New insights into the methods for predicting ground surface roughness in the age of digitalisation

Grinding is a multi-length scale material removal process that is widely employed to machine a wide variety of materials in almost every industrial sector. Surface roughness induced by a grinding operation can affect corrosion resistance, wear resistance, and contact stiffness of the ground componen...

Full description

Saved in:
Bibliographic Details
Published inPrecision engineering Vol. 67; pp. 393 - 418
Main Authors Pan, Yuhang, Zhou, Ping, Yan, Ying, Agrawal, Anupam, Wang, Yonghao, Guo, Dongming, Goel, Saurav
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.01.2021
Subjects
Online AccessGet full text
ISSN0141-6359
DOI10.1016/j.precisioneng.2020.11.001

Cover

Loading…
Abstract Grinding is a multi-length scale material removal process that is widely employed to machine a wide variety of materials in almost every industrial sector. Surface roughness induced by a grinding operation can affect corrosion resistance, wear resistance, and contact stiffness of the ground components. Prediction of surface roughness is useful for describing the quality of ground surfaces, evaluate the efficiency of the grinding process and guide the feedback control of the grinding parameters in real-time to help reduce the cost of production. This paper reviews extant research and discusses advances in the realm of machining theory, experimental design and Artificial Intelligence related to ground surface roughness prediction. The advantages and disadvantages of various grinding methods, current challenges and evolving future trends considering Industry-4.0 ready new generation machine tools are also discussed. [Display omitted] •The classification of ground surface roughness prediction methods are discussed.•Numerous methods for the predicition of the ground surface roughness with their principles and limitations are presented.•The development trend of the ground surface roughness prediction models are analyzed.•A futuristic multi-information fusion system for surface roughness prediction in the age of digitalisation is proposed.
AbstractList Grinding is a multi-length scale material removal process that is widely employed to machine a wide variety of materials in almost every industrial sector. Surface roughness induced by a grinding operation can affect corrosion resistance, wear resistance, and contact stiffness of the ground components. Prediction of surface roughness is useful for describing the quality of ground surfaces, evaluate the efficiency of the grinding process and guide the feedback control of the grinding parameters in real-time to help reduce the cost of production. This paper reviews extant research and discusses advances in the realm of machining theory, experimental design and Artificial Intelligence related to ground surface roughness prediction. The advantages and disadvantages of various grinding methods, current challenges and evolving future trends considering Industry-4.0 ready new generation machine tools are also discussed. [Display omitted] •The classification of ground surface roughness prediction methods are discussed.•Numerous methods for the predicition of the ground surface roughness with their principles and limitations are presented.•The development trend of the ground surface roughness prediction models are analyzed.•A futuristic multi-information fusion system for surface roughness prediction in the age of digitalisation is proposed.
Author Pan, Yuhang
Zhou, Ping
Agrawal, Anupam
Goel, Saurav
Wang, Yonghao
Guo, Dongming
Yan, Ying
Author_xml – sequence: 1
  givenname: Yuhang
  surname: Pan
  fullname: Pan, Yuhang
  organization: Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian 116024, China
– sequence: 2
  givenname: Ping
  surname: Zhou
  fullname: Zhou, Ping
  email: pzhou@dlut.edu.cn
  organization: Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian 116024, China
– sequence: 3
  givenname: Ying
  surname: Yan
  fullname: Yan, Ying
  organization: Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian 116024, China
– sequence: 4
  givenname: Anupam
  surname: Agrawal
  fullname: Agrawal, Anupam
  organization: Mays Business School, Texas A&M University, College Station, TX, USA
– sequence: 5
  givenname: Yonghao
  surname: Wang
  fullname: Wang, Yonghao
  organization: Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian 116024, China
– sequence: 6
  givenname: Dongming
  surname: Guo
  fullname: Guo, Dongming
  organization: Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian 116024, China
– sequence: 7
  givenname: Saurav
  surname: Goel
  fullname: Goel, Saurav
  organization: School of Engineering, London South Bank University, 103 Borough Road, London, SE1 0AA, UK
BookMark eNqNkE1PAyEURVnUxLb6H4j7GWGm81FXmvqZNLrRNWHgMUPTQgNU47_3jbowrroC3ss5udwZmTjvgJALznLOeH25yfcBlI0Wx67PC1bggueM8QmZMr7gWV1Wy1Myi3HDGGtatpiS7hk-qHXR9kOKeEmepgHoDtLgdaTGB4pWbVWyrqd98AenaTwEIxVQfPWDgziC35jsgXpDte1tklsbZcIwZ-TEyG2E899zTt7u715Xj9n65eFpdbPOVNnUKVPcLKRudVe0XcWKutHQVl2LKQscV0wC7kpZlI1qeGfAFGZZS9a1XPFKqbqck-sfrwo-xgBGKEwxJkhB2q3gTIw9iY3425MYexKcC-wJFVf_FPtgdzJ8Hgff_sCAn3y3EERUFpzC9hBJQnt7jOYLZveTWw
CitedBy_id crossref_primary_10_1007_s00170_023_11417_x
crossref_primary_10_1007_s00170_024_14689_z
crossref_primary_10_1155_2021_1560972
crossref_primary_10_1016_j_jmapro_2022_08_014
crossref_primary_10_1088_1361_6501_ad8950
crossref_primary_10_3389_fonc_2022_956705
crossref_primary_10_3390_electronics12061375
crossref_primary_10_1016_j_ins_2022_10_033
crossref_primary_10_3390_ma14185128
crossref_primary_10_1038_s41598_023_31461_7
crossref_primary_10_3390_ma17164093
crossref_primary_10_1016_j_ijmecsci_2022_107562
crossref_primary_10_1016_j_jmapro_2023_01_037
crossref_primary_10_1016_j_measurement_2023_113381
crossref_primary_10_1007_s00170_024_13734_1
crossref_primary_10_1155_2022_2076591
crossref_primary_10_1016_j_matdes_2022_110953
crossref_primary_10_1016_j_measurement_2022_111982
crossref_primary_10_1016_j_cirp_2024_05_001
crossref_primary_10_1016_j_dcan_2022_03_007
crossref_primary_10_3390_sym13091717
crossref_primary_10_1007_s00170_023_11886_0
crossref_primary_10_1155_2022_4844993
crossref_primary_10_1155_2022_4957672
crossref_primary_10_1016_j_jmbbm_2022_105185
crossref_primary_10_3390_machines9120369
crossref_primary_10_3390_lubricants12030100
crossref_primary_10_1007_s11431_024_2821_3
crossref_primary_10_1016_S1003_6326_22_65826_6
crossref_primary_10_1080_0951192X_2023_2204486
crossref_primary_10_1016_j_matdes_2022_111513
crossref_primary_10_1016_j_mfglet_2024_03_002
crossref_primary_10_1007_s42247_021_00249_8
crossref_primary_10_1016_j_triboint_2024_109574
crossref_primary_10_1007_s41871_021_00109_3
crossref_primary_10_4018_IJDCF_315288
crossref_primary_10_1007_s11814_024_00288_x
crossref_primary_10_3390_math10203796
crossref_primary_10_1007_s00170_025_15235_1
crossref_primary_10_3390_fractalfract6060341
crossref_primary_10_1007_s00170_022_08846_5
crossref_primary_10_2139_ssrn_4175893
crossref_primary_10_1109_JSEN_2021_3077468
crossref_primary_10_21062_mft_2025_006
crossref_primary_10_1007_s12598_024_02827_1
crossref_primary_10_3390_metrology3030016
crossref_primary_10_1016_j_precisioneng_2021_07_011
crossref_primary_10_3390_ma16051782
crossref_primary_10_3390_math10142484
crossref_primary_10_1016_j_mssp_2022_107019
crossref_primary_10_1016_j_engappai_2024_108831
crossref_primary_10_1039_D4NA00558A
crossref_primary_10_3390_math10152788
crossref_primary_10_1088_1757_899X_1146_1_012003
crossref_primary_10_1016_j_ndteint_2025_103360
crossref_primary_10_1155_2021_1082834
crossref_primary_10_1016_j_jmapro_2024_10_007
crossref_primary_10_1016_j_jmapro_2023_01_002
crossref_primary_10_1016_j_ijmecsci_2024_109076
crossref_primary_10_1007_s12206_022_0137_3
crossref_primary_10_3390_met12091403
Cites_doi 10.1038/s41524-019-0221-0
10.1016/j.ijmecsci.2019.03.026
10.1016/j.ijmachtools.2013.07.002
10.1080/00207540412331330110
10.1016/j.precisioneng.2020.05.004
10.1007/s11012-013-9710-2
10.1016/j.ijmachtools.2005.07.012
10.1007/s00170-009-2104-x
10.1016/j.matpr.2017.12.132
10.1016/j.cirpj.2012.07.004
10.1007/s00170-014-5884-6
10.1007/s00170-014-6767-6
10.1016/j.asoc.2015.01.059
10.1007/s00170-018-2458-z
10.1007/s00170-002-1533-6
10.1007/s00170-007-1201-y
10.1007/s10845-016-1285-z
10.1016/j.cirp.2006.10.003
10.1016/j.precisioneng.2013.02.009
10.1016/j.ijmachtools.2007.03.003
10.1016/S0924-0136(02)00589-7
10.1016/j.pisc.2016.04.077
10.1016/j.precisioneng.2017.04.004
10.1139/tcsme-1984-0031
10.1007/s00170-012-4546-9
10.1007/s00170-014-6020-3
10.1007/s10845-013-0853-8
10.1007/s00170-018-2590-9
10.1016/j.jmatprotec.2004.02.011
10.1016/S0890-6955(03)00165-2
10.1007/s11740-013-0524-9
10.1016/j.jeurceramsoc.2018.11.002
10.1016/j.ijmecsci.2019.105263
10.1016/j.ijmachtools.2016.07.004
10.1109/72.159069
10.3390/app8112165
10.1007/s00170-012-4452-1
10.1016/j.ijmecsci.2018.06.024
10.1016/j.jclepro.2018.09.116
10.1016/j.jmatprotec.2007.10.024
10.1016/j.jmapro.2019.01.046
10.1007/s00170-014-6032-z
10.1016/j.ijmachtools.2012.01.003
10.1007/s10845-009-0243-4
10.1007/s00170-015-7337-2
10.1016/S0924-0136(03)00284-X
10.1016/j.jmatprotec.2007.03.032
10.1504/IJSURFSE.2017.088973
10.1016/S0890-6955(02)00011-1
10.1080/00207549208948164
10.1080/10426914.2013.763678
10.1016/j.aei.2020.101037
10.1016/j.ijmachtools.2004.08.007
10.1016/j.conengprac.2004.11.006
10.1007/s00170-015-7205-0
10.1016/j.ijmachtools.2012.08.005
10.1080/0951192X.2012.665185
10.1016/j.ijmachtools.2018.01.002
10.1007/s00521-014-1696-8
10.1016/j.ijmachtools.2005.05.019
10.1007/s00170-009-2029-4
10.1007/s00170-014-6189-5
10.1016/j.eswa.2010.12.074
10.1007/s00170-017-0949-y
10.1016/j.jmsy.2015.03.005
10.1016/j.compind.2019.06.001
10.1016/j.measurement.2019.07.053
10.1016/j.jmatprotec.2005.06.002
10.1016/j.jmatprotec.2005.02.080
10.1115/1.4041245
10.1007/s00170-018-2909-6
10.1177/0954405419840556
10.1016/S0890-6955(99)00002-4
10.1080/00207549508930206
10.1016/j.ijmachtools.2004.10.005
10.1016/j.procir.2015.04.092
10.1016/j.ijmachtools.2005.01.006
10.1109/TIE.2018.2856193
10.1016/S0007-8506(07)63254-5
10.1080/0951192X.2020.1747642
10.1007/s00170-018-2121-8
10.1016/j.ijmachtools.2010.08.009
10.1007/s00170-010-2599-1
10.1002/jbm.b.31477
10.1111/j.1600-051X.1995.tb01765.x
10.1109/TLA.2015.7040629
10.1115/1.3438277
10.1016/j.cirp.2010.05.003
10.1007/s00170-017-0676-4
10.1016/j.ceramint.2016.10.135
10.1080/15502280701815382
10.1007/s00170-009-1977-z
10.1007/s00170-018-3187-z
10.1080/0951192X.2012.749537
10.1007/s00170-015-7500-9
10.1108/EC-11-2017-0450
10.1007/s00170-016-9576-2
10.1016/S0890-6955(03)00186-X
10.1016/j.cirp.2017.04.067
10.1109/72.159070
10.1007/s00170-018-3195-z
10.1080/10910344.2017.1382514
10.1016/0890-6955(94)90025-6
10.1016/j.ijmachtools.2004.06.022
10.1016/S0890-6955(96)00012-0
10.1007/s10845-020-01538-5
10.1007/s00170-005-0169-8
10.1109/19.650796
10.1016/S0924-0136(02)01112-3
10.1016/S0890-6955(03)00055-5
10.1007/s00170-014-6482-3
10.1016/j.precisioneng.2018.09.018
10.1016/S0890-6955(03)00059-2
10.1016/j.acme.2017.03.010
10.3390/ma12030340
10.1016/j.precisioneng.2015.09.004
10.1504/IJMR.2008.017418
10.1016/j.ijmachtools.2007.08.019
10.1007/s001700170167
10.1016/j.measurement.2013.12.017
10.1016/j.wear.2017.01.035
10.1016/0890-6955(96)00117-4
10.1016/j.jclepro.2018.01.003
10.1007/s12206-012-0851-3
10.1016/j.ijmachtools.2017.05.006
10.1007/s10845-015-1169-7
10.1016/j.cirp.2011.03.120
ContentType Journal Article
Copyright 2020 Elsevier Inc.
