The Role of Bacillithiol in Gram-Positive Firmicutes

Since the discovery and structural characterization of bacillithiol (BSH), the biochemical functions of BSH-biosynthesis enzymes (BshA/B/C) and BSH-dependent detoxification enzymes (FosB, Bst, GlxA/B) have been explored in Bacillus and Staphylococcus species. It was shown that BSH plays an important...

Full description

Saved in:
Bibliographic Details
Published inAntioxidants & redox signaling Vol. 28; no. 6; p. 445
Main Authors Chandrangsu, Pete, Loi, Vu Van, Antelmann, Haike, Helmann, John D
Format Journal Article
LanguageEnglish
Published United States 20.02.2018
Subjects
Online AccessGet more information
ISSN1557-7716
DOI10.1089/ars.2017.7057

Cover

Loading…
Abstract Since the discovery and structural characterization of bacillithiol (BSH), the biochemical functions of BSH-biosynthesis enzymes (BshA/B/C) and BSH-dependent detoxification enzymes (FosB, Bst, GlxA/B) have been explored in Bacillus and Staphylococcus species. It was shown that BSH plays an important role in detoxification of reactive oxygen and electrophilic species, alkylating agents, toxins, and antibiotics. Recent Advances: More recently, new functions of BSH were discovered in metal homeostasis (Zn buffering, Fe-sulfur cluster, and copper homeostasis) and virulence control in Staphylococcus aureus. Unexpectedly, strains of the S. aureus NCTC8325 lineage were identified as natural BSH-deficient mutants. Modern mass spectrometry-based approaches have revealed the global reach of protein S-bacillithiolation in Firmicutes as an important regulatory redox modification under hypochlorite stress. S-bacillithiolation of OhrR, MetE, and glyceraldehyde-3-phosphate dehydrogenase (Gap) functions, analogous to S-glutathionylation, as both a redox-regulatory device and in thiol protection under oxidative stress. Although the functions of the bacilliredoxin (Brx) pathways in the reversal of S-bacillithiolations have been recently addressed, significantly more work is needed to establish the complete Brx reduction pathway, including the major enzyme(s), for reduction of oxidized BSH (BSSB) and the targets of Brx action in vivo. Despite the large number of identified S-bacillithiolated proteins, the physiological relevance of this redox modification was shown for only selected targets and should be a subject of future studies. In addition, many more BSH-dependent detoxification enzymes are evident from previous studies, although their roles and biochemical mechanisms require further study. This review of BSH research also pin-points these missing gaps for future research. Antioxid. Redox Signal. 28, 445-462.
AbstractList Since the discovery and structural characterization of bacillithiol (BSH), the biochemical functions of BSH-biosynthesis enzymes (BshA/B/C) and BSH-dependent detoxification enzymes (FosB, Bst, GlxA/B) have been explored in Bacillus and Staphylococcus species. It was shown that BSH plays an important role in detoxification of reactive oxygen and electrophilic species, alkylating agents, toxins, and antibiotics. Recent Advances: More recently, new functions of BSH were discovered in metal homeostasis (Zn buffering, Fe-sulfur cluster, and copper homeostasis) and virulence control in Staphylococcus aureus. Unexpectedly, strains of the S. aureus NCTC8325 lineage were identified as natural BSH-deficient mutants. Modern mass spectrometry-based approaches have revealed the global reach of protein S-bacillithiolation in Firmicutes as an important regulatory redox modification under hypochlorite stress. S-bacillithiolation of OhrR, MetE, and glyceraldehyde-3-phosphate dehydrogenase (Gap) functions, analogous to S-glutathionylation, as both a redox-regulatory device and in thiol protection under oxidative stress. Although the functions of the bacilliredoxin (Brx) pathways in the reversal of S-bacillithiolations have been recently addressed, significantly more work is needed to establish the complete Brx reduction pathway, including the major enzyme(s), for reduction of oxidized BSH (BSSB) and the targets of Brx action in vivo. Despite the large number of identified S-bacillithiolated proteins, the physiological relevance of this redox modification was shown for only selected targets and should be a subject of future studies. In addition, many more BSH-dependent detoxification enzymes are evident from previous studies, although their roles and biochemical mechanisms require further study. This review of BSH research also pin-points these missing gaps for future research. Antioxid. Redox Signal. 28, 445-462.
