New insights into the methods for predicting ground surface roughness in the age of digitalisation
Grinding is a multi-length scale material removal process that is widely employed to machine a wide variety of materials in almost every industrial sector. Surface roughness induced by a grinding operation can affect corrosion resistance, wear resistance, and contact stiffness of the ground componen...
Saved in:
Published in | Precision engineering Vol. 67; pp. 393 - 418 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.01.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0141-6359 |
DOI | 10.1016/j.precisioneng.2020.11.001 |
Cover
Loading…
Abstract | Grinding is a multi-length scale material removal process that is widely employed to machine a wide variety of materials in almost every industrial sector. Surface roughness induced by a grinding operation can affect corrosion resistance, wear resistance, and contact stiffness of the ground components. Prediction of surface roughness is useful for describing the quality of ground surfaces, evaluate the efficiency of the grinding process and guide the feedback control of the grinding parameters in real-time to help reduce the cost of production. This paper reviews extant research and discusses advances in the realm of machining theory, experimental design and Artificial Intelligence related to ground surface roughness prediction. The advantages and disadvantages of various grinding methods, current challenges and evolving future trends considering Industry-4.0 ready new generation machine tools are also discussed.
[Display omitted]
•The classification of ground surface roughness prediction methods are discussed.•Numerous methods for the predicition of the ground surface roughness with their principles and limitations are presented.•The development trend of the ground surface roughness prediction models are analyzed.•A futuristic multi-information fusion system for surface roughness prediction in the age of digitalisation is proposed. |
---|---|
AbstractList | Grinding is a multi-length scale material removal process that is widely employed to machine a wide variety of materials in almost every industrial sector. Surface roughness induced by a grinding operation can affect corrosion resistance, wear resistance, and contact stiffness of the ground components. Prediction of surface roughness is useful for describing the quality of ground surfaces, evaluate the efficiency of the grinding process and guide the feedback control of the grinding parameters in real-time to help reduce the cost of production. This paper reviews extant research and discusses advances in the realm of machining theory, experimental design and Artificial Intelligence related to ground surface roughness prediction. The advantages and disadvantages of various grinding methods, current challenges and evolving future trends considering Industry-4.0 ready new generation machine tools are also discussed.
[Display omitted]
•The classification of ground surface roughness prediction methods are discussed.•Numerous methods for the predicition of the ground surface roughness with their principles and limitations are presented.•The development trend of the ground surface roughness prediction models are analyzed.•A futuristic multi-information fusion system for surface roughness prediction in the age of digitalisation is proposed. |
Author | Pan, Yuhang Zhou, Ping Agrawal, Anupam Goel, Saurav Wang, Yonghao Guo, Dongming Yan, Ying |
Author_xml | – sequence: 1 givenname: Yuhang surname: Pan fullname: Pan, Yuhang organization: Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian 116024, China – sequence: 2 givenname: Ping surname: Zhou fullname: Zhou, Ping email: pzhou@dlut.edu.cn organization: Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian 116024, China – sequence: 3 givenname: Ying surname: Yan fullname: Yan, Ying organization: Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian 116024, China – sequence: 4 givenname: Anupam surname: Agrawal fullname: Agrawal, Anupam organization: Mays Business School, Texas A&M University, College Station, TX, USA – sequence: 5 givenname: Yonghao surname: Wang fullname: Wang, Yonghao organization: Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian 116024, China – sequence: 6 givenname: Dongming surname: Guo fullname: Guo, Dongming organization: Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian 116024, China – sequence: 7 givenname: Saurav surname: Goel fullname: Goel, Saurav organization: School of Engineering, London South Bank University, 103 Borough Road, London, SE1 0AA, UK |
BookMark | eNqNkE1PAyEURVnUxLb6H4j7GWGm81FXmvqZNLrRNWHgMUPTQgNU47_3jbowrroC3ss5udwZmTjvgJALznLOeH25yfcBlI0Wx67PC1bggueM8QmZMr7gWV1Wy1Myi3HDGGtatpiS7hk-qHXR9kOKeEmepgHoDtLgdaTGB4pWbVWyrqd98AenaTwEIxVQfPWDgziC35jsgXpDte1tklsbZcIwZ-TEyG2E899zTt7u715Xj9n65eFpdbPOVNnUKVPcLKRudVe0XcWKutHQVl2LKQscV0wC7kpZlI1qeGfAFGZZS9a1XPFKqbqck-sfrwo-xgBGKEwxJkhB2q3gTIw9iY3425MYexKcC-wJFVf_FPtgdzJ8Hgff_sCAn3y3EERUFpzC9hBJQnt7jOYLZveTWw |
CitedBy_id | crossref_primary_10_1007_s00170_023_11417_x crossref_primary_10_1007_s00170_024_14689_z crossref_primary_10_1155_2021_1560972 crossref_primary_10_1016_j_jmapro_2022_08_014 crossref_primary_10_1088_1361_6501_ad8950 crossref_primary_10_3389_fonc_2022_956705 crossref_primary_10_3390_electronics12061375 crossref_primary_10_1016_j_ins_2022_10_033 crossref_primary_10_3390_ma14185128 crossref_primary_10_1038_s41598_023_31461_7 crossref_primary_10_3390_ma17164093 crossref_primary_10_1016_j_ijmecsci_2022_107562 crossref_primary_10_1016_j_jmapro_2023_01_037 crossref_primary_10_1016_j_measurement_2023_113381 crossref_primary_10_1007_s00170_024_13734_1 crossref_primary_10_1155_2022_2076591 crossref_primary_10_1016_j_matdes_2022_110953 crossref_primary_10_1016_j_measurement_2022_111982 crossref_primary_10_1016_j_cirp_2024_05_001 crossref_primary_10_1016_j_dcan_2022_03_007 crossref_primary_10_3390_sym13091717 crossref_primary_10_1007_s00170_023_11886_0 crossref_primary_10_1155_2022_4844993 crossref_primary_10_1155_2022_4957672 crossref_primary_10_1016_j_jmbbm_2022_105185 crossref_primary_10_3390_machines9120369 crossref_primary_10_3390_lubricants12030100 crossref_primary_10_1007_s11431_024_2821_3 crossref_primary_10_1016_S1003_6326_22_65826_6 crossref_primary_10_1080_0951192X_2023_2204486 crossref_primary_10_1016_j_matdes_2022_111513 crossref_primary_10_1016_j_mfglet_2024_03_002 crossref_primary_10_1007_s42247_021_00249_8 crossref_primary_10_1016_j_triboint_2024_109574 crossref_primary_10_1007_s41871_021_00109_3 crossref_primary_10_4018_IJDCF_315288 crossref_primary_10_1007_s11814_024_00288_x crossref_primary_10_3390_math10203796 crossref_primary_10_1007_s00170_025_15235_1 crossref_primary_10_3390_fractalfract6060341 crossref_primary_10_1007_s00170_022_08846_5 crossref_primary_10_2139_ssrn_4175893 crossref_primary_10_1109_JSEN_2021_3077468 crossref_primary_10_21062_mft_2025_006 crossref_primary_10_1007_s12598_024_02827_1 crossref_primary_10_3390_metrology3030016 crossref_primary_10_1016_j_precisioneng_2021_07_011 crossref_primary_10_3390_ma16051782 crossref_primary_10_3390_math10142484 crossref_primary_10_1016_j_mssp_2022_107019 crossref_primary_10_1016_j_engappai_2024_108831 crossref_primary_10_1039_D4NA00558A crossref_primary_10_3390_math10152788 crossref_primary_10_1088_1757_899X_1146_1_012003 crossref_primary_10_1016_j_ndteint_2025_103360 crossref_primary_10_1155_2021_1082834 crossref_primary_10_1016_j_jmapro_2024_10_007 crossref_primary_10_1016_j_jmapro_2023_01_002 crossref_primary_10_1016_j_ijmecsci_2024_109076 crossref_primary_10_1007_s12206_022_0137_3 crossref_primary_10_3390_met12091403 |
Cites_doi | 10.1038/s41524-019-0221-0 10.1016/j.ijmecsci.2019.03.026 10.1016/j.ijmachtools.2013.07.002 10.1080/00207540412331330110 10.1016/j.precisioneng.2020.05.004 10.1007/s11012-013-9710-2 10.1016/j.ijmachtools.2005.07.012 10.1007/s00170-009-2104-x 10.1016/j.matpr.2017.12.132 10.1016/j.cirpj.2012.07.004 10.1007/s00170-014-5884-6 10.1007/s00170-014-6767-6 10.1016/j.asoc.2015.01.059 10.1007/s00170-018-2458-z 10.1007/s00170-002-1533-6 10.1007/s00170-007-1201-y 10.1007/s10845-016-1285-z 10.1016/j.cirp.2006.10.003 10.1016/j.precisioneng.2013.02.009 10.1016/j.ijmachtools.2007.03.003 10.1016/S0924-0136(02)00589-7 10.1016/j.pisc.2016.04.077 10.1016/j.precisioneng.2017.04.004 10.1139/tcsme-1984-0031 10.1007/s00170-012-4546-9 10.1007/s00170-014-6020-3 10.1007/s10845-013-0853-8 10.1007/s00170-018-2590-9 10.1016/j.jmatprotec.2004.02.011 10.1016/S0890-6955(03)00165-2 10.1007/s11740-013-0524-9 10.1016/j.jeurceramsoc.2018.11.002 10.1016/j.ijmecsci.2019.105263 10.1016/j.ijmachtools.2016.07.004 10.1109/72.159069 10.3390/app8112165 10.1007/s00170-012-4452-1 10.1016/j.ijmecsci.2018.06.024 10.1016/j.jclepro.2018.09.116 10.1016/j.jmatprotec.2007.10.024 10.1016/j.jmapro.2019.01.046 10.1007/s00170-014-6032-z 10.1016/j.ijmachtools.2012.01.003 10.1007/s10845-009-0243-4 10.1007/s00170-015-7337-2 10.1016/S0924-0136(03)00284-X 10.1016/j.jmatprotec.2007.03.032 10.1504/IJSURFSE.2017.088973 10.1016/S0890-6955(02)00011-1 10.1080/00207549208948164 10.1080/10426914.2013.763678 10.1016/j.aei.2020.101037 10.1016/j.ijmachtools.2004.08.007 10.1016/j.conengprac.2004.11.006 10.1007/s00170-015-7205-0 10.1016/j.ijmachtools.2012.08.005 10.1080/0951192X.2012.665185 10.1016/j.ijmachtools.2018.01.002 10.1007/s00521-014-1696-8 10.1016/j.ijmachtools.2005.05.019 10.1007/s00170-009-2029-4 10.1007/s00170-014-6189-5 10.1016/j.eswa.2010.12.074 10.1007/s00170-017-0949-y 10.1016/j.jmsy.2015.03.005 10.1016/j.compind.2019.06.001 10.1016/j.measurement.2019.07.053 10.1016/j.jmatprotec.2005.06.002 10.1016/j.jmatprotec.2005.02.080 10.1115/1.4041245 10.1007/s00170-018-2909-6 10.1177/0954405419840556 10.1016/S0890-6955(99)00002-4 10.1080/00207549508930206 10.1016/j.ijmachtools.2004.10.005 10.1016/j.procir.2015.04.092 10.1016/j.ijmachtools.2005.01.006 10.1109/TIE.2018.2856193 10.1016/S0007-8506(07)63254-5 10.1080/0951192X.2020.1747642 10.1007/s00170-018-2121-8 10.1016/j.ijmachtools.2010.08.009 10.1007/s00170-010-2599-1 10.1002/jbm.b.31477 10.1111/j.1600-051X.1995.tb01765.x 10.1109/TLA.2015.7040629 10.1115/1.3438277 10.1016/j.cirp.2010.05.003 10.1007/s00170-017-0676-4 10.1016/j.ceramint.2016.10.135 10.1080/15502280701815382 10.1007/s00170-009-1977-z 10.1007/s00170-018-3187-z 10.1080/0951192X.2012.749537 10.1007/s00170-015-7500-9 10.1108/EC-11-2017-0450 10.1007/s00170-016-9576-2 10.1016/S0890-6955(03)00186-X 10.1016/j.cirp.2017.04.067 10.1109/72.159070 10.1007/s00170-018-3195-z 10.1080/10910344.2017.1382514 10.1016/0890-6955(94)90025-6 10.1016/j.ijmachtools.2004.06.022 10.1016/S0890-6955(96)00012-0 10.1007/s10845-020-01538-5 10.1007/s00170-005-0169-8 10.1109/19.650796 10.1016/S0924-0136(02)01112-3 10.1016/S0890-6955(03)00055-5 10.1007/s00170-014-6482-3 10.1016/j.precisioneng.2018.09.018 10.1016/S0890-6955(03)00059-2 10.1016/j.acme.2017.03.010 10.3390/ma12030340 10.1016/j.precisioneng.2015.09.004 10.1504/IJMR.2008.017418 10.1016/j.ijmachtools.2007.08.019 10.1007/s001700170167 10.1016/j.measurement.2013.12.017 10.1016/j.wear.2017.01.035 10.1016/0890-6955(96)00117-4 10.1016/j.jclepro.2018.01.003 10.1007/s12206-012-0851-3 10.1016/j.ijmachtools.2017.05.006 10.1007/s10845-015-1169-7 10.1016/j.cirp.2011.03.120 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Inc. |
Copyright_xml | – notice: 2020 Elsevier Inc. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.precisioneng.2020.11.001 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EndPage | 418 |
ExternalDocumentID | 10_1016_j_precisioneng_2020_11_001 S0141635920309764 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1~. 1~5 29O 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO ABFNM ABJNI ABMAC ABWVN ABXDB ABXRA ACDAQ ACGFS ACNNM ACRLP ACRPL ADBBV ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AEZYN AFJKZ AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SSH SSM SST SSZ T5K TN5 UHS WH7 WUQ XPP ZMT ~G- AAYWO AAYXX AFXIZ AGCQF AGQPQ AGRNS AIIUN APXCP CITATION |
ID | FETCH-LOGICAL-c376t-c1f4ad8db28b50267de85b88042ad850ae8db3a237c71bfef2f96a0b81c15cc63 |
IEDL.DBID | .~1 |
ISSN | 0141-6359 |
IngestDate | Tue Jul 01 02:13:02 EDT 2025 Thu Apr 24 23:03:59 EDT 2025 Sun Apr 06 06:53:02 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Digitalisation Precision grinding Industry-4.0 Digital manufacturing Quality Prediction |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c376t-c1f4ad8db28b50267de85b88042ad850ae8db3a237c71bfef2f96a0b81c15cc63 |
OpenAccessLink | https://dspace.lib.cranfield.ac.uk/handle/1826/16084 |
PageCount | 26 |
ParticipantIDs | crossref_citationtrail_10_1016_j_precisioneng_2020_11_001 crossref_primary_10_1016_j_precisioneng_2020_11_001 elsevier_sciencedirect_doi_10_1016_j_precisioneng_2020_11_001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2021 2021-01-00 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: January 2021 |
PublicationDecade | 2020 |
PublicationTitle | Precision engineering |