Copyright_xml – notice: 2020 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.precisioneng.2020.11.001
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 418
ExternalDocumentID 10_1016_j_precisioneng_2020_11_001
S0141635920309764
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
29O
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
ABFNM
ABJNI
ABMAC
ABWVN
ABXDB
ABXRA
ACDAQ
ACGFS
ACNNM
ACRLP
ACRPL
ADBBV
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AEZYN
AFJKZ
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSH
SSM
SST
SSZ
T5K
TN5
UHS
WH7
WUQ
XPP
ZMT
~G-
AAYWO
AAYXX
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
APXCP
CITATION
ID FETCH-LOGICAL-c376t-c1f4ad8db28b50267de85b88042ad850ae8db3a237c71bfef2f96a0b81c15cc63
IEDL.DBID .~1
ISSN 0141-6359
IngestDate Tue Jul 01 02:13:02 EDT 2025
Thu Apr 24 23:03:59 EDT 2025
Sun Apr 06 06:53:02 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Digitalisation
Precision grinding
Industry-4.0
Digital manufacturing
Quality
Prediction
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c376t-c1f4ad8db28b50267de85b88042ad850ae8db3a237c71bfef2f96a0b81c15cc63
OpenAccessLink https://dspace.lib.cranfield.ac.uk/handle/1826/16084
PageCount 26
ParticipantIDs crossref_citationtrail_10_1016_j_precisioneng_2020_11_001
crossref_primary_10_1016_j_precisioneng_2020_11_001
elsevier_sciencedirect_doi_10_1016_j_precisioneng_2020_11_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2021
2021-01-00
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: January 2021
PublicationDecade 2020
PublicationTitle Precision engineering
PublicationYear 2021
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Zhang, Fang, Huang, Xu (bib64) 2018; 127
Neşeli, Asiltürk, Çelik (bib77) 2012; 26
Kassen (bib15) 1969
Huang, Yin, Zhou (bib4) 2003; 141
Agarwal, Rao (bib58) 2005; 45
Rashid, Rashid, Goel, Goel, Davim, Davim (bib86) 2016; 82
Basuray (bib50) 1980; 3–4
Wang, Mende (bib111) 1992; 3
Chen, Wang (bib25) 2018; 99
Goel, Kalamdhad, Agrawal (bib66) 2018; 205
Venu Gopal, Venkateswara Rao (bib135) 2003; 43
Chen, Rowe (bib31) 1996; 8
Kwak (bib75) 2005; 45
Jagadish, Bhowmik, Ray (bib92) 2015; 30
Mat Deris, Mohd Zain, Sallehuddin (bib83) 2013; 48
Shaw, Reichenbach (bib47) 1956; 18
Gong, Wang, Wang (bib18) 2002; 129
Agarwal, Venkateswara Rao (bib61) 2012; 56
Khare, Agarwal (bib62) 2015; 31
Shi, Panoutsos, Luo, Liu, Li, Lin (bib144) 2019; 66
Sun, Tang, Shao, Chen, Liu (bib24) 2019; 102
Huang, Yan, Zhou, Kang, Guo, Goel (bib42) 2020; 65
Chen, Tang (bib22) 2015; 77
Agrawal, Yadava (bib108) 2013; 28
Schmidt, Marques, Botti, Marques (bib143) 2019; 5
Aurich, Kirsch (bib14) 2012; 5
Kahraman, Öztürk (bib82) 2019; 147
Liu, Chen, Chen, Wang (bib87) 2005; 170
Nauck, Klawonn, Kruse (bib110) 1993
Ming, Gao, Yan, Liu, Liao (bib94) 2017; 90
Tönshoff, Peters, Paul (bib12) 1992; 2
Li, Yu, Zhu, Wang (bib40) 2017; 17
Chandrasekaran, Muralidhar, Krishna, Dixit (bib71) 2010; 46
Dai, Wang, Xu, Wan, Imran (bib149) 2019
Huang, Yin, Zhou (bib45) 2003; 141
Köklü (bib91) 2013; 26
Chen (bib123) 2013; 19
Albers, Reichert (bib9) 2017; 376
Li, Liu, Yang (bib122) 2011
Zhou, Xi (bib51) 2002; 42
Pan, Wang, Zhou, Yan, Guo (bib133) 2020
Guo (bib84) 2014; 75
Wang, Guangheng, Zhao, Dong, Zhang, Jiang (bib37) 2019; 38
Rudrapati, Pal, Bandyopadhyay (bib79) 2016; 82
Quirynen, Bollen (bib7) 1995; 22
Zhang, Butler, Yang, Lu (bib105) 1997; 46
Wang, Chan, Lee (bib72) 2007; 47
Govindhasamy, McLoone, Irwin, French, Doyle (bib128) 2005; 13
Benardos, Vosniakos (bib11) 2003; 43
Asiltürk, Tinkir, El Monuayri, Çelik (bib115) 2012; 25
Jiang, Ge, Hong (bib54) 2013; 67
Nandi, Pratihar (bib136) 2004; 148
Agarwal, Venkateswara Rao (bib60) 2010; 50
Nguyen, Yin, Tang, Son, Duc (bib155) 2019; 55
Osa, Sánchez, Ortega, Iordanoff, Charles (bib28) 2016; 110
Nakai, Junior, Aguiar, Bianchi, Spatti (bib100) 2015; 13
Mohanasundararaju, Sivasubramanian, Gnanaguru, Alagumurthy (bib114) 2008; 9
Prabhu, Uma, Vinayagam (bib67) 2015; 26
Siebrecht, Biermann, Ludwig, Rausch, Kersting, Blum (bib21) 2014; 8
Sudheer Kumar Varma, Varma, Rajesh, Sita Rama Raju, Murali Krishnam Raju (bib116) 2018; 5
Chandrasekaran, Devarasiddappa (bib129) 2014; 9
Sedighi, Afshari (bib121) 2010; 21
Tripathi (bib69) 2017; 6
Huang, Song, Wan, Wei, Wang (bib138) 2019; 102
Younis, Alawi (bib55) 1984; 4
Lin, Zhou, Wang (bib6) 2018; 140
Kiyak, Cakir (bib73) 2010; 3
Saglam, Unsacar, Yaldiz (bib88) 2005; 43
Agarwal, Rao (bib59) 2005; 219
Wang, Ye, Gao (bib151) 2019; 57
Zhou, Tang, Chen, Shao (bib33) 2019; 156
Reichenbach, Mayer (bib43) 1956; 78
Law, Wu (bib16) 1973; 95
Wang, Liu, Zheng, Yang, Zou (bib148) 2020; 43
Chen, Cheung, Zhang (bib95) 2018; 97
Darafon, Warkentin, Bauer (bib53) 2013; 66
Sivatte-Adroer, Buj-Corral, Llanas-Parra (bib131) 2017; 11
Xu, Hu, Wei (bib124) 2009; 43
Routara, Mohanty, Datta, Bandyopadhyay, Mahapatra (bib90) 2010; 51
Liu, Warkentin, Bauer, Gong (bib19) 2013; 37
Huang, Yan, Zhou, Kang, Guo (bib41) 2019; 58
Çaydaş, Hasçalık (bib98) 2008; 202
Jiang, Ge, Bi, Zhang, Wang, Zhang (bib23) 2013; 74
Mohamad, Zain, Bazin, Udin (bib139) 2015; 26
Wu, Cheng, Gao, Yu, Guo (bib36) 2020; 166
Chen, Li, Wang, Zhang, Cao, Jiang (bib80) 2018; 99
Labib, Keasberry, Atkinson, Frost (bib99) 2011; 38
Osa, Ortega, Vidal, Fernandez-Gauna, Carballo, Tolosa (bib29) 2018; 35
Hou, Komanduri (bib52) 2003; 43
Kıvak (bib146) 2014; 50
Li, Yu, Zhu, Wang (bib26) 2015; 78
Brinksmeier, Aurich, Govekar, Heinzel, Hoffmeister, Klocke (bib13) 2006; 55
Rao (bib142) 2019
Teicher, Ghosh, Chattopadhyay, Künanz (bib5) 2006; 46
Tsai, Yan, Kuan, Huang (bib85) 2008; 48
Gholami, Azizi (bib137) 2014; 73
Mohanasundararaju, Sivasubramanian, Alagumurthi (bib76) 2008; 2
Sathyanarayanan, Joseph lin, Chen (bib126) 1992; 30
Li, Yu, Zhu, Wang (bib27) 2015; 81
Dong, Zheng, Zhu, Kang, Zhang, Liu (bib145) 2017; 93
Pahlitzsch, Helmerdig (bib46) 1943; 12
Yang, Jin (bib120) 2010
Matsushima K, Sata T. Development of intelligent machine tool. J. Faculty Eng., Univ. Tokyo. 198035):299-314.
Horikawa, Furuhashi, Uchikawa (bib109) 1992; 3
Korosec, Balic, Kopac (bib101) 2005; 45
Ding, Dai, Yu, Xu, Fu (bib63) 2017; 122
Baskar, Saravanan, Asokan, Prabhaharan (bib141) 2004; 23
Sivatte-Adroer, Llanas-Parra, Buj-Corral, Vivancos-Calvet (bib130) 2016; 43
Agrawal, Goel, Rashid (bib65) 2015; 30
Fuh, Wang (bib102) 1997; 37
Carmignato, Aloisi, Medeossi, Zanini, Savio (bib10) 2017; 66
Comley, Morantz, Shore (bib1) 2011; 60
Chen, Tang, Zhu (bib34) 2018; 22
Liang, Liao, Wen, Liu (bib117) 2019; 30
Nagasaka, Ichihashi, Leonard (bib112) 1995; 33
Koshy, Ives, Jahanmir (bib17) 1999; 39
Kwak, Sim, Jeong (bib74) 2006; 46
Shore, Cunningham, DeBra, Evans, Hough, Gilmozzi (bib2) 2010; 59
Zhao, Shi, Lin, Duan, Sun, Zhang (bib78) 2014; 74
Malkin (bib48) 1989
Pashmforoush, Delir Bagherinia (bib70) 2018; 178
Caesarendra (bib150) 2018; 11
Yang, Deb (bib140) 2009
Liao, Chen (bib127) 1994; 34
Arif, Zhang, Rahman, Kumar (bib38) 2013; 64
Lal, MC (bib57) 1972
Shaji, Radhakrishnan (bib89) 2003; 141
Nandi, Banerjee (bib113) 2005; 162–163
Li, Zhang, Luo, Chang, Cai, Zhong (bib81) 2019; 39
Alexopoulos, Nikolakis, Chryssolouris (bib147) 2020; 33
Kumar, Choudhury (bib106) 2007; 191
Ichida, Zouaghi, Kishi (bib104) 1994
Nguyen, Butler (bib32) 2005; 45
Mukherjee, Ray (bib107) 2009; 45
Zhou, Tang, Chen, Zhu, Shao (bib35) 2018; 144
Jiang, Cheng, Wu (bib39) 2017; 49
Wang, Yan, Li, Gao (bib153) 2019; 111
Tong, Wu, Zhang, Ma, Zhang, Wen (bib125) 2019; 12
Wang, Li, Zhang, Jia, Zhang (bib20) 2014; 74
Guo (bib154) 2019; 13
Brown, Saito (bib49) 1971; 1
Chakrabarti, Paul (bib30) 2008; 39
Snoeys, Peter (bib44) 1974; 23
Kanakarajan, Sundaram (bib68) 2017; 24
Deng, Zhang, Liu, Cao (bib119) 2009; 45
Patil, Patil (bib93) 2016; 8
Liu, Deng, Shang, Wan (bib3) 2017; 43
Lipiński, Bałasz, Rypina (bib132) 2018; 94
Karakoca, Yilmaz (bib8) 2009; 91B
Saravanan, Sachithanandam (bib134) 2001; 17
Hecker, Liang (bib56) 2003; 43
Prabhu, Uma, Vinayagam (bib96) 2015; 26
Fredj, Amamou (bib97) 2006; 31
Wang, Wang (bib152) 2015; 36
Yin, Nguyen, Chen, Tang, Duc (bib118) 2019; 101
Tönshoff (10.1016/j.precisioneng.2020.11.001_bib12) 1992; 2
Jiang (10.1016/j.precisioneng.2020.11.001_bib39) 2017; 49
Agarwal (10.1016/j.precisioneng.2020.11.001_bib59) 2005; 219
Li (10.1016/j.precisioneng.2020.11.001_bib81) 2019; 39
Nandi (10.1016/j.precisioneng.2020.11.001_bib136) 2004; 148
Wang (10.1016/j.precisioneng.2020.11.001_bib111) 1992; 3
Karakoca (10.1016/j.precisioneng.2020.11.001_bib8) 2009; 91B
Chen (10.1016/j.precisioneng.2020.11.001_bib22) 2015; 77
Mat Deris (10.1016/j.precisioneng.2020.11.001_bib83) 2013; 48
Yang (10.1016/j.precisioneng.2020.11.001_bib140) 2009
Sivatte-Adroer (10.1016/j.precisioneng.2020.11.001_bib130) 2016; 43
Albers (10.1016/j.precisioneng.2020.11.001_bib9) 2017; 376
Zhang (10.1016/j.precisioneng.2020.11.001_bib105) 1997; 46
Xu (10.1016/j.precisioneng.2020.11.001_bib124) 2009; 43
Kumar (10.1016/j.precisioneng.2020.11.001_bib106) 2007; 191
Mukherjee (10.1016/j.precisioneng.2020.11.001_bib107) 2009; 45
Gholami (10.1016/j.precisioneng.2020.11.001_bib137) 2014; 73
Sivatte-Adroer (10.1016/j.precisioneng.2020.11.001_bib131) 2017; 11
Chen (10.1016/j.precisioneng.2020.11.001_bib34) 2018; 22
Brinksmeier (10.1016/j.precisioneng.2020.11.001_bib13) 2006; 55
Koshy (10.1016/j.precisioneng.2020.11.001_bib17) 1999; 39
Dong (10.1016/j.precisioneng.2020.11.001_bib145) 2017; 93
Li (10.1016/j.precisioneng.2020.11.001_bib27) 2015; 81
Sudheer Kumar Varma (10.1016/j.precisioneng.2020.11.001_bib116) 2018; 5
Agarwal (10.1016/j.precisioneng.2020.11.001_bib60) 2010; 50
Chen (10.1016/j.precisioneng.2020.11.001_bib95) 2018; 97
Mohanasundararaju (10.1016/j.precisioneng.2020.11.001_bib76) 2008; 2
Kahraman (10.1016/j.precisioneng.2020.11.001_bib82) 2019; 147
Shi (10.1016/j.precisioneng.2020.11.001_bib144) 2019; 66
Venu Gopal (10.1016/j.precisioneng.2020.11.001_bib135) 2003; 43
Chen (10.1016/j.precisioneng.2020.11.001_bib25) 2018; 99
Kwak (10.1016/j.precisioneng.2020.11.001_bib75) 2005; 45
Prabhu (10.1016/j.precisioneng.2020.11.001_bib67) 2015; 26
Liu (10.1016/j.precisioneng.2020.11.001_bib87) 2005; 170
Guo (10.1016/j.precisioneng.2020.11.001_bib154) 2019; 13
Wu (10.1016/j.precisioneng.2020.11.001_bib36) 2020; 166
Younis (10.1016/j.precisioneng.2020.11.001_bib55) 1984; 4
Nandi (10.1016/j.precisioneng.2020.11.001_bib113) 2005; 162–163
Mohamad (10.1016/j.precisioneng.2020.11.001_bib139) 2015; 26
Korosec (10.1016/j.precisioneng.2020.11.001_bib101) 2005; 45
Govindhasamy (10.1016/j.precisioneng.2020.11.001_bib128) 2005; 13
Huang (10.1016/j.precisioneng.2020.11.001_bib4) 2003; 141
Khare (10.1016/j.precisioneng.2020.11.001_bib62) 2015; 31
Schmidt (10.1016/j.precisioneng.2020.11.001_bib143) 2019; 5
Nagasaka (10.1016/j.precisioneng.2020.11.001_bib112) 1995; 33
Siebrecht (10.1016/j.precisioneng.2020.11.001_bib21) 2014; 8
Agrawal (10.1016/j.precisioneng.2020.11.001_bib65) 2015; 30
Mohanasundararaju (10.1016/j.precisioneng.2020.11.001_bib114) 2008; 9
Osa (10.1016/j.precisioneng.2020.11.001_bib29) 2018; 35
Liang (10.1016/j.precisioneng.2020.11.001_bib117) 2019; 30
Kiyak (10.1016/j.precisioneng.2020.11.001_bib73) 2010; 3
Li (10.1016/j.precisioneng.2020.11.001_bib40) 2017; 17
Patil (10.1016/j.precisioneng.2020.11.001_bib93) 2016; 8
Gong (10.1016/j.precisioneng.2020.11.001_bib18) 2002; 129
Jiang (10.1016/j.precisioneng.2020.11.001_bib23) 2013; 74
Basuray (10.1016/j.precisioneng.2020.11.001_bib50) 1980; 3–4
