Evaluating Ensemble Learning Methods for Multi-Modal Emotion Recognition Using Sensor Data Fusion

Automatic recognition of human emotions is not a trivial process. There are many factors affecting emotions internally and externally. Expressing emotions could also be performed in many ways such as text, speech, body gestures or even physiologically by physiological body responses. Emotion detecti...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 22; no. 15; p. 5611
Main Authors Younis, Eman M. G., Zaki, Someya Mohsen, Kanjo, Eiman, Houssein, Essam H.
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 27.07.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Automatic recognition of human emotions is not a trivial process. There are many factors affecting emotions internally and externally. Expressing emotions could also be performed in many ways such as text, speech, body gestures or even physiologically by physiological body responses. Emotion detection enables many applications such as adaptive user interfaces, interactive games, and human robot interaction and many more. The availability of advanced technologies such as mobiles, sensors, and data analytics tools led to the ability to collect data from various sources, which enabled researchers to predict human emotions accurately. Most current research uses them in the lab experiments for data collection. In this work, we use direct and real time sensor data to construct a subject-independent (generic) multi-modal emotion prediction model. This research integrates both on-body physiological markers, surrounding sensory data, and emotion measurements to achieve the following goals: (1) Collecting a multi-modal data set including environmental, body responses, and emotions. (2) Creating subject-independent Predictive models of emotional states based on fusing environmental and physiological variables. (3) Assessing ensemble learning methods and comparing their performance for creating a generic subject-independent model for emotion recognition with high accuracy and comparing the results with previous similar research. To achieve that, we conducted a real-world study “in the wild” with physiological and mobile sensors. Collecting the data-set is coming from participants walking around Minia university campus to create accurate predictive models. Various ensemble learning models (Bagging, Boosting, and Stacking) have been used, combining the following base algorithms (K Nearest Neighbor KNN, Decision Tree DT, Random Forest RF, and Support Vector Machine SVM) as base learners and DT as a meta-classifier. The results showed that, the ensemble stacking learner technique gave the best accuracy of 98.2% compared with other variants of ensemble learning methods. On the contrary, bagging and boosting methods gave (96.4%) and (96.6%) accuracy levels respectively.
AbstractList Automatic recognition of human emotions is not a trivial process. There are many factors affecting emotions internally and externally. Expressing emotions could also be performed in many ways such as text, speech, body gestures or even physiologically by physiological body responses. Emotion detection enables many applications such as adaptive user interfaces, interactive games, and human robot interaction and many more. The availability of advanced technologies such as mobiles, sensors, and data analytics tools led to the ability to collect data from various sources, which enabled researchers to predict human emotions accurately. Most current research uses them in the lab experiments for data collection. In this work, we use direct and real time sensor data to construct a subject-independent (generic) multi-modal emotion prediction model. This research integrates both on-body physiological markers, surrounding sensory data, and emotion measurements to achieve the following goals: (1) Collecting a multi-modal data set including environmental, body responses, and emotions. (2) Creating subject-independent Predictive models of emotional states based on fusing environmental and physiological variables. (3) Assessing ensemble learning methods and comparing their performance for creating a generic subject-independent model for emotion recognition with high accuracy and comparing the results with previous similar research. To achieve that, we conducted a real-world study “in the wild” with physiological and mobile sensors. Collecting the data-set is coming from participants walking around Minia university campus to create accurate predictive models. Various ensemble learning models (Bagging, Boosting, and Stacking) have been used, combining the following base algorithms (K Nearest Neighbor KNN, Decision Tree DT, Random Forest RF, and Support Vector Machine SVM) as base learners and DT as a meta-classifier. The results showed that, the ensemble stacking learner technique gave the best accuracy of 98.2% compared with other variants of ensemble learning methods. On the contrary, bagging and boosting methods gave (96.4%) and (96.6%) accuracy levels respectively.