Author Chandrangsu, Pete
Helmann, John D
Antelmann, Haike
Loi, Vu Van
Author_xml – sequence: 1
  givenname: Pete
  surname: Chandrangsu
  fullname: Chandrangsu, Pete
  organization: 1 Department of Microbiology, Cornell University , Ithaca, New York
– sequence: 2
  givenname: Vu Van
  surname: Loi
  fullname: Loi, Vu Van
  organization: 2 Institute for Biology-Microbiology , Freie Universität Berlin, Berlin, Germany
– sequence: 3
  givenname: Haike
  surname: Antelmann
  fullname: Antelmann, Haike
  organization: 2 Institute for Biology-Microbiology , Freie Universität Berlin, Berlin, Germany
– sequence: 4
  givenname: John D
  surname: Helmann
  fullname: Helmann, John D
  organization: 1 Department of Microbiology, Cornell University , Ithaca, New York
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28301954$$D View this record in MEDLINE/PubMed
BookMark eNo1jltLwzAYQIMo7qKPvkr-QGu-NNdHHW4Kgw3p-_jSJiyStqPpBP-9gvPhcN4OZ0Gu-6H3hDwAK4EZ-4RjLjkDXWom9RWZg5S60BrUjCxy_mSMcQB2S2bcVAysFHMi6qOnH0PydAj0BZuYUpyOcUg09nQzYlfshxyn-OXpOo5dbM6Tz3fkJmDK_v7iJanXr_XqrdjuNu-r523RVFpNhbOVUsJoAxXI1lqHxrYoHPfhFwtogLXC2ADCOGfawLlC9JrbEDAoviSPf9nT2XW-PZzG2OH4ffi_5z9AuUXP
CitedBy_id crossref_primary_10_1021_acs_biochem_4c00533
crossref_primary_10_1021_acsinfecdis_7b00090
crossref_primary_10_1089_ars_2017_7464
crossref_primary_10_1111_1462_2920_16668
crossref_primary_10_1371_journal_ppat_1012001
crossref_primary_10_1007_s12033_021_00434_4
crossref_primary_10_1016_j_freeradbiomed_2021_10_024
crossref_primary_10_1016_j_micres_2023_127592
crossref_primary_10_1093_femsre_fuy037
crossref_primary_10_1016_j_phymed_2022_154287
crossref_primary_10_1039_D2FO00566B
crossref_primary_10_1016_j_psj_2022_102472
crossref_primary_10_1021_acschembio_3c00526
crossref_primary_10_1016_j_freeradbiomed_2020_06_009
crossref_primary_10_1089_ars_2019_7750
crossref_primary_10_3390_antiox12061199
crossref_primary_10_3389_fmicb_2018_03037
crossref_primary_10_1099_ijsem_0_006693
crossref_primary_10_1007_s00253_023_12447_x
crossref_primary_10_3390_antiox9050361
crossref_primary_10_1111_1462_2920_13950
crossref_primary_10_1016_j_imlet_2023_10_001
crossref_primary_10_1089_ars_2017_7354
crossref_primary_10_1128_spectrum_03252_23
crossref_primary_10_3390_microorganisms12091857
crossref_primary_10_3390_microorganisms12091856
crossref_primary_10_1016_j_freeradbiomed_2019_05_035
crossref_primary_10_3390_antiox11112131
crossref_primary_10_1111_mpp_13141
crossref_primary_10_1111_1751_7915_13324
crossref_primary_10_1128_microbiolspec_GPP3_0011_2018
crossref_primary_10_1016_j_bbagen_2019_03_012
crossref_primary_10_3390_foods12173166
crossref_primary_10_3389_fmicb_2019_01355
crossref_primary_10_1016_j_micres_2021_126832
crossref_primary_10_3390_antiox11030561
crossref_primary_10_1038_s41598_017_05206_2
crossref_primary_10_1002_chem_201901411
crossref_primary_10_1371_journal_pone_0304810
crossref_primary_10_1002_pro_3384
crossref_primary_10_1016_j_mex_2020_100900
crossref_primary_10_1016_j_freeradbiomed_2020_10_322
crossref_primary_10_1021_acs_biochem_0c00745
crossref_primary_10_1016_j_freeradbiomed_2020_07_025
crossref_primary_10_3390_ijms21218164
crossref_primary_10_1007_s00284_022_02984_5
crossref_primary_10_1016_j_cbpa_2020_09_003
crossref_primary_10_1016_j_bmcl_2021_128245
crossref_primary_10_1016_j_mib_2021_01_015
crossref_primary_10_1074_jbc_RA118_006366
crossref_primary_10_1002_JLB_4HI1021_538RR
crossref_primary_10_1016_j_freeradbiomed_2023_09_031
crossref_primary_10_3390_microorganisms8030344
crossref_primary_10_3390_toxins11100576
crossref_primary_10_3390_antiox8120605
crossref_primary_10_1080_22221751_2022_2058421
crossref_primary_10_1128_mBio_01603_18
crossref_primary_10_1111_mmi_14207
crossref_primary_10_1080_09553002_2023_2241895
crossref_primary_10_1515_hsz_2020_0272
crossref_primary_10_1099_acmi_0_000932_v3
crossref_primary_10_1089_ars_2019_7968