Huang (10.1016/j.precisioneng.2020.11.001_bib42) 2020; 65
Lipiński (10.1016/j.precisioneng.2020.11.001_bib132) 2018; 94
Wang (10.1016/j.precisioneng.2020.11.001_bib20) 2014; 74
Pashmforoush (10.1016/j.precisioneng.2020.11.001_bib70) 2018; 178
Çaydaş (10.1016/j.precisioneng.2020.11.001_bib98) 2008; 202
Shaji (10.1016/j.precisioneng.2020.11.001_bib89) 2003; 141
Nakai (10.1016/j.precisioneng.2020.11.001_bib100) 2015; 13
Prabhu (10.1016/j.precisioneng.2020.11.001_bib96) 2015; 26
Huang (10.1016/j.precisioneng.2020.11.001_bib41) 2019; 58
Agarwal (10.1016/j.precisioneng.2020.11.001_bib58) 2005; 45
Shaw (10.1016/j.precisioneng.2020.11.001_bib47) 1956; 18
Ming (10.1016/j.precisioneng.2020.11.001_bib94) 2017; 90
Quirynen (10.1016/j.precisioneng.2020.11.001_bib7) 1995; 22
Dai (10.1016/j.precisioneng.2020.11.001_bib149) 2019
Liu (10.1016/j.precisioneng.2020.11.001_bib19) 2013; 37
Horikawa (10.1016/j.precisioneng.2020.11.001_bib109) 1992; 3
Law (10.1016/j.precisioneng.2020.11.001_bib16) 1973; 95
Yang (10.1016/j.precisioneng.2020.11.001_bib120) 2010
Aurich (10.1016/j.precisioneng.2020.11.001_bib14) 2012; 5
Osa (10.1016/j.precisioneng.2020.11.001_bib28) 2016; 110
Pahlitzsch (10.1016/j.precisioneng.2020.11.001_bib46) 1943; 12
Jagadish (10.1016/j.precisioneng.2020.11.001_bib92) 2015; 30
Nguyen (10.1016/j.precisioneng.2020.11.001_bib32) 2005; 45
Benardos (10.1016/j.precisioneng.2020.11.001_bib11) 2003; 43
Pan (10.1016/j.precisioneng.2020.11.001_bib133) 2020
Wang (10.1016/j.precisioneng.2020.11.001_bib37) 2019; 38
Chen (10.1016/j.precisioneng.2020.11.001_bib31) 1996; 8
Chen (10.1016/j.precisioneng.2020.11.001_bib80) 2018; 99
Goel (10.1016/j.precisioneng.2020.11.001_bib66) 2018; 205
Chakrabarti (10.1016/j.precisioneng.2020.11.001_bib30) 2008; 39
Ding (10.1016/j.precisioneng.2020.11.001_bib63) 2017; 122
Tong (10.1016/j.precisioneng.2020.11.001_bib125) 2019; 12
Brown (10.1016/j.precisioneng.2020.11.001_bib49) 1971; 1
Rao (10.1016/j.precisioneng.2020.11.001_bib142) 2019
Liao (10.1016/j.precisioneng.2020.11.001_bib127) 1994; 34
Jiang (10.1016/j.precisioneng.2020.11.001_bib54) 2013; 67
Yin (10.1016/j.precisioneng.2020.11.001_bib118) 2019; 101
Chen (10.1016/j.precisioneng.2020.11.001_bib123) 2013; 19
Kassen (10.1016/j.precisioneng.2020.11.001_bib15) 1969
Sathyanarayanan (10.1016/j.precisioneng.2020.11.001_bib126) 1992; 30
Wang (10.1016/j.precisioneng.2020.11.001_bib152) 2015; 36
Neşeli (10.1016/j.precisioneng.2020.11.001_bib77) 2012; 26
Zhou (10.1016/j.precisioneng.2020.11.001_bib33) 2019; 156
Zhao (10.1016/j.precisioneng.2020.11.001_bib78) 2014; 74
Nguyen (10.1016/j.precisioneng.2020.11.001_bib155) 2019; 55
Snoeys (10.1016/j.precisioneng.2020.11.001_bib44) 1974; 23
Routara (10.1016/j.precisioneng.2020.11.001_bib90) 2010; 51
Carmignato (10.1016/j.precisioneng.2020.11.001_bib10) 2017; 66
Saglam (10.1016/j.precisioneng.2020.11.001_bib88) 2005; 43
Agrawal (10.1016/j.precisioneng.2020.11.001_bib108) 2013; 28
Fredj (10.1016/j.precisioneng.2020.11.001_bib97) 2006; 31
Arif (10.1016/j.precisioneng.2020.11.001_bib38) 2013; 64
Lin (10.1016/j.precisioneng.2020.11.001_bib6) 2018; 140
Wang (10.1016/j.precisioneng.2020.11.001_bib151) 2019; 57
Baskar (10.1016/j.precisioneng.2020.11.001_bib141) 2004; 23
Wang (10.1016/j.precisioneng.2020.11.001_bib72) 2007; 47
Rudrapati (10.1016/j.precisioneng.2020.11.001_bib79) 2016; 82
Wang (10.1016/j.precisioneng.2020.11.001_bib148) 2020; 43
Liu (10.1016/j.precisioneng.2020.11.001_bib3) 2017; 43
Fuh (10.1016/j.precisioneng.2020.11.001_bib102) 1997; 37
Chandrasekaran (10.1016/j.precisioneng.2020.11.001_bib129) 2014; 9
Kwak (10.1016/j.precisioneng.2020.11.001_bib74) 2006; 46
Chandrasekaran (10.1016/j.precisioneng.2020.11.001_bib71) 2010; 46
Saravanan (10.1016/j.precisioneng.2020.11.001_bib134) 2001; 17
Li (10.1016/j.precisioneng.2020.11.001_bib122) 2011
Teicher (10.1016/j.precisioneng.2020.11.001_bib5) 2006; 46
Rashid (10.1016/j.precisioneng.2020.11.001_bib86) 2016; 82
Reichenbach (10.1016/j.precisioneng.2020.11.001_bib43) 1956; 78
Huang (10.1016/j.precisioneng.2020.11.001_bib45) 2003; 141
Hecker (10.1016/j.precisioneng.2020.11.001_bib56) 2003; 43
Kıvak (10.1016/j.precisioneng.2020.11.001_bib146) 2014; 50
Sedighi (10.1016/j.precisioneng.2020.11.001_bib121) 2010; 21
Comley (10.1016/j.precisioneng.2020.11.001_bib1) 2011; 60
Zhang (10.1016/j.precisioneng.2020.11.001_bib64) 2018; 127
Zhou (10.1016/j.precisioneng.2020.11.001_bib51) 2002; 42
Alexopoulos (10.1016/j.precisioneng.2020.11.001_bib147) 2020; 33
Malkin (10.1016/j.precisioneng.2020.11.001_bib48) 1989
Ichida (10.1016/j.precisioneng.2020.11.001_bib104) 1994
Deng (10.1016/j.precisioneng.2020.11.001_bib119) 2009; 45
Darafon (10.1016/j.precisioneng.2020.11.001_bib53) 2013; 66
Labib (10.1016/j.precisioneng.2020.11.001_bib99) 2011; 38
Kanakarajan (10.1016/j.precisioneng.2020.11.001_bib68) 2017; 24
Guo (10.1016/j.precisioneng.2020.11.001_bib84) 2014; 75
10.1016/j.precisioneng.2020.11.001_bib103
Shore (10.1016/j.precisioneng.2020.11.001_bib2) 2010; 59
Tsai (10.1016/j.precisioneng.2020.11.001_bib85) 2008; 48
Li (10.1016/j.precisioneng.2020.11.001_bib26) 2015; 78
Nauck (10.1016/j.precisioneng.2020.11.001_bib110) 1993
Tripathi (10.1016/j.precisioneng.2020.11.001_bib69) 2017; 6
Agarwal (10.1016/j.precisioneng.2020.11.001_bib61) 2012; 56
Köklü (10.1016/j.precisioneng.2020.11.001_bib91) 2013; 26
Caesarendra (10.1016/j.precisioneng.2020.11.001_bib150) 2018; 11
Asiltürk (10.1016/j.precisioneng.2020.11.001_bib115) 2012; 25
Sun (10.1016/j.precisioneng.2020.11.001_bib24) 2019; 102
Lal (10.1016/j.precisioneng.2020.11.001_bib57) 1972
Huang (10.1016/j.precisioneng.2020.11.001_bib138) 2019; 102
Wang (10.1016/j.precisioneng.2020.11.001_bib153) 2019; 111
Zhou (10.1016/j.precisioneng.2020.11.001_bib35) 2018; 144
Hou (10.1016/j.precisioneng.2020.11.001_bib52) 2003; 43
References_xml – volume: 26
  start-page: 41
  year: 2015
  end-page: 55
  ident: bib96
  article-title: Surface roughness prediction using Taguchi-fuzzy logic-neural network analysis for CNT nanofluids based grinding process
  publication-title: Neural Comput Appl
– volume: 81
  start-page: 1921
  year: 2015
  end-page: 1938
  ident: bib27
  article-title: Modeling and simulation of grinding wheel by discrete element method and experimental validation
  publication-title: Int J Adv Manuf Technol
– volume: 48
  start-page: 932
  year: 2008
  end-page: 945
  ident: bib85
  article-title: A Taguchi and experimental investigation into the optimal processing conditions for the abrasive jet polishing of SKD61 mold steel
  publication-title: Int J Mach Tool Manufact
– volume: 90
  start-page: 2453
  year: 2017
  end-page: 2460
  ident: bib94
  article-title: Mathematical modeling and machining parameter optimization for the surface roughness of face gear grinding
  publication-title: Int J Adv Manuf Technol
– volume: 43
  start-page: 833
  year: 2003
  end-page: 844
  ident: bib11
  article-title: Predicting surface roughness in machining: a review
  publication-title: Int J Mach Tool Manufact
– start-page: 1456
  year: 2011
  end-page: 1459
  ident: bib122
  article-title: On-line prediction of surface roughness in cylindrical traverse grinding based on BP+GA algorithm. 2011 second international conference on mechanic automation and control engineering
– volume: 111
  start-page: 1
  year: 2019
  end-page: 14
  ident: bib153
  article-title: Deep heterogeneous GRU model for predictive analytics in smart manufacturing: application to tool wear prediction
  publication-title: Comput Ind
– volume: 24
  start-page: 182
  year: 2017
  end-page: 186
  ident: bib68
  article-title: Prediction of the surface roughness and wheel wear of modern ceramic material (Al2O3) during grinding using multiple regression analysis model
  publication-title: Indian J Eng Mater Sci
– volume: 45
  start-page: 1329
  year: 2005
  end-page: 1336
  ident: bib32
  article-title: Simulation of surface grinding process, part 2: interaction of the abrasive grain with the workpiece
  publication-title: Int J Mach Tool Manufact
– volume: 66
  start-page: 1715
  year: 2013
  end-page: 1724
  ident: bib53
  article-title: 3D metal removal simulation to determine uncut chip thickness, contact length, and surface finish in grinding
  publication-title: Int J Adv Manuf Technol
– volume: 17
  start-page: 880
  year: 2017
  end-page: 893
  ident: bib40
  article-title: Analytical modeling of ground surface topography in monocrystalline silicon grinding considering the ductile-regime effect
  publication-title: Arch Civ Mech Eng
– volume: 46
  start-page: 899
  year: 1997
  end-page: 902
  ident: bib105
  article-title: A fiber optic sensor for the measurement of surface roughness and displacement using artificial neural networks
  publication-title: IEEE T Instrum Meas
– volume: 8
  start-page: 345
  year: 2014
  end-page: 353
  ident: bib21
  article-title: Simulation of grinding processes using finite element analysis and geometric simulation of individual grains
  publication-title: Prod Eng
– volume: 3–4
  start-page: 265
  year: 1980
  end-page: 273
  ident: bib50
  article-title: A simple model for evaluating surface roughness in fine grinding
  publication-title: Int J Mach Tool Manufact
– volume: 8
  start-page: 367
  year: 2016
  end-page: 369
  ident: bib93
  article-title: Analysis of process parameters in surface grinding using single objective Taguchi and multi-objective grey relational grade
  publication-title: Perspectives in Science
– volume: 376
  start-page: 1185
  year: 2017
  end-page: 1193
  ident: bib9
  article-title: On the influence of surface roughness on the wear behavior in the running-in phase in mixed-lubricated contacts with the finite element method
  publication-title: Wear
– volume: 97
  start-page: 2715
  year: 2018
  end-page: 2729
  ident: bib95
  article-title: An experimental and theoretical analysis of surface generation in the ultra-precision grinding of hard and brittle materials
  publication-title: Int J Adv Manuf Technol
– volume: 162–163
  start-page: 655
  year: 2005
  end-page: 664
  ident: bib113
  article-title: FBF-NN-based modelling of cylindrical plunge grinding process using a GA
  publication-title: J Mater Process Technol
– volume: 95
  start-page: 972
  year: 1973
  end-page: 978
  ident: bib16
  article-title: Simulation study of the grinding process
  publication-title: Transactions of the ASME. Series B, Journal of Engineering for Industry
– volume: 48
  start-page: 1937
  year: 2013
  end-page: 1945
  ident: bib83
  article-title: Hybrid GR-SVM for prediction of surface roughness in abrasive water jet machining
  publication-title: Meccanica
– volume: 129
  start-page: 123
  year: 2002
  end-page: 126
  ident: bib18
  article-title: The simulation of grinding wheels and ground surface roughness based on virtual reality technology
  publication-title: J Mater Process Technol
– start-page: 491
  year: 1994
  end-page: 496
  ident: bib104
  article-title: Analysis of ductile mode ground surface of optical-glass by atomic-force microscopy
– start-page: 210
  year: 2009
  end-page: 214
  ident: bib140
  article-title: Cuckoo search via levy flights. Nature \& biologically inspired computing
– volume: 140
  start-page: 121001
  year: 2018
  ident: bib6
  article-title: Analytical elastic – plastic cutting model for predicting grain depth-of-cut in ultrafine grinding of silicon wafer
  publication-title: J Manuf Sci E-ASME.