Automatic recognition of human emotions is not a trivial process. There are many factors affecting emotions internally and externally. Expressing emotions could also be performed in many ways such as text, speech, body gestures or even physiologically by physiological body responses. Emotion detection enables many applications such as adaptive user interfaces, interactive games, and human robot interaction and many more. The availability of advanced technologies such as mobiles, sensors, and data analytics tools led to the ability to collect data from various sources, which enabled researchers to predict human emotions accurately. Most current research uses them in the lab experiments for data collection. In this work, we use direct and real time sensor data to construct a subject-independent (generic) multi-modal emotion prediction model. This research integrates both on-body physiological markers, surrounding sensory data, and emotion measurements to achieve the following goals: (1) Collecting a multi-modal data set including environmental, body responses, and emotions. (2) Creating subject-independent Predictive models of emotional states based on fusing environmental and physiological variables. (3) Assessing ensemble learning methods and comparing their performance for creating a generic subject-independent model for emotion recognition with high accuracy and comparing the results with previous similar research. To achieve that, we conducted a real-world study "in the wild" with physiological and mobile sensors. Collecting the data-set is coming from participants walking around Minia university campus to create accurate predictive models. Various ensemble learning models (Bagging, Boosting, and Stacking) have been used, combining the following base algorithms (K Nearest Neighbor KNN, Decision Tree DT, Random Forest RF, and Support Vector Machine SVM) as base learners and DT as a meta-classifier. The results showed that, the ensemble stacking learner technique gave the best accuracy of 98.2% compared with other variants of ensemble learning methods. On the contrary, bagging and boosting methods gave (96.4%) and (96.6%) accuracy levels respectively.Automatic recognition of human emotions is not a trivial process. There are many factors affecting emotions internally and externally. Expressing emotions could also be performed in many ways such as text, speech, body gestures or even physiologically by physiological body responses. Emotion detection enables many applications such as adaptive user interfaces, interactive games, and human robot interaction and many more. The availability of advanced technologies such as mobiles, sensors, and data analytics tools led to the ability to collect data from various sources, which enabled researchers to predict human emotions accurately. Most current research uses them in the lab experiments for data collection. In this work, we use direct and real time sensor data to construct a subject-independent (generic) multi-modal emotion prediction model. This research integrates both on-body physiological markers, surrounding sensory data, and emotion measurements to achieve the following goals: (1) Collecting a multi-modal data set including environmental, body responses, and emotions. (2) Creating subject-independent Predictive models of emotional states based on fusing environmental and physiological variables. (3) Assessing ensemble learning methods and comparing their performance for creating a generic subject-independent model for emotion recognition with high accuracy and comparing the results with previous similar research. To achieve that, we conducted a real-world study "in the wild" with physiological and mobile sensors. Collecting the data-set is coming from participants walking around Minia university campus to create accurate predictive models. Various ensemble learning models (Bagging, Boosting, and Stacking) have been used, combining the following base algorithms (K Nearest Neighbor KNN, Decision Tree DT, Random Forest RF, and Support Vector Machine SVM) as base learners and DT as a meta-classifier. The results showed that, the ensemble stacking learner technique gave the best accuracy of 98.2% compared with other variants of ensemble learning methods. On the contrary, bagging and boosting methods gave (96.4%) and (96.6%) accuracy levels respectively.
Author Kanjo, Eiman
Zaki, Someya Mohsen
Houssein, Essam H.
Younis, Eman M. G.
AuthorAffiliation 2 Faculty of Computers and Information Minia University, Al-Obour High Institute for Management, Computers and Information systems, Obour, Cairo 999060, Egypt; someyam@oi.edu.eg or
3 Computing and Technology, Nottingham Trent University (NTU), Nottingham NG1 4FQ, UK; eiman.kanjo@ntu.ac.uk
1 Faculty of Computers and Information Minia University, Minia 61519, Egypt; essam.halim@mu.edu.eg
AuthorAffiliation_xml – name: 1 Faculty of Computers and Information Minia University, Minia 61519, Egypt; essam.halim@mu.edu.eg
– name: 2 Faculty of Computers and Information Minia University, Al-Obour High Institute for Management, Computers and Information systems, Obour, Cairo 999060, Egypt; someyam@oi.edu.eg or
– name: 3 Computing and Technology, Nottingham Trent University (NTU), Nottingham NG1 4FQ, UK; eiman.kanjo@ntu.ac.uk
Author_xml – sequence: 1
  givenname: Eman M. G.
  orcidid: 0000-0003-2778-4231
  surname: Younis
  fullname: Younis, Eman M. G.
– sequence: 2
  givenname: Someya Mohsen
  orcidid: 0000-0003-0439-2999
  surname: Zaki
  fullname: Zaki, Someya Mohsen
– sequence: 3
  givenname: Eiman
  surname: Kanjo
  fullname: Kanjo, Eiman
– sequence: 4
  givenname: Essam H.
  orcidid: 0000-0002-8127-7233
  surname: Houssein
  fullname: Houssein, Essam H.