crossref_primary_10_3390_inorganics7080099
crossref_primary_10_1111_1462_2920_15087
crossref_primary_10_1016_j_freeradbiomed_2019_05_018
crossref_primary_10_1128_aem_01468_23
crossref_primary_10_1021_acs_biochem_4c00726
crossref_primary_10_1016_j_freeradbiomed_2021_12_261
crossref_primary_10_1074_jbc_REV120_007746
crossref_primary_10_1002_pro_3808
crossref_primary_10_1016_j_freeradbiomed_2018_02_018
crossref_primary_10_1038_s41564_019_0497_3
crossref_primary_10_1016_j_freeradbiomed_2018_03_051
crossref_primary_10_1007_s00239_019_09915_2
crossref_primary_10_1042_BST20180415
crossref_primary_10_1016_j_abb_2021_108826
crossref_primary_10_3390_antiox10071148
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1089/ars.2017.7057
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
Chemistry
EISSN 1557-7716
ExternalDocumentID 28301954
Genre Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM109993
– fundername: NIGMS NIH HHS
  grantid: R35 GM122461
– fundername: European Research Council
  grantid: 615585
– fundername: NIGMS NIH HHS
  grantid: R01 GM059323
GroupedDBID ---
0R~
23M
4.4
5GY
5RE
ABBKN
ABJNI
ACGFS
ACPRK
ADBBV
AENEX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BNQNF
CGR
CS3
CUY
CVF
EBS
ECM
EIF
EJD
F5P
IER
IHR
IM4
MV1
NPM
NQHIM
O9-
P2P
RML
UE5
ID FETCH-LOGICAL-c376t-b936648781315d99ba89da4b2efb2e91a810d489f148bb8df226aae729ffaf62
IngestDate Sat May 31 02:13:57 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords methylglyoxal
bacilliredoxin
Bacillus subtilis
metal homeostasis
BSH biosynthesis
Staphylococcus aureus
S-bacillithiolation
bacillithiol
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c376t-b936648781315d99ba89da4b2efb2e91a810d489f148bb8df226aae729ffaf62
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC5790435
PMID 28301954
ParticipantIDs pubmed_primary_28301954
PublicationCentury 2000
PublicationDate 2018-02-20
PublicationDateYYYYMMDD 2018-02-20
PublicationDate_xml – month: 02
  year: 2018
  text: 2018-02-20
  day: 20
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Antioxidants & redox signaling
PublicationTitleAlternate Antioxid Redox Signal
PublicationYear 2018
SSID ssj0002110
Score 2.5238042
SecondaryResourceType review_article
Snippet Since the discovery and structural characterization of bacillithiol (BSH), the biochemical functions of BSH-biosynthesis enzymes (BshA/B/C) and BSH-dependent...
SourceID pubmed
SourceType Index Database
StartPage 445
SubjectTerms Anti-Bacterial Agents - chemistry
Anti-Bacterial Agents - metabolism
Bacillus subtilis - enzymology
Bacillus subtilis - metabolism
Cysteine - analogs & derivatives
Cysteine - chemistry
Cysteine - metabolism
Firmicutes - enzymology
Firmicutes - metabolism
Glucosamine - analogs & derivatives
Glucosamine - chemistry
Glucosamine - metabolism
Oxidative Stress
Staphylococcus aureus - enzymology
Staphylococcus aureus - metabolism
Sulfhydryl Compounds - metabolism
Sulfur - metabolism
Title The Role of Bacillithiol in Gram-Positive Firmicutes
URI https://www.ncbi.nlm.nih.gov/pubmed/28301954
Volume 28
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5OQX0R73fpg2-ls7el6aP3ISgic_gmSZNo0XVDOxF_vSdputapeHlYGQktac_XnHPS73xBaJewSPAgDhwvpIkTYuw7DINBsMsxjSLqcb10cX6B29fh2U3rpqLb6uqSnDWTty_rSv5jVWgDu6oq2T9YdnRRaID_YF84goXh-GsbXxl64AFN1NJJfp_2lYyGffpEe86lpmS9CPskBYMmw9wwBkfqyTC215RrLozCgFIPfbUVp4M-lj6t-PafcXBqd8_DktM7IvL0NR2gO7S7Fc72VW1Kz2y_3KbpQ4Weql1zdo7qqw4e0VXcxQcUYWbKVgSheVEoWU6lPqlBpj4vhoVm5Kf52iVK7hRSeEWyi5qRW6hV12w36GnjKZ0yJU73c--YfHbZ1UANSCTUzqhqOce4apX9GuFVGMneh3EomWhz7ljKoUOPzjyaMzmDtV8AYAFNiGwRzRyWW_Utoulzw5BYQiFgwlKYsPrSqmPCSjPrAyasChPLqHNy3DlsO2ZnDCcBh5A7LA4whlSTeIHX4nHMKIk5DZkvJPxijxLP5SGJJSS7jBEuIcimVEAiJSWV2F9Bk1k_E2vIYlR4rgQnE_ssJJIwAiExxzxx4R0mCVtHq8Wt3w4K9ZPb8qFsfNuziWYryGyhKQmvm9iG2C1nO_r5vwNBeEIB
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Role+of+Bacillithiol+in+Gram-Positive+Firmicutes&rft.jtitle=Antioxidants+%26+redox+signaling&rft.au=Chandrangsu%2C+Pete&rft.au=Loi%2C+Vu+Van&rft.au=Antelmann%2C+Haike&rft.au=Helmann%2C+John+D&rft.date=2018-02-20&rft.eissn=1557-7716&rft.volume=28&rft.issue=6&rft.spage=445&rft_id=info:doi/10.1089%2Fars.2017.7057&rft_id=info%3Apmid%2F28301954&rft_id=info%3Apmid%2F28301954&rft.externalDocID=28301954