– volume: 50
  start-page: 1065
  year: 2010
  end-page: 1076
  ident: bib60
  article-title: Modeling and prediction of surface roughness in ceramic grinding
  publication-title: Int J Mach Tool Manufact
– volume: 26
  start-page: 41
  year: 2015
  end-page: 55
  ident: bib67
  article-title: Surface roughness prediction using Taguchi-fuzzy logic-neural network analysis for CNT nanofluids based grinding process
  publication-title: Neural Comput Appl
– volume: 36
  start-page: 35
  year: 2015
  end-page: 45
  ident: bib152
  article-title: Enhanced particle filter for tool wear prediction
  publication-title: J Manuf Syst
– volume: 55
  start-page: 275
  year: 2019
  end-page: 292
  ident: bib155
  article-title: Online monitoring of surface roughness and grinding wheel wear when grinding Ti-6Al-4V titanium alloy using ANFIS-GPR hybrid algorithm and Taguchi analysis
  publication-title: Precis Eng
– volume: 43
  start-page: 1327
  year: 2003
  end-page: 1336
  ident: bib135
  article-title: Selection of optimum conditions for maximum material removal rate with surface finish and damage as constraints in SiC grinding
  publication-title: Int J Mach Tool Manufact
– year: 1989
  ident: bib48
  article-title: Theory and applications of machining with abrasives
– volume: 30
  start-page: 2965
  year: 2015
  end-page: 2979
  ident: bib92
  article-title: Prediction of surface roughness quality of green abrasive water jet machining: a soft computing approach
  publication-title: J Intell Manuf
– volume: 74
  start-page: 835
  year: 2014
  end-page: 850
  ident: bib20
  article-title: Modeling the operation of a common grinding wheel with nanoparticle jet flow minimal quantity lubrication
  publication-title: Int J Adv Manuf Technol
– volume: 45
  start-page: 609
  year: 2005
  end-page: 616
  ident: bib58
  article-title: A probabilistic approach to predict surface roughness in ceramic grinding
  publication-title: Int J Mach Tool Manufact
– volume: 148
  start-page: 288
  year: 2004
  end-page: 300
  ident: bib136
  article-title: Automatic design of fuzzy logic controller using a genetic algorithm - to predict power requirement and surface finish in grinding
  publication-title: J Mater Process Technol
– volume: 144
  start-page: 639
  year: 2018
  end-page: 653
  ident: bib35
  article-title: A comprehensive investigation of plowing and grain-workpiece micro interactions on 3D ground surface topography
  publication-title: Int J Mech Sci
– volume: 205
  start-page: 836
  year: 2018
  end-page: 844
  ident: bib66
  article-title: Parameter optimisation for producing fired bricks using organic solid wastes
  publication-title: J Clean Prod
– volume: 43
  start-page: 505
  year: 2016
  end-page: 513
  ident: bib130
  article-title: Indirect model for roughness in rough honing processes based on artificial neural networks
  publication-title: Precis Eng
– volume: 26
  start-page: 3587
  year: 2012
  end-page: 3595
  ident: bib77
  article-title: Determining the optimum process parameter for grinding operations using robust process
  publication-title: J Mech Sci Technol
– volume: 50
  start-page: 19
  year: 2014
  end-page: 28
  ident: bib146
  article-title: Optimization of surface roughness and flank wear using the Taguchi method in milling of Hadfield steel with PVD and CVD coated inserts
  publication-title: Measurement
– reference: Matsushima K, Sata T. Development of intelligent machine tool. J. Faculty Eng., Univ. Tokyo. 198035):299-314.
– volume: 21
  start-page: 657
  year: 2010
  end-page: 663
  ident: bib121
  article-title: Creep feed grinding optimization by an integrated GA-NN system
  publication-title: J Intell Manuf
– volume: 93
  start-page: 2827
  year: 2017
  end-page: 2839
  ident: bib145
  article-title: Characterization of material removal in ultrasonically assisted grinding of SiCp/Al with high volume fraction
  publication-title: Int J Adv Manuf Technol
– volume: 178
  start-page: 363
  year: 2018
  end-page: 372
  ident: bib70
  article-title: Influence of water-based copper nanofluid on wheel loading and surface roughness during grinding of Inconel 738 superalloy
  publication-title: J Clean Prod
– volume: 30
  start-page: 2421
  year: 1992
  end-page: 2438
  ident: bib126
  article-title: Neural network modelling and multiobjective optimization of creep feed grinding of superalloys
  publication-title: Int J Prod Res
– volume: 25
  start-page: 750
  year: 2012
  end-page: 759
  ident: bib115
  article-title: An intelligent system approach for surface roughness and vibrations prediction in cylindrical grinding
  publication-title: Int J Comput Integrated Manuf
– volume: 6
  year: 2017
  ident: bib69
  article-title: Optimization of surface grinding parameters on aisi d2 steel using response surface methodology
  publication-title: J Ind Eng
– volume: 12
  start-page: 340
  year: 2019
  ident: bib125
  article-title: Mechanism and parameter optimization in grinding and polishing of M300 steel by an elastic abrasive
  publication-title: Materials
– volume: 57
  start-page: 3920
  year: 2019
  end-page: 3934
  ident: bib151
  article-title: Digital Twin for rotating machinery fault diagnosis in smart manufacturing
  publication-title: Int J Prod Res: Special Issue: Sustainable Cybernetic Manufacturing
– volume: 17
  start-page: 330
  year: 2001
  end-page: 338
  ident: bib134
  article-title: Genetic algorithm (GA) for multivariable surface grinding process optimisation using a multi-objective function model
  publication-title: Int J Adv Manuf Technol
– start-page: 35
  year: 1993
  end-page: 46
  ident: bib110
  article-title: Combining neural networks and fuzzy controllers
– volume: 64
  start-page: 114
  year: 2013
  end-page: 122
  ident: bib38
  article-title: A predictive model of the critical undeformed chip thickness for ductile–brittle transition in nano-machining of brittle materials
  publication-title: Int J Mach Tool Manufact
– volume: 13
  start-page: 2436
  year: 2019
  end-page: 2446
  ident: bib154
  article-title: An intelligent monitoring system of grinding wheel wear based on two-stage feature selection and Long Short-Term Memory network
  publication-title: J Eng Manuf
– volume: 19
  start-page: 2854
  year: 2013
  end-page: 2863
  ident: bib123
  article-title: Grinding roughness prediction model based on evolutionary artificial neural network
  publication-title: Com-Int Manuf Systems.
– volume: 65
  start-page: 64
  year: 2020
  end-page: 71
  ident: bib42
  article-title: Elastic recovery of monocrystalline silicon during ultra-fine rotational grinding
  publication-title: Precis Eng
– volume: 39
  start-page: 705
  year: 2019
  end-page: 717
  ident: bib81
  article-title: Material removal mechanism of laser-assisted grinding of RB-SiC ceramics and process optimization
  publication-title: J Eur Ceram Soc
– volume: 9
  start-page: 59
  year: 2014
  end-page: 70
  ident: bib129
  article-title: Artificial neural network modeling for surface roughness prediction in cylindrical grinding of Al-SiCp metal matrix composites and ANOVA analysis
  publication-title: Adv Prod Eng Manag
– start-page: 442
  year: 2010
  end-page: 444
  ident: bib120
  article-title: Study on machining prediction in plane grinding based on artificial neural network
  publication-title: Proceedings 2010 IEEE International Conference on intelligent systems and knowledge engineering
– volume: 3
  start-page: 801
  year: 1992
  end-page: 806
  ident: bib109
  article-title: On Fuzzy Modeling using fuzzy neural networks with the backpropagation algorithm
  publication-title: IEEE Trans Neural Network
– volume: 33
  start-page: 1
  year: 2020
  end-page: 11
  ident: bib147
  article-title: Digital twin-driven supervised machine learning for the development of artificial intelligence applications in manufacturing
  publication-title: Int J Comput Integrated Manuf
– volume: 127
  start-page: 14
  year: 2018
  end-page: 27
  ident: bib64
  article-title: Modeling and simulation of the distribution of undeformed chip thicknesses in surface grinding
  publication-title: Int J Mach Tool Manufact
– volume: 67
  start-page: 1035
  year: 2013
  end-page: 1052
  ident: bib54
  article-title: Study on micro-interacting mechanism modeling in grinding process and ground surface roughness prediction
  publication-title: Int J Adv Manuf Technol
– volume: 43
  start-page: 755
  year: 2003
  end-page: 761
  ident: bib56
  article-title: Predictive modeling of surface roughness in grinding
  publication-title: Int J Mach Tool Manufact
– volume: 56
  start-page: 59
  year: 2012
  end-page: 68
  ident: bib61
  article-title: Predictive modeling of undeformed chip thickness in ceramic grinding
  publication-title: Int J Mach Tool Manufact
– volume: 59
  start-page: 694
  year: 2010
  end-page: 716
  ident: bib2
  article-title: Precision engineering for astronomy and gravity science
  publication-title: CIRP Ann - Manuf Technol
– volume: 99
  start-page: 1467
  year: 2018
  end-page: 1480
  ident: bib25
  article-title: A novel approach to simulate surface topography based on motion trajectories and feature theories of abrasive grains
  publication-title: Int J Adv Manuf Technol
– volume: 43
  start-page: 1579
  year: 2003
  end-page: 1593
  ident: bib52
  article-title: On the mechanics of the grinding process-Part I. Stochastic nature of the grinding process
  publication-title: Int J Mach Tool Manufact
– volume: 3
  start-page: 807
  year: 1992
  end-page: 814
  ident: bib111
  article-title: Fuzzy basis functions, universal approximation, and orthogonal least-squares learning
  publication-title: IEEE Trans Neural Network
– volume: 9
  start-page: 103
  year: 2008
  end-page: 110
  ident: bib114
  article-title: A neural network and fuzzy-based methodology for the prediction of work roll surface roughness in a grinding process
  publication-title: Int J Comput Met Eng Sci Mech
– volume: 102
  start-page: 487
  year: 2019
  end-page: 496
  ident: bib24
  article-title: Research on the matching relationship between ultrasonic-assisted grinding parameters and workpiece surface roughness
  publication-title: Int J Adv Manuf Technol
– volume: 202
  start-page: 574
  year: 2008
  end-page: 582
  ident: bib98
  article-title: A study on surface roughness in abrasive waterjet machining process using artificial neural networks and regression analysis method
  publication-title: J Mater Process Technol
– year: 1969
  ident: bib15
  article-title: Beschreibung der elementaren Kinematik des Schleifvor-ganges (Description of the Fundamental Kinematics of the Grinding Process)
– volume: 166
  start-page: 105263
  year: 2020
  ident: bib36
  article-title: Research on predicting model of surface roughness in small-scale grinding of brittle materials considering grinding tool topography
  publication-title: Int J Mech Sci
– volume: 47
  start-page: 1929
  year: 2007
  end-page: 1940
  ident: bib72
  article-title: Process modeling of controlled forming with time variant blank holder force using RSM method
  publication-title: Int J Mach Tool Manufact
– volume: 35
  start-page: 2255
  year: 2018
  end-page: 2271
  ident: bib29
  article-title: Future of the discrete element method in the modelling of grinding wheels
  publication-title: Eng Comput
– volume: 55
  start-page: 667
  year: 2006
  end-page: 696
  ident: bib13
  article-title: Advances in modeling and simulation of grinding processes
  publication-title: CIRP Ann - Manuf Technol
– volume: 11
  start-page: 512
  year: 2017
  end-page: 530
  ident: bib131
  article-title: Neural network modelling of Abbott-Firestone roughness parameters in honing processes
  publication-title: Int J Surf Sci Eng
– volume: 75
  start-page: 1245
  year: 2014
  end-page: 1252
  ident: bib84
  article-title: Surface roughness prediction by combining static and dynamic features in cylindrical traverse grinding
  publication-title: Int J Adv Manuf Technol
– volume: 31
  start-page: 375
  year: 2015
  end-page: 380
  ident: bib62
  article-title: Predictive modeling of surface roughness in grinding
  publication-title: Procedia CIRP
– volume: 147
  start-page: 106825
  year: 2019
  ident: bib82
  article-title: Experimental study of newly structural design grinding wheel considering response surface optimization and Monte Carlo simulation
  publication-title: Measurement
– volume: 2
  start-page: 236
  year: 2008
  end-page: 251
  ident: bib76
  article-title: Optimisation of work roll grinding using Response Surface Methodology and evolutionary algorithm
  publication-title: Int J Manuf Research
– volume: 141
  start-page: 329
  year: 2003
  end-page: 336
  ident: bib45
  article-title: High speed grinding of silicon nitride with resin bond diamond wheels
  publication-title: J Mater Process Technol
– volume: 94
  start-page: 1335
  year: 2018
  end-page: 1347
  ident: bib132
  article-title: Modelling of surface roughness and grinding forces using artificial neural networks with assessment of the ability to data generalisation
  publication-title: Int J Adv Manuf Technol
– volume: 1
  start-page: 105
  year: 1971
  end-page: 113
  ident: bib49
  article-title: Local elastic deflections in grinding
  publication-title: CIRP Ann - Manuf Technol
– volume: 46
  start-page: 304
  year: 2006
  end-page: 312
  ident: bib74
  article-title: An analysis of grinding power and surface roughness in external cylindrical grinding of hardened SCM440 steel using the response surface method
  publication-title: Int J Mach Tool Manufact
– volume: 156
  start-page: 14
  year: 2019
  end-page: 30
  ident: bib33
  article-title: A comprehensive investigation of surface generation and material removal characteristics in ultrasonic vibration assisted grinding
  publication-title: Int J Mech Sci
– volume: 13
  start-page: 62
  year: 2015
  end-page: 68
  ident: bib100
  article-title: Neural tool condition estimation in the grinding of advanced ceramics
  publication-title: Ieee Lat Am T
– start-page: 1
  year: 2019
  end-page: 25
  ident: bib149
  article-title: Big data analytics for manufacturing internet of things: opportunities, challenges and enabling technologies
  publication-title: Enterp Inf Syst-Uk
– volume: 11
  start-page: 2165
  year: 2018
  ident: bib150
  article-title: An AWS machine learning-based indirect monitoring method for deburring in aerospace industries towards Industry 4.0
  publication-title: Appl Sci
– volume: 39
  start-page: 1451
  year: 1999
  end-page: 1470
  ident: bib17
  article-title: Simulation of diamond-ground surfaces
  publication-title: Int J Mach Tool Manufact
– volume: 33
  start-page: 1229
  year: 1995
  end-page: 1240
  ident: bib112
  article-title: Neuro-fuzzy GMDH and its application to modelling grinding characteristics
  publication-title: Int J Prod Res
– volume: 38
  start-page: 549
  year: 2019
  end-page: 555
  ident: bib37
  article-title: Study on key factors influencing the surface generation in rotary ultrasonic grinding for hard and brittle materials
  publication-title: J Manuf Process
– volume: 45
  start-page: 327
  year: 2005
  end-page: 334
  ident: bib75
  article-title: Application of Taguchi and response surface methodologies for geometric error in surface grinding process
  publication-title: Int J Mach Tool Manufact
– year: 2019
  ident: bib142
  article-title: Jaya: an advanced optimization algorithm and its engineering applications
– volume: 58
  year: 2019
  ident: bib41
  article-title: Analytical elastic – plastic cutting model for predicting grain depth-of-cut in ultrafine grinding of silicon wafer
  publication-title: Japanese Journal of Applied
– volume: 46
  start-page: 445
  year: 2010
  end-page: 464
  ident: bib71
  article-title: Application of soft computing techniques in machining performance prediction and optimization: a literature review
  publication-title: Int J Adv Manuf Technol
– volume: 170
  start-page: 367
  year: 2005
  end-page: 373
  ident: bib87
  article-title: Grinding force control in an automatic surface finishing system
  publication-title: J Mater Process Technol
– volume: 43
  start-page: 1956
  year: 2009
  end-page: 1961
  ident: bib124
  article-title: Vogl fast BP network and orthogonal experiment method in optimization of sphere grinding process parameters
  publication-title: J Shanghai Jiaot Univ
– volume: 31
  start-page: 24
  year: 2006
  end-page: 36
  ident: bib97
  article-title: Ground surface roughness prediction based upon experimental design and neural network models
  publication-title: Int J Adv Manuf Technol
– volume: 45
  start-page: 13
  year: 2005
  end-page: 20
  ident: bib101
  article-title: Neural network based manufacturability evaluation of free form machining
  publication-title: Int J Mach Tool Manufact
– volume: 110
  start-page: 43
  year: 2016
  end-page: 54
  ident: bib28
  article-title: Discrete-element modelling of the grinding contact length combining the wheel-body structure and the surface-topography models
  publication-title: Int J Mach Tool Manufact
– volume: 99
  start-page: 97
  year: 2018
  end-page: 112
  ident: bib80
  article-title: Development of a hybrid particle swarm optimization algorithm for multi-pass roller grinding process optimization
  publication-title: Int J Adv Manuf Technol
– volume: 66
  start-page: 499
  year: 2017
  end-page: 502
  ident: bib10
  article-title: Influence of surface roughness on computed tomography dimensional measurements
  publication-title: CIRP Ann - Manuf Technol
– volume: 219
  start-page: 811
  year: 2005
  end-page: 819
  ident: bib59
  article-title: A new surface roughness prediction model for ceramic grinding
  publication-title: P I Mech Eng B-J Eng.