BookMark eNplkk1v1DAQhi1URNuFA_8gEhc4hPor_rggobKFSrtCAnq2HGey9cqxi51U4t-T7BZEy8mjmed9x3o15-gkpggIvSb4PWMaXxRKSdMIQp6hM8IprxWl-OSf-hSdl7LHmDLG1At0yhrdSCLkGbLrexsmO_q4q9axwNAGqDZgc1w6WxhvU1eqPuVqO4XR19vU2VCthzT6FKtv4NIu-kN9UxbFd4hlhj_Z0VZXU5kHL9Hz3oYCrx7eFbq5Wv-4_FJvvn6-vvy4qR2TYqzbHncYd1ZajFumVYv7ttVcKS1tb0UDknYd40KAhBaTvncguO2VBqcwA8ZW6Pro2yW7N3fZDzb_Msl6c2ikvDM2j94FMI5C4xwoKbDgWPNW8aajTctExzQjZPb6cPS6m9oBOgdxzDY8Mn08if7W7NK90UySJeQVevtgkNPPCcpoBl8chGAjpKkYKjEliuvDrjdP0H2acpyjWigsBddKztTFkXI5lZKhN86Pdgl-3u-DIdgsp2D-nsKsePdE8ef7_7O_AYWUtBA
CitedBy_id crossref_primary_10_1007_s10489_024_05630_8
crossref_primary_10_1016_j_engstruct_2024_119485
crossref_primary_10_1080_21681163_2023_2212082
crossref_primary_10_1007_s44373_025_00015_z
crossref_primary_10_1007_s11042_024_19467_3
crossref_primary_10_1007_s00521_024_09426_2
crossref_primary_10_1016_j_oooo_2023_11_006
crossref_primary_10_1109_ACCESS_2023_3320042
crossref_primary_10_1109_ACCESS_2024_3427111
crossref_primary_10_3390_s23177456
crossref_primary_10_1016_j_bspc_2023_105661
crossref_primary_10_1016_j_engappai_2024_108339
crossref_primary_10_1016_j_eswa_2023_121729
crossref_primary_10_3390_s24216841
crossref_primary_10_1016_j_aej_2024_10_059
crossref_primary_10_1186_s40537_024_00966_x
crossref_primary_10_3390_electronics13193904
crossref_primary_10_1007_s10586_024_04804_w
Cites_doi 10.1371/journal.pone.0154360
10.1109/TSMCA.2008.918624
10.1016/j.neucom.2013.02.041
10.1109/T-AFFC.2011.37
10.1016/j.inffus.2020.01.011
10.1016/j.measurement.2021.109966
10.1016/j.eswa.2010.12.028
10.1109/EMBC.2017.8037328
10.1155/2013/704504
10.1016/j.neuroimage.2013.11.007
10.1007/s00521-022-07292-4
10.1155/S1110865704406192
10.1007/978-981-16-6448-9_57
10.1109/JSEN.2018.2883497
10.1016/j.inffus.2017.05.005
10.1371/journal.pone.0242946
10.1016/j.jvcir.2021.103395
10.1016/j.ipm.2019.102185
10.1109/TAFFC.2014.2327617
10.3390/s18061905
10.1007/978-3-031-04409-0_29
10.2196/17818
10.1002/widm.1249
10.1016/j.inffus.2016.09.005
10.1007/s11042-022-13149-8
10.3390/s20030718
10.3390/w13091308
10.1109/CSIE.2009.130
10.1109/JSEN.2018.2867221
10.1016/j.ijpsycho.2012.07.106
10.1109/5.554205
10.1016/j.inffus.2018.09.001
10.1145/2577554.2577562
10.1145/3440943.3444727
10.1007/s00779-007-0180-1
10.1016/j.scitotenv.2012.10.098
10.1109/IEMBS.2007.4353164
10.3390/app12052527
10.1371/journal.pone.0220692
10.1016/j.ecolind.2014.06.002
10.1109/ACCESS.2019.2891579
10.1027/1614-0001/a000037
10.1371/journal.pone.0145791
10.1109/MPRV.2009.79
10.1109/TITS.2005.848368
10.1007/BF02344719
10.1016/j.envsoft.2015.06.003
10.1007/s10772-017-9396-2
10.3390/s20030592
10.1109/TPAMI.2008.26
10.1016/0005-7916(94)90063-9
10.1109/ATSIP.2016.7523190
10.1152/japplphysiol.01377.2010
10.7717/peerj.2258
10.1007/978-1-4419-9326-7_1
10.7717/peerj.2364
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s22155611
DatabaseName CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
ProQuest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
Publicly Available Content Database

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ: Directory of Open Access Journal (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central Database Suite (ProQuest)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_c2e5cce876064094b845d25b36d39311
PMC9371233
10_3390_s22155611
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c376t-bf0d00da7a00b398b0fbb948897afa65e72dd3466e7eb01ffce64af89ec803e33
IEDL.DBID 7X7
ISSN 1424-8220
IngestDate Wed Aug 27 01:24:14 EDT 2025
Thu Aug 21 18:20:06 EDT 2025
Tue Aug 05 10:54:18 EDT 2025
Fri Jul 25 20:02:16 EDT 2025
Tue Jul 01 02:42:05 EDT 2025
