An engineering model of fatigue crack growth under variable amplitude loading

Fatigue crack growth in structure components subjected to variable amplitude loading is a very complex subject. Many models have been proposed, but as yet no universal model exists. In this paper, the concept of an equivalent stress intensity factor (SIF) range corresponding to R = 0 and a modified...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of fatigue Vol. 30; no. 1; pp. 2 - 10
Main Authors Huang, Xiaoping, Torgeir, Moan, Cui, Weicheng
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 2008
Elsevier Science
Subjects
Online AccessGet full text
ISSN0142-1123
1879-3452
DOI10.1016/j.ijfatigue.2007.03.004

Cover

Loading…
Abstract Fatigue crack growth in structure components subjected to variable amplitude loading is a very complex subject. Many models have been proposed, but as yet no universal model exists. In this paper, the concept of an equivalent stress intensity factor (SIF) range corresponding to R = 0 and a modified Wheeler model are introduced. These innovations lead to a fatigue life prediction model that depends mainly on the stress ratio and the plastic zone size ahead of the crack tip. This model also describes the phenomena of retardation and arrest due to overload, and the acceleration due to a state of underload following an overload. The plastic zone size ahead of the crack tip is modeled as a continuous function of the maximum applied SIF, yield strength, and plate thickness, making its calculation precise and easy. The proposed model is validated using experimental fatigue crack growth data in 7075-T6 and 2024-T3 aluminum alloys and 350WT steel under various overload, underload, and spectrum loadings published in the literature. The predicted results are in good agreement with these test data.
AbstractList Fatigue crack growth in structure components subjected to variable amplitude loading is a very complex subject. Many models have been proposed, but as yet no universal model exists. In this paper, the concept of an equivalent stress intensity factor (SIF) range corresponding to R=0 and a modified Wheeler model are introduced. These innovations lead to a fatigue life prediction model that depends mainly on the stress ratio and the plastic zone size ahead of the crack tip. This model also describes the phenomena of retardation and arrest due to overload, and the acceleration due to a state of underload following an overload. The plastic zone size ahead of the crack tip is modeled as a continuous function of the maximum applied SIF, yield strength, and plate thickness, making its calculation precise and easy. The proposed model is validated using experimental fatigue crack growth data in 7075-T6 and 2024-T3 aluminum alloys and 350WT steel under various overload, underload, and spectrum loadings published in the literature. The predicted results are in good agreement with these test data.
Fatigue crack growth in structure components subjected to variable amplitude loading is a very complex subject. Many models have been proposed, but as yet no universal model exists. In this paper, the concept of an equivalent stress intensity factor (SIF) range corresponding to R = 0 and a modified Wheeler model are introduced. These innovations lead to a fatigue life prediction model that depends mainly on the stress ratio and the plastic zone size ahead of the crack tip. This model also describes the phenomena of retardation and arrest due to overload, and the acceleration due to a state of underload following an overload. The plastic zone size ahead of the crack tip is modeled as a continuous function of the maximum applied SIF, yield strength, and plate thickness, making its calculation precise and easy. The proposed model is validated using experimental fatigue crack growth data in 7075-T6 and 2024-T3 aluminum alloys and 350WT steel under various overload, underload, and spectrum loadings published in the literature. The predicted results are in good agreement with these test data.