– volume: 101
  start-page: 1315
  year: 2019
  end-page: 1331
  ident: bib118
  article-title: Application of compressed air in the online monitoring of surface roughness and grinding wheel wear when grinding Ti-6Al-4V titanium alloy
  publication-title: Int J Adv Manuf Technol
– volume: 60
  start-page: 379
  year: 2011
  end-page: 382
  ident: bib1
  article-title: Grinding metre scale mirror segments for the E-ELT ground based telescope
  publication-title: CIRP Ann - Manuf Technol
– volume: 26
  start-page: 696
  year: 2013
  end-page: 702
  ident: bib91
  article-title: Optimisation of machining parameters in interrupted cylindrical grinding using the Grey-based Taguchi method
  publication-title: Int J Comput Integrated Manuf
– volume: 5
  start-page: 164
  year: 2012
  end-page: 174
  ident: bib14
  article-title: Kinematic simulation of high-performance grinding for analysis of chip parameters of single grains
  publication-title: CIRP Ann - Manuf Technol
– volume: 30
  start-page: 279
  year: 2015
  end-page: 286
  ident: bib65
  article-title: Prediction of surface roughness during hard turning of AISI 4340 steel (69 HRC)
  publication-title: Appl Soft Comput
– volume: 141
  start-page: 329
  year: 2003
  end-page: 336
  ident: bib4
  article-title: High speed grinding of silicon nitride with resin bond diamond wheels
  publication-title: J Mater Process Technol
– volume: 37
  start-page: 1167
  year: 1997
  end-page: 1178
  ident: bib102
  article-title: Force modeling and forecasting in creep feed grinding using improved BP neural network
  publication-title: Int J Mach Tool Manufact
– volume: 102
  start-page: 605
  year: 2019
  end-page: 614
  ident: bib138
  article-title: Trajectory planning of abrasive belt grinding for aero-engine blade profile
  publication-title: Int J Adv Manuf Technol
– volume: 74
  start-page: 29
  year: 2013
  end-page: 40
  ident: bib23
  article-title: 2D/3D ground surface topography modeling considering dressing and wear effects in grinding process
  publication-title: Int J Mach Tool Manufact
– volume: 122
  start-page: 66
  year: 2017
  end-page: 80
  ident: bib63
  article-title: Grinding performance of textured monolayer CBN wheels: undeformed chip thickness nonuniformity modeling and ground surface topography prediction
  publication-title: Int J Mach Tool Manufact
– volume: 5
  start-page: 5445
  year: 2018
  end-page: 5451
  ident: bib116
  article-title: Prediction of surface roughness and MRR in grinding process on Inconel 800 alloy using neural networks and ANFIS
  publication-title: Mater Today: Proceedings
– year: 1972
  ident: bib57
  article-title: Wear of single abrasive grain in fine grinding
  publication-title: Grindng Conf
– volume: 78
  start-page: 847
  year: 1956
  end-page: 860
  ident: bib43
  article-title: The role of chip thickness in grinding
  publication-title: Transactions of the ASME
– volume: 39
  start-page: 29
  year: 2008
  end-page: 38
  ident: bib30
  article-title: Numerical modelling of surface topography in superabrasive grinding
  publication-title: Int J Adv Manuf Technol
– volume: 42
  start-page: 969
  year: 2002
  end-page: 977
  ident: bib51
  article-title: Modeling and predicting surface roughness of the grinding process
  publication-title: Int J Mach Tool Manufact
– volume: 191
  start-page: 206
  year: 2007
  end-page: 209
  ident: bib106
  article-title: Prediction of wear and surface roughness in electro-discharge diamond grinding
  publication-title: J Mater Process Technol
– volume: 28
  start-page: 381
  year: 2013
  end-page: 389
  ident: bib108
  article-title: Modeling and prediction of material removal rate and surface roughness in surface-electrical discharge diamond grinding process of metal matrix composites
  publication-title: Mater Manuf Process
– volume: 23
  start-page: 311
  year: 2004
  end-page: 317
  ident: bib141
  article-title: Ants colony algorithm approach for multi-objective optimisation of surface grinding operations
  publication-title: Int J Adv Manuf Technol
– volume: 22
  start-page: 604
  year: 2018
  end-page: 620
  ident: bib34
  article-title: A new approach to modeling the surface topography in grinding considering ploughing action
  publication-title: Mach Sci Technol
– volume: 43
  start-page: 1571
  year: 2017
  end-page: 1577
  ident: bib3
  article-title: Effects of grinding parameters on surface quality in silicon nitride grinding
  publication-title: Ceram Int
– volume: 3
  start-page: 12
  year: 2010
  end-page: 23
  ident: bib73
  article-title: Study of surface quality in dry and wet external cylindrical grinding
  publication-title: Int J Comput Mater Sci Surf Eng
– volume: 43
  start-page: 2309
  year: 2005
  end-page: 2322
  ident: bib88
  article-title: An experimental investigation as to the effect of cutting parameters on roundness error and surface roughness in cylindrical grinding
  publication-title: Int J Prod Res
– volume: 5
  start-page: 1
  year: 2019
  end-page: 36
  ident: bib143
  article-title: Recent advances and applications of machine learning in solid-state materials science
  publication-title: Npj Comput Mater
– volume: 141
  start-page: 51
  year: 2003
  end-page: 59
  ident: bib89
  article-title: Analysis of process parameters in surface grinding with graphite as lubricant based on the Taguchi method
  publication-title: J Mater Process Technol
– volume: 82
  start-page: 2167
  year: 2016
  end-page: 2182
  ident: bib79
  article-title: Modeling and optimization of machining parameters in cylindrical grinding process
  publication-title: Int J Adv Manuf Technol
– volume: 78
  start-page: 1943
  year: 2015
  end-page: 1960
  ident: bib26
  article-title: Analysis of loads on grinding wheel binder in grinding process: insights from discontinuum-hypothesis-based grinding simulation
  publication-title: Int J Adv Manuf Technol
– volume: 4
  start-page: 208
  year: 1984
  end-page: 213
  ident: bib55
  article-title: Probabilistic analysis of the surface grinding process
  publication-title: Trans Can Soc Mech Eng
– volume: 45
  start-page: 245
  year: 2009
  end-page: 260
  ident: bib107
  article-title: A case-based and practical approach for multivariate modeling of grinding process
  publication-title: Int J Adv Manuf Technol
– volume: 45
  start-page: 859
  year: 2009
  end-page: 866
  ident: bib119
  article-title: A hybrid model using genetic algorithm and neural network for process parameters optimization in NC camshaft grinding
  publication-title: Int J Adv Manuf Technol
– volume: 30
  start-page: 833
  year: 2019
  end-page: 854
  ident: bib117
  article-title: Working parameter optimization of strengthen waterjet grinding with the orthogonal-experiment-design-based ANFIS
  publication-title: J Intell Manuf
– volume: 22
  start-page: 1
  year: 1995
  end-page: 14
  ident: bib7
  article-title: The influence of surface-roughness and surface-free energy on supragingival and subgingival plaque-formation in man A review of the literature
  publication-title: J Clin Periodontol
– volume: 37
  start-page: 758
  year: 2013
  end-page: 764
  ident: bib19
  article-title: Investigation of different grain shapes and dressing to predict surface roughness in grinding using kinematic simulations
  publication-title: Precis Eng
– volume: 77
  start-page: 643
  year: 2015
  end-page: 651
  ident: bib22
  article-title: A model for prediction of surface roughness in ultrasonic-assisted grinding
  publication-title: Int J Adv Manuf Technol
– volume: 34
  start-page: 919
  year: 1994
  end-page: 937
  ident: bib127
  article-title: A neural-network approach for grinding processes - modeling and optimization
  publication-title: Int J Mach Tool Manufact
– volume: 8
  start-page: 883
  year: 1996
  end-page: 896
  ident: bib31
  article-title: Analysis and simulation of the grinding process, part 2: mechanics of grinding
  publication-title: Int J Mach Tool Manufact
– volume: 49
  start-page: 421
  year: 2017
  end-page: 427
  ident: bib39
  article-title: Theoretical model of brittle material removal fraction related to surface roughness and subsurface damage depth of optical glass during precision grinding
  publication-title: Precis Eng
– volume: 18
  start-page: 847
  year: 1956
  end-page: 850
  ident: bib47
  article-title: The role of chip thickness in grinding
  publication-title: Trans. ASME.
– year: 2020
  ident: bib133
  article-title: Activation functions selection for BP neural network model of ground surface roughness
  publication-title: J Intell Manuf
– volume: 73
  start-page: 981
  year: 2014
  end-page: 988
  ident: bib137
  article-title: Constrained grinding optimization for time, cost, and surface roughness using NSGA-II
  publication-title: Int J Adv Manuf Technol
– volume: 82
  start-page: 451
  year: 2016
  end-page: 462
  ident: bib86
  article-title: Parametric design optimization of hard turning of AISI 4340 steel (69 HRC)
  publication-title: Int J Adv Manuf Technol
– volume: 26
  start-page: 1247
  year: 2015
  end-page: 1252
  ident: bib139
  article-title: A process prediction model based on Cuckoo algorithm for abrasive waterjet machining
  publication-title: J Intell Manuf
– volume: 91B
  start-page: 930
  year: 2009
  end-page: 937
  ident: bib8
  article-title: Influence of surface treatments on surface roughness, phase transformation, and biaxial flexural strength of Y-TZP ceramics
  publication-title: J Biomed Mater Res B
– volume: 43
  start-page: 101037
  year: 2020
  ident: bib148
  article-title: A smart surface inspection system using faster R-CNN in cloud-edge computing environment
  publication-title: Adv Eng Inf
– volume: 12
  start-page: 397
  year: 1943
  end-page: 401
  ident: bib46
  article-title: Determination and significance of chip thickness in grinding
  publication-title: Workshop Technol
– volume: 38
  start-page: 7486
  year: 2011
  end-page: 7493
  ident: bib99
  article-title: Towards next generation electrochemical machining controllers: a fuzzy logic control approach to ECM
  publication-title: Expert Syst Appl
– volume: 66
  start-page: 3794
  year: 2019
  end-page: 3803
  ident: bib144
  article-title: Using multiple-feature-spaces-based deep learning for tool condition monitoring in ultraprecision manufacturing
  publication-title: IEEE Trans Ind Electron
– volume: 2
  start-page: 677
  year: 1992
  end-page: 688
  ident: bib12
  article-title: Modelling and simulation of grinding processes
  publication-title: CIRP Ann - Manuf Technol
– volume: 23
  start-page: 227
  year: 1974
  end-page: 237
  ident: bib44
  article-title: The significance of chip thickness in grinding
  publication-title: CIRP Ann - Manuf Technol
– volume: 46
  start-page: 620
  year: 2006
  end-page: 622
  ident: bib5
  article-title: On the grindability of Titanium alloy by brazed type monolayered superabrasive grinding wheels
  publication-title: Int J Mach Tool Manufact
– volume: 51
  start-page: 135
  year: 2010
  end-page: 143
  ident: bib90
  article-title: Combined quality loss (CQL) concept in WPCA-based Taguchi philosophy for optimization of multiple surface quality characteristics of UNS C34000 brass in cylindrical grinding
  publication-title: Int J Adv Manuf Technol
– volume: 74
  start-page: 653
  year: 2014
  end-page: 663
  ident: bib78
  article-title: Surface roughness prediction and parameters optimization in grinding and polishing process for IBR of aero-engine
  publication-title: Int J Adv Manuf Technol
– volume: 13
  start-page: 1243
  year: 2005
  end-page: 1258
  ident: bib128
  article-title: Neural modelling, control and optimisation of an industrial grinding process
  publication-title: Contr Eng Pract
– volume: 5
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.precisioneng.2020.11.001_bib143
  article-title: Recent advances and applications of machine learning in solid-state materials science
  publication-title: Npj Comput Mater
  doi: 10.1038/s41524-019-0221-0
– volume: 156
  start-page: 14
  year: 2019
  ident: 10.1016/j.precisioneng.2020.11.001_bib33
  article-title: A comprehensive investigation of surface generation and material removal characteristics in ultrasonic vibration assisted grinding
  publication-title: Int J Mech Sci
  doi: 10.1016/j.ijmecsci.2019.03.026
– volume: 74
  start-page: 29
  year: 2013
  ident: 10.1016/j.precisioneng.2020.11.001_bib23
  article-title: 2D/3D ground surface topography modeling considering dressing and wear effects in grinding process
  publication-title: Int J Mach Tool Manufact
  doi: 10.1016/j.ijmachtools.2013.07.002
– volume: 3
  start-page: 12
  issue: 1
  year: 2010
  ident: 10.1016/j.precisioneng.2020.11.001_bib73
  article-title: Study of surface quality in dry and wet external cylindrical grinding
  publication-title: Int J Comput Mater Sci Surf Eng
– volume: 43
  start-page: 2309
  issue: 11
  year: 2005
  ident: 10.1016/j.precisioneng.2020.11.001_bib88
  article-title: An experimental investigation as to the effect of cutting parameters on roundness error and surface roughness in cylindrical grinding
  publication-title: Int J Prod Res
  doi: 10.1080/00207540412331330110
– volume: 58
  year: 2019
  ident: 10.1016/j.precisioneng.2020.11.001_bib41
  article-title: Analytical elastic – plastic cutting model for predicting grain depth-of-cut in ultrafine grinding of silicon wafer
  publication-title: Japanese Journal of Applied
– volume: 65
  start-page: 64
  year: 2020
  ident: 10.1016/j.precisioneng.2020.11.001_bib42
  article-title: Elastic recovery of monocrystalline silicon during ultra-fine rotational grinding
  publication-title: Precis Eng
  doi: 10.1016/j.precisioneng.2020.05.004
– volume: 48
  start-page: 1937
  issue: 8
  year: 2013
  ident: 10.1016/j.precisioneng.2020.11.001_bib83
  article-title: Hybrid GR-SVM for prediction of surface roughness in abrasive water jet machining
  publication-title: Meccanica
  doi: 10.1007/s11012-013-9710-2
– volume: 46
  start-page: 620
  issue: 6
  year: 2006
  ident: 10.1016/j.precisioneng.2020.11.001_bib5
  article-title: On the grindability of Titanium alloy by brazed type monolayered superabrasive grinding wheels
  publication-title: Int J Mach Tool Manufact