Thu Apr 24 23:07:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c376t-bf0d00da7a00b398b0fbb948897afa65e72dd3466e7eb01ffce64af89ec803e33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0439-2999
0000-0003-2778-4231
0000-0002-8127-7233
OpenAccessLink https://www.proquest.com/docview/2700764987?pq-origsite=%requestingapplication%
PMID 35957167
PQID 2700764987
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_c2e5cce876064094b845d25b36d39311
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9371233
proquest_miscellaneous_2702184911
proquest_journals_2700764987
crossref_citationtrail_10_3390_s22155611
crossref_primary_10_3390_s22155611
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220727
PublicationDateYYYYMMDD 2022-07-27
PublicationDate_xml – month: 7
  year: 2022
  text: 20220727
  day: 27
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_50
Park (ref_11) 2007; 33
Fishman (ref_55) 2012; 113
Zhang (ref_62) 2016; 4
Patel (ref_37) 2011; 38
ref_57
ref_56
(ref_23) 2016; 10
ref_54
Song (ref_59) 2019; 7
Kim (ref_33) 2004; 42
ref_53
ref_52
ref_51
ref_19
ref_18
Sultana (ref_65) 2020; 8
Kanjo (ref_9) 2009; 8
Kanjo (ref_15) 2008; 12
Pandey (ref_29) 2022; 34
Bradley (ref_7) 1994; 25
Wen (ref_61) 2014; 5
Kanjo (ref_8) 2019; 49
Kim (ref_26) 2008; 30
Cosoli (ref_46) 2021; 184
ref_25
ref_22
ref_21
Lisetti (ref_24) 2004; 2004
ref_64
Verma (ref_41) 2014; 102
Li (ref_60) 2016; 4
Jang (ref_38) 2012; 3
Steinle (ref_14) 2013; 443
Kanjo (ref_12) 2018; 40
Adibuzzaman (ref_20) 2013; 13
Hall (ref_16) 1997; 85
Katsis (ref_36) 2008; 38
ref_35
Banzhaf (ref_47) 2014; 45
ref_32
Realo (ref_10) 2011; 32
Gupta (ref_30) 2018; 19
Sewell (ref_48) 2008; 11
Castanedo (ref_17) 2013; 2013
Li (ref_27) 2020; 55
Zhang (ref_28) 2020; 59
Healey (ref_34) 2005; 6
ref_45
ref_44
Reis (ref_5) 2015; 74
ref_43
Soleymani (ref_39) 2011; 3
ref_42
Sagi (ref_6) 2018; 8
ref_3
ref_2
ref_49
Dias (ref_1) 2022; 82
Albraikan (ref_31) 2018; 19
Gravina (ref_13) 2017; 35
Noroozi (ref_63) 2017; 20
Chang (ref_40) 2013; 122
ref_4
Freund (ref_58) 1999; 14
References_xml – ident: ref_19
  doi: 10.1371/journal.pone.0154360
– volume: 38
  start-page: 502
  year: 2008
  ident: ref_36
  article-title: Toward emotion recognition in car-racing drivers: A biosignal processing approach
  publication-title: IEEE Trans. Syst. Man -Cybern.-Part Syst. Humans
  doi: 10.1109/TSMCA.2008.918624
– volume: 122
  start-page: 79
  year: 2013
  ident: ref_40
  article-title: Physiological emotion analysis using support vector regression
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.02.041
– ident: ref_49
– volume: 3
  start-page: 211
  year: 2011
  ident: ref_39
  article-title: Multimodal emotion recognition in response to videos
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/T-AFFC.2011.37
– volume: 59
  start-page: 103
  year: 2020
  ident: ref_28
  article-title: Emotion recognition using multi-modal data and machine learning techniques: A tutorial and review
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2020.01.011
– ident: ref_51
– volume: 184
  start-page: 109966
  year: 2021
  ident: ref_46
  article-title: Measurement of multimodal physiological signals for stimulation detection by wearable devices
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.109966
– volume: 38
  start-page: 7235
  year: 2011
  ident: ref_37
  article-title: Applying neural network analysis on heart rate variability data to assess driver fatigue
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2010.12.028
– ident: ref_42
  doi: 10.1109/EMBC.2017.8037328
– volume: 2013
  start-page: 704504
  year: 2013
  ident: ref_17
  article-title: A review of data fusion techniques
  publication-title: Sci. World J.