PublicationYear | 2021 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Zhang, Fang, Huang, Xu (bib64) 2018; 127 Neşeli, Asiltürk, Çelik (bib77) 2012; 26 Kassen (bib15) 1969 Huang, Yin, Zhou (bib4) 2003; 141 Agarwal, Rao (bib58) 2005; 45 Rashid, Rashid, Goel, Goel, Davim, Davim (bib86) 2016; 82 Basuray (bib50) 1980; 3–4 Wang, Mende (bib111) 1992; 3 Chen, Wang (bib25) 2018; 99 Goel, Kalamdhad, Agrawal (bib66) 2018; 205 Venu Gopal, Venkateswara Rao (bib135) 2003; 43 Chen, Rowe (bib31) 1996; 8 Kwak (bib75) 2005; 45 Jagadish, Bhowmik, Ray (bib92) 2015; 30 Mat Deris, Mohd Zain, Sallehuddin (bib83) 2013; 48 Shaw, Reichenbach (bib47) 1956; 18 Gong, Wang, Wang (bib18) 2002; 129 Agarwal, Venkateswara Rao (bib61) 2012; 56 Khare, Agarwal (bib62) 2015; 31 Shi, Panoutsos, Luo, Liu, Li, Lin (bib144) 2019; 66 Sun, Tang, Shao, Chen, Liu (bib24) 2019; 102 Huang, Yan, Zhou, Kang, Guo, Goel (bib42) 2020; 65 Chen, Tang (bib22) 2015; 77 Agrawal, Yadava (bib108) 2013; 28 Schmidt, Marques, Botti, Marques (bib143) 2019; 5 Aurich, Kirsch (bib14) 2012; 5 Kahraman, Öztürk (bib82) 2019; 147 Liu, Chen, Chen, Wang (bib87) 2005; 170 Nauck, Klawonn, Kruse (bib110) 1993 Ming, Gao, Yan, Liu, Liao (bib94) 2017; 90 Tönshoff, Peters, Paul (bib12) 1992; 2 Li, Yu, Zhu, Wang (bib40) 2017; 17 Chandrasekaran, Muralidhar, Krishna, Dixit (bib71) 2010; 46 Dai, Wang, Xu, Wan, Imran (bib149) 2019 Huang, Yin, Zhou (bib45) 2003; 141 Köklü (bib91) 2013; 26 Chen (bib123) 2013; 19 Albers, Reichert (bib9) 2017; 376 Li, Liu, Yang (bib122) 2011 Zhou, Xi (bib51) 2002; 42 Pan, Wang, Zhou, Yan, Guo (bib133) 2020 Guo (bib84) 2014; 75 Wang, Guangheng, Zhao, Dong, Zhang, Jiang (bib37) 2019; 38 Rudrapati, Pal, Bandyopadhyay (bib79) 2016; 82 Quirynen, Bollen (bib7) 1995; 22 Zhang, Butler, Yang, Lu (bib105) 1997; 46 Wang, Chan, Lee (bib72) 2007; 47 Govindhasamy, McLoone, Irwin, French, Doyle (bib128) 2005; 13 Benardos, Vosniakos (bib11) 2003; 43 Asiltürk, Tinkir, El Monuayri, Çelik (bib115) 2012; 25 Jiang, Ge, Hong (bib54) 2013; 67 Nandi, Pratihar (bib136) 2004; 148 Agarwal, Venkateswara Rao (bib60) 2010; 50 Nguyen, Yin, Tang, Son, Duc (bib155) 2019; 55 Osa, Sánchez, Ortega, Iordanoff, Charles (bib28) 2016; 110 Nakai, Junior, Aguiar, Bianchi, Spatti (bib100) 2015; 13 Mohanasundararaju, Sivasubramanian, Gnanaguru, Alagumurthy (bib114) 2008; 9 Prabhu, Uma, Vinayagam (bib67) 2015; 26 Siebrecht, Biermann, Ludwig, Rausch, Kersting, Blum (bib21) 2014; 8 Sudheer Kumar Varma, Varma, Rajesh, Sita Rama Raju, Murali Krishnam Raju (bib116) 2018; 5 Chandrasekaran, Devarasiddappa (bib129) 2014; 9 Sedighi, Afshari (bib121) 2010; 21 Tripathi (bib69) 2017; 6 Huang, Song, Wan, Wei, Wang (bib138) 2019; 102 Younis, Alawi (bib55) 1984; 4 Lin, Zhou, Wang (bib6) 2018; 140 Kiyak, Cakir (bib73) 2010; 3 Saglam, Unsacar, Yaldiz (bib88) 2005; 43 Agarwal, Rao (bib59) 2005; 219 Wang, Ye, Gao (bib151) 2019; 57 Zhou, Tang, Chen, Shao (bib33) 2019; 156 Reichenbach, Mayer (bib43) 1956; 78 Law, Wu (bib16) 1973; 95 Wang, Liu, Zheng, Yang, Zou (bib148) 2020; 43 Chen, Cheung, Zhang (bib95) 2018; 97 Darafon, Warkentin, Bauer (bib53) 2013; 66 Sivatte-Adroer, Buj-Corral, Llanas-Parra (bib131) 2017; 11 Xu, Hu, Wei (bib124) 2009; 43 Routara, Mohanty, Datta, Bandyopadhyay, Mahapatra (bib90) 2010; 51 Liu, Warkentin, Bauer, Gong (bib19) 2013; 37 Huang, Yan, Zhou, Kang, Guo (bib41) 2019; 58 Çaydaş, Hasçalık (bib98) 2008; 202 Jiang, Ge, Bi, Zhang, Wang, Zhang (bib23) 2013; 74 Mohamad, Zain, Bazin, Udin (bib139) 2015; 26 Wu, Cheng, Gao, Yu, Guo (bib36) 2020; 166 Chen, Li, Wang, Zhang, Cao, Jiang (bib80) 2018; 99 Labib, Keasberry, Atkinson, Frost (bib99) 2011; 38 Osa, Ortega, Vidal, Fernandez-Gauna, Carballo, Tolosa (bib29) 2018; 35 Hou, Komanduri (bib52) 2003; 43 Kıvak (bib146) 2014; 50 Li, Yu, Zhu, Wang (bib26) 2015; 78 Brinksmeier, Aurich, Govekar, Heinzel, Hoffmeister, Klocke (bib13) 2006; 55 Rao (bib142) 2019 Teicher, Ghosh, Chattopadhyay, Künanz (bib5) 2006; 46 Tsai, Yan, Kuan, Huang (bib85) 2008; 48 Gholami, Azizi (bib137) 2014; 73 Mohanasundararaju, Sivasubramanian, Alagumurthi (bib76) 2008; 2 Sathyanarayanan, Joseph lin, Chen (bib126) 1992; 30 Li, Yu, Zhu, Wang (bib27) 2015; 81 Dong, Zheng, Zhu, Kang, Zhang, Liu (bib145) 2017; 93 Pahlitzsch, Helmerdig (bib46) 1943; 12 Yang, Jin (bib120) 2010 Matsushima K, Sata T. Development of intelligent machine tool. J. Faculty Eng., Univ. Tokyo. 198035):299-314. Horikawa, Furuhashi, Uchikawa (bib109) 1992; 3 Korosec, Balic, Kopac (bib101) 2005; 45 Ding, Dai, Yu, Xu, Fu (bib63) 2017; 122 Baskar, Saravanan, Asokan, Prabhaharan (bib141) 2004; 23 Sivatte-Adroer, Llanas-Parra, Buj-Corral, Vivancos-Calvet (bib130) 2016; 43 Agrawal, Goel, Rashid (bib65) 2015; 30 Fuh, Wang (bib102) 1997; 37 Carmignato, Aloisi, Medeossi, Zanini, Savio (bib10) 2017; 66 Comley, Morantz, Shore (bib1) 2011; 60 Chen, Tang, Zhu (bib34) 2018; 22 Liang, Liao, Wen, Liu (bib117) 2019; 30 Nagasaka, Ichihashi, Leonard (bib112) 1995; 33 Koshy, Ives, Jahanmir (bib17) 1999; 39 Kwak, Sim, Jeong (bib74) 2006; 46 Shore, Cunningham, DeBra, Evans, Hough, Gilmozzi (bib2) 2010; 59 Zhao, Shi, Lin, Duan, Sun, Zhang (bib78) 2014; 74 Malkin (bib48) 1989 Pashmforoush, Delir Bagherinia (bib70) 2018; 178 Caesarendra (bib150) 2018; 11 Yang, Deb (bib140) 2009 Liao, Chen (bib127) 1994; 34 Arif, Zhang, Rahman, Kumar (bib38) 2013; 64 Lal, MC (bib57) 1972 Shaji, Radhakrishnan (bib89) 2003; 141 Nandi, Banerjee (bib113) 2005; 162–163 Li, Zhang, Luo, Chang, Cai, Zhong (bib81) 2019; 39 Alexopoulos, Nikolakis, Chryssolouris (bib147) 2020; 33 Kumar, Choudhury (bib106) 2007; 191 Ichida, Zouaghi, Kishi (bib104) 1994 Nguyen, Butler (bib32) 2005; 45 Mukherjee, Ray (bib107) 2009; 45 Zhou, Tang, Chen, Zhu, Shao (bib35) 2018; 144 Jiang, Cheng, Wu (bib39) 2017; 49 Wang, Yan, Li, Gao (bib153) 2019; 111 Tong, Wu, Zhang, Ma, Zhang, Wen (bib125) 2019; 12 Wang, Li, Zhang, Jia, Zhang (bib20) 2014; 74 Guo (bib154) 2019; 13 Brown, Saito (bib49) 1971; 1 Chakrabarti, Paul (bib30) 2008; 39 Snoeys, Peter (bib44) 1974; 23 Kanakarajan, Sundaram (bib68) 2017; 24 Deng, Zhang, Liu, Cao (bib119) 2009; 45 Patil, Patil (bib93) 2016; 8 Liu, Deng, Shang, Wan (bib3) 2017; 43 Lipiński, Bałasz, Rypina (bib132) 2018; 94 Karakoca, Yilmaz (bib8) 2009; 91B Saravanan, Sachithanandam (bib134) 2001; 17 Hecker, Liang (bib56) 2003; 43 Prabhu, Uma, Vinayagam (bib96) 2015; 26 Fredj, Amamou (bib97) 2006; 31 Wang, Wang (bib152) 2015; 36 Yin, Nguyen, Chen, Tang, Duc (bib118) 2019; 101 Tönshoff (10.1016/j.precisioneng.2020.11.001_bib12) 1992; 2 Jiang (10.1016/j.precisioneng.2020.11.001_bib39) 2017; 49 Agarwal (10.1016/j.precisioneng.2020.11.001_bib59) 2005; 219 Li (10.1016/j.precisioneng.2020.11.001_bib81) 2019; 39 Nandi (10.1016/j.precisioneng.2020.11.001_bib136) 2004; 148 Wang (10.1016/j.precisioneng.2020.11.001_bib111) 1992; 3 Karakoca (10.1016/j.precisioneng.2020.11.001_bib8) 2009; 91B Chen (10.1016/j.precisioneng.2020.11.001_bib22) 2015; 77 Mat Deris (10.1016/j.precisioneng.2020.11.001_bib83) 2013; 48 Yang (10.1016/j.precisioneng.2020.11.001_bib140) 2009 Sivatte-Adroer (10.1016/j.precisioneng.2020.11.001_bib130) 2016; 43 Albers (10.1016/j.precisioneng.2020.11.001_bib9) 2017; 376 Zhang (10.1016/j.precisioneng.2020.11.001_bib105) 1997; 46 Xu (10.1016/j.precisioneng.2020.11.001_bib124) 2009; 43 Kumar (10.1016/j.precisioneng.2020.11.001_bib106) 2007; 191 Mukherjee (10.1016/j.precisioneng.2020.11.001_bib107) 2009; 45 Gholami (10.1016/j.precisioneng.2020.11.001_bib137) 2014; 73 Sivatte-Adroer (10.1016/j.precisioneng.2020.11.001_bib131) 2017; 11 Chen (10.1016/j.precisioneng.2020.11.001_bib34) 2018; 22 Brinksmeier (10.1016/j.precisioneng.2020.11.001_bib13) 2006; 55 Koshy (10.1016/j.precisioneng.2020.11.001_bib17) 1999; 39 Dong (10.1016/j.precisioneng.2020.11.001_bib145) 2017; 93 Li (10.1016/j.precisioneng.2020.11.001_bib27) 2015; 81 Sudheer Kumar Varma (10.1016/j.precisioneng.2020.11.001_bib116) 2018; 5 Agarwal (10.1016/j.precisioneng.2020.11.001_bib60) 2010; 50 Chen (10.1016/j.precisioneng.2020.11.001_bib95) 2018; 97 Mohanasundararaju (10.1016/j.precisioneng.2020.11.001_bib76) 2008; 2 Kahraman (10.1016/j.precisioneng.2020.11.001_bib82) 2019; 147 Shi (10.1016/j.precisioneng.2020.11.001_bib144) 2019; 66 Venu Gopal (10.1016/j.precisioneng.2020.11.001_bib135) 2003; 43 Chen (10.1016/j.precisioneng.2020.11.001_bib25) 2018; 99 Kwak (10.1016/j.precisioneng.2020.11.001_bib75) 2005; 45 Prabhu (10.1016/j.precisioneng.2020.11.001_bib67) 2015; 26 Liu (10.1016/j.precisioneng.2020.11.001_bib87) 2005; 170 Guo (10.1016/j.precisioneng.2020.11.001_bib154) 2019; 13 Wu (10.1016/j.precisioneng.2020.11.001_bib36) 2020; 166 Younis (10.1016/j.precisioneng.2020.11.001_bib55) 1984; 4 Nandi (10.1016/j.precisioneng.2020.11.001_bib113) 2005; 162–163 Mohamad (10.1016/j.precisioneng.2020.11.001_bib139) 2015; 26 Korosec (10.1016/j.precisioneng.2020.11.001_bib101) 2005; 45 Govindhasamy (10.1016/j.precisioneng.2020.11.001_bib128) 2005; 13 Huang (10.1016/j.precisioneng.2020.11.001_bib4) 2003; 141 Khare (10.1016/j.precisioneng.2020.11.001_bib62) 2015; 31 Schmidt (10.1016/j.precisioneng.2020.11.001_bib143) 2019; 5 Nagasaka (10.1016/j.precisioneng.2020.11.001_bib112) 1995; 33 Siebrecht (10.1016/j.precisioneng.2020.11.001_bib21) 2014; 8 Agrawal (10.1016/j.precisioneng.2020.11.001_bib65) 2015; 30 Mohanasundararaju (10.1016/j.precisioneng.2020.11.001_bib114) 2008; 9 Osa (10.1016/j.precisioneng.2020.11.001_bib29) 2018; 35 Liang (10.1016/j.precisioneng.2020.11.001_bib117) 2019; 30 Kiyak (10.1016/j.precisioneng.2020.11.001_bib73) 2010; 3 Li (10.1016/j.precisioneng.2020.11.001_bib40) 2017; 17 Patil (10.1016/j.precisioneng.2020.11.001_bib93) 2016; 8 Gong (10.1016/j.precisioneng.2020.11.001_bib18) 2002; 129 Jiang (10.1016/j.precisioneng.2020.11.001_bib23) 2013; 74 Basuray (10.1016/j.precisioneng.2020.11.001_bib50) 1980; 3–4 Huang (10.1016/j.precisioneng.2020.11.001_bib42) 2020; 65 Lipiński (10.1016/j.precisioneng.2020.11.001_bib132) 2018; 94 Wang (10.1016/j.precisioneng.2020.11.001_bib20) 2014; 74 Pashmforoush (10.1016/j.precisioneng.2020.11.001_bib70) 2018; 178 Çaydaş (10.1016/j.precisioneng.2020.11.001_bib98) 2008; 202 Shaji (10.1016/j.precisioneng.2020.11.001_bib89) 2003; 141 Nakai (10.1016/j.precisioneng.2020.11.001_bib100) 2015; 13 Prabhu (10.1016/j.precisioneng.2020.11.001_bib96) 2015; 26 Huang (10.1016/j.precisioneng.2020.11.001_bib41) 2019; 58 Agarwal (10.1016/j.precisioneng.2020.11.001_bib58) 2005; 45 Shaw (10.1016/j.precisioneng.2020.11.001_bib47) 1956; 18 Ming (10.1016/j.precisioneng.2020.11.001_bib94) 2017; 90 Quirynen (10.1016/j.precisioneng.2020.11.001_bib7) 1995; 22 Dai (10.1016/j.precisioneng.2020.11.001_bib149) 2019 Liu (10.1016/j.precisioneng.2020.11.001_bib19) 2013; 37 Horikawa (10.1016/j.precisioneng.2020.11.001_bib109) 1992; 3 Law (10.1016/j.precisioneng.2020.11.001_bib16) 1973; 95 Yang (10.1016/j.precisioneng.2020.11.001_bib120) 2010 Aurich (10.1016/j.precisioneng.2020.11.001_bib14) 2012; 5 Osa (10.1016/j.precisioneng.2020.11.001_bib28) 2016; 110 Pahlitzsch (10.1016/j.precisioneng.2020.11.001_bib46) 1943; 12 Jagadish (10.1016/j.precisioneng.2020.11.001_bib92) 2015; 30 Nguyen (10.1016/j.precisioneng.2020.11.001_bib32) 2005; 45 Benardos (10.1016/j.precisioneng.2020.11.001_bib11) 2003; 43 Pan (10.1016/j.precisioneng.2020.11.001_bib133) 2020 Wang (10.1016/j.precisioneng.2020.11.001_bib37) 2019; 38 Chen (10.1016/j.precisioneng.2020.11.001_bib31) 1996; 8 Chen (10.1016/j.precisioneng.2020.11.001_bib80) 2018; 99 Goel (10.1016/j.precisioneng.2020.11.001_bib66) 2018; 205 Chakrabarti (10.1016/j.precisioneng.2020.11.001_bib30) 2008; 39 Ding (10.1016/j.precisioneng.2020.11.001_bib63) 2017; 122 Tong (10.1016/j.precisioneng.2020.11.001_bib125) 2019; 12 Brown (10.1016/j.precisioneng.2020.11.001_bib49) 1971; 1 Rao (10.1016/j.precisioneng.2020.11.001_bib142) 2019 Liao (10.1016/j.precisioneng.2020.11.001_bib127) 1994; 34 Jiang (10.1016/j.precisioneng.2020.11.001_bib54) 2013; 67 Yin (10.1016/j.precisioneng.2020.11.001_bib118) 2019; 101 Chen (10.1016/j.precisioneng.2020.11.001_bib123) 2013; 19 Kassen (10.1016/j.precisioneng.2020.11.001_bib15) 1969 Sathyanarayanan (10.1016/j.precisioneng.2020.11.001_bib126) 1992; 30 Wang (10.1016/j.precisioneng.2020.11.001_bib152) 2015; 36 Neşeli (10.1016/j.precisioneng.2020.11.001_bib77) 2012; 26 Zhou (10.1016/j.precisioneng.2020.11.001_bib33) 2019; 156 Zhao (10.1016/j.precisioneng.2020.11.001_bib78) 2014; 74 Nguyen (10.1016/j.precisioneng.2020.11.001_bib155) 2019; 55 Snoeys (10.1016/j.precisioneng.2020.11.001_bib44) 1974; 23 Routara (10.1016/j.precisioneng.2020.11.001_bib90) 2010; 51 Carmignato (10.1016/j.precisioneng.2020.11.001_bib10) 2017; 66 Saglam (10.1016/j.precisioneng.2020.11.001_bib88) 2005; 43 Agrawal (10.1016/j.precisioneng.2020.11.001_bib108) 2013; 28 Fredj (10.1016/j.precisioneng.2020.11.001_bib97) 2006; 31 Arif (10.1016/j.precisioneng.2020.11.001_bib38) 2013; 64 Lin (10.1016/j.precisioneng.2020.11.001_bib6) 2018; 140 Wang (10.1016/j.precisioneng.2020.11.001_bib151) 2019; 57 Baskar (10.1016/j.precisioneng.2020.11.001_bib141) 2004; 23 Wang (10.1016/j.precisioneng.2020.11.001_bib72) 2007; 47 Rudrapati (10.1016/j.precisioneng.2020.11.001_bib79) 2016; 82 Wang (10.1016/j.precisioneng.2020.11.001_bib148) 2020; 43 Liu (10.1016/j.precisioneng.2020.11.001_bib3) 2017; 43 Fuh (10.1016/j.precisioneng.2020.11.001_bib102) 1997; 37 Chandrasekaran (10.1016/j.precisioneng.2020.11.001_bib129) 2014; 9 Kwak (10.1016/j.precisioneng.2020.11.001_bib74) 