  doi: 10.1016/j.ijmachtools.2005.07.012
– start-page: 35
  year: 1993
  ident: 10.1016/j.precisioneng.2020.11.001_bib110
  article-title: Combining neural networks and fuzzy controllers
– volume: 46
  start-page: 445
  issue: 5–8
  year: 2010
  ident: 10.1016/j.precisioneng.2020.11.001_bib71
  article-title: Application of soft computing techniques in machining performance prediction and optimization: a literature review
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-009-2104-x
– volume: 5
  start-page: 5445
  issue: 2
  year: 2018
  ident: 10.1016/j.precisioneng.2020.11.001_bib116
  article-title: Prediction of surface roughness and MRR in grinding process on Inconel 800 alloy using neural networks and ANFIS
  publication-title: Mater Today: Proceedings
  doi: 10.1016/j.matpr.2017.12.132
– volume: 5
  start-page: 164
  issue: 3
  year: 2012
  ident: 10.1016/j.precisioneng.2020.11.001_bib14
  article-title: Kinematic simulation of high-performance grinding for analysis of chip parameters of single grains
  publication-title: CIRP Ann - Manuf Technol
  doi: 10.1016/j.cirpj.2012.07.004
– volume: 73
  start-page: 981
  issue: 5–8
  year: 2014
  ident: 10.1016/j.precisioneng.2020.11.001_bib137
  article-title: Constrained grinding optimization for time, cost, and surface roughness using NSGA-II
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-014-5884-6
– volume: 78
  start-page: 1943
  issue: 9–12
  year: 2015
  ident: 10.1016/j.precisioneng.2020.11.001_bib26
  article-title: Analysis of loads on grinding wheel binder in grinding process: insights from discontinuum-hypothesis-based grinding simulation
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-014-6767-6
– volume: 30
  start-page: 279
  year: 2015
  ident: 10.1016/j.precisioneng.2020.11.001_bib65
  article-title: Prediction of surface roughness during hard turning of AISI 4340 steel (69 HRC)
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2015.01.059
– volume: 99
  start-page: 97
  issue: 1–4
  year: 2018
  ident: 10.1016/j.precisioneng.2020.11.001_bib80
  article-title: Development of a hybrid particle swarm optimization algorithm for multi-pass roller grinding process optimization
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-018-2458-z
– volume: 23
  start-page: 311
  issue: 5–6
  year: 2004
  ident: 10.1016/j.precisioneng.2020.11.001_bib141
  article-title: Ants colony algorithm approach for multi-objective optimisation of surface grinding operations
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-002-1533-6
– volume: 39
  start-page: 29
  issue: 1–2
  year: 2008
  ident: 10.1016/j.precisioneng.2020.11.001_bib30
  article-title: Numerical modelling of surface topography in superabrasive grinding
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-007-1201-y
– volume: 30
  start-page: 833
  issue: 2
  year: 2019
  ident: 10.1016/j.precisioneng.2020.11.001_bib117
  article-title: Working parameter optimization of strengthen waterjet grinding with the orthogonal-experiment-design-based ANFIS
  publication-title: J Intell Manuf
  doi: 10.1007/s10845-016-1285-z
– volume: 55
  start-page: 667
  issue: 2
  year: 2006
  ident: 10.1016/j.precisioneng.2020.11.001_bib13
  article-title: Advances in modeling and simulation of grinding processes
  publication-title: CIRP Ann - Manuf Technol
  doi: 10.1016/j.cirp.2006.10.003
– volume: 37
  start-page: 758
  issue: 3
  year: 2013
  ident: 10.1016/j.precisioneng.2020.11.001_bib19
  article-title: Investigation of different grain shapes and dressing to predict surface roughness in grinding using kinematic simulations
  publication-title: Precis Eng
  doi: 10.1016/j.precisioneng.2013.02.009
– volume: 47
  start-page: 1929
  issue: 12–13
  year: 2007
  ident: 10.1016/j.precisioneng.2020.11.001_bib72
  article-title: Process modeling of controlled forming with time variant blank holder force using RSM method
  publication-title: Int J Mach Tool Manufact
  doi: 10.1016/j.ijmachtools.2007.03.003
– volume: 129
  start-page: 123
  issue: 1
  year: 2002
  ident: 10.1016/j.precisioneng.2020.11.001_bib18
  article-title: The simulation of grinding wheels and ground surface roughness based on virtual reality technology
  publication-title: J Mater Process Technol
  doi: 10.1016/S0924-0136(02)00589-7
– volume: 8
  start-page: 367
  year: 2016
  ident: 10.1016/j.precisioneng.2020.11.001_bib93
  article-title: Analysis of process parameters in surface grinding using single objective Taguchi and multi-objective grey relational grade
  publication-title: Perspectives in Science
  doi: 10.1016/j.pisc.2016.04.077
– volume: 57
  start-page: 3920
  issue: 12
  year: 2019
  ident: 10.1016/j.precisioneng.2020.11.001_bib151
  article-title: Digital Twin for rotating machinery fault diagnosis in smart manufacturing
  publication-title: Int J Prod Res: Special Issue: Sustainable Cybernetic Manufacturing
– volume: 23
  start-page: 227
  year: 1974
  ident: 10.1016/j.precisioneng.2020.11.001_bib44
  article-title: The significance of chip thickness in grinding
  publication-title: CIRP Ann - Manuf Technol
– volume: 49
  start-page: 421
  year: 2017
  ident: 10.1016/j.precisioneng.2020.11.001_bib39
  article-title: Theoretical model of brittle material removal fraction related to surface roughness and subsurface damage depth of optical glass during precision grinding
  publication-title: Precis Eng
  doi: 10.1016/j.precisioneng.2017.04.004
– volume: 4
  start-page: 208
  issue: 8
  year: 1984
  ident: 10.1016/j.precisioneng.2020.11.001_bib55
  article-title: Probabilistic analysis of the surface grinding process
  publication-title: Trans Can Soc Mech Eng
  doi: 10.1139/tcsme-1984-0031
– volume: 67
  start-page: 1035
  issue: 5–8
  year: 2013
  ident: 10.1016/j.precisioneng.2020.11.001_bib54
  article-title: Study on micro-interacting mechanism modeling in grinding process and ground surface roughness prediction
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-012-4546-9
– volume: 74
  start-page: 653
  issue: 5–8
  year: 2014
  ident: 10.1016/j.precisioneng.2020.11.001_bib78
  article-title: Surface roughness prediction and parameters optimization in grinding and polishing process for IBR of aero-engine
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-014-6020-3
– volume: 18
  start-page: 847
  year: 1956
  ident: 10.1016/j.precisioneng.2020.11.001_bib47
  article-title: The role of chip thickness in grinding
  publication-title: Trans. ASME.
– start-page: 210
  year: 2009
  ident: 10.1016/j.precisioneng.2020.11.001_bib140
– volume: 26
  start-page: 1247
  issue: 6
  year: 2015
  ident: 10.1016/j.precisioneng.2020.11.001_bib139
  article-title: A process prediction model based on Cuckoo algorithm for abrasive waterjet machining
  publication-title: J Intell Manuf
  doi: 10.1007/s10845-013-0853-8
– volume: 99
  start-page: 1467
  issue: 5–8
  year: 2018
  ident: 10.1016/j.precisioneng.2020.11.001_bib25
  article-title: A novel approach to simulate surface topography based on motion trajectories and feature theories of abrasive grains
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-018-2590-9
– volume: 6
  issue: X
  year: 2017
  ident: 10.1016/j.precisioneng.2020.11.001_bib69
  article-title: Optimization of surface grinding parameters on aisi d2 steel using response surface methodology
  publication-title: J Ind Eng
– volume: 148
  start-page: 288
  issue: 3
  year: 2004
  ident: 10.1016/j.precisioneng.2020.11.001_bib136
  article-title: Automatic design of fuzzy logic controller using a genetic algorithm - to predict power requirement and surface finish in grinding
  publication-title: J Mater Process Technol
  doi: 10.1016/j.jmatprotec.2004.02.011
– volume: 43
  start-page: 1327
  issue: 13
  year: 2003
  ident: 10.1016/j.precisioneng.2020.11.001_bib135
  article-title: Selection of optimum conditions for maximum material removal rate with surface finish and damage as constraints in SiC grinding
  publication-title: Int J Mach Tool Manufact
  doi: 10.1016/S0890-6955(03)00165-2
– volume: 8
  start-page: 345
  issue: 3
  year: 2014
  ident: 10.1016/j.precisioneng.2020.11.001_bib21
  article-title: Simulation of grinding processes using finite element analysis and geometric simulation of individual grains
  publication-title: Prod Eng
  doi: 10.1007/s11740-013-0524-9
– ident: 10.1016/j.precisioneng.2020.11.001_bib103
– volume: 39
  start-page: 705
  issue: 4
  year: 2019
  ident: 10.1016/j.precisioneng.2020.11.001_bib81
  article-title: Material removal mechanism of laser-assisted grinding of RB-SiC ceramics and process optimization
  publication-title: J Eur Ceram Soc
  doi: 10.1016/j.jeurceramsoc.2018.11.002
– volume: 166
  start-page: 105263
  year: 2020
  ident: 10.1016/j.precisioneng.2020.11.001_bib36
  article-title: Research on predicting model of surface roughness in small-scale grinding of brittle materials considering grinding tool topography
  publication-title: Int J Mech Sci
  doi: 10.1016/j.ijmecsci.2019.105263
– volume: 110
  start-page: 43
  year: 2016
  ident: 10.1016/j.precisioneng.2020.11.001_bib28
  article-title: Discrete-element modelling of the grinding contact length combining the wheel-body structure and the surface-topography models
  publication-title: Int J Mach Tool Manufact
  doi: 10.1016/j.ijmachtools.2016.07.004
– volume: 3
  start-page: 801
  issue: 5
  year: 1992
  ident: 10.1016/j.precisioneng.2020.11.001_bib109
  article-title: On Fuzzy Modeling using fuzzy neural networks with the backpropagation algorithm
  publication-title: IEEE Trans Neural Network
  doi: 10.1109/72.159069
– volume: 11
  start-page: 2165
  issue: 8
  year: 2018
  ident: 10.1016/j.precisioneng.2020.11.001_bib150
  article-title: An AWS machine learning-based indirect monitoring method for deburring in aerospace industries towards Industry 4.0
  publication-title: Appl Sci
  doi: 10.3390/app8112165
– volume: 66
  start-page: 1715
  issue: 9–12
  year: 2013
  ident: 10.1016/j.precisioneng.2020.11.001_bib53
  article-title: 3D metal removal simulation to determine uncut chip thickness, contact length, and surface finish in grinding
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-012-4452-1
– volume: 144
  start-page: 639
  year: 2018
  ident: 10.1016/j.precisioneng.2020.11.001_bib35
  article-title: A comprehensive investigation of plowing and grain-workpiece micro interactions on 3D ground surface topography
  publication-title: Int J Mech Sci
  doi: 10.1016/j.ijmecsci.2018.06.024
– volume: 205
  start-page: 836
  year: 2018
  ident: 10.1016/j.precisioneng.2020.11.001_bib66
  article-title: Parameter optimisation for producing fired bricks using organic solid wastes
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2018.09.116
– volume: 202
  start-page: 574
  issue: 1–3
  year: 2008
  ident: 10.1016/j.precisioneng.2020.11.001_bib98
  article-title: A study on surface roughness in abrasive waterjet machining process using artificial neural networks and regression analysis method
  publication-title: J Mater Process Technol
  doi: 10.1016/j.jmatprotec.2007.10.024
– volume: 38
  start-page: 549
  year: 2019
  ident: 10.1016/j.precisioneng.2020.11.001_bib37
  article-title: Study on key factors influencing the surface generation in rotary ultrasonic grinding for hard and brittle materials
  publication-title: J Manuf Process
  doi: 10.1016/j.jmapro.2019.01.046
– volume: 74
  start-page: 835
  issue: 5
  year: 2014
  ident: 10.1016/j.precisioneng.2020.11.001_bib20
  article-title: Modeling the operation of a common grinding wheel with nanoparticle jet flow minimal quantity lubrication
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-014-6032-z
– volume: 56
  start-page: 59
  year: 2012
  ident: 10.1016/j.precisioneng.2020.11.001_bib61
  article-title: Predictive modeling of undeformed chip thickness in ceramic grinding
  publication-title: Int J Mach Tool Manufact
  doi: 10.1016/j.ijmachtools.2012.01.003
– volume: 21
  start-page: 657
  issue: 6
  year: 2010
  ident: 10.1016/j.precisioneng.2020.11.001_bib121
  article-title: Creep feed grinding optimization by an integrated GA-NN system
  publication-title: J Intell Manuf
  doi: 10.1007/s10845-009-0243-4
– volume: 9
  start-page: 59
  issue: 2
  year: 2014
  ident: 10.1016/j.precisioneng.2020.11.001_bib129
  article-title: Artificial neural network modeling for surface roughness prediction in cylindrical grinding of Al-SiCp metal matrix composites and ANOVA analysis
  publication-title: Adv Prod Eng Manag
– volume: 82
  start-page: 451
  issue: 1
  year: 2016
  ident: 10.1016/j.precisioneng.2020.11.001_bib86
  article-title: Parametric design optimization of hard turning of AISI 4340 steel (69 HRC)
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-015-7337-2
– volume: 141
  start-page: 329
  issue: 3
  year: 2003
  ident: 10.1016/j.precisioneng.2020.11.001_bib4
  article-title: High speed grinding of silicon nitride with resin bond diamond wheels
  publication-title: J Mater Process Technol
  doi: 10.1016/S0924-0136(03)00284-X
– volume: 191
  start-page: 206
  issue: 1–3
  year: 2007
  ident: 10.1016/j.precisioneng.2020.11.001_bib106
  article-title: Prediction of wear and surface roughness in electro-discharge diamond grinding
  publication-title: J Mater Process Technol
  doi: 10.1016/j.jmatprotec.2007.03.032
– volume: 11
  start-page: 512
  issue: 6
  year: 2017
  ident: 10.1016/j.precisioneng.2020.11.001_bib131
  article-title: Neural network modelling of Abbott-Firestone roughness parameters in honing processes
  publication-title: Int J Surf Sci Eng
  doi: 10.1504/IJSURFSE.2017.088973
– volume: 42
  start-page: 969
  issue: 8
  year: 2002
  ident: 10.1016/j.precisioneng.2020.11.001_bib51
  article-title: Modeling and predicting surface roughness of the grinding process
  publication-title: Int J Mach Tool Manufact
  doi: 10.1016/S0890-6955(02)00011-1
– volume: 30
  start-page: 2421
  issue: 10
  year: 1992
  ident: 10.1016/j.precisioneng.2020.11.001_bib126
  article-title: Neural network modelling and multiobjective optimization of creep feed grinding of superalloys
  publication-title: Int J Prod Res
  doi: 10.1080/00207549208948164
– volume: 28
  start-page: 381
  issue: 4
  year: 2013
  ident: 10.1016/j.precisioneng.2020.11.001_bib108