  doi: 10.1155/2013/704504
– volume: 102
  start-page: 162
  year: 2014
  ident: ref_41
  article-title: Multimodal fusion framework: A multiresolution approach for emotion classification and recognition from physiological signals
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.11.007
– ident: ref_43
  doi: 10.1007/s00521-022-07292-4
– volume: 2004
  start-page: 929414
  year: 2004
  ident: ref_24
  article-title: Using noninvasive wearable computers to recognize human emotions from physiological signals
  publication-title: EURASIP J. Adv. Signal Process.
  doi: 10.1155/S1110865704406192
– ident: ref_3
  doi: 10.1007/978-981-16-6448-9_57
– volume: 19
  start-page: 2266
  year: 2018
  ident: ref_30
  article-title: Cross-subject emotion recognition using flexible analytic wavelet transform from EEG signals
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2018.2883497
– volume: 11
  start-page: 1
  year: 2008
  ident: ref_48
  article-title: Ensemble learning
  publication-title: RN
– volume: 40
  start-page: 18
  year: 2018
  ident: ref_12
  article-title: Towards unravelling the relationship between on-body, environmental and emotion data using sensor information fusion approach
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2017.05.005
– ident: ref_45
  doi: 10.1371/journal.pone.0242946
– volume: 82
  start-page: 103395
  year: 2022
  ident: ref_1
  article-title: Cross-dataset emotion recognition from facial expressions through convolutional neural networks
  publication-title: J. Vis. Commun. Image Represent.
  doi: 10.1016/j.jvcir.2021.103395
– volume: 55
  start-page: 102185
  year: 2020
  ident: ref_27
  article-title: Exploring temporal representations by leveraging attention-based bidirectional LSTM-RNNs for multi-modal emotion recognition
  publication-title: Inf. Process. Manag.
  doi: 10.1016/j.ipm.2019.102185
– volume: 5
  start-page: 126
  year: 2014
  ident: ref_61
  article-title: Emotion recognition based on multi-variant correlation of physiological signals
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2014.2327617
– ident: ref_32
  doi: 10.3390/s18061905
– ident: ref_2
  doi: 10.1007/978-3-031-04409-0_29
– volume: 8
  start-page: e17818
  year: 2020
  ident: ref_65
  article-title: Using machine learning and smartphone and smartwatch data to detect emotional states and transitions: Exploratory study
  publication-title: JMIR mHealth uHealth
  doi: 10.2196/17818
– volume: 8
  start-page: e1249
  year: 2018
  ident: ref_6
  article-title: Ensemble learning: A survey. Wiley Interdisciplinary Reviews
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1002/widm.1249
– volume: 35
  start-page: 68
  year: 2017
  ident: ref_13
  article-title: Multi-sensor fusion in body sensor networks: State-of-the-art and research challenges
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2016.09.005
– ident: ref_52
– ident: ref_4
  doi: 10.1007/s11042-022-13149-8
– volume: 34
  start-page: 1730
  year: 2022
  ident: ref_29
  article-title: Subject independent emotion recognition from EEG using VMD and deep learning
  publication-title: J. King Saud-Univ.-Comput. Inf. Sci.
– ident: ref_64
  doi: 10.3390/s20030718
– ident: ref_50
  doi: 10.3390/w13091308
– volume: 33
  start-page: 17
  year: 2007
  ident: ref_11
  article-title: The effects of lighting on consumers’ emotions and behavioral intentions in a retail environment: A cross-cultural comparison
  publication-title: J. Inter. Des.
– volume: 14
  start-page: 1612
  year: 1999
  ident: ref_58
  article-title: A short introduction to boosting
  publication-title: J.-Jpn. Soc. Artif. Intell.
– ident: ref_22
  doi: 10.1109/CSIE.2009.130
– volume: 19
  start-page: 8402
  year: 2018
  ident: ref_31
  article-title: Toward user-independent emotion recognition using physiological signals
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2018.2867221
– volume: 3
  start-page: 402
  year: 2012
  ident: ref_38
  article-title: Classification of three emotions by machine learning algorithms using psychophysiological signals
  publication-title: Int. J. Psychophysiol.
  doi: 10.1016/j.ijpsycho.2012.07.106
– volume: 85
  start-page: 6
  year: 1997
  ident: ref_16
  article-title: An introduction to multisensor data fusion
  publication-title: Proc. IEEE
  doi: 10.1109/5.554205
– volume: 49
  start-page: 46
  year: 2019
  ident: ref_8
  article-title: Deep learning analysis of mobile physiological, environmental and location sensor data for emotion detection
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2018.09.001
– volume: 13
  start-page: 67
  year: 2013
  ident: ref_20
  article-title: In situ affect detection in mobile devices: A multimodal approach for advertisement using social network
  publication-title: ACM SIGAPP Appl. Comput. Rev.