Author Huang, Xiaoping
Torgeir, Moan
Cui, Weicheng
Author_xml – sequence: 1
  givenname: Xiaoping
  surname: Huang
  fullname: Huang, Xiaoping
  email: xiaoping.huang@ntnu.no, xphuang@sjtu.edu.cn
  organization: State Key Lab of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
– sequence: 2
  givenname: Moan
  surname: Torgeir
  fullname: Torgeir, Moan
  organization: Department of Marine Technology, Norwegian University of Science and Technology, Otto Nielsens, N-7491 Trondheim, Norway
– sequence: 3
  givenname: Weicheng
  surname: Cui
  fullname: Cui, Weicheng
  organization: State Key Lab of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19373572$$DView record in Pascal Francis
BookMark eNqFkLtu3DAQRYnABrJ-fEPYJJ2UISmJUpFiYeQFOEgT18SIGm244ZIbUnKQvw-NXbhI42qae-7gnit2EWIgxt4IqAWI7v2-dvsZF7dbqZYAugZVAzSv2Eb0eqhU08oLtgHRyEoIqV6zq5z3ADCAbjfs2zZwCjsXiJILO36IE3keZ36u5Dah_cV3Kf5ZfvI1TJT4IyaHoyeOh6N3yzoR9xGngt-wyxl9ptvzvWYPnz7-uPtS3X___PVue19ZpbulQrDjJLXoxr5vpIRZTDj2VpY9AgWOQD00FnqL7dyhGGCUcz91MIyaLCmhrtm7U-8xxd8r5cUcXLbkPQaKazZKlIGt7kvw7TmI2aKfEwbrsjkmd8D014hBadVqWXIfTjmbYs6JZmPdUgzEsCR03ggwT7LN3jzLNk-yDShTZBde_8c_v3iR3J5IKr4eHSWTraNgaXKJ7GKm6F7s-AfuVqFm
CODEN IJFADB
CitedBy_id crossref_primary_10_1016_j_tafmec_2023_104218
crossref_primary_10_1016_j_engfailanal_2017_02_005
crossref_primary_10_1108_IJSI_10_2014_0053
crossref_primary_10_1016_j_engfracmech_2022_108522
crossref_primary_10_1016_j_jcsr_2021_106676
crossref_primary_10_1016_j_oceaneng_2022_112996
crossref_primary_10_3390_met11101509
crossref_primary_10_3390_modelling5020023
crossref_primary_10_1016_j_engfracmech_2021_107672
crossref_primary_10_4028_www_scientific_net_KEM_882_296
crossref_primary_10_1007_s11804_022_00305_7
crossref_primary_10_1016_j_engfracmech_2014_05_001
crossref_primary_10_1016_j_engfailanal_2023_107645
crossref_primary_10_4028_www_scientific_net_AMR_538_541_3012
crossref_primary_10_1590_S1516_14392013005000110
crossref_primary_10_1111_ffe_13774
crossref_primary_10_1016_j_marstruc_2023_103535
crossref_primary_10_1016_j_tafmec_2020_102796
crossref_primary_10_1016_j_enggeo_2019_01_012
crossref_primary_10_1016_j_ijfatigue_2019_105199
crossref_primary_10_1007_s11223_011_9301_1
crossref_primary_10_1155_2022_2383789
crossref_primary_10_1186_s40323_018_0112_9
crossref_primary_10_1177_1056789516642613
crossref_primary_10_1590_1679_78253057
crossref_primary_10_1016_j_ijfatigue_2016_03_018
crossref_primary_10_1016_j_ijfatigue_2018_03_017
crossref_primary_10_1016_j_ijfatigue_2020_105886
crossref_primary_10_1016_j_oceaneng_2020_107707
crossref_primary_10_1103_PhysRevMaterials_7_053602
crossref_primary_10_1016_j_ijnaoe_2022_100481
crossref_primary_10_1016_j_matdes_2010_06_010
crossref_primary_10_1080_17445300903439207
crossref_primary_10_1111_ffe_13785
crossref_primary_10_1115_1_4037219
crossref_primary_10_1016_j_msea_2015_10_085
crossref_primary_10_1016_j_tafmec_2022_103637
crossref_primary_10_1007_s12206_015_0306_8
crossref_primary_10_1016_j_tafmec_2022_103268
crossref_primary_10_1177_1056789512448803
crossref_primary_10_1016_j_joes_2022_06_041
crossref_primary_10_1016_j_euromechsol_2017_03_008
crossref_primary_10_1016_j_ijfatigue_2020_105957
crossref_primary_10_1016_j_prostr_2019_12_083
crossref_primary_10_1109_ACCESS_2018_2810826
crossref_primary_10_1016_j_ijfatigue_2021_106365
crossref_primary_10_1016_j_ijfatigue_2020_105792
crossref_primary_10_1134_S1061830924601648
crossref_primary_10_1016_j_ijfatigue_2017_01_024
crossref_primary_10_1016_j_ijfatigue_2022_106722
crossref_primary_10_1103_PhysRevResearch_3_L042029
crossref_primary_10_1016_j_ijfatigue_2012_03_010
crossref_primary_10_4028_www_scientific_net_AMM_446_447_240
crossref_primary_10_1016_j_tafmec_2021_103115