  article-title: Modeling and prediction of material removal rate and surface roughness in surface-electrical discharge diamond grinding process of metal matrix composites
  publication-title: Mater Manuf Process
  doi: 10.1080/10426914.2013.763678
– volume: 43
  start-page: 101037
  year: 2020
  ident: 10.1016/j.precisioneng.2020.11.001_bib148
  article-title: A smart surface inspection system using faster R-CNN in cloud-edge computing environment
  publication-title: Adv Eng Inf
  doi: 10.1016/j.aei.2020.101037
– volume: 1
  start-page: 105
  issue: 19
  year: 1971
  ident: 10.1016/j.precisioneng.2020.11.001_bib49
  article-title: Local elastic deflections in grinding
  publication-title: CIRP Ann - Manuf Technol
– volume: 45
  start-page: 327
  issue: 3
  year: 2005
  ident: 10.1016/j.precisioneng.2020.11.001_bib75
  article-title: Application of Taguchi and response surface methodologies for geometric error in surface grinding process
  publication-title: Int J Mach Tool Manufact
  doi: 10.1016/j.ijmachtools.2004.08.007
– volume: 13
  start-page: 1243
  issue: 10
  year: 2005
  ident: 10.1016/j.precisioneng.2020.11.001_bib128
  article-title: Neural modelling, control and optimisation of an industrial grinding process
  publication-title: Contr Eng Pract
  doi: 10.1016/j.conengprac.2004.11.006
– volume: 81
  start-page: 1921
  issue: 9–12
  year: 2015
  ident: 10.1016/j.precisioneng.2020.11.001_bib27
  article-title: Modeling and simulation of grinding wheel by discrete element method and experimental validation
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-015-7205-0
– volume: 64
  start-page: 114
  year: 2013
  ident: 10.1016/j.precisioneng.2020.11.001_bib38
  article-title: A predictive model of the critical undeformed chip thickness for ductile–brittle transition in nano-machining of brittle materials
  publication-title: Int J Mach Tool Manufact
  doi: 10.1016/j.ijmachtools.2012.08.005
– volume: 25
  start-page: 750
  issue: 8
  year: 2012
  ident: 10.1016/j.precisioneng.2020.11.001_bib115
  article-title: An intelligent system approach for surface roughness and vibrations prediction in cylindrical grinding
  publication-title: Int J Comput Integrated Manuf
  doi: 10.1080/0951192X.2012.665185
– volume: 127
  start-page: 14
  year: 2018
  ident: 10.1016/j.precisioneng.2020.11.001_bib64
  article-title: Modeling and simulation of the distribution of undeformed chip thicknesses in surface grinding
  publication-title: Int J Mach Tool Manufact
  doi: 10.1016/j.ijmachtools.2018.01.002
– volume: 26
  start-page: 41
  issue: 1
  year: 2015
  ident: 10.1016/j.precisioneng.2020.11.001_bib67
  article-title: Surface roughness prediction using Taguchi-fuzzy logic-neural network analysis for CNT nanofluids based grinding process
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-014-1696-8
– volume: 46
  start-page: 304
  issue: 3–4
  year: 2006
  ident: 10.1016/j.precisioneng.2020.11.001_bib74
  article-title: An analysis of grinding power and surface roughness in external cylindrical grinding of hardened SCM440 steel using the response surface method
  publication-title: Int J Mach Tool Manufact
  doi: 10.1016/j.ijmachtools.2005.05.019
– volume: 45
  start-page: 859
  issue: 9–10
  year: 2009
  ident: 10.1016/j.precisioneng.2020.11.001_bib119
  article-title: A hybrid model using genetic algorithm and neural network for process parameters optimization in NC camshaft grinding
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-009-2029-4
– volume: 141
  start-page: 329
  issue: 3
  year: 2003
  ident: 10.1016/j.precisioneng.2020.11.001_bib45
  article-title: High speed grinding of silicon nitride with resin bond diamond wheels
  publication-title: J Mater Process Technol
  doi: 10.1016/S0924-0136(03)00284-X
– start-page: 442
  year: 2010
  ident: 10.1016/j.precisioneng.2020.11.001_bib120
  article-title: Study on machining prediction in plane grinding based on artificial neural network
– volume: 75
  start-page: 1245
  issue: 5–8
  year: 2014
  ident: 10.1016/j.precisioneng.2020.11.001_bib84
  article-title: Surface roughness prediction by combining static and dynamic features in cylindrical traverse grinding
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-014-6189-5
– volume: 38
  start-page: 7486
  issue: 6
  year: 2011
  ident: 10.1016/j.precisioneng.2020.11.001_bib99
  article-title: Towards next generation electrochemical machining controllers: a fuzzy logic control approach to ECM
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2010.12.074
– year: 1972
  ident: 10.1016/j.precisioneng.2020.11.001_bib57
  article-title: Wear of single abrasive grain in fine grinding
– volume: 94
  start-page: 1335
  issue: 1–4
  year: 2018
  ident: 10.1016/j.precisioneng.2020.11.001_bib132
  article-title: Modelling of surface roughness and grinding forces using artificial neural networks with assessment of the ability to data generalisation
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-017-0949-y
– volume: 36
  start-page: 35
  year: 2015
  ident: 10.1016/j.precisioneng.2020.11.001_bib152
  article-title: Enhanced particle filter for tool wear prediction
  publication-title: J Manuf Syst
  doi: 10.1016/j.jmsy.2015.03.005
– volume: 111
  start-page: 1
  year: 2019
  ident: 10.1016/j.precisioneng.2020.11.001_bib153
  article-title: Deep heterogeneous GRU model for predictive analytics in smart manufacturing: application to tool wear prediction
  publication-title: Comput Ind
  doi: 10.1016/j.compind.2019.06.001
– volume: 147
  start-page: 106825
  year: 2019
  ident: 10.1016/j.precisioneng.2020.11.001_bib82
  article-title: Experimental study of newly structural design grinding wheel considering response surface optimization and Monte Carlo simulation
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.07.053
– volume: 170
  start-page: 367
  issue: 1–2
  year: 2005
  ident: 10.1016/j.precisioneng.2020.11.001_bib87
  article-title: Grinding force control in an automatic surface finishing system
  publication-title: J Mater Process Technol
  doi: 10.1016/j.jmatprotec.2005.06.002
– volume: 162–163
  start-page: 655
  year: 2005
  ident: 10.1016/j.precisioneng.2020.11.001_bib113
  article-title: FBF-NN-based modelling of cylindrical plunge grinding process using a GA
  publication-title: J Mater Process Technol
  doi: 10.1016/j.jmatprotec.2005.02.080
– volume: 140
  start-page: 121001
  issue: 12
  year: 2018
  ident: 10.1016/j.precisioneng.2020.11.001_bib6
  article-title: Analytical elastic – plastic cutting model for predicting grain depth-of-cut in ultrafine grinding of silicon wafer
  publication-title: J Manuf Sci E-ASME.
  doi: 10.1115/1.4041245
– volume: 101
  start-page: 1315
  issue: 5
  year: 2019
  ident: 10.1016/j.precisioneng.2020.11.001_bib118
  article-title: Application of compressed air in the online monitoring of surface roughness and grinding wheel wear when grinding Ti-6Al-4V titanium alloy
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-018-2909-6
– volume: 13
  start-page: 2436
  issue: 223
  year: 2019
  ident: 10.1016/j.precisioneng.2020.11.001_bib154
  article-title: An intelligent monitoring system of grinding wheel wear based on two-stage feature selection and Long Short-Term Memory network
  publication-title: J Eng Manuf
  doi: 10.1177/0954405419840556
– volume: 39
  start-page: 1451
  issue: 9
  year: 1999
  ident: 10.1016/j.precisioneng.2020.11.001_bib17
  article-title: Simulation of diamond-ground surfaces
  publication-title: Int J Mach Tool Manufact
  doi: 10.1016/S0890-6955(99)00002-4
– volume: 33
  start-page: 1229
  issue: 5
  year: 1995
  ident: 10.1016/j.precisioneng.2020.11.001_bib112
  article-title: Neuro-fuzzy GMDH and its application to modelling grinding characteristics
  publication-title: Int J Prod Res
  doi: 10.1080/00207549508930206
– volume: 45
  start-page: 609
  issue: 6
  year: 2005
  ident: 10.1016/j.precisioneng.2020.11.001_bib58
  article-title: A probabilistic approach to predict surface roughness in ceramic grinding
  publication-title: Int J Mach Tool Manufact
  doi: 10.1016/j.ijmachtools.2004.10.005
– volume: 31
  start-page: 375
  year: 2015
  ident: 10.1016/j.precisioneng.2020.11.001_bib62
  article-title: Predictive modeling of surface roughness in grinding
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2015.04.092
– volume: 45
  start-page: 1329
  issue: 11
  year: 2005
  ident: 10.1016/j.precisioneng.2020.11.001_bib32
  article-title: Simulation of surface grinding process, part 2: interaction of the abrasive grain with the workpiece
  publication-title: Int J Mach Tool Manufact
  doi: 10.1016/j.ijmachtools.2005.01.006
– volume: 66
  start-page: 3794
  issue: 5
  year: 2019
  ident: 10.1016/j.precisioneng.2020.11.001_bib144
  article-title: Using multiple-feature-spaces-based deep learning for tool condition monitoring in ultraprecision manufacturing
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2018.2856193
– volume: 2
  start-page: 677
  issue: 41
  year: 1992
  ident: 10.1016/j.precisioneng.2020.11.001_bib12
  article-title: Modelling and simulation of grinding processes
  publication-title: CIRP Ann - Manuf Technol
  doi: 10.1016/S0007-8506(07)63254-5
– volume: 33
  start-page: 1
  year: 2020
  ident: 10.1016/j.precisioneng.2020.11.001_bib147
  article-title: Digital twin-driven supervised machine learning for the development of artificial intelligence applications in manufacturing
  publication-title: Int J Comput Integrated Manuf
  doi: 10.1080/0951192X.2020.1747642
– volume: 97
  start-page: 2715
  issue: 5–8
  year: 2018
  ident: 10.1016/j.precisioneng.2020.11.001_bib95
  article-title: An experimental and theoretical analysis of surface generation in the ultra-precision grinding of hard and brittle materials
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-018-2121-8
– volume: 50
  start-page: 1065
  issue: 12
  year: 2010
  ident: 10.1016/j.precisioneng.2020.11.001_bib60
  article-title: Modeling and prediction of surface roughness in ceramic grinding
  publication-title: Int J Mach Tool Manufact
  doi: 10.1016/j.ijmachtools.2010.08.009
– volume: 51
  start-page: 135
  issue: 1–4
  year: 2010
  ident: 10.1016/j.precisioneng.2020.11.001_bib90
  article-title: Combined quality loss (CQL) concept in WPCA-based Taguchi philosophy for optimization of multiple surface quality characteristics of UNS C34000 brass in cylindrical grinding
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-010-2599-1
– volume: 91B
  start-page: 930
  issue: 2
  year: 2009
  ident: 10.1016/j.precisioneng.2020.11.001_bib8
  article-title: Influence of surface treatments on surface roughness, phase transformation, and biaxial flexural strength of Y-TZP ceramics
  publication-title: J Biomed Mater Res B
  doi: 10.1002/jbm.b.31477
– volume: 22
  start-page: 1
  issue: 1
  year: 1995
  ident: 10.1016/j.precisioneng.2020.11.001_bib7
  article-title: The influence of surface-roughness and surface-free energy on supragingival and subgingival plaque-formation in man A review of the literature
  publication-title: J Clin Periodontol
  doi: 10.1111/j.1600-051X.1995.tb01765.x
– volume: 13
  start-page: 62
  issue: 1
  year: 2015
  ident: 10.1016/j.precisioneng.2020.11.001_bib100
  article-title: Neural tool condition estimation in the grinding of advanced ceramics
  publication-title: Ieee Lat Am T
  doi: 10.1109/TLA.2015.7040629
– volume: 95
  start-page: 972
  issue: 4
  year: 1973
  ident: 10.1016/j.precisioneng.2020.11.001_bib16
  article-title: Simulation study of the grinding process
  publication-title: Transactions of the ASME. Series B, Journal of Engineering for Industry
  doi: 10.1115/1.3438277
– volume: 59
  start-page: 694
  issue: 2
  year: 2010
  ident: 10.1016/j.precisioneng.2020.11.001_bib2
  article-title: Precision engineering for astronomy and gravity science
  publication-title: CIRP Ann - Manuf Technol
  doi: 10.1016/j.cirp.2010.05.003
– volume: 93
  start-page: 2827
  issue: 5–8
  year: 2017
  ident: 10.1016/j.precisioneng.2020.11.001_bib145
  article-title: Characterization of material removal in ultrasonically assisted grinding of SiCp/Al with high volume fraction
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-017-0676-4
– volume: 43
  start-page: 1571
  issue: 1B
  year: 2017
  ident: 10.1016/j.precisioneng.2020.11.001_bib3
  article-title: Effects of grinding parameters on surface quality in silicon nitride grinding
  publication-title: Ceram Int
  doi: 10.1016/j.ceramint.2016.10.135
– year: 1969
  ident: 10.1016/j.precisioneng.2020.11.001_bib15
– volume: 9
  start-page: 103
  issue: 2
  year: 2008
  ident: 10.1016/j.precisioneng.2020.11.001_bib114
  article-title: A neural network and fuzzy-based methodology for the prediction of work roll surface roughness in a grinding process
  publication-title: Int J Comput Met Eng Sci Mech
  doi: 10.1080/15502280701815382
– volume: 45
  start-page: 245
  issue: 3–4
  year: 2009
  ident: 10.1016/j.precisioneng.2020.11.001_bib107
  article-title: A case-based and practical approach for multivariate modeling of grinding process
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-009-1977-z
– volume: 102
  start-page: 605
  issue: 1–4
  year: 2019
  ident: 10.1016/j.precisioneng.2020.11.001_bib138
  article-title: Trajectory planning of abrasive belt grinding for aero-engine blade profile
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-018-3187-z
– volume: 26
  start-page: 696
  issue: 8
  year: 2013
  ident: 10.1016/j.precisioneng.2020.11.001_bib91
  article-title: Optimisation of machining parameters in interrupted cylindrical grinding using the Grey-based Taguchi method
  publication-title: Int J Comput Integrated Manuf
  doi: 10.1080/0951192X.2012.749537
– volume: 82
  start-page: 2167
  issue: 9–12
  year: 2016
  ident: 10.1016/j.precisioneng.2020.11.001_bib79
  article-title: Modeling and optimization of machining parameters in cylindrical grinding process
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-015-7500-9
– volume: 35
  start-page: 2255
  issue: 6
  year: 2018
  ident: 10.1016/j.precisioneng.2020.11.001_bib29
  article-title: Future of the discrete element method in the modelling of grinding wheels
  publication-title: Eng Comput