  doi: 10.1145/2577554.2577562
– ident: ref_54
  doi: 10.1145/3440943.3444727
– volume: 12
  start-page: 599
  year: 2008
  ident: ref_15
  article-title: MobGeoSen: Facilitating personal geosensor data collection and visualization using mobile phones
  publication-title: Pers. Ubiquitous Comput.
  doi: 10.1007/s00779-007-0180-1
– volume: 443
  start-page: 184
  year: 2013
  ident: ref_14
  article-title: Quantifying human exposure to air pollution—Moving from static monitoring to spatio-temporally resolved personal exposure assessment
  publication-title: Sci. Total. Environ.
  doi: 10.1016/j.scitotenv.2012.10.098
– ident: ref_21
  doi: 10.1109/IEMBS.2007.4353164
– ident: ref_44
  doi: 10.3390/app12052527
– ident: ref_53
  doi: 10.1371/journal.pone.0220692
– volume: 45
  start-page: 664
  year: 2014
  ident: ref_47
  article-title: A conceptual framework for integrated analysis of environmental quality and quality of life
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2014.06.002
– volume: 7
  start-page: 12177
  year: 2019
  ident: ref_59
  article-title: MPED: A multi-modal physiological emotion database for discrete emotion recognition
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2891579
– volume: 32
  start-page: 74
  year: 2011
  ident: ref_10
  article-title: The influence of the weather on affective experience
  publication-title: J. Individ. Differ.
  doi: 10.1027/1614-0001/a000037
– volume: 10
  start-page: 74
  year: 2016
  ident: ref_23
  article-title: A comparison of physiological signal analysis techniques and classifiers for automatic emotional evaluation of audiovisual contents
  publication-title: Front. Comput. Neurosci.
– ident: ref_57
  doi: 10.1371/journal.pone.0145791
– volume: 8
  start-page: 50
  year: 2009
  ident: ref_9
  article-title: MobSens: Making smart phones smarter
  publication-title: IEEE Pervasive Comput.
  doi: 10.1109/MPRV.2009.79
– volume: 6
  start-page: 156
  year: 2005
  ident: ref_34
  article-title: Detecting stress during real-world driving tasks using physiological sensors
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2005.848368
– ident: ref_25
– volume: 42
  start-page: 419
  year: 2004
  ident: ref_33
  article-title: Emotion recognition system using short-term monitoring of physiological signals
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/BF02344719
– volume: 74
  start-page: 238
  year: 2015
  ident: ref_5
  article-title: Integrating modelling and smart sensors for environmental and human health
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2015.06.003
– volume: 20
  start-page: 239
  year: 2017
  ident: ref_63
  article-title: Vocal-based emotion recognition using random forests and decision tree
  publication-title: Int. J. Speech Technol.
  doi: 10.1007/s10772-017-9396-2
– ident: ref_35
  doi: 10.3390/s20030592
– volume: 30
  start-page: 2067
  year: 2008
  ident: ref_26
  article-title: Emotion recognition based on physiological changes in music listening
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2008.26
– volume: 25
  start-page: 49
  year: 1994
  ident: ref_7
  article-title: Measuring emotion: The self-assessment manikin and the semantic differential
  publication-title: J. Behav. Ther. Exp. Psychiatry
  doi: 10.1016/0005-7916(94)90063-9
– ident: ref_18
  doi: 10.1109/ATSIP.2016.7523190
– volume: 113
  start-page: 297
  year: 2012
  ident: ref_55
  article-title: A method for analyzing temporal patterns of variability of a time series from Poincare plots
  publication-title: J. Appl. Physiol.
