The Role of Bacillithiol in Gram-Positive Firmicutes
Since the discovery and structural characterization of bacillithiol (BSH), the biochemical functions of BSH-biosynthesis enzymes (BshA/B/C) and BSH-dependent detoxification enzymes (FosB, Bst, GlxA/B) have been explored in Bacillus and Staphylococcus species. It was shown that BSH plays an important...
Saved in:
Published in | Antioxidants & redox signaling Vol. 28; no. 6; p. 445 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
20.02.2018
|
Subjects | |
Online Access | Get more information |
ISSN | 1557-7716 |
DOI | 10.1089/ars.2017.7057 |
Cover
Loading…
Abstract | Since the discovery and structural characterization of bacillithiol (BSH), the biochemical functions of BSH-biosynthesis enzymes (BshA/B/C) and BSH-dependent detoxification enzymes (FosB, Bst, GlxA/B) have been explored in Bacillus and Staphylococcus species. It was shown that BSH plays an important role in detoxification of reactive oxygen and electrophilic species, alkylating agents, toxins, and antibiotics. Recent Advances: More recently, new functions of BSH were discovered in metal homeostasis (Zn buffering, Fe-sulfur cluster, and copper homeostasis) and virulence control in Staphylococcus aureus. Unexpectedly, strains of the S. aureus NCTC8325 lineage were identified as natural BSH-deficient mutants. Modern mass spectrometry-based approaches have revealed the global reach of protein S-bacillithiolation in Firmicutes as an important regulatory redox modification under hypochlorite stress. S-bacillithiolation of OhrR, MetE, and glyceraldehyde-3-phosphate dehydrogenase (Gap) functions, analogous to S-glutathionylation, as both a redox-regulatory device and in thiol protection under oxidative stress.
Although the functions of the bacilliredoxin (Brx) pathways in the reversal of S-bacillithiolations have been recently addressed, significantly more work is needed to establish the complete Brx reduction pathway, including the major enzyme(s), for reduction of oxidized BSH (BSSB) and the targets of Brx action in vivo.
Despite the large number of identified S-bacillithiolated proteins, the physiological relevance of this redox modification was shown for only selected targets and should be a subject of future studies. In addition, many more BSH-dependent detoxification enzymes are evident from previous studies, although their roles and biochemical mechanisms require further study. This review of BSH research also pin-points these missing gaps for future research. Antioxid. Redox Signal. 28, 445-462. |
---|---|
AbstractList | Since the discovery and structural characterization of bacillithiol (BSH), the biochemical functions of BSH-biosynthesis enzymes (BshA/B/C) and BSH-dependent detoxification enzymes (FosB, Bst, GlxA/B) have been explored in Bacillus and Staphylococcus species. It was shown that BSH plays an important role in detoxification of reactive oxygen and electrophilic species, alkylating agents, toxins, and antibiotics. Recent Advances: More recently, new functions of BSH were discovered in metal homeostasis (Zn buffering, Fe-sulfur cluster, and copper homeostasis) and virulence control in Staphylococcus aureus. Unexpectedly, strains of the S. aureus NCTC8325 lineage were identified as natural BSH-deficient mutants. Modern mass spectrometry-based approaches have revealed the global reach of protein S-bacillithiolation in Firmicutes as an important regulatory redox modification under hypochlorite stress. S-bacillithiolation of OhrR, MetE, and glyceraldehyde-3-phosphate dehydrogenase (Gap) functions, analogous to S-glutathionylation, as both a redox-regulatory device and in thiol protection under oxidative stress.
Although the functions of the bacilliredoxin (Brx) pathways in the reversal of S-bacillithiolations have been recently addressed, significantly more work is needed to establish the complete Brx reduction pathway, including the major enzyme(s), for reduction of oxidized BSH (BSSB) and the targets of Brx action in vivo.