  doi: 10.1108/EC-11-2017-0450
– volume: 90
  start-page: 2453
  issue: 9–12
  year: 2017
  ident: 10.1016/j.precisioneng.2020.11.001_bib94
  article-title: Mathematical modeling and machining parameter optimization for the surface roughness of face gear grinding
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-016-9576-2
– start-page: 1456
  year: 2011
  ident: 10.1016/j.precisioneng.2020.11.001_bib122
– volume: 43
  start-page: 1579
  issue: 15
  year: 2003
  ident: 10.1016/j.precisioneng.2020.11.001_bib52
  article-title: On the mechanics of the grinding process-Part I. Stochastic nature of the grinding process
  publication-title: Int J Mach Tool Manufact
  doi: 10.1016/S0890-6955(03)00186-X
– volume: 66
  start-page: 499
  issue: 1
  year: 2017
  ident: 10.1016/j.precisioneng.2020.11.001_bib10
  article-title: Influence of surface roughness on computed tomography dimensional measurements
  publication-title: CIRP Ann - Manuf Technol
  doi: 10.1016/j.cirp.2017.04.067
– volume: 3
  start-page: 807
  issue: 5
  year: 1992
  ident: 10.1016/j.precisioneng.2020.11.001_bib111
  article-title: Fuzzy basis functions, universal approximation, and orthogonal least-squares learning
  publication-title: IEEE Trans Neural Network
  doi: 10.1109/72.159070
– volume: 102
  start-page: 487
  issue: 1–4
  year: 2019
  ident: 10.1016/j.precisioneng.2020.11.001_bib24
  article-title: Research on the matching relationship between ultrasonic-assisted grinding parameters and workpiece surface roughness
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-018-3195-z
– volume: 22
  start-page: 604
  issue: 4
  year: 2018
  ident: 10.1016/j.precisioneng.2020.11.001_bib34
  article-title: A new approach to modeling the surface topography in grinding considering ploughing action
  publication-title: Mach Sci Technol
  doi: 10.1080/10910344.2017.1382514
– volume: 34
  start-page: 919
  issue: 7
  year: 1994
  ident: 10.1016/j.precisioneng.2020.11.001_bib127
  article-title: A neural-network approach for grinding processes - modeling and optimization
  publication-title: Int J Mach Tool Manufact
  doi: 10.1016/0890-6955(94)90025-6
– volume: 45
  start-page: 13
  issue: 1
  year: 2005
  ident: 10.1016/j.precisioneng.2020.11.001_bib101
  article-title: Neural network based manufacturability evaluation of free form machining
  publication-title: Int J Mach Tool Manufact
  doi: 10.1016/j.ijmachtools.2004.06.022
– volume: 37
  start-page: 1167
  issue: 8
  year: 1997
  ident: 10.1016/j.precisioneng.2020.11.001_bib102
  article-title: Force modeling and forecasting in creep feed grinding using improved BP neural network
  publication-title: Int J Mach Tool Manufact
  doi: 10.1016/S0890-6955(96)00012-0
– year: 2020
  ident: 10.1016/j.precisioneng.2020.11.001_bib133
  article-title: Activation functions selection for BP neural network model of ground surface roughness
  publication-title: J Intell Manuf
  doi: 10.1007/s10845-020-01538-5
– volume: 31
  start-page: 24
  issue: 1–2
  year: 2006
  ident: 10.1016/j.precisioneng.2020.11.001_bib97
  article-title: Ground surface roughness prediction based upon experimental design and neural network models
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-005-0169-8
– volume: 46
  start-page: 899
  issue: 4
  year: 1997
  ident: 10.1016/j.precisioneng.2020.11.001_bib105
  article-title: A fiber optic sensor for the measurement of surface roughness and displacement using artificial neural networks
  publication-title: IEEE T Instrum Meas
  doi: 10.1109/19.650796
– volume: 43
  start-page: 1956
  issue: 12
  year: 2009
  ident: 10.1016/j.precisioneng.2020.11.001_bib124
  article-title: Vogl fast BP network and orthogonal experiment method in optimization of sphere grinding process parameters
  publication-title: J Shanghai Jiaot Univ
– volume: 141
  start-page: 51
  issue: 1
  year: 2003
  ident: 10.1016/j.precisioneng.2020.11.001_bib89
  article-title: Analysis of process parameters in surface grinding with graphite as lubricant based on the Taguchi method
  publication-title: J Mater Process Technol
  doi: 10.1016/S0924-0136(02)01112-3
– year: 2019
  ident: 10.1016/j.precisioneng.2020.11.001_bib142
– volume: 43
  start-page: 755
  issue: 8
  year: 2003
  ident: 10.1016/j.precisioneng.2020.11.001_bib56
  article-title: Predictive modeling of surface roughness in grinding
  publication-title: Int J Mach Tool Manufact
  doi: 10.1016/S0890-6955(03)00055-5
– volume: 77
  start-page: 643
  issue: 1–4
  year: 2015
  ident: 10.1016/j.precisioneng.2020.11.001_bib22
  article-title: A model for prediction of surface roughness in ultrasonic-assisted grinding
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-014-6482-3
– volume: 55
  start-page: 275
  year: 2019
  ident: 10.1016/j.precisioneng.2020.11.001_bib155
  article-title: Online monitoring of surface roughness and grinding wheel wear when grinding Ti-6Al-4V titanium alloy using ANFIS-GPR hybrid algorithm and Taguchi analysis
  publication-title: Precis Eng
  doi: 10.1016/j.precisioneng.2018.09.018
– volume: 43
  start-page: 833
  issue: 8
  year: 2003
  ident: 10.1016/j.precisioneng.2020.11.001_bib11
  article-title: Predicting surface roughness in machining: a review
  publication-title: Int J Mach Tool Manufact
  doi: 10.1016/S0890-6955(03)00059-2
– volume: 17
  start-page: 880
  issue: 4
  year: 2017
  ident: 10.1016/j.precisioneng.2020.11.001_bib40
  article-title: Analytical modeling of ground surface topography in monocrystalline silicon grinding considering the ductile-regime effect
  publication-title: Arch Civ Mech Eng
  doi: 10.1016/j.acme.2017.03.010
– volume: 24
  start-page: 182
  issue: 3
  year: 2017
  ident: 10.1016/j.precisioneng.2020.11.001_bib68
  article-title: Prediction of the surface roughness and wheel wear of modern ceramic material (Al2O3) during grinding using multiple regression analysis model
  publication-title: Indian J Eng Mater Sci
– volume: 12
  start-page: 397
  year: 1943
  ident: 10.1016/j.precisioneng.2020.11.001_bib46
  article-title: Determination and significance of chip thickness in grinding
  publication-title: Workshop Technol
– volume: 12
  start-page: 340
  issue: 3
  year: 2019
  ident: 10.1016/j.precisioneng.2020.11.001_bib125
  article-title: Mechanism and parameter optimization in grinding and polishing of M300 steel by an elastic abrasive
  publication-title: Materials
  doi: 10.3390/ma12030340
– volume: 3–4
  start-page: 265
  issue: 20
  year: 1980
  ident: 10.1016/j.precisioneng.2020.11.001_bib50
  article-title: A simple model for evaluating surface roughness in fine grinding
  publication-title: Int J Mach Tool Manufact
– volume: 26
  start-page: 41
  issue: 1
  year: 2015
  ident: 10.1016/j.precisioneng.2020.11.001_bib96
  article-title: Surface roughness prediction using Taguchi-fuzzy logic-neural network analysis for CNT nanofluids based grinding process
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-014-1696-8
– volume: 43
  start-page: 505
  year: 2016
  ident: 10.1016/j.precisioneng.2020.11.001_bib130
  article-title: Indirect model for roughness in rough honing processes based on artificial neural networks
  publication-title: Precis Eng
  doi: 10.1016/j.precisioneng.2015.09.004
– start-page: 1
  year: 2019
  ident: 10.1016/j.precisioneng.2020.11.001_bib149
  article-title: Big data analytics for manufacturing internet of things: opportunities, challenges and enabling technologies
  publication-title: Enterp Inf Syst-Uk
– volume: 2
  start-page: 236
  issue: 3
  year: 2008
  ident: 10.1016/j.precisioneng.2020.11.001_bib76
  article-title: Optimisation of work roll grinding using Response Surface Methodology and evolutionary algorithm
  publication-title: Int J Manuf Research
  doi: 10.1504/IJMR.2008.017418
– volume: 48
  start-page: 932
  issue: 7–8
  year: 2008
  ident: 10.1016/j.precisioneng.2020.11.001_bib85
  article-title: A Taguchi and experimental investigation into the optimal processing conditions for the abrasive jet polishing of SKD61 mold steel
  publication-title: Int J Mach Tool Manufact
  doi: 10.1016/j.ijmachtools.2007.08.019
– volume: 19
  start-page: 2854
  issue: 11
  year: 2013
  ident: 10.1016/j.precisioneng.2020.11.001_bib123
  article-title: Grinding roughness prediction model based on evolutionary artificial neural network
  publication-title: Com-Int Manuf Systems.
– volume: 78
  start-page: 847
  year: 1956
  ident: 10.1016/j.precisioneng.2020.11.001_bib43
  article-title: The role of chip thickness in grinding
  publication-title: Transactions of the ASME
– volume: 17
  start-page: 330
  issue: 5
  year: 2001
  ident: 10.1016/j.precisioneng.2020.11.001_bib134
  article-title: Genetic algorithm (GA) for multivariable surface grinding process optimisation using a multi-objective function model
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s001700170167
– volume: 50
  start-page: 19
  year: 2014
  ident: 10.1016/j.precisioneng.2020.11.001_bib146
  article-title: Optimization of surface roughness and flank wear using the Taguchi method in milling of Hadfield steel with PVD and CVD coated inserts
  publication-title: Measurement
  doi: 10.1016/j.measurement.2013.12.017
– volume: 376
  start-page: 1185
  issue: B
  year: 2017
  ident: 10.1016/j.precisioneng.2020.11.001_bib9
  article-title: On the influence of surface roughness on the wear behavior in the running-in phase in mixed-lubricated contacts with the finite element method
  publication-title: Wear
  doi: 10.1016/j.wear.2017.01.035
– volume: 8
  start-page: 883
  issue: 36
  year: 1996
  ident: 10.1016/j.precisioneng.2020.11.001_bib31
  article-title: Analysis and simulation of the grinding process, part 2: mechanics of grinding
  publication-title: Int J Mach Tool Manufact
  doi: 10.1016/0890-6955(96)00117-4
– year: 1989
  ident: 10.1016/j.precisioneng.2020.11.001_bib48
– volume: 178
  start-page: 363
  year: 2018
  ident: 10.1016/j.precisioneng.2020.11.001_bib70
  article-title: Influence of water-based copper nanofluid on wheel loading and surface roughness during grinding of Inconel 738 superalloy
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2018.01.003
– volume: 26
  start-page: 3587
  issue: 11
  year: 2012
  ident: 10.1016/j.precisioneng.2020.11.001_bib77
  article-title: Determining the optimum process parameter for grinding operations using robust process
  publication-title: J Mech Sci Technol
  doi: 10.1007/s12206-012-0851-3
– volume: 219
  start-page: 811
  issue: 11
  year: 2005
  ident: 10.1016/j.precisioneng.2020.11.001_bib59
  article-title: A new surface roughness prediction model for ceramic grinding
  publication-title: P I Mech Eng B-J Eng.
– volume: 122
  start-page: 66
  year: 2017
  ident: 10.1016/j.precisioneng.2020.11.001_bib63
  article-title: Grinding performance of textured monolayer CBN wheels: undeformed chip thickness nonuniformity modeling and ground surface topography prediction
  publication-title: Int J Mach Tool Manufact
  doi: 10.1016/j.ijmachtools.2017.05.006
– volume: 30
  start-page: 2965
  year: 2015
  ident: 10.1016/j.precisioneng.2020.11.001_bib92
  article-title: Prediction of surface roughness quality of green abrasive water jet machining: a soft computing approach
  publication-title: J Intell Manuf
  doi: 10.1007/s10845-015-1169-7
– start-page: 491
  year: 1994
  ident: 10.1016/j.precisioneng.2020.11.001_bib104
  article-title: Analysis of ductile mode ground surface of optical-glass by atomic-force microscopy
– volume: 60
  start-page: 379
  issue: 1
  year: 2011
  ident: 10.1016/j.precisioneng.2020.11.001_bib1
  article-title: Grinding metre scale mirror segments for the E-ELT ground based telescope
  publication-title: CIRP Ann - Manuf Technol
  doi: 10.1016/j.cirp.2011.03.120
SSID ssj0007804
Score 2.5237274
SecondaryResourceType review_article
Snippet Grinding is a multi-length scale material removal process that is widely employed to machine a wide variety of materials in almost every industrial sector....
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 393
SubjectTerms Digital manufacturing
Digitalisation
Industry-4.0
Precision grinding
Prediction
Quality
Title New insights into the methods for predicting ground surface roughness in the age of digitalisation
URI https://dx.doi.org/10.1016/j.precisioneng.2020.11.001
Volume 67
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwELUqWGBAfIryUXlgNU0c20kHhqqiKiA6UalbFMdxFYTSqklXfjt3TgJFYqjEFlk5yTrbz3fJu3eE3GWRCYRnJQtUYJmAs8giJTxmpPa1UhqyEKwdfp2qyUw8z-W8Q0ZtLQzSKhvsrzHdoXUz0m-82V_leR9pSRBMyAHHvwShQk1QVK-DPX3_-UPzQIGdmsboM3y7FR51HK_Vum1kUywgV-SIIPhv4u9LauviGR-ToyZipMN6UiekkxWn5HBLR_CMaIAqmhclJtolPFRLCnEdrbtDlxTiUgpzMFj9USwoFnIUhpabtU3SjLo-PQh4YOjMAGHo0lKTL3Inj-jW7pzMxo9vowlrmiewFDCjYqlvRWIio3mkJbaZMlkkNZxWwWFYegmskg4SHoRp6GubWW4HKvF05Ke-TFMVXJC9AhxzSaifhJ7VodTK-MJqQHdutBSJFZ6AxeRdMmi9FaeNsjg2uPiIWwrZe7zt6Rg9DakH8um6JPi2XdX6GjtZPbSLEv_aLTFcBDvYX_3T_poccOS2uE8xN2SvWm-yWwhOKt1zu69H9odPL5PpFwYP6GI
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La8MwDBZde9h2GHuy7unDrqGJYzvpYYcyVtr1cdqgtxDHcckYaenj_0_KY3SwQ2G3YBAYyf4kxZ8kgKc0NL5wrXR85VtH4F10QiVcx0jtaaU0ZiFUOzyZqsGHeJvJWQNe6loYolVW2F9ieoHW1Uqn0mZnmWUdoiVhMCG7nF4JAiUOoEXdqUQTWr3haDD9AWTqsVMyGT2HBOreowXNa7mqZ9nkc0wXOYEIPU_87ad2fE__FE6qoJH1yn2dQSPNz-F4p5XgBWhEK5bla8q11_ixWTAM7Vg5IHrNMDRluAdDBSD5nFEtR27YeruycZKyYlQPYR4KFmIIMmxhmcnmWdEhsTDfJXz0X99fBk41P8FJEDY2TuJZEZvQaB5qSZOmTBpKjRdWcFyWboyG0n7M_SAJPG1Ty21Xxa4OvcSTSaL8K2jmqJhrYF4cuFYHUivjCasR4LnRUsRWuALtydvQrbUVJVVzcZpx8RXVLLLPaFfTEWkasw-i1LXB_5Fdli029pJ6ro0S_TowEfqCPeRv_in_CIeD98k4Gg-no1s44kR1Kf7M3EFzs9qm9xirbPRDdRa_AfZp6xM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+insights+into+the+methods+for+predicting+ground+surface+roughness+in+the+age+of+digitalisation&rft.jtitle=Precision+engineering&rft.au=Pan%2C+Yuhang&rft.au=Zhou%2C+Ping&rft.au=Yan%2C+Ying&rft.au=Agrawal%2C+Anupam&rft.date=2021-01-01&rft.pub=Elsevier+Inc&rft.issn=0141-6359&rft.volume=67&rft.spage=393&rft.epage=418&rft_id=info:doi/10.1016%2Fj.precisioneng.2020.11.001&rft.externalDocID=S0141635920309764
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-6359&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-6359&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-6359&client=summon