  doi: 10.1152/japplphysiol.01377.2010
– volume: 4
  start-page: e2258
  year: 2016
  ident: ref_62
  article-title: Emotion recognition based on customized smart bracelet with built-in accelerometer
  publication-title: PeerJ
  doi: 10.7717/peerj.2258
– ident: ref_56
  doi: 10.1007/978-1-4419-9326-7_1
– volume: 4
  start-page: e2364
  year: 2016
  ident: ref_60
  article-title: Emotion recognition using Kinect motion capture data of human gaits
  publication-title: PeerJ
  doi: 10.7717/peerj.2364
SSID ssj0023338
Score 2.4776804
Snippet Automatic recognition of human emotions is not a trivial process. There are many factors affecting emotions internally and externally. Expressing emotions...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 5611
SubjectTerms Body temperature
Data collection
Decision making
emotion recognition
Emotions
ensemble learning
Heart rate
Human-computer interaction
Hypotheses
multi-modal emotion recognition
physiological and environmental
Physiology
Sensors
Skin
Smartphones
subject independent predictive models for emotion
Wearable computers
SummonAdditionalLinks – databaseName: DOAJ
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYhp-RQ2iSl2zxQQg69iJWt9zFtdgmBzSEP2JvRy2kh9YZ49_93JHuXNRRyyc1Yg5BHM54ZzegbhC7B5tNQ2oIwERThMmiieeGJKJgtnNbS5uz57E7ePPHbuZhvtfpKNWEdPHDHuLEvo_A-gtKmnJPhTnMRSuGYDMyw7lYv2Lx1MNWHWgwirw5HiEFQP25LsGzgKRQD65NB-gee5bAucsvQTD-jT72HiK-6lX1BO7E5QPtbuIGHyE56jO7mGU-aNv51LxH3SKnPeJabQrcY3FGc79eS2SLAjJOuYw--X9cMwXOuGMAPEMsC8bVdWjxdpfOzI_Q0nTz-uiF9rwTi4RexJK6mgdJglaXUMaMdrZ0zoJ1G2dpKEVUZAuNSRhUdLeraR8ltrU30mrLI2Fe02yya-A3hInCv6rJOBSXcU-EKGY2wJiVtpZJ2hH6seVj5Hkg89bN4qSCgSOyuNuweoYsN6WuHnvE_op9pIzYECfA6vwAxqHoxqN4TgxE6WW9j1WthW6WkupLcaDVC55th0J-UFLFNXKwyTYpyTZpCDbZ_sKDhSPPnd0biTmCCIGvfP-ILjtFema5WUEVKdYJ2l2-reAoOz9KdZdn-B4N3_1s
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELaq9gIHRHmIhYIM4sDF4PjtA6p47KpCWg7ASr1FfmWLtGRhH1L594y9SdRIFbcoGTnRjMczX8b-BqHXEPNpZK4iXEZNhIqGGFEFIivuKm-McqV6Pv-qLhbiy6W8PEJ9j81OgdtboV3uJ7XYrN5e__l7Dg7_PiNOgOzvtgziFuQBAIJOICDp7J9zMRQTGAcYdiAVGouPQlFh7B-lmeNNkjeizuw-uteli_jDwb6n6Ci1D9DdGySCD5GbdoTd7RJP22365VcJd7SpSzwvHaK3GHJTXA7bkvk6wojTQ_se_K3fQATXZfsA_g7AFoQ_u53Ds33-mfYILWbTH58uSNc4gQRYL3bENzRSGp12lHpujaeN9xZc1WrXOCWTZjFyoVTSydOqaUJSwjXGpmAoT5w_Rsftuk1PEK6iCLphTd5dIgKVvlLJSmdzBVdp5SboTa_DOnSs4rm5xaoGdJHVXQ_qnqBXg-jvA5XGbUIfsyEGgcx-XW6sN8u6c6Y6sCRDSLCQ5zqkFd4IGZn0XEVueR7krDdj3c-oOlfYtRLW6Al6OTwGZ8oVEtem9b7IZMhr8xB6ZP7RB42ftD-vCi13ZhaEufb0_y9_hu6wfIKCasL0GTrebfbpOeQ1O_-izNp_tID5Sg
  priority: 102
  providerName: Scholars Portal
Title Evaluating Ensemble Learning Methods for Multi-Modal Emotion Recognition Using Sensor Data Fusion
URI https://www.proquest.com/docview/2700764987
https://www.proquest.com/docview/2702184911
https://pubmed.ncbi.nlm.nih.gov/PMC9371233