Despite the large number of identified S-bacillithiolated proteins, the physiological relevance of this redox modification was shown for only selected targets and should be a subject of future studies. In addition, many more BSH-dependent detoxification enzymes are evident from previous studies, although their roles and biochemical mechanisms require further study. This review of BSH research also pin-points these missing gaps for future research. Antioxid. Redox Signal. 28, 445-462. |
Author | Chandrangsu, Pete Helmann, John D Antelmann, Haike Loi, Vu Van |
Author_xml | – sequence: 1 givenname: Pete surname: Chandrangsu fullname: Chandrangsu, Pete organization: 1 Department of Microbiology, Cornell University , Ithaca, New York – sequence: 2 givenname: Vu Van surname: Loi fullname: Loi, Vu Van organization: 2 Institute for Biology-Microbiology , Freie Universität Berlin, Berlin, Germany – sequence: 3 givenname: Haike surname: Antelmann fullname: Antelmann, Haike organization: 2 Institute for Biology-Microbiology , Freie Universität Berlin, Berlin, Germany – sequence: 4 givenname: John D surname: Helmann fullname: Helmann, John D organization: 1 Department of Microbiology, Cornell University , Ithaca, New York |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28301954$$D View this record in MEDLINE/PubMed |
BookMark | eNo1jltLwzAYQIMo7qKPvkr-QGu-NNdHHW4Kgw3p-_jSJiyStqPpBP-9gvPhcN4OZ0Gu-6H3hDwAK4EZ-4RjLjkDXWom9RWZg5S60BrUjCxy_mSMcQB2S2bcVAysFHMi6qOnH0PydAj0BZuYUpyOcUg09nQzYlfshxyn-OXpOo5dbM6Tz3fkJmDK_v7iJanXr_XqrdjuNu-r523RVFpNhbOVUsJoAxXI1lqHxrYoHPfhFwtogLXC2ADCOGfawLlC9JrbEDAoviSPf9nT2XW-PZzG2OH4ffi_5z9AuUXP |
CitedBy_id | crossref_primary_10_1021_acs_biochem_4c00533 crossref_primary_10_1021_acsinfecdis_7b00090 crossref_primary_10_1089_ars_2017_7464 crossref_primary_10_1111_1462_2920_16668 crossref_primary_10_1371_journal_ppat_1012001 crossref_primary_10_1007_s12033_021_00434_4 crossref_primary_10_1016_j_freeradbiomed_2021_10_024 crossref_primary_10_1016_j_micres_2023_127592 crossref_primary_10_1093_femsre_fuy037 crossref_primary_10_1016_j_phymed_2022_154287 crossref_primary_10_1039_D2FO00566B crossref_primary_10_1016_j_psj_2022_102472 crossref_primary_10_1021_acschembio_3c00526 crossref_primary_10_1016_j_freeradbiomed_2020_06_009 crossref_primary_10_1089_ars_2019_7750 crossref_primary_10_3390_antiox12061199 crossref_primary_10_3389_fmicb_2018_03037 crossref_primary_10_1099_ijsem_0_006693 crossref_primary_10_1007_s00253_023_12447_x crossref_primary_10_3390_antiox9050361 crossref_primary_10_1111_1462_2920_13950 crossref_primary_10_1016_j_imlet_2023_10_001 crossref_primary_10_1089_ars_2017_7354 crossref_primary_10_1128_spectrum_03252_23 crossref_primary_10_3390_microorganisms12091857 crossref_primary_10_3390_microorganisms12091856 crossref_primary_10_1016_j_freeradbiomed_2019_05_035 crossref_primary_10_3390_antiox11112131 crossref_primary_10_1111_mpp_13141 crossref_primary_10_1111_1751_7915_13324 crossref_primary_10_1128_microbiolspec_GPP3_0011_2018 crossref_primary_10_1016_j_bbagen_2019_03_012 crossref_primary_10_3390_foods12173166 crossref_primary_10_3389_fmicb_2019_01355 crossref_primary_10_1016_j_micres_2021_126832 crossref_primary_10_3390_antiox11030561 crossref_primary_10_1038_s41598_017_05206_2 crossref_primary_10_1002_chem_201901411 crossref_primary_10_1371_journal_pone_0304810 crossref_primary_10_1002_pro_3384 crossref_primary_10_1016_j_mex_2020_100900 crossref_primary_10_1016_j_freeradbiomed_2020_10_322 crossref_primary_10_1021_acs_biochem_0c00745 crossref_primary_10_1016_j_freeradbiomed_2020_07_025 crossref_primary_10_3390_ijms21218164 crossref_primary_10_1007_s00284_022_02984_5 crossref_primary_10_1016_j_cbpa_2020_09_003 crossref_primary_10_1016_j_bmcl_2021_128245 crossref_primary_10_1016_j_mib_2021_01_015 crossref_primary_10_1074_jbc_RA118_006366 crossref_primary_10_1002_JLB_4HI1021_538RR crossref_primary_10_1016_j_freeradbiomed_2023_09_031 crossref_primary_10_3390_microorganisms8030344 crossref_primary_10_3390_toxins11100576 crossref_primary_10_3390_antiox8120605 crossref_primary_10_1080_22221751_2022_2058421 crossref_primary_10_1128_mBio_01603_18 crossref_primary_10_1111_mmi_14207 crossref_primary_10_1080_09553002_2023_2241895 crossref_primary_10_1515_hsz_2020_0272 crossref_primary_10_1099_acmi_0_000932_v3 crossref_primary_10_1089_ars_2019_7968 crossref_primary_10_3390_inorganics7080099 crossref_primary_10_1111_1462_2920_15087 crossref_primary_10_1016_j_freeradbiomed_2019_05_018 crossref_primary_10_1128_aem_01468_23 crossref_primary_10_1021_acs_biochem_4c00726 crossref_primary_10_1016_j_freeradbiomed_2021_12_261 crossref_primary_10_1074_jbc_REV120_007746 crossref_primary_10_1002_pro_3808 crossref_primary_10_1016_j_freeradbiomed_2018_02_018 crossref_primary_10_1038_s41564_019_0497_3 crossref_primary_10_1016_j_freeradbiomed_2018_03_051 crossref_primary_10_1007_s00239_019_09915_2 crossref_primary_10_1042_BST20180415 crossref_primary_10_1016_j_abb_2021_108826 crossref_primary_10_3390_antiox10071148 |
ContentType | Journal Article |
DBID | CGR CUY CVF ECM EIF NPM |
DOI | 10.1089/ars.2017.7057 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Medicine Chemistry |
EISSN | 1557-7716 |
ExternalDocumentID | 28301954 |
Genre | Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM109993 – fundername: NIGMS NIH HHS grantid: R35 GM122461 – fundername: European Research Council grantid: 615585 – fundername: NIGMS NIH HHS grantid: R01 GM059323 |
GroupedDBID | --- 0R~ 23M 4.4 5GY 5RE ABBKN ABJNI ACGFS ACPRK ADBBV AENEX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS BNQNF CGR CS3 CUY CVF EBS ECM EIF EJD F5P IER IHR IM4 MV1 NPM NQHIM O9- P2P RML UE5 |
ID | FETCH-LOGICAL-c376t-b936648781315d99ba89da4b2efb2e91a810d489f148bb8df226aae729ffaf62 |
IngestDate | Sat May 31 02:13:57 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | methylglyoxal bacilliredoxin Bacillus subtilis metal homeostasis BSH biosynthesis Staphylococcus aureus S-bacillithiolation bacillithiol |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c376t-b936648781315d99ba89da4b2efb2e91a810d489f148bb8df226aae729ffaf62 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC5790435 |
PMID | 28301954 |
ParticipantIDs | pubmed_primary_28301954 |
PublicationCentury | 2000 |
PublicationDate | 2018-02-20 |
PublicationDateYYYYMMDD | 2018-02-20 |
PublicationDate_xml | – month: 02 year: 2018 text: 2018-02-20 day: 20 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Antioxidants & redox signaling |
PublicationTitleAlternate | Antioxid Redox Signal |
PublicationYear | 2018 |
SSID | ssj0002110 |
Score | 2.5238042 |
SecondaryResourceType | review_article |
Snippet | Since the discovery and structural characterization of bacillithiol (BSH), the biochemical functions of BSH-biosynthesis enzymes (BshA/B/C) and BSH-dependent... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 445 |
SubjectTerms | Anti-Bacterial Agents - chemistry Anti-Bacterial Agents - metabolism Bacillus subtilis - enzymology Bacillus subtilis - metabolism Cysteine - analogs & derivatives Cysteine - chemistry Cysteine - metabolism Firmicutes - enzymology Firmicutes - metabolism Glucosamine - analogs & derivatives Glucosamine - chemistry Glucosamine - metabolism Oxidative Stress Staphylococcus aureus - enzymology Staphylococcus aureus - metabolism Sulfhydryl Compounds - metabolism Sulfur - metabolism |
Title | The Role of Bacillithiol in Gram-Positive Firmicutes |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28301954 |
Volume | 28 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5OQX0R73fpg2-ls7el6aP3ISgic_gmSZNo0XVDOxF_vSdputapeHlYGQktac_XnHPS73xBaJewSPAgDhwvpIkTYuw7DINBsMsxjSLqcb10cX6B29fh2U3rpqLb6uqSnDWTty_rSv5jVWgDu6oq2T9YdnRRaID_YF84goXh-GsbXxl64AFN1NJJfp_2lYyGffpEe86lpmS9CPskBYMmw9wwBkfqyTC215RrLozCgFIPfbUVp4M-lj6t-PafcXBqd8_DktM7IvL0NR2gO7S7Fc72VW1Kz2y_3KbpQ4Weql1zdo7qqw4e0VXcxQcUYWbKVgSheVEoWU6lPqlBpj4vhoVm5Kf52iVK7hRSeEWyi5qRW6hV12w36GnjKZ0yJU73c--YfHbZ1UANSCTUzqhqOce4apX9GuFVGMneh3EomWhz7ljKoUOPzjyaMzmDtV8AYAFNiGwRzRyWW_Utoulzw5BYQiFgwlKYsPrSqmPCSjPrAyasChPLqHNy3DlsO2ZnDCcBh5A7LA4whlSTeIHX4nHMKIk5DZkvJPxijxLP5SGJJSS7jBEuIcimVEAiJSWV2F9Bk1k_E2vIYlR4rgQnE_ssJJIwAiExxzxx4R0mCVtHq8Wt3w4K9ZPb8qFsfNuziWYryGyhKQmvm9iG2C1nO_r5vwNBeEIB |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Role+of+Bacillithiol+in+Gram-Positive+Firmicutes&rft.jtitle=Antioxidants+%26+redox+signaling&rft.au=Chandrangsu%2C+Pete&rft.au=Loi%2C+Vu+Van&rft.au=Antelmann%2C+Haike&rft.au=Helmann%2C+John+D&rft.date=2018-02-20&rft.eissn=1557-7716&rft.volume=28&rft.issue=6&rft.spage=445&rft_id=info:doi/10.1089%2Fars.2017.7057&rft_id=info%3Apmid%2F28301954&rft_id=info%3Apmid%2F28301954&rft.externalDocID=28301954 |