2006; 46 Chandrasekaran (10.1016/j.precisioneng.2020.11.001_bib71) 2010; 46 Saravanan (10.1016/j.precisioneng.2020.11.001_bib134) 2001; 17 Li (10.1016/j.precisioneng.2020.11.001_bib122) 2011 Teicher (10.1016/j.precisioneng.2020.11.001_bib5) 2006; 46 Rashid (10.1016/j.precisioneng.2020.11.001_bib86) 2016; 82 Reichenbach (10.1016/j.precisioneng.2020.11.001_bib43) 1956; 78 Huang (10.1016/j.precisioneng.2020.11.001_bib45) 2003; 141 Hecker (10.1016/j.precisioneng.2020.11.001_bib56) 2003; 43 Kıvak (10.1016/j.precisioneng.2020.11.001_bib146) 2014; 50 Sedighi (10.1016/j.precisioneng.2020.11.001_bib121) 2010; 21 Comley (10.1016/j.precisioneng.2020.11.001_bib1) 2011; 60 Zhang (10.1016/j.precisioneng.2020.11.001_bib64) 2018; 127 Zhou (10.1016/j.precisioneng.2020.11.001_bib51) 2002; 42 Alexopoulos (10.1016/j.precisioneng.2020.11.001_bib147) 2020; 33 Malkin (10.1016/j.precisioneng.2020.11.001_bib48) 1989 Ichida (10.1016/j.precisioneng.2020.11.001_bib104) 1994 Deng (10.1016/j.precisioneng.2020.11.001_bib119) 2009; 45 Darafon (10.1016/j.precisioneng.2020.11.001_bib53) 2013; 66 Labib (10.1016/j.precisioneng.2020.11.001_bib99) 2011; 38 Kanakarajan (10.1016/j.precisioneng.2020.11.001_bib68) 2017; 24 Guo (10.1016/j.precisioneng.2020.11.001_bib84) 2014; 75 10.1016/j.precisioneng.2020.11.001_bib103 Shore (10.1016/j.precisioneng.2020.11.001_bib2) 2010; 59 Tsai (10.1016/j.precisioneng.2020.11.001_bib85) 2008; 48 Li (10.1016/j.precisioneng.2020.11.001_bib26) 2015; 78 Nauck (10.1016/j.precisioneng.2020.11.001_bib110) 1993 Tripathi (10.1016/j.precisioneng.2020.11.001_bib69) 2017; 6 Agarwal (10.1016/j.precisioneng.2020.11.001_bib61) 2012; 56 Köklü (10.1016/j.precisioneng.2020.11.001_bib91) 2013; 26 Caesarendra (10.1016/j.precisioneng.2020.11.001_bib150) 2018; 11 Asiltürk (10.1016/j.precisioneng.2020.11.001_bib115) 2012; 25 Sun (10.1016/j.precisioneng.2020.11.001_bib24) 2019; 102 Lal (10.1016/j.precisioneng.2020.11.001_bib57) 1972 Huang (10.1016/j.precisioneng.2020.11.001_bib138) 2019; 102 Wang (10.1016/j.precisioneng.2020.11.001_bib153) 2019; 111 Zhou (10.1016/j.precisioneng.2020.11.001_bib35) 2018; 144 Hou (10.1016/j.precisioneng.2020.11.001_bib52) 2003; 43 |
References_xml | – volume: 26 start-page: 41 year: 2015 end-page: 55 ident: bib96 article-title: Surface roughness prediction using Taguchi-fuzzy logic-neural network analysis for CNT nanofluids based grinding process publication-title: Neural Comput Appl – volume: 81 start-page: 1921 year: 2015 end-page: 1938 ident: bib27 article-title: Modeling and simulation of grinding wheel by discrete element method and experimental validation publication-title: Int J Adv Manuf Technol – volume: 48 start-page: 932 year: 2008 end-page: 945 ident: bib85 article-title: A Taguchi and experimental investigation into the optimal processing conditions for the abrasive jet polishing of SKD61 mold steel publication-title: Int J Mach Tool Manufact – volume: 90 start-page: 2453 year: 2017 end-page: 2460 ident: bib94 article-title: Mathematical modeling and machining parameter optimization for the surface roughness of face gear grinding publication-title: Int J Adv Manuf Technol – volume: 43 start-page: 833 year: 2003 end-page: 844 ident: bib11 article-title: Predicting surface roughness in machining: a review publication-title: Int J Mach Tool Manufact – start-page: 1456 year: 2011 end-page: 1459 ident: bib122 article-title: On-line prediction of surface roughness in cylindrical traverse grinding based on BP+GA algorithm. 2011 second international conference on mechanic automation and control engineering – volume: 111 start-page: 1 year: 2019 end-page: 14 ident: bib153 article-title: Deep heterogeneous GRU model for predictive analytics in smart manufacturing: application to tool wear prediction publication-title: Comput Ind – volume: 24 start-page: 182 year: 2017 end-page: 186 ident: bib68 article-title: Prediction of the surface roughness and wheel wear of modern ceramic material (Al2O3) during grinding using multiple regression analysis model publication-title: Indian J Eng Mater Sci – volume: 45 start-page: 1329 year: 2005 end-page: 1336 ident: bib32 article-title: Simulation of surface grinding process, part 2: interaction of the abrasive grain with the workpiece publication-title: Int J Mach Tool Manufact – volume: 66 start-page: 1715 year: 2013 end-page: 1724 ident: bib53 article-title: 3D metal removal simulation to determine uncut chip thickness, contact length, and surface finish in grinding publication-title: Int J Adv Manuf Technol – volume: 17 start-page: 880 year: 2017 end-page: 893 ident: bib40 article-title: Analytical modeling of ground surface topography in monocrystalline silicon grinding considering the ductile-regime effect publication-title: Arch Civ Mech Eng – volume: 46 start-page: 899 year: 1997 end-page: 902 ident: bib105 article-title: A fiber optic sensor for the measurement of surface roughness and displacement using artificial neural networks publication-title: IEEE T Instrum Meas – volume: 8 start-page: 345 year: 2014 end-page: 353 ident: bib21 article-title: Simulation of grinding processes using finite element analysis and geometric simulation of individual grains publication-title: Prod Eng – volume: 3–4 start-page: 265 year: 1980 end-page: 273 ident: bib50 article-title: A simple model for evaluating surface roughness in fine grinding publication-title: Int J Mach Tool Manufact – volume: 8 start-page: 367 year: 2016 end-page: 369 ident: bib93 article-title: Analysis of process parameters in surface grinding using single objective Taguchi and multi-objective grey relational grade publication-title: Perspectives in Science – volume: 376 start-page: 1185 year: 2017 end-page: 1193 ident: bib9 article-title: On the influence of surface roughness on the wear behavior in the running-in phase in mixed-lubricated contacts with the finite element method publication-title: Wear – volume: 97 start-page: 2715 year: 2018 end-page: 2729 ident: bib95 article-title: An experimental and theoretical analysis of surface generation in the ultra-precision grinding of hard and brittle materials publication-title: Int J Adv Manuf Technol – volume: 162–163 start-page: 655 year: 2005 end-page: 664 ident: bib113 article-title: FBF-NN-based modelling of cylindrical plunge grinding process using a GA publication-title: J Mater Process Technol – volume: 95 start-page: 972 year: 1973 end-page: 978 ident: bib16 article-title: Simulation study of the grinding process publication-title: Transactions of the ASME. Series B, Journal of Engineering for Industry – volume: 48 start-page: 1937 year: 2013 end-page: 1945 ident: bib83 article-title: Hybrid GR-SVM for prediction of surface roughness in abrasive water jet machining publication-title: Meccanica – volume: 129 start-page: 123 year: 2002 end-page: 126 ident: bib18 article-title: The simulation of grinding wheels and ground surface roughness based on virtual reality technology publication-title: J Mater Process Technol – start-page: 491 year: 1994 end-page: 496 ident: bib104 article-title: Analysis of ductile mode ground surface of optical-glass by atomic-force microscopy – start-page: 210 year: 2009 end-page: 214 ident: bib140 article-title: Cuckoo search via levy flights. Nature \& biologically inspired computing – volume: 140 start-page: 121001 year: 2018 ident: bib6 article-title: Analytical elastic – plastic cutting model for predicting grain depth-of-cut in ultrafine grinding of silicon wafer publication-title: J Manuf Sci E-ASME. – volume: 50 start-page: 1065 year: 2010 end-page: 1076 ident: bib60 article-title: Modeling and prediction of surface roughness in ceramic grinding publication-title: Int J Mach Tool Manufact – volume: 26 start-page: 41 year: 2015 end-page: 55 ident: bib67 article-title: Surface roughness prediction using Taguchi-fuzzy logic-neural network analysis for CNT nanofluids based grinding process publication-title: Neural Comput Appl – volume: 36 start-page: 35 year: 2015 end-page: 45 ident: bib152 article-title: Enhanced particle filter for tool wear prediction publication-title: J Manuf Syst – volume: 55 start-page: 275 year: 2019 end-page: 292 ident: bib155 article-title: Online monitoring of surface roughness and grinding wheel wear when grinding Ti-6Al-4V titanium alloy using ANFIS-GPR hybrid algorithm and Taguchi analysis publication-title: Precis Eng – volume: 43 start-page: 1327 year: 2003 end-page: 1336 ident: bib135 article-title: Selection of optimum conditions for maximum material removal rate with surface finish and damage as constraints in SiC grinding publication-title: Int J Mach Tool Manufact – year: 1989 ident: bib48 article-title: Theory and applications of machining with abrasives – volume: 30 start-page: 2965 year: 2015 end-page: 2979 ident: bib92 article-title: Prediction of surface roughness quality of green abrasive water jet machining: a soft computing approach publication-title: J Intell Manuf – volume: 74 start-page: 835 year: 2014 end-page: 850 ident: bib20 article-title: Modeling the operation of a common grinding wheel with nanoparticle jet flow minimal quantity lubrication publication-title: Int J Adv Manuf Technol – volume: 45 start-page: 609 year: 2005 end-page: 616 ident: bib58 article-title: A probabilistic approach to predict surface roughness in ceramic grinding publication-title: Int J Mach Tool Manufact – volume: 148 start-page: 288 year: 2004 end-page: 300 ident: bib136 article-title: Automatic design of fuzzy logic controller using a genetic algorithm - to predict power requirement and surface finish in grinding publication-title: J Mater Process Technol – volume: 144 start-page: 639 year: 2018 end-page: 653 ident: bib35 article-title: A comprehensive investigation of plowing and grain-workpiece micro interactions on 3D ground surface topography publication-title: Int J Mech Sci – volume: 205 start-page: 836 year: 2018 end-page: 844 ident: bib66 article-title: Parameter optimisation for producing fired bricks using organic solid wastes publication-title: J Clean Prod – volume: 43 start-page: 505 year: 2016 end-page: 513 ident: bib130 article-title: Indirect model for roughness in rough honing processes based on artificial neural networks publication-title: Precis Eng – volume: 26 start-page: 3587 year: 2012 end-page: 3595 ident: bib77 article-title: Determining the optimum process parameter for grinding operations using robust process publication-title: J Mech Sci Technol – volume: 50 start-page: 19 year: 2014 end-page: 28 ident: bib146 article-title: Optimization of surface roughness and flank wear using the Taguchi method in milling of Hadfield steel with PVD and CVD coated inserts publication-title: Measurement – reference: Matsushima K, Sata T. Development of intelligent machine tool. J. Faculty Eng., Univ. Tokyo. 198035):299-314. – volume: 21 start-page: 657 year: 2010 end-page: 663 ident: bib121 article-title: Creep feed grinding optimization by an integrated GA-NN system publication-title: J Intell Manuf – volume: 93 start-page: 2827 year: 2017 end-page: 2839 ident: bib145 article-title: Characterization of material removal in ultrasonically assisted grinding of SiCp/Al with high volume fraction publication-title: Int J Adv Manuf Technol – volume: 178 start-page: 363 year: 2018 end-page: 372 ident: bib70 article-title: Influence of water-based copper nanofluid on wheel loading and surface roughness during grinding of Inconel 738 superalloy publication-title: J Clean Prod – volume: 30 start-page: 2421 year: 1992 end-page: 2438 ident: bib126 article-title: Neural network modelling and multiobjective optimization of creep feed grinding of superalloys publication-title: Int J Prod Res – volume: 25 start-page: 750 year: 2012 end-page: 759 ident: bib115 article-title: An intelligent system approach for surface roughness and vibrations prediction in cylindrical grinding publication-title: Int J Comput Integrated Manuf – volume: 6 year: 2017 ident: bib69 article-title: Optimization of surface grinding parameters on aisi d2 steel using response surface methodology publication-title: J Ind Eng – volume: 12 start-page: 340 year: 2019 ident: bib125 article-title: Mechanism and parameter optimization in grinding and polishing of M300 steel by an elastic abrasive publication-title: Materials – volume: 57 start-page: 3920 year: 2019 end-page: 3934 ident: bib151 article-title: Digital Twin for rotating machinery fault diagnosis in smart manufacturing publication-title: Int J Prod Res: Special Issue: Sustainable Cybernetic Manufacturing – volume: 17 start-page: 330 year: 2001 end-page: 338 ident: bib134 article-title: Genetic algorithm (GA) for multivariable surface grinding process optimisation using a multi-objective function model publication-title: Int J Adv Manuf Technol – start-page: 35 year: 1993 end-page: 46 ident: bib110 article-title: Combining neural networks and fuzzy controllers – volume: 64 start-page: 114 year: 2013 end-page: 122 ident: bib38 article-title: A predictive model of the critical undeformed chip thickness for ductile–brittle transition in nano-machining of brittle materials publication-title: Int J Mach Tool Manufact – volume: 13 start-page: 2436 year: 2019 end-page: 2446 ident: bib154 article-title: An intelligent monitoring system of grinding wheel wear based on two-stage feature selection and Long Short-Term Memory network publication-title: J Eng Manuf – volume: 19 start-page: 2854 year: 2013 end-page: 2863 ident: bib123 article-title: Grinding roughness prediction model based on evolutionary artificial neural network publication-title: Com-Int Manuf Systems. – volume: 65 start-page: 64 year: 2020 end-page: 71 ident: bib42 article-title: Elastic recovery of monocrystalline silicon during ultra-fine rotational grinding publication-title: Precis Eng – volume: 39 start-page: 705 year: 2019 end-page: 717 ident: bib81 article-title: Material removal mechanism of laser-assisted grinding of RB-SiC ceramics and process optimization publication-title: J Eur Ceram Soc – volume: 9 start-page: 59 year: 2014 end-page: 70 ident: bib129 article-title: Artificial neural network modeling for surface roughness prediction in cylindrical grinding of Al-SiCp metal matrix composites and ANOVA analysis publication-title: Adv Prod Eng Manag – start-page: 442 year: 2010 end-page: 444 ident: bib120 article-title: Study on machining prediction in plane grinding based on artificial neural network publication-title: Proceedings 2010 IEEE International Conference on intelligent systems and knowledge engineering – volume: 3 start-page: 801 year: 1992 end-page: 806 ident: bib109 article-title: On Fuzzy Modeling using fuzzy neural networks with the backpropagation algorithm publication-title: IEEE Trans Neural Network – volume: 33 start-page: 1 year: 2020 end-page: 11 ident: bib147 article-title: Digital twin-driven supervised machine learning for the development of artificial intelligence applications in manufacturing publication-title: Int J Comput Integrated Manuf – volume: 127 start-page: 14 year: 2018 end-page: 27 ident: bib64 article-title: Modeling and simulation of the distribution of undeformed chip thicknesses in surface grinding publication-title: Int J Mach Tool Manufact – volume: 67 start-page: 1035 year: 2013 end-page: 1052 ident: bib54 article-title: Study on micro-interacting mechanism modeling in grinding process and ground surface roughness prediction publication-title: Int J Adv Manuf Technol – volume: 43 start-page: 755 year: 2003 end-page: 761 ident: bib56 article-title: Predictive modeling of surface roughness in grinding publication-title: Int J Mach Tool Manufact – volume: 56 start-page: 59 year: 2012 end-page: 68 ident: bib61 article-title: Predictive modeling of undeformed chip thickness in ceramic grinding publication-title: Int J Mach Tool Manufact – volume: 59 start-page: 694 year: 2010 end-page: 716 ident: bib2 article-title: Precision engineering for astronomy and gravity science publication-title: CIRP Ann - Manuf Technol – volume: 99 start-page: 1467 year: 2018 end-page: 1480 ident: bib25 article-title: A novel approach to simulate surface topography based on motion trajectories and feature theories of abrasive grains publication-title: Int J Adv Manuf Technol – volume: 43 start-page: 1579 year: 2003 end-page: 1593 ident: bib52 article-title: On the mechanics of the grinding process-Part I. Stochastic nature of the grinding process publication-title: Int J Mach Tool Manufact – volume: 3 start-page: 807 year: 1992 end-page: 814 ident: bib111 article-title: Fuzzy basis functions, universal approximation, and orthogonal least-squares learning publication-title: IEEE Trans Neural Network – volume: 9 start-page: 103 year: 2008 end-page: 110 ident: bib114 article-title: A neural network and fuzzy-based methodology for the prediction of work roll surface roughness in a grinding process publication-title: Int J Comput Met Eng Sci Mech – volume: 102 start-page: 487 year: 2019 end-page: 496 ident: bib24 article-title: Research on the matching relationship between ultrasonic-assisted grinding parameters and workpiece surface roughness publication-title: Int J Adv Manuf Technol – volume: 202 start-page: 574 year: 2008 end-page: 582 ident: bib98 article-title: A study on surface roughness in abrasive waterjet machining process using artificial neural networks and regression analysis method publication-title: J Mater Process Technol – year: 1969 ident: bib15 article-title: Beschreibung der elementaren Kinematik des Schleifvor-ganges (Description of the Fundamental Kinematics of the Grinding Process) – volume: 166 start-page: 105263 year: 2020 ident: bib36 article-title: Research on predicting model of surface roughness in small-scale grinding of brittle materials considering grinding tool topography publication-title: Int J Mech Sci – volume: 47 start-page: 1929 year: 2007 end-page: 1940 ident: bib72 article-title: Process modeling of controlled forming with time variant blank holder force using RSM method publication-title: Int J Mach Tool Manufact – volume: 35 start-page: 2255 year: 2018 end-page: 2271 ident: bib29 article-title: Future of the discrete element method in the modelling of grinding wheels publication-title: Eng Comput – volume: 55 start-page: 667 year: 2006 end-page: 696 ident: bib13 article-title: Advances in modeling and simulation of grinding processes publication-title: CIRP Ann - Manuf Technol – volume: 11 start-page: 512 year: 2017 end-page: 530 ident: bib131 article-title: Neural network modelling of Abbott-Firestone roughness parameters in honing processes publication-title: Int J Surf Sci Eng – volume: 75 start-page: 1245 year: 2014 end-page: 1252 ident: bib84 article-title: Surface roughness prediction by combining static and dynamic features in cylindrical traverse grinding publication-title: Int J Adv Manuf Technol – volume: 31 start-page: 375 year: 2015 end-page: 380 ident: bib62 article-title: Predictive modeling of surface roughness in grinding publication-title: Procedia CIRP – volume: 147 start-page: 106825 year: 2019 ident: bib82 article-title: Experimental study of newly structural design grinding wheel considering response surface optimization and Monte Carlo simulation publication-title: Measurement – volume: 2 start-page: 236 year: 2008 end-page: 251 ident: bib76 article-title: Optimisation of work roll grinding using Response Surface Methodology and evolutionary algorithm publication-title: Int J Manuf Research – volume: 141 start-page: 329 year: 2003 end-page: 336 ident: bib45 article-title: High speed grinding of silicon nitride with resin bond diamond wheels publication-title: J Mater Process Technol – volume: 94 start-page: 1335 year: 2018 end-page: 1347 ident: bib132 article-title: Modelling of surface roughness and grinding forces using artificial neural networks with assessment of the ability to data generalisation publication-title: Int J Adv Manuf Technol – volume: 1 start-page: 105 year: 1971 end-page: 113 ident: bib49 article-title: Local elastic deflections in grinding publication-title: CIRP Ann - Manuf Technol – volume: 46 start-page: 304 year: 2006 end-page: 312 ident: bib74 article-title: An analysis of grinding power and surface roughness in external cylindrical grinding of hardened SCM440 steel using the response surface method publication-title: Int J Mach Tool Manufact – volume: 156 start-page: 14 year: 2019 end-page: 30 ident: bib33 article-title: A comprehensive investigation of surface generation and material removal characteristics in ultrasonic vibration assisted grinding publication-title: Int J Mech Sci – volume: 13 start-page: 62 year: 2015 end-page: 68 ident: bib100 article-title: Neural tool condition estimation in the grinding of advanced ceramics publication-title: Ieee Lat Am T – start-page: 1 year: 2019 end-page: 25 ident: bib149 article-title: Big data analytics for manufacturing internet of things: opportunities, challenges and enabling technologies publication-title: Enterp Inf Syst-Uk – volume: 11 start-page: 2165 year: 2018 ident: bib150 article-title: An AWS machine learning-based indirect monitoring method for deburring in aerospace industries towards Industry 4.0 publication-title: Appl Sci – volume: 39 start-page: 1451 year: 1999 end-page: 1470 ident: bib17 article-title: Simulation of diamond-ground surfaces publication-title: Int J Mach Tool Manufact – volume: 33 start-page: 1229 year: 1995 end-page: 1240 ident: bib112 article-title: Neuro-fuzzy GMDH and its application to modelling grinding characteristics publication-title: Int J Prod Res – volume: 38 start-page: 549 year: 2019 end-page: 555 ident: bib37 article-title: Study on key factors influencing the surface generation in rotary ultrasonic grinding for hard and brittle materials publication-title: J Manuf Process – volume: 45 start-page: 327 year: 2005 end-page: 334 ident: bib75 article-title: Application of Taguchi and response surface methodologies for geometric error in surface grinding process publication-title: Int J Mach Tool Manufact – year: 2019 ident: bib142 article-title: Jaya: an advanced optimization algorithm and its engineering applications – volume: 58 year: 2019 ident: bib41 article-title: Analytical elastic – plastic cutting model for predicting grain depth-of-cut in ultrafine grinding of silicon wafer publication-title: Japanese Journal of Applied – volume: 46 start-page: 445 year: 2010 end-page: 464 ident: bib71 article-title: Application of soft computing techniques in machining performance prediction and optimization: a literature review publication-title: Int J Adv Manuf Technol – volume: 170 start-page: 367 year: 2005 end-page: 373 ident: bib87 article-title: Grinding force control in an automatic surface finishing system publication-title: J Mater Process Technol – volume: 43 start-page: 1956 year: 2009 end-page: 1961 ident: bib124 article-title: Vogl fast BP network and orthogonal experiment method in optimization of sphere grinding process parameters publication-title: J Shanghai Jiaot Univ – volume: 31 start-page: 24 year: 2006 end-page: 36 ident: bib97 article-title: Ground surface roughness prediction based upon experimental design and neural network models publication-title: Int J Adv Manuf Technol – volume: 45 start-page: 13 year: 2005 end-page: 20 ident: bib101 article-title: Neural network based manufacturability evaluation of free form machining publication-title: Int J Mach Tool Manufact – volume: 110 start-page: 43 year: 2016 end-page: 54 ident: bib28 article-title: Discrete-element modelling of the grinding contact length combining the wheel-body structure and the surface-topography models publication-title: Int J Mach Tool Manufact – volume: 99 start-page: 97 year: 2018 end-page: 112 ident: bib80 article-title: Development of a hybrid particle swarm optimization algorithm for multi-pass roller grinding process optimization publication-title: Int J Adv Manuf Technol – volume: 66 start-page: 499 year: 2017 end-page: 502 ident: bib10 article-title: Influence of surface roughness on computed tomography dimensional measurements publication-title: CIRP Ann - Manuf Technol – volume: 219 start-page: 811 year: 2005 end-page: 819 ident: bib59 article-title: A new surface roughness prediction model for ceramic grinding publication-title: P I Mech Eng B-J Eng. – volume: 101 start-page: 1315 year: 2019 end-page: 1331 ident: bib118 article-title: Application of compressed air in the online monitoring of surface roughness and grinding wheel wear when grinding Ti-6Al-4V titanium alloy publication-title: Int J Adv Manuf Technol – volume: 60 start-page: 379 year: 2011 end-page: 382 ident: bib1 article-title: Grinding metre scale mirror segments for the E-ELT ground based telescope publication-title: CIRP Ann - Manuf Technol – volume: 26 start-page: 696 year: 2013 end-page: 702 ident: bib91 article-title: Optimisation of machining parameters in interrupted cylindrical grinding using the Grey-based Taguchi method publication-title: Int J Comput Integrated Manuf – volume: 5 start-page: 164 year: 2012 end-page: 174 ident: bib14 article-title: Kinematic simulation of high-performance grinding for analysis of chip parameters of single grains publication-title: CIRP Ann - Manuf Technol – volume: 30 start-page: 279 year: 2015 end-page: 286 ident: bib65 article-title: Prediction of surface roughness during hard turning of AISI 4340 steel (69 HRC) publication-title: Appl Soft Comput – volume: 141 start-page: 329 year: 2003 end-page: 336 ident: bib4 article-title: High speed grinding of silicon nitride with resin bond diamond wheels publication-title: J Mater Process Technol – volume: 37 start-page: 1167 year: 1997 end-page: 1178 ident: bib102 article-title: Force modeling and forecasting in creep feed grinding using improved BP neural network publication-title: Int J Mach Tool Manufact – volume: 102 start-page: 605 year: 2019 end-page: 614 ident: bib138 article-title: Trajectory planning of abrasive belt grinding for aero-engine blade profile publication-title: Int J Adv Manuf Technol – volume: 74 start-page: 29 year: 2013 end-page: 40 ident: bib23 article-title: 2D/3D ground surface topography modeling considering dressing and wear effects in grinding process publication-title: Int J Mach Tool Manufact – volume: 122 start-page: 66 year: 2017 end-page: 80 ident: bib63 article-title: Grinding performance of textured monolayer CBN wheels: undeformed chip thickness nonuniformity modeling and ground surface topography prediction publication-title: Int J Mach Tool Manufact – volume: 5 start-page: 5445 year: 2018 end-page: 5451 ident: bib116 article-title: Prediction of surface roughness and MRR in grinding process on Inconel 800 alloy using neural networks and ANFIS publication-title: Mater Today: Proceedings – year: 1972 ident: bib57 article-title: Wear of single abrasive grain in fine grinding publication-title: Grindng Conf – volume: 78 start-page: 847 year: 1956 end-page: 860 ident: bib43 article-title: The role of chip thickness in grinding publication-title: Transactions of the ASME – volume: 39 start-page: 29 year: 2008 end-page: 38 ident: bib30 article-title: Numerical modelling of surface topography in superabrasive grinding publication-title: Int J Adv Manuf Technol – volume: 42 start-page: 969 year: 2002 end-page: 977 ident: bib51 article-title: Modeling and predicting surface roughness of the grinding process publication-title: Int J Mach Tool Manufact – volume: 191 start-page: 206 year: 2007 end-page: 209 ident: bib106 article-title: Prediction of wear and surface roughness in electro-discharge diamond grinding publication-title: J Mater Process Technol – volume: 28 start-page: 381 year: 2013 end-page: 389 ident: bib108 article-title: Modeling and prediction of material removal rate and surface roughness in surface-electrical discharge diamond grinding process of metal matrix composites publication-title: Mater Manuf Process – volume: 23 start-page: 311 year: 2004 end-page: 317 ident: bib141 article-title: Ants colony algorithm approach for multi-objective optimisation of surface grinding operations publication-title: Int J Adv Manuf Technol – volume: 22 start-page: 604 year: 2018 end-page: 620 ident: bib34 article-title: A new approach to modeling the surface topography in grinding considering ploughing action publication-title: Mach Sci Technol – volume: 43 start-page: 1571 year: 2017 end-page: 1577 ident: bib3 article-title: Effects of grinding parameters on surface quality in silicon nitride grinding publication-title: Ceram Int – volume: 3 start-page: 12 year: 2010 end-page: 23 ident: bib73 article-title: Study of surface quality in dry and wet external cylindrical grinding publication-title: Int J Comput Mater Sci Surf Eng – volume: 43 start-page: 2309 year: 2005 end-page: 2322 ident: bib88 article-title: An experimental investigation as to the effect of cutting parameters on roundness error and surface roughness in cylindrical grinding publication-title: Int J Prod Res – volume: 5 start-page: 1 year: 2019 end-page: 36 ident: bib143 article-title: Recent advances and applications of machine learning in solid-state materials science publication-title: Npj Comput Mater – volume: 141 start-page: 51 year: 2003 end-page: 59 ident: bib89 article-title: Analysis of process parameters in surface grinding with graphite as lubricant based on the Taguchi method publication-title: J Mater Process Technol – volume: 82 start-page: 2167 year: 2016 end-page: 2182 ident: bib79 article-title: Modeling and optimization of machining parameters in cylindrical grinding process publication-title: Int J Adv Manuf Technol – volume: 78 start-page: 1943 year: 2015 end-page: 1960 ident: bib26 article-title: Analysis of loads on grinding wheel binder in grinding process: insights from discontinuum-hypothesis-based grinding simulation publication-title: Int J Adv Manuf Technol – volume: 4 start-page: 208 year: 1984 end-page: 213 ident: bib55 article-title: Probabilistic analysis of the surface grinding process publication-title: Trans Can Soc Mech Eng – volume: 45 start-page: 245 year: 2009 end-page: 260 ident: bib107 article-title: A case-based and practical approach for multivariate modeling of grinding process publication-title: Int J Adv Manuf Technol – volume: 45 start-page: 859 year: 2009 end-page: 866 ident: bib119 article-title: A hybrid model using genetic algorithm and neural network for process parameters optimization in NC camshaft grinding publication-title: Int J Adv Manuf Technol – volume: 30 start-page: 833 year: 2019 end-page: 854 ident: bib117 article-title: Working parameter optimization of strengthen waterjet grinding with the orthogonal-experiment-design-based ANFIS publication-title: J Intell Manuf – volume: 22 start-page: 1 year: 1995 end-page: 14 ident: bib7 article-title: The influence of surface-roughness and surface-free energy on supragingival and subgingival plaque-formation in man A review of the literature publication-title: J Clin Periodontol – volume: 37 start-page: 758 year: 2013 end-page: 764 ident: bib19 article-title: Investigation of different grain shapes and dressing to predict surface roughness in grinding using kinematic simulations publication-title: Precis Eng – volume: 77 start-page: 643 year: 2015 end-page: 651 ident: bib22 article-title: A model for prediction of surface roughness in ultrasonic-assisted grinding publication-title: Int J Adv Manuf Technol – volume: 34 start-page: 919 year: 1994 end-page: 937 ident: bib127 article-title: A neural-network approach for grinding processes - modeling and optimization publication-title: Int J Mach Tool Manufact – volume: 8 start-page: 883 year: 1996 end-page: 896 ident: bib31 article-title: Analysis and simulation of the grinding process, part 2: mechanics of grinding publication-title: Int J Mach Tool Manufact – volume: 49 start-page: 421 year: 2017 end-page: 427 ident: bib39 article-title: Theoretical model of brittle material removal fraction related to surface roughness and subsurface damage depth of optical glass during precision grinding publication-title: Precis Eng – volume: 18 start-page: 847 year: 1956 end-page: 850 ident: bib47 article-title: The role of chip thickness in grinding publication-title: Trans. ASME. – year: 2020 ident: bib133 article-title: Activation functions selection for BP neural network model of ground surface roughness publication-title: J Intell Manuf – volume: 73 start-page: 981 year: 2014 end-page: 988 ident: bib137 article-title: Constrained grinding optimization for time, cost, and surface roughness using NSGA-II publication-title: Int J Adv Manuf Technol – volume: 82 start-page: 451 year: 2016 end-page: 462 ident: bib86 article-title: Parametric design optimization of hard turning of AISI 4340 steel (69 HRC) publication-title: Int J Adv Manuf Technol – volume: 26 start-page: 1247 year: 2015 end-page: 1252 ident: bib139 article-title: A process prediction model based on Cuckoo algorithm for abrasive waterjet machining publication-title: J Intell Manuf – volume: 91B start-page: 930 year: 2009 end-page: 937 ident: bib8 article-title: Influence of surface treatments on surface roughness, phase transformation, and biaxial flexural strength of Y-TZP ceramics publication-title: J Biomed Mater Res B – volume: 43 start-page: 101037 year: 2020 ident: bib148 article-title: A smart surface inspection system using faster R-CNN in cloud-edge computing environment publication-title: Adv Eng Inf – volume: 12 start-page: 397 year: 1943 end-page: 401 ident: bib46 article-title: Determination and significance of chip thickness in grinding publication-title: Workshop Technol – volume: 38 start-page: 7486 year: 2011 end-page: 7493 ident: bib99 article-title: Towards next generation electrochemical machining controllers: a fuzzy logic control approach to ECM publication-title: Expert Syst Appl – volume: 66 start-page: 3794 year: 2019 end-page: 3803 ident: bib144 article-title: Using multiple-feature-spaces-based deep learning for tool condition monitoring in ultraprecision manufacturing publication-title: IEEE Trans Ind Electron – volume: 2 start-page: 677 year: 1992 end-page: 688 ident: bib12 article-title: Modelling and simulation of grinding processes publication-title: CIRP Ann - Manuf Technol – volume: 23 start-page: 227 year: 1974 end-page: 237 ident: bib44 article-title: The significance of chip thickness in grinding publication-title: CIRP Ann - Manuf Technol – volume: 46 start-page: 620 year: 2006 end-page: 622 ident: bib5 article-title: On the grindability of Titanium alloy by brazed type monolayered superabrasive grinding wheels publication-title: Int J Mach Tool Manufact – volume: 51 start-page: 135 year: 2010 end-page: 143 ident: bib90 article-title: Combined quality loss (CQL) concept in WPCA-based Taguchi philosophy for optimization of multiple surface quality characteristics of UNS C34000 brass in cylindrical grinding publication-title: Int J Adv Manuf Technol – volume: 74 start-page: 653 year: 2014 end-page: 663 ident: bib78 article-title: Surface roughness prediction and parameters optimization in grinding and polishing process for IBR of aero-engine publication-title: Int J Adv Manuf Technol – volume: 13 start-page: 1243 year: 2005 end-page: 1258 ident: bib128 article-title: Neural modelling, control and optimisation of an industrial grinding process publication-title: Contr Eng Pract – volume: 5 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.precisioneng.2020.11.001_bib143 article-title: Recent advances and applications of machine learning in solid-state materials science publication-title: Npj Comput Mater doi: 10.1038/s41524-019-0221-0 – volume: 156 start-page: 14 year: 2019 ident: 10.1016/j.precisioneng.2020.11.001_bib33 article-title: A comprehensive investigation of surface generation and material removal characteristics in ultrasonic vibration assisted grinding publication-title: Int J Mech Sci doi: 10.1016/j.ijmecsci.2019.03.026 – volume: 74 start-page: 29 year: 2013 ident: 10.1016/j.precisioneng.2020.11.001_bib23 article-title: 2D/3D ground surface topography modeling considering dressing and wear effects in grinding process publication-title: Int J Mach Tool Manufact doi: 10.1016/j.ijmachtools.2013.07.002 – volume: 3 start-page: 12 issue: 1 year: 2010 ident: 10.1016/j.precisioneng.2020.11.001_bib73 article-title: Study of surface quality in dry and wet external cylindrical grinding publication-title: Int J Comput Mater Sci Surf Eng – volume: 43 start-page: 2309 issue: 11 year: 2005 ident: 10.1016/j.precisioneng.2020.11.001_bib88 article-title: An experimental investigation as to the effect of cutting parameters on roundness error and surface roughness in cylindrical grinding publication-title: Int J Prod Res doi: 10.1080/00207540412331330110 – volume: 58 year: 2019 ident: 10.1016/j.precisioneng.2020.11.001_bib41 article-title: Analytical elastic – plastic cutting model for predicting grain depth-of-cut in ultrafine grinding of silicon wafer publication-title: Japanese Journal of Applied – volume: 65 start-page: 64 year: 2020 ident: 10.1016/j.precisioneng.2020.11.001_bib42 article-title: Elastic recovery of monocrystalline silicon during ultra-fine rotational grinding publication-title: Precis Eng doi: 10.1016/j.precisioneng.2020.05.004 – volume: 48 start-page: 1937 issue: 8 year: 2013 ident: 10.1016/j.precisioneng.2020.11.001_bib83 article-title: Hybrid GR-SVM for prediction of surface roughness in abrasive water jet machining publication-title: Meccanica doi: 10.1007/s11012-013-9710-2 – volume: 46 start-page: 620 issue: 6 year: 2006 ident: 10.1016/j.precisioneng.2020.11.001_bib5 article-title: On the grindability of Titanium alloy by brazed type monolayered superabrasive grinding wheels publication-title: Int J Mach Tool Manufact doi: 10.1016/j.ijmachtools.2005.07.012 – start-page: 35 year: 1993 ident: 10.1016/j.precisioneng.2020.11.001_bib110 article-title: Combining neural networks and fuzzy controllers – volume: 46 start-page: 445 issue: 5–8 year: 2010 ident: 10.1016/j.precisioneng.2020.11.001_bib71 article-title: Application of soft computing techniques in machining performance prediction and optimization: a literature review publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-009-2104-x – volume: 5 start-page: 5445 issue: 2 year: 2018 ident: 10.1016/j.precisioneng.2020.11.001_bib116 article-title: Prediction of surface roughness and MRR in grinding process on Inconel 800 alloy using neural networks and ANFIS publication-title: Mater Today: Proceedings doi: 10.1016/j.matpr.2017.12.132 – volume: 5 start-page: 164 issue: 3 year: 2012 ident: 10.1016/j.precisioneng.2020.11.001_bib14 article-title: Kinematic simulation of high-performance grinding for analysis of chip parameters of single grains publication-title: CIRP Ann - Manuf Technol doi: 10.1016/j.cirpj.2012.07.004 – volume: 73 start-page: 981 issue: 5–8 year: 2014 ident: 10.1016/j.precisioneng.2020.11.001_bib137 article-title: Constrained grinding optimization for time, cost, and surface roughness using NSGA-II publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-014-5884-6 – volume: 78 start-page: 1943 issue: 9–12 year: 2015 ident: 10.1016/j.precisioneng.2020.11.001_bib26 article-title: Analysis of loads on grinding wheel binder in grinding process: insights from discontinuum-hypothesis-based grinding simulation publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-014-6767-6 – volume: 30 start-page: 279 year: 2015 ident: 10.1016/j.precisioneng.2020.11.001_bib65 article-title: Prediction of surface roughness during hard turning of AISI 4340 steel (69 HRC) publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2015.01.059 – volume: 99 start-page: 97 issue: 1–4 year: 2018 ident: 10.1016/j.precisioneng.2020.11.001_bib80 article-title: Development of a hybrid particle swarm optimization algorithm for multi-pass roller grinding process optimization publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-018-2458-z – volume: 23 start-page: 311 issue: 5–6 year: 2004 ident: 10.1016/j.precisioneng.2020.11.001_bib141 article-title: Ants colony algorithm approach for multi-objective optimisation of surface grinding operations publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-002-1533-6 – volume: 39 start-page: 29 issue: 1–2 year: 2008 ident: 10.1016/j.precisioneng.2020.11.001_bib30 article-title: Numerical modelling of surface topography in superabrasive grinding publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-007-1201-y – volume: 30 start-page: 833 issue: 2 year: 2019 ident: 10.1016/j.precisioneng.2020.11.001_bib117 article-title: Working parameter optimization of strengthen waterjet grinding with the orthogonal-experiment-design-based ANFIS publication-title: J Intell Manuf doi: 10.1007/s10845-016-1285-z – volume: 55 start-page: 667 issue: 2 year: 2006 ident: 10.1016/j.precisioneng.2020.11.001_bib13 article-title: Advances in modeling and simulation of grinding processes publication-title: CIRP Ann - Manuf Technol doi: 10.1016/j.cirp.2006.10.003 – volume: 37 start-page: 758 issue: 3 year: 2013 ident: 10.1016/j.precisioneng.2020.11.001_bib19 article-title: Investigation of different grain shapes and dressing to predict surface roughness in grinding using kinematic simulations publication-title: Precis Eng doi: 10.1016/j.precisioneng.2013.02.009 – volume: 47 start-page: 1929 issue: 12–13 year: 2007 ident: 10.1016/j.precisioneng.2020.11.001_bib72 article-title: Process modeling of controlled forming with time variant blank holder force using RSM method publication-title: Int J Mach Tool Manufact doi: 10.1016/j.ijmachtools.2007.03.003 – volume: 129 start-page: 123 issue: 1 year: 2002 ident: 10.1016/j.precisioneng.2020.11.001_bib18 article-title: The simulation of grinding wheels and ground surface roughness based on virtual reality technology publication-title: J Mater Process Technol doi: 10.1016/S0924-0136(02)00589-7 – volume: 8 start-page: 367 year: 2016 ident: 10.1016/j.precisioneng.2020.11.001_bib93 article-title: Analysis of process parameters in surface grinding using single objective Taguchi and multi-objective grey relational grade publication-title: Perspectives in Science doi: 10.1016/j.pisc.2016.04.077 – volume: 57 start-page: 3920 issue: 12 year: 2019 ident: 10.1016/j.precisioneng.2020.11.001_bib151 article-title: Digital Twin for rotating machinery fault diagnosis in smart manufacturing publication-title: Int J Prod Res: Special Issue: Sustainable Cybernetic Manufacturing – volume: 23 start-page: 227 year: 1974 ident: 10.1016/j.precisioneng.2020.11.001_bib44 article-title: The significance of chip thickness in grinding publication-title: CIRP Ann - Manuf Technol – volume: 49 start-page: 421 year: 2017 ident: 10.1016/j.precisioneng.2020.11.001_bib39 article-title: Theoretical model of brittle material removal fraction related to surface roughness and subsurface damage depth of optical glass during precision grinding publication-title: Precis Eng doi: 10.1016/j.precisioneng.2017.04.004 – volume: 4 start-page: 208 issue: 8 year: 1984 ident: 10.1016/j.precisioneng.2020.11.001_bib55 article-title: Probabilistic analysis of the surface grinding process publication-title: Trans Can Soc Mech Eng doi: 10.1139/tcsme-1984-0031 – volume: 67 start-page: 1035 issue: 5–8 year: 2013 ident: 10.1016/j.precisioneng.2020.11.001_bib54 article-title: Study on micro-interacting mechanism modeling in grinding process and ground surface roughness prediction publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-012-4546-9 – volume: 74 start-page: 653 issue: 5–8 year: 2014 ident: 10.1016/j.precisioneng.2020.11.001_bib78 article-title: Surface roughness prediction and parameters optimization in grinding and polishing process for IBR of aero-engine publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-014-6020-3 – volume: 18 start-page: 847 year: 1956 ident: 10.1016/j.precisioneng.2020.11.001_bib47 article-title: The role of chip thickness in grinding publication-title: Trans. ASME. – start-page: 210 year: 2009 ident: 10.1016/j.precisioneng.2020.11.001_bib140 – volume: 26 start-page: 1247 issue: 6 year: 2015 ident: 10.1016/j.precisioneng.2020.11.001_bib139 article-title: A process prediction model based on Cuckoo algorithm for abrasive waterjet machining publication-title: J Intell Manuf doi: 10.1007/s10845-013-0853-8 – volume: 99 start-page: 1467 issue: 5–8 year: 2018 ident: 10.1016/j.precisioneng.2020.11.001_bib25 article-title: A novel approach to simulate surface topography based on motion trajectories and feature theories of abrasive grains publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-018-2590-9 – volume: 6 issue: X year: 2017 ident: 10.1016/j.precisioneng.2020.11.001_bib69 article-title: Optimization of surface grinding parameters on aisi d2 steel using response surface methodology publication-title: J Ind Eng – volume: 148 start-page: 288 issue: 3 year: 2004 ident: 10.1016/j.precisioneng.2020.11.001_bib136 article-title: Automatic design of fuzzy logic controller using a genetic algorithm - to predict power requirement and surface finish in grinding publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2004.02.011 – volume: 43 start-page: 1327 issue: 13 year: 2003 ident: 10.1016/j.precisioneng.2020.11.001_bib135 article-title: Selection of optimum conditions for maximum material removal rate with surface finish and damage as constraints in SiC grinding publication-title: Int J Mach Tool Manufact doi: 10.1016/S0890-6955(03)00165-2 – volume: 8 start-page: 345 issue: 3 year: 2014 ident: 10.1016/j.precisioneng.2020.11.001_bib21 article-title: Simulation of grinding processes using finite element analysis and geometric simulation of individual grains publication-title: Prod Eng doi: 10.1007/s11740-013-0524-9 – ident: 10.1016/j.precisioneng.2020.11.001_bib103 – volume: 39 start-page: 705 issue: 4 year: 2019 ident: 10.1016/j.precisioneng.2020.11.001_bib81 article-title: Material removal mechanism of laser-assisted grinding of RB-SiC ceramics and process optimization publication-title: J Eur Ceram Soc doi: 10.1016/j.jeurceramsoc.2018.11.002 – volume: 166 start-page: 105263 year: 2020 ident: 10.1016/j.precisioneng.2020.11.001_bib36 article-title: Research on predicting model of surface roughness in small-scale grinding of brittle materials considering grinding tool topography publication-title: Int J Mech Sci doi: 10.1016/j.ijmecsci.2019.105263 – volume: 110 start-page: 43 year: 2016 ident: 10.1016/j.precisioneng.2020.11.001_bib28 article-title: Discrete-element modelling of the grinding contact length combining the wheel-body structure and the surface-topography models publication-title: Int J Mach Tool Manufact doi: 10.1016/j.ijmachtools.2016.07.004 – volume: 3 start-page: 801 issue: 5 year: 1992 ident: 10.1016/j.precisioneng.2020.11.001_bib109 article-title: On Fuzzy Modeling using fuzzy neural networks with the backpropagation algorithm publication-title: IEEE Trans Neural Network doi: 10.1109/72.159069 – volume: 11 start-page: 2165 issue: 8 year: 2018 ident: 10.1016/j.precisioneng.2020.11.001_bib150 article-title: An AWS machine learning-based indirect monitoring method for deburring in aerospace industries towards Industry 4.0 publication-title: Appl Sci doi: 10.3390/app8112165 – volume: 66 start-page: 1715 issue: 9–12 year: 2013 ident: 10.1016/j.precisioneng.2020.11.001_bib53 article-title: 3D metal removal simulation to determine uncut chip thickness, contact length, and surface finish in grinding publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-012-4452-1 – volume: 144 start-page: 639 year: 2018 ident: 10.1016/j.precisioneng.2020.11.001_bib35 article-title: A comprehensive investigation of plowing and grain-workpiece micro interactions on 3D ground surface topography publication-title: Int J Mech Sci doi: 10.1016/j.ijmecsci.2018.06.024 – volume: 205 start-page: 836 year: 2018 ident: 10.1016/j.precisioneng.2020.11.001_bib66 article-title: Parameter optimisation for producing fired bricks using organic solid wastes publication-title: J Clean Prod doi: 10.1016/j.jclepro.2018.09.116 – volume: 202 start-page: 574 issue: 1–3 year: 2008 ident: 10.1016/j.precisioneng.2020.11.001_bib98 article-title: A study on surface roughness in abrasive waterjet machining process using artificial neural networks and regression analysis method publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2007.10.024 – volume: 38 start-page: 549 year: 2019 ident: 10.1016/j.precisioneng.2020.11.001_bib37 article-title: Study on key factors influencing the surface generation in rotary ultrasonic grinding for hard and brittle materials publication-title: J Manuf Process doi: 10.1016/j.jmapro.2019.01.046 – volume: 74 start-page: 835 issue: 5 year: 2014 ident: 10.1016/j.precisioneng.2020.11.001_bib20 article-title: Modeling the operation of a common grinding wheel with nanoparticle jet flow minimal quantity lubrication publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-014-6032-z – volume: 56 start-page: 59 year: 2012 ident: 10.1016/j.precisioneng.2020.11.001_bib61 article-title: Predictive modeling of undeformed chip thickness in ceramic grinding publication-title: Int J Mach Tool Manufact doi: 10.1016/j.ijmachtools.2012.01.003 – volume: 21 start-page: 657 issue: 6 year: 2010 ident: 10.1016/j.precisioneng.2020.11.001_bib121 article-title: Creep feed grinding optimization by an integrated GA-NN system publication-title: J Intell Manuf doi: 10.1007/s10845-009-0243-4 – volume: 9 start-page: 59 issue: 2 year: 2014 ident: 10.1016/j.precisioneng.2020.11.001_bib129 article-title: Artificial neural network modeling for surface roughness prediction in cylindrical grinding of Al-SiCp metal matrix composites and ANOVA analysis publication-title: Adv Prod Eng Manag – volume: 82 start-page: 451 issue: 1 year: 2016 ident: 10.1016/j.precisioneng.2020.11.001_bib86 article-title: Parametric design optimization of hard turning of AISI 4340 steel (69 HRC) publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-015-7337-2 – volume: 141 start-page: 329 issue: 3 year: 2003 ident: 10.1016/j.precisioneng.2020.11.001_bib4 article-title: High speed grinding of silicon nitride with resin bond diamond wheels publication-title: J Mater Process Technol doi: 10.1016/S0924-0136(03)00284-X – volume: 191 start-page: 206 issue: 1–3 year: 2007 ident: 10.1016/j.precisioneng.2020.11.001_bib106 article-title: Prediction of wear and surface roughness in electro-discharge diamond grinding publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2007.03.032 – volume: 11 start-page: 512 issue: 6 year: 2017 ident: 10.1016/j.precisioneng.2020.11.001_bib131 article-title: Neural network modelling of Abbott-Firestone roughness parameters in honing processes publication-title: Int J Surf Sci Eng doi: 10.1504/IJSURFSE.2017.088973 – volume: 42 start-page: 969 issue: 8 year: 2002 ident: 10.1016/j.precisioneng.2020.11.001_bib51 article-title: Modeling and predicting surface roughness of the grinding process publication-title: Int J Mach Tool Manufact doi: 10.1016/S0890-6955(02)00011-1 – volume: 30 start-page: 2421 issue: 10 year: 1992 ident: 10.1016/j.precisioneng.2020.11.001_bib126 article-title: Neural network modelling and multiobjective optimization of creep feed grinding of superalloys publication-title: Int J Prod Res doi: 10.1080/00207549208948164 – volume: 28 start-page: 381 issue: 4 year: 2013 ident: 10.1016/j.precisioneng.2020.11.001_bib108 article-title: Modeling and prediction of material removal rate and surface roughness in surface-electrical discharge diamond grinding process of metal matrix composites publication-title: Mater Manuf Process doi: 10.1080/10426914.2013.763678 – volume: 43 start-page: 101037 year: 2020 ident: 10.1016/j.precisioneng.2020.11.001_bib148 article-title: A smart surface inspection system using faster R-CNN in cloud-edge computing environment publication-title: Adv Eng Inf doi: 10.1016/j.aei.2020.101037 – volume: 1 start-page: 105 issue: 19 year: 1971 ident: 10.1016/j.precisioneng.2020.11.001_bib49 article-title: Local elastic deflections in grinding publication-title: CIRP Ann - Manuf Technol – volume: 45 start-page: 327 issue: 3 year: 2005 ident: 10.1016/j.precisioneng.2020.11.001_bib75 article-title: Application of Taguchi and response surface methodologies for geometric error in surface grinding process publication-title: Int J Mach Tool Manufact doi: 10.1016/j.ijmachtools.2004.08.007 – volume: 13 start-page: 1243 issue: 10 year: 2005 ident: 10.1016/j.precisioneng.2020.11.001_bib128 article-title: Neural modelling, control and optimisation of an industrial grinding process publication-title: Contr Eng Pract doi: 10.1016/j.conengprac.2004.11.006 – volume: 81 start-page: 1921 issue: 9–12 year: 2015 ident: 10.1016/j.precisioneng.2020.11.001_bib27 article-title: Modeling and simulation of grinding wheel by discrete element method and experimental validation publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-015-7205-0 – volume: 64 start-page: 114 year: 2013 ident: 10.1016/j.precisioneng.2020.11.001_bib38 article-title: A predictive model of the critical undeformed chip thickness for ductile–brittle transition in nano-machining of brittle materials publication-title: Int J Mach Tool Manufact doi: 10.1016/j.ijmachtools.2012.08.005 – volume: 25 start-page: 750 issue: 8 year: 2012 ident: 10.1016/j.precisioneng.2020.11.001_bib115 article-title: An intelligent system approach for surface roughness and vibrations prediction in cylindrical grinding publication-title: Int J Comput Integrated Manuf doi: 10.1080/0951192X.2012.665185 – volume: 127 start-page: 14 year: 2018 ident: 10.1016/j.precisioneng.2020.11.001_bib64 article-title: Modeling and simulation of the distribution of undeformed chip thicknesses in surface grinding publication-title: Int J Mach Tool Manufact doi: 10.1016/j.ijmachtools.2018.01.002 – volume: 26 start-page: 41 issue: 1 year: 2015 ident: 10.1016/j.precisioneng.2020.11.001_bib67 article-title: Surface roughness prediction using Taguchi-fuzzy logic-neural network analysis for CNT nanofluids based grinding process publication-title: Neural Comput Appl doi: 10.1007/s00521-014-1696-8 – volume: 46 start-page: 304 issue: 3–4 year: 2006 ident: 10.1016/j.precisioneng.2020.11.001_bib74 article-title: An analysis of grinding power and surface roughness in external cylindrical grinding of hardened SCM440 steel using the response surface method publication-title: Int J Mach Tool Manufact doi: 10.1016/j.ijmachtools.2005.05.019 – volume: 45 start-page: 859 issue: 9–10 year: 2009 ident: 10.1016/j.precisioneng.2020.11.001_bib119 article-title: A hybrid model using genetic algorithm and neural network for process parameters optimization in NC camshaft grinding publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-009-2029-4 – volume: 141 start-page: 329 issue: 3 year: 2003 ident: 10.1016/j.precisioneng.2020.11.001_bib45 article-title: High speed grinding of silicon nitride with resin bond diamond wheels publication-title: J Mater Process Technol doi: 10.1016/S0924-0136(03)00284-X – start-page: 442 year: 2010 ident: 10.1016/j.precisioneng.2020.11.001_bib120 article-title: Study on machining prediction in plane grinding based on artificial neural network – volume: 75 start-page: 1245 issue: 5–8 year: 2014 ident: 10.1016/j.precisioneng.2020.11.001_bib84 article-title: Surface roughness prediction by combining static and dynamic features in cylindrical traverse grinding publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-014-6189-5 – volume: 38 start-page: 7486 issue: 6 year: 2011 ident: 10.1016/j.precisioneng.2020.11.001_bib99 article-title: Towards next generation electrochemical machining controllers: a fuzzy logic control approach to ECM publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2010.12.074 – year: 1972 ident: 10.1016/j.precisioneng.2020.11.001_bib57 article-title: Wear of single abrasive grain in fine grinding – volume: 94 start-page: 1335 issue: 1–4 year: 2018 ident: 10.1016/j.precisioneng.2020.11.001_bib132 article-title: Modelling of surface roughness and grinding forces using artificial neural networks with assessment of the ability to data generalisation publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-017-0949-y – volume: 36 start-page: 35 year: 2015 ident: 10.1016/j.precisioneng.2020.11.001_bib152 article-title: Enhanced particle filter for tool wear prediction publication-title: J Manuf Syst doi: 10.1016/j.jmsy.2015.03.005 – volume: 111 start-page: 1 year: 2019 ident: 10.1016/j.precisioneng.2020.11.001_bib153 article-title: Deep heterogeneous GRU model for predictive analytics in smart manufacturing: application to tool wear prediction publication-title: Comput Ind doi: 10.1016/j.compind.2019.06.001 – volume: 147 start-page: 106825 year: 2019 ident: 10.1016/j.precisioneng.2020.11.001_bib82 article-title: Experimental study of newly structural design grinding wheel considering response surface optimization and Monte Carlo simulation publication-title: Measurement doi: 10.1016/j.measurement.2019.07.053 – volume: 170 start-page: 367 issue: 1–2 year: 2005 ident: 10.1016/j.precisioneng.2020.11.001_bib87 article-title: Grinding force control in an automatic surface finishing system publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2005.06.002 – volume: 162–163 start-page: 655 year: 2005 ident: 10.1016/j.precisioneng.2020.11.001_bib113 article-title: FBF-NN-based modelling of cylindrical plunge grinding process using a GA publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2005.02.080 – volume: 140 start-page: 121001 issue: 12 year: 2018 ident: 10.1016/j.precisioneng.2020.11.001_bib6 article-title: Analytical elastic – plastic cutting model for predicting grain depth-of-cut in ultrafine grinding of silicon wafer publication-title: J Manuf Sci E-ASME. doi: 10.1115/1.4041245 – volume: 101 start-page: 1315 issue: 5 year: 2019 ident: 10.1016/j.precisioneng.2020.11.001_bib118 article-title: Application of compressed air in the online monitoring of surface roughness and grinding wheel wear when grinding Ti-6Al-4V titanium alloy publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-018-2909-6 – volume: 13 start-page: 2436 issue: 223 year: 2019 ident: 10.1016/j.precisioneng.2020.11.001_bib154 article-title: An intelligent monitoring system of grinding wheel wear based on two-stage feature selection and Long Short-Term Memory network publication-title: J Eng Manuf doi: 10.1177/0954405419840556 – volume: 39 start-page: 1451 issue: 9 year: 1999 ident: 10.1016/j.precisioneng.2020.11.001_bib17 article-title: Simulation of diamond-ground surfaces publication-title: Int J Mach Tool Manufact doi: 10.1016/S0890-6955(99)00002-4 – volume: 33 start-page: 1229 issue: 5 year: 1995 ident: 10.1016/j.precisioneng.2020.11.001_bib112 article-title: Neuro-fuzzy GMDH and its application to modelling grinding characteristics publication-title: Int J Prod Res doi: 10.1080/00207549508930206 – volume: 45 start-page: 609 issue: 6 year: 2005 ident: 10.1016/j.precisioneng.2020.11.001_bib58 article-title: A probabilistic approach to predict surface roughness in ceramic grinding publication-title: Int J Mach Tool Manufact doi: 10.1016/j.ijmachtools.2004.10.005 – volume: 31 start-page: 375 year: 2015 ident: 10.1016/j.precisioneng.2020.11.001_bib62 article-title: Predictive modeling of surface roughness in grinding publication-title: Procedia CIRP doi: 10.1016/j.procir.2015.04.092 – volume: 45 start-page: 1329 issue: 11 year: 2005 ident: 10.1016/j.precisioneng.2020.11.001_bib32 article-title: Simulation of surface grinding process, part 2: interaction of the abrasive grain with the workpiece publication-title: Int J Mach Tool Manufact doi: 10.1016/j.ijmachtools.2005.01.006 – volume: 66 start-page: 3794 issue: 5 year: 2019 ident: 10.1016/j.precisioneng.2020.11.001_bib144 article-title: Using multiple-feature-spaces-based deep learning for tool condition monitoring in ultraprecision manufacturing publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2018.2856193 – volume: 2 start-page: 677 issue: 41 year: 1992 ident: 10.1016/j.precisioneng.2020.11.001_bib12 article-title: Modelling and simulation of grinding processes publication-title: CIRP Ann - Manuf Technol doi: 10.1016/S0007-8506(07)63254-5 – volume: 33 start-page: 1 year: 2020 ident: 10.1016/j.precisioneng.2020.11.001_bib147 article-title: Digital twin-driven supervised machine learning for the development of artificial intelligence applications in manufacturing publication-title: Int J Comput Integrated Manuf doi: 10.1080/0951192X.2020.1747642 – volume: 97 start-page: 2715 issue: 5–8 year: 2018 ident: 10.1016/j.precisioneng.2020.11.001_bib95 article-title: An experimental and theoretical analysis of surface generation in the ultra-precision grinding of hard and brittle materials publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-018-2121-8 – volume: 50 start-page: 1065 issue: 12 year: 2010 ident: 10.1016/j.precisioneng.2020.11.001_bib60 article-title: Modeling and prediction of surface roughness in ceramic grinding publication-title: Int J Mach Tool Manufact doi: 10.1016/j.ijmachtools.2010.08.009 – volume: 51 start-page: 135 issue: 1–4 year: 2010 ident: 10.1016/j.precisioneng.2020.11.001_bib90 article-title: Combined quality loss (CQL) concept in WPCA-based Taguchi philosophy for optimization of multiple surface quality characteristics of UNS C34000 brass in cylindrical grinding publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-010-2599-1 – volume: 91B start-page: 930 issue: 2 year: 2009 ident: 10.1016/j.precisioneng.2020.11.001_bib8 article-title: Influence of surface treatments on surface roughness, phase transformation, and biaxial flexural strength of Y-TZP ceramics publication-title: J Biomed Mater Res B doi: 10.1002/jbm.b.31477 – volume: 22 start-page: 1 issue: 1 year: 1995 ident: 10.1016/j.precisioneng.2020.11.001_bib7 article-title: The influence of surface-roughness and surface-free energy on supragingival and subgingival plaque-formation in man A review of the literature publication-title: J Clin Periodontol doi: 10.1111/j.1600-051X.1995.tb01765.x – volume: 13 start-page: 62 issue: 1 year: 2015 ident: 10.1016/j.precisioneng.2020.11.001_bib100 article-title: Neural tool condition estimation in the grinding of advanced ceramics publication-title: Ieee Lat Am T doi: 10.1109/TLA.2015.7040629 – volume: 95 start-page: 972 issue: 4 year: 1973 ident: 10.1016/j.precisioneng.2020.11.001_bib16 article-title: Simulation study of the grinding process publication-title: Transactions of the ASME. Series B, Journal of Engineering for Industry doi: 10.1115/1.3438277 – volume: 59 start-page: 694 issue: 2 year: 2010 ident: 10.1016/j.precisioneng.2020.11.001_bib2 article-title: Precision engineering for astronomy and gravity science publication-title: CIRP Ann - Manuf Technol doi: 10.1016/j.cirp.2010.05.003 – volume: 93 start-page: 2827 issue: 5–8 year: 2017 ident: 10.1016/j.precisioneng.2020.11.001_bib145 article-title: Characterization of material removal in ultrasonically assisted grinding of SiCp/Al with high volume fraction publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-017-0676-4 – volume: 43 start-page: 1571 issue: 1B year: 2017 ident: 10.1016/j.precisioneng.2020.11.001_bib3 article-title: Effects of grinding parameters on surface quality in silicon nitride grinding publication-title: Ceram Int doi: 10.1016/j.ceramint.2016.10.135 – year: 1969 ident: 10.1016/j.precisioneng.2020.11.001_bib15 – volume: 9 start-page: 103 issue: 2 year: 2008 ident: 10.1016/j.precisioneng.2020.11.001_bib114 article-title: A neural network and fuzzy-based methodology for the prediction of work roll surface roughness in a grinding process publication-title: Int J Comput Met Eng Sci Mech doi: 10.1080/15502280701815382 – volume: 45 start-page: 245 issue: 3–4 year: 2009 ident: 10.1016/j.precisioneng.2020.11.001_bib107 article-title: A case-based and practical approach for multivariate modeling of grinding process publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-009-1977-z – volume: 102 start-page: 605 issue: 1–4 year: 2019 ident: 10.1016/j.precisioneng.2020.11.001_bib138 article-title: Trajectory planning of abrasive belt grinding for aero-engine blade profile publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-018-3187-z – volume: 26 start-page: 696 issue: 8 year: 2013 ident: 10.1016/j.precisioneng.2020.11.001_bib91 article-title: Optimisation of machining parameters in interrupted cylindrical grinding using the Grey-based Taguchi method publication-title: Int J Comput Integrated Manuf doi: 10.1080/0951192X.2012.749537 – volume: 82 start-page: 2167 issue: 9–12 year: 2016 ident: 10.1016/j.precisioneng.2020.11.001_bib79 article-title: Modeling and optimization of machining parameters in cylindrical grinding process publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-015-7500-9 – volume: 35 start-page: 2255 issue: 6 year: 2018 ident: 10.1016/j.precisioneng.2020.11.001_bib29 article-title: Future of the discrete element method in the modelling of grinding wheels publication-title: Eng Comput doi: 10.1108/EC-11-2017-0450 – volume: 90 start-page: 2453 issue: 9–12 year: 2017 ident: 10.1016/j.precisioneng.2020.11.001_bib94 article-title: Mathematical modeling and machining parameter optimization for the surface roughness of face gear grinding publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-016-9576-2 – start-page: 1456 year: 2011 ident: 10.1016/j.precisioneng.2020.11.001_bib122 – volume: 43 start-page: 1579 issue: 15 year: 2003 ident: 10.1016/j.precisioneng.2020.11.001_bib52 article-title: On the mechanics of the grinding process-Part I. Stochastic nature of the grinding process publication-title: Int J Mach Tool Manufact doi: 10.1016/S0890-6955(03)00186-X – volume: 66 start-page: 499 issue: 1 year: 2017 ident: 10.1016/j.precisioneng.2020.11.001_bib10 article-title: Influence of surface roughness on computed tomography dimensional measurements publication-title: CIRP Ann - Manuf Technol doi: 10.1016/j.cirp.2017.04.067 – volume: 3 start-page: 807 issue: 5 year: 1992 ident: 10.1016/j.precisioneng.2020.11.001_bib111 article-title: Fuzzy basis functions, universal approximation, and orthogonal least-squares learning publication-title: IEEE Trans Neural Network doi: 10.1109/72.159070 – volume: 102 start-page: 487 issue: 1–4 year: 2019 ident: 10.1016/j.precisioneng.2020.11.001_bib24 article-title: Research on the matching relationship between ultrasonic-assisted grinding parameters and workpiece surface roughness publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-018-3195-z – volume: 22 start-page: 604 issue: 4 year: 2018 ident: 10.1016/j.precisioneng.2020.11.001_bib34 article-title: A new approach to modeling the surface topography in grinding considering ploughing action publication-title: Mach Sci Technol doi: 10.1080/10910344.2017.1382514 – volume: 34 start-page: 919 issue: 7 year: 1994 ident: 10.1016/j.precisioneng.2020.11.001_bib127 article-title: A neural-network approach for grinding processes - modeling and optimization publication-title: Int J Mach Tool Manufact doi: 10.1016/0890-6955(94)90025-6 – volume: 45 start-page: 13 issue: 1 year: 2005 ident: 10.1016/j.precisioneng.2020.11.001_bib101 article-title: Neural network based manufacturability evaluation of free form machining publication-title: Int J Mach Tool Manufact doi: 10.1016/j.ijmachtools.2004.06.022 – volume: 37 start-page: 1167 issue: 8 year: 1997 ident: 10.1016/j.precisioneng.2020.11.001_bib102 article-title: Force modeling and forecasting in creep feed grinding using improved BP neural network publication-title: Int J Mach Tool Manufact doi: 10.1016/S0890-6955(96)00012-0 – year: 2020 ident: 10.1016/j.precisioneng.2020.11.001_bib133 article-title: Activation functions selection for BP neural network model of ground surface roughness publication-title: J Intell Manuf doi: 10.1007/s10845-020-01538-5 – volume: 31 start-page: 24 issue: 1–2 year: 2006 ident: 10.1016/j.precisioneng.2020.11.001_bib97 article-title: Ground surface roughness prediction based upon experimental design and neural network models publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-005-0169-8 – volume: 46 start-page: 899 issue: 4 year: 1997 ident: 10.1016/j.precisioneng.2020.11.001_bib105 article-title: A fiber optic sensor for the measurement of surface roughness and displacement using artificial neural networks publication-title: IEEE T Instrum Meas doi: 10.1109/19.650796 – volume: 43 start-page: 1956 issue: 12 year: 2009 ident: 10.1016/j.precisioneng.2020.11.001_bib124 article-title: Vogl fast BP network and orthogonal experiment method in optimization of sphere grinding process parameters publication-title: J Shanghai Jiaot Univ – volume: 141 start-page: 51 issue: 1 year: 2003 ident: 10.1016/j.precisioneng.2020.11.001_bib89 article-title: Analysis of process parameters in surface grinding with graphite as lubricant based on the Taguchi method publication-title: J Mater Process Technol doi: 10.1016/S0924-0136(02)01112-3 – year: 2019 ident: 10.1016/j.precisioneng.2020.11.001_bib142 – volume: 43 start-page: 755 issue: 8 year: 2003 ident: 10.1016/j.precisioneng.2020.11.001_bib56 article-title: Predictive modeling of surface roughness in grinding publication-title: Int J Mach Tool Manufact doi: 10.1016/S0890-6955(03)00055-5 – volume: 77 start-page: 643 issue: 1–4 year: 2015 ident: 10.1016/j.precisioneng.2020.11.001_bib22 article-title: A model for prediction of surface roughness in ultrasonic-assisted grinding publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-014-6482-3 – volume: 55 start-page: 275 year: 2019 ident: 10.1016/j.precisioneng.2020.11.001_bib155 article-title: Online monitoring of surface roughness and grinding wheel wear when grinding Ti-6Al-4V titanium alloy using ANFIS-GPR hybrid algorithm and Taguchi analysis publication-title: Precis Eng doi: 10.1016/j.precisioneng.2018.09.018 – volume: 43 start-page: 833 issue: 8 year: 2003 ident: 10.1016/j.precisioneng.2020.11.001_bib11 article-title: Predicting surface roughness in machining: a review publication-title: Int J Mach Tool Manufact doi: 10.1016/S0890-6955(03)00059-2 – volume: 17 start-page: 880 issue: 4 year: 2017 ident: 10.1016/j.precisioneng.2020.11.001_bib40 article-title: Analytical modeling of ground surface topography in monocrystalline silicon grinding considering the ductile-regime effect publication-title: Arch Civ Mech Eng doi: 10.1016/j.acme.2017.03.010 – volume: 24 start-page: 182 issue: 3 year: 2017 ident: 10.1016/j.precisioneng.2020.11.001_bib68 article-title: Prediction of the surface roughness and wheel wear of modern ceramic material (Al2O3) during grinding using multiple regression analysis model publication-title: Indian J Eng Mater Sci – volume: 12 start-page: 397 year: 1943 ident: 10.1016/j.precisioneng.2020.11.001_bib46 article-title: Determination and significance of chip thickness in grinding publication-title: Workshop Technol – volume: 12 start-page: 340 issue: 3 year: 2019 ident: 10.1016/j.precisioneng.2020.11.001_bib125 article-title: Mechanism and parameter optimization in grinding and polishing of M300 steel by an elastic abrasive publication-title: Materials doi: 10.3390/ma12030340 – volume: 3–4 start-page: 265 issue: 20 year: 1980 ident: 10.1016/j.precisioneng.2020.11.001_bib50 article-title: A simple model for evaluating surface roughness in fine grinding publication-title: Int J Mach Tool Manufact – volume: 26 start-page: 41 issue: 1 year: 2015 ident: 10.1016/j.precisioneng.2020.11.001_bib96 article-title: Surface roughness prediction using Taguchi-fuzzy logic-neural network analysis for CNT nanofluids based grinding process publication-title: Neural Comput Appl doi: 10.1007/s00521-014-1696-8 – volume: 43 start-page: 505 year: 2016 ident: 10.1016/j.precisioneng.2020.11.001_bib130 article-title: Indirect model for roughness in rough honing processes based on artificial neural networks publication-title: Precis Eng doi: 10.1016/j.precisioneng.2015.09.004 – start-page: 1 year: 2019 ident: 10.1016/j.precisioneng.2020.11.001_bib149 article-title: Big data analytics for manufacturing internet of things: opportunities, challenges and enabling technologies publication-title: Enterp Inf Syst-Uk – volume: 2 start-page: 236 issue: 3 year: 2008 ident: 10.1016/j.precisioneng.2020.11.001_bib76 article-title: Optimisation of work roll grinding using Response Surface Methodology and evolutionary algorithm publication-title: Int J Manuf Research doi: 10.1504/IJMR.2008.017418 – volume: 48 start-page: 932 issue: 7–8 year: 2008 ident: 10.1016/j.precisioneng.2020.11.001_bib85 article-title: A Taguchi and experimental investigation into the optimal processing conditions for the abrasive jet polishing of SKD61 mold steel publication-title: Int J Mach Tool Manufact doi: 10.1016/j.ijmachtools.2007.08.019 – volume: 19 start-page: 2854 issue: 11 year: 2013 ident: 10.1016/j.precisioneng.2020.11.001_bib123 article-title: Grinding roughness prediction model based on evolutionary artificial neural network publication-title: Com-Int Manuf Systems. – volume: 78 start-page: 847 year: 1956 ident: 10.1016/j.precisioneng.2020.11.001_bib43 article-title: The role of chip thickness in grinding publication-title: Transactions of the ASME – volume: 17 start-page: 330 issue: 5 year: 2001 ident: 10.1016/j.precisioneng.2020.11.001_bib134 article-title: Genetic algorithm (GA) for multivariable surface grinding process optimisation using a multi-objective function model publication-title: Int J Adv Manuf Technol doi: 10.1007/s001700170167 – volume: 50 start-page: 19 year: 2014 ident: 10.1016/j.precisioneng.2020.11.001_bib146 article-title: Optimization of surface roughness and flank wear using the Taguchi method in milling of Hadfield steel with PVD and CVD coated inserts publication-title: Measurement doi: 10.1016/j.measurement.2013.12.017 – volume: 376 start-page: 1185 issue: B year: 2017 ident: 10.1016/j.precisioneng.2020.11.001_bib9 article-title: On the influence of surface roughness on the wear behavior in the running-in phase in mixed-lubricated contacts with the finite element method publication-title: Wear doi: 10.1016/j.wear.2017.01.035 – volume: 8 start-page: 883 issue: 36 year: 1996 ident: 10.1016/j.precisioneng.2020.11.001_bib31 article-title: Analysis and simulation of the grinding process, part 2: mechanics of grinding publication-title: Int J Mach Tool Manufact doi: 10.1016/0890-6955(96)00117-4 – year: 1989 ident: 10.1016/j.precisioneng.2020.11.001_bib48 – volume: 178 start-page: 363 year: 2018 ident: 10.1016/j.precisioneng.2020.11.001_bib70 article-title: Influence of water-based copper nanofluid on wheel loading and surface roughness during grinding of Inconel 738 superalloy publication-title: J Clean Prod doi: 10.1016/j.jclepro.2018.01.003 – volume: 26 start-page: 3587 issue: 11 year: 2012 ident: 10.1016/j.precisioneng.2020.11.001_bib77 article-title: Determining the optimum process parameter for grinding operations using robust process publication-title: J Mech Sci Technol doi: 10.1007/s12206-012-0851-3 – volume: 219 start-page: 811 issue: 11 year: 2005 ident: 10.1016/j.precisioneng.2020.11.001_bib59 article-title: A new surface roughness prediction model for ceramic grinding publication-title: P I Mech Eng B-J Eng. – volume: 122 start-page: 66 year: 2017 ident: 10.1016/j.precisioneng.2020.11.001_bib63 article-title: Grinding performance of textured monolayer CBN wheels: undeformed chip thickness nonuniformity modeling and ground surface topography prediction publication-title: Int J Mach Tool Manufact doi: 10.1016/j.ijmachtools.2017.05.006 – volume: 30 start-page: 2965 year: 2015 ident: 10.1016/j.precisioneng.2020.11.001_bib92 article-title: Prediction of surface roughness quality of green abrasive water jet machining: a soft computing approach publication-title: J Intell Manuf doi: 10.1007/s10845-015-1169-7 – start-page: 491 year: 1994 ident: 10.1016/j.precisioneng.2020.11.001_bib104 article-title: Analysis of ductile mode ground surface of optical-glass by atomic-force microscopy – volume: 60 start-page: 379 issue: 1 year: 2011 ident: 10.1016/j.precisioneng.2020.11.001_bib1 article-title: Grinding metre scale mirror segments for the E-ELT ground based telescope publication-title: CIRP Ann - Manuf Technol doi: 10.1016/j.cirp.2011.03.120 |
SSID | ssj0007804 |
Score | 2.5237274 |
SecondaryResourceType | review_article |
Snippet | Grinding is a multi-length scale material removal process that is widely employed to machine a wide variety of materials in almost every industrial sector.... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 393 |
SubjectTerms | Digital manufacturing Digitalisation Industry-4.0 Precision grinding Prediction Quality |
Title | New insights into the methods for predicting ground surface roughness in the age of digitalisation |
URI | https://dx.doi.org/10.1016/j.precisioneng.2020.11.001 |
Volume | 67 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwELUqWGBAfIryUXlgNU0c20kHhqqiKiA6UalbFMdxFYTSqklXfjt3TgJFYqjEFlk5yTrbz3fJu3eE3GWRCYRnJQtUYJmAs8giJTxmpPa1UhqyEKwdfp2qyUw8z-W8Q0ZtLQzSKhvsrzHdoXUz0m-82V_leR9pSRBMyAHHvwShQk1QVK-DPX3_-UPzQIGdmsboM3y7FR51HK_Vum1kUywgV-SIIPhv4u9LauviGR-ToyZipMN6UiekkxWn5HBLR_CMaIAqmhclJtolPFRLCnEdrbtDlxTiUgpzMFj9USwoFnIUhpabtU3SjLo-PQh4YOjMAGHo0lKTL3Inj-jW7pzMxo9vowlrmiewFDCjYqlvRWIio3mkJbaZMlkkNZxWwWFYegmskg4SHoRp6GubWW4HKvF05Ke-TFMVXJC9AhxzSaifhJ7VodTK-MJqQHdutBSJFZ6AxeRdMmi9FaeNsjg2uPiIWwrZe7zt6Rg9DakH8um6JPi2XdX6GjtZPbSLEv_aLTFcBDvYX_3T_poccOS2uE8xN2SvWm-yWwhOKt1zu69H9odPL5PpFwYP6GI |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La8MwDBZde9h2GHuy7unDrqGJYzvpYYcyVtr1cdqgtxDHcckYaenj_0_KY3SwQ2G3YBAYyf4kxZ8kgKc0NL5wrXR85VtH4F10QiVcx0jtaaU0ZiFUOzyZqsGHeJvJWQNe6loYolVW2F9ieoHW1Uqn0mZnmWUdoiVhMCG7nF4JAiUOoEXdqUQTWr3haDD9AWTqsVMyGT2HBOreowXNa7mqZ9nkc0wXOYEIPU_87ad2fE__FE6qoJH1yn2dQSPNz-F4p5XgBWhEK5bla8q11_ixWTAM7Vg5IHrNMDRluAdDBSD5nFEtR27YeruycZKyYlQPYR4KFmIIMmxhmcnmWdEhsTDfJXz0X99fBk41P8FJEDY2TuJZEZvQaB5qSZOmTBpKjRdWcFyWboyG0n7M_SAJPG1Ty21Xxa4OvcSTSaL8K2jmqJhrYF4cuFYHUivjCasR4LnRUsRWuALtydvQrbUVJVVzcZpx8RXVLLLPaFfTEWkasw-i1LXB_5Fdli029pJ6ro0S_TowEfqCPeRv_in_CIeD98k4Gg-no1s44kR1Kf7M3EFzs9qm9xirbPRDdRa_AfZp6xM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+insights+into+the+methods+for+predicting+ground+surface+roughness+in+the+age+of+digitalisation&rft.jtitle=Precision+engineering&rft.au=Pan%2C+Yuhang&rft.au=Zhou%2C+Ping&rft.au=Yan%2C+Ying&rft.au=Agrawal%2C+Anupam&rft.date=2021-01-01&rft.pub=Elsevier+Inc&rft.issn=0141-6359&rft.volume=67&rft.spage=393&rft.epage=418&rft_id=info:doi/10.1016%2Fj.precisioneng.2020.11.001&rft.externalDocID=S0141635920309764 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-6359&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-6359&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-6359&client=summon |