https://doaj.org/article/c2e5cce876064094b845d25b36d39311
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvcAB8RQLZWUQBy5WndixnROisEuFtBUqVNpb5Fe2SCUpze7_Z8br3TYS4mJF8ciJPB57Xv6GkPdw5vNQ2oKJKmgmVTDMyMKzqhC2cMYom6LnizN1eiG_LatldrgNOa1ytyemjTr0Hn3kxxgg1UqCifzx-g_DqlEYXc0lNO6TQ4Quw5Quvbw1uATYX1s0IQGm_fFQwvkG-kIxOoMSVP9IvxxnR945buaPyaOsJ9JPW8Y-Ifdi95Q8vIMe-IzYWUbq7lZ01g3xt7uKNOOlrugilYYeKCilNN2yZYs-wIizbd0eer7LHILnlDdAf4BFC8Rf7NrS-Qa9aM_JxXz28_MpyxUTmIeNYs1cywPnwWrLuRO1cbx1rgYZrbVtraqiLkMQUqmoo-NF2_qopG1NHb3hIgrxghx0fRdfEloE6XVbtphWIj2vXKFiXdkaQ7dKKzshH3Zz2PgMJ45VLa4aMCtwupv9dE_Iuz3p9RZD419EJ8iIPQHCXqcX_c2qyVLU-DJW3kfYwTEAWUtnZBXKygkVRC1wkKMdG5ssi0Nzu3Im5O2-G6QIQyO2i_0m0aCtW-MQesT-0Q-Ne7pflwmPGyEFYa29-v_HX5MHJV6d4JqV-ogcrG828Q0oNGs3TasWWjP_OiWHJ7Oz7-fT5ByAdiHNXx4X_EE
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcgAOiKdYKGAQSFysOrZjJweEgO5qS7s9QCvtLfiVLVJJSrMrxJ_iNzKTTbaNhLj1FsUjJxrPeGY8428IeQ02nwdhEybTYJjSIWOZSjxLE2kTl2Xattnz2ZGenqjP83S-Rf70d2GwrLLfE9uNOtQez8h3MUFqtIIQ-f35T4ZdozC72rfQWIvFQfz9C0K25t3-HqzvGyEm4-NPU9Z1FWAelGnJXMkD58Eay7mTeeZ46VwOcpwbW1qdRiNCkErraKLjSVn6qJUtszz6jMuIB6Cw5d8Aw8tRo8z8MsCTEO-t0YukzPluI8Cegn-SDGxe2xpg4M8OqzGvmLfJXXKn80vph7Ug3SNbsbpPbl9BK3xA7LhDBq8WdFw18Yc7i7TDZ13QWduKuqHgBNP2Vi-b1QFmHK_7BNEvfaUSPLd1CvQrRNBAvGeXlk5WeGr3kJxcCy8fke2qruJjQpOgvClFiWUsyvPUJTrmqc0xVayNtiPytudh4Tv4cuyicVZAGIPsLjbsHpFXG9LzNWbHv4g-4kJsCBBmu31RXyyKTmsLL2LqfQSLgQnPXLlMpUGkTuogc4mT7PTLWHS63xSXkjoiLzfDoLWYirFVrFctDcbWOU5hBss_-KHhSPX9tMX_RghDkLUn___4C3Jzejw7LA73jw6eklsCr21ww4TZIdvLi1V8Bs7U0j1vJZiSb9etMn8Bd_w2kA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3di9QwEA_HCaIP4ieunhpFwZewaZImzYOIurvcee4h6sG-1Xx1Fc72vO4i_mv-dU6y7d4VxLd7K-2QtpOZzExm8huEnoPNp56ZjPDcKyKkL0ghMkfyjJvMFoU0KXs-P5L7x-L9Il_soD_9WZhYVtmviWmh9o2Le-TjmCBVUkCIPK66soiPk9nr058kdpCKmda-ncZGRA7D718QvrWvDiYw1y8Ym02_vNsnXYcB4kCxVsRW1FPqjTKUWq4LSytrNci0VqYyMg-Kec-FlEEFS7OqckEKUxU6uILyEDdDYfm_ojj8GuiSWpwHexxivw2SEeeajlsGthV8lWxg_1KbgIFvO6zMvGDqZjfRjc5HxW82QnUL7YT6Nrp-AbnwDjLTDiW8XuJp3YYf9iTgDqt1ieepLXWLwSHG6YQvmTceRpxuegbhT33VElynmgX8GaJpIJ6YlcGzddzBu4uOL4WX99Bu3dThPsKZF05VrIolLcLR3GYy6NzomDaWSpoRetnzsHQdlHnsqHFSQkgT2V1u2T1Cz7akpxv8jn8RvY0TsSWIkNvpRnO2LDsNLh0LuXMBrEdMfmphC5F7llsuPdc8DrLXT2PZrQNteS61I_R0-xg0OKZlTB2adaKJcbaOQ6jB9A8-aPik_v4tYYFHOEOQtQf_f_kTdBWUpfxwcHT4EF1j8QQHVYSpPbS7OluHR-BXrezjJMAYfb1sjfkLiDc6xg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluating+Ensemble+Learning+Methods+for+Multi-Modal+Emotion+Recognition+Using+Sensor+Data+Fusion&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Younis%2C+Eman+M+G&rft.au=Someya%2C+Mohsen+Zaki&rft.au=Kanjo%2C+Eiman&rft.au=Houssein%2C+Essam+H&rft.date=2022-07-27&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=22&rft.issue=15&rft.spage=5611&rft_id=info:doi/10.3390%2Fs22155611&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon