4OAH7Ot0eWnyfQOy6YL9A |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3BbtNAEB2V9FA4ICggCgX2wNWq7XXWdm9RRJXSNqdW6m21650lQcWOsIPIz_CtzDjriCKhHpAsWfJ6bMsznnmznn0D8JFjondjHzmfY5R5V0aG6bVlRVgWDQESwxP6V3M1u8k-345v92A6rIXhssrg-7c-vffW4chJeJsnq-WS1_gmMlMFZQCSCQjHj2Cf2anGI9ifnF_M5juHnKs8HhoZsMC9Mq--24yhjcu8yp6_UyX_ClJ_ues-Bp09g6cBPIrJ9vmewx7Wh3AwHXq2HcKTP-gFX8AvsgHxJZrKeSZqUzftArFrheOMkyCmE3YjVoSevzE9rpis-5NWQ6ncqZiIBRfLNGRj2KxbEVrm9DM-m7YThHdF83NDwwJ_BBMWBEL7pRIC60VfXcB3adf1Hc8CiCU3Vl5uZyBfws3Zp-vpLAr9GKKK3FAXuQp9buKURDGuSpmVjgChdb5KKSU3Ce1VbAnyJFgqLLwqfGFKVB7RZ1nl5CsY1U2Nr0H4FGNZGPIGqiJAJq1D69Msd8oaaxN1BGpQgK4CWTn3zLjTQ1XaV73TnGbN6TjVpLkjiHeCqy1fx8Mip4OG9T3T0xRVHhY-HmxCh6-_1Snl0YVk2qM3_3PtD3Awu7661Jfn84u38JhH-D9WGh_DqPu-xncEhzr7Ppj7b99NDqU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+g-C3N4+nanosheets+decorated+by+plasmonic+Au+nanoparticles%3A+A+heterogeneous+electrocatalyst+for+oxygen+evolution+reaction+enhanced+by+sunlight+illumination&rft.jtitle=Electrochimica+acta&rft.au=Wang%2C+Hairui&rft.au=Sun%2C+Tao&rft.au=Chang%2C+Limin&rft.au=Nie%2C+Ping&rft.date=2019-04-20&rft.pub=Elsevier+BV&rft.issn=0013-4686&rft.eissn=1873-3859&rft.volume=303&rft.spage=110&rft_id=info:doi/10.1016%2Fj.electacta.2019.02.061&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-4686&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-4686&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-4686&client=summon |