crossref_primary_10_1016_j_tafmec_2016_12_001
crossref_primary_10_1016_j_tafmec_2022_103372
crossref_primary_10_1007_s11431_011_4656_x
crossref_primary_10_1111_j_1460_2695_2012_01721_x
crossref_primary_10_4028_www_scientific_net_AMR_978_118
crossref_primary_10_3901_CJME_2012_04_816
crossref_primary_10_1016_j_engfracmech_2021_107908
crossref_primary_10_1016_j_ijfatigue_2019_105227
crossref_primary_10_1016_j_ress_2013_02_019
crossref_primary_10_1111_j_1460_2695_2011_01618_x
crossref_primary_10_1007_s00500_018_3378_4
crossref_primary_10_1016_j_ijfatigue_2018_09_013
crossref_primary_10_1016_j_prostr_2021_12_053
crossref_primary_10_1016_j_engfailanal_2014_07_020
crossref_primary_10_1088_1742_6596_1529_4_042074
crossref_primary_10_1016_j_oceaneng_2022_112039
crossref_primary_10_3390_jmse11112075
crossref_primary_10_1016_j_ijfatigue_2022_106943
crossref_primary_10_1016_j_marstruc_2011_02_007
crossref_primary_10_1016_j_tafmec_2016_02_009
crossref_primary_10_3390_s21227655
crossref_primary_10_1016_j_ijfatigue_2024_108725
crossref_primary_10_1016_j_marstruc_2017_10_003
crossref_primary_10_1007_s43452_020_00131_0
crossref_primary_10_1016_j_cja_2016_10_002
crossref_primary_10_1016_j_engfailanal_2021_105939
crossref_primary_10_1016_j_ijfatigue_2024_108169
crossref_primary_10_2514_1_C031808
crossref_primary_10_1016_j_marstruc_2009_06_001
crossref_primary_10_1016_j_ress_2014_09_014
crossref_primary_10_1016_j_mechmat_2022_104309
crossref_primary_10_1051_e3sconf_202341003020
crossref_primary_10_1007_s11665_021_06562_x
crossref_primary_10_1155_2016_4298507
crossref_primary_10_1016_j_actamat_2019_11_024
crossref_primary_10_1016_j_ijfatigue_2017_12_018
crossref_primary_10_1088_1757_899X_700_1_012028
crossref_primary_10_1016_j_jmps_2016_10_001
crossref_primary_10_1016_j_proeng_2013_09_139
crossref_primary_10_1016_j_ijfatigue_2013_06_022
crossref_primary_10_1111_ffe_12536
crossref_primary_10_1016_j_ijfatigue_2018_10_016
crossref_primary_10_1016_j_engfracmech_2013_01_016
crossref_primary_10_1177_1687814015619135
crossref_primary_10_3390_app12136344
crossref_primary_10_3390_ma8105367
crossref_primary_10_1007_s40430_016_0557_z
crossref_primary_10_1109_ACCESS_2021_3050132
crossref_primary_10_1088_1742_6596_1441_1_012124
crossref_primary_10_1016_j_ijfatigue_2019_03_046
crossref_primary_10_5781_JWJ_2022_40_1_5
crossref_primary_10_1177_1056789521998737
crossref_primary_10_4028_www_scientific_net_KEM_462_463_501
crossref_primary_10_1016_j_engfracmech_2022_108660
crossref_primary_10_1155_2022_3715840
crossref_primary_10_1007_s11804_022_00301_x
crossref_primary_10_2478_fas_2021_0011
crossref_primary_10_4028_www_scientific_net_KEM_462_463_59
crossref_primary_10_1007_s00158_022_03348_0
crossref_primary_10_1016_j_ijfatigue_2019_105414
crossref_primary_10_1111_ffe_12467
crossref_primary_10_1016_j_tafmec_2024_104355
crossref_primary_10_1051_matecconf_201816522012
crossref_primary_10_1155_2014_713678
crossref_primary_10_4028_www_scientific_net_AMM_69_45
crossref_primary_10_1007_s11668_021_01306_4
crossref_primary_10_1016_j_ijfatigue_2019_105378
crossref_primary_10_4028_www_scientific_net_AMM_117_119_180
crossref_primary_10_3390_met11122025
crossref_primary_10_1080_17445302_2021_2018223
crossref_primary_10_1016_j_ress_2024_110151
crossref_primary_10_1016_j_oceaneng_2021_110320
crossref_primary_10_1016_j_ijfatigue_2020_105588
crossref_primary_10_1016_j_oceaneng_2015_10_056
crossref_primary_10_1007_s11668_024_01938_2
crossref_primary_10_1016_j_ymssp_2019_106486
crossref_primary_10_1109_TIE_2019_2931491
crossref_primary_10_1007_s40997_017_0101_5
crossref_primary_10_1016_j_ijfatigue_2017_04_015
crossref_primary_10_1016_j_engfracmech_2019_03_029
crossref_primary_10_7734_COSEIK_2012_25_3_267
crossref_primary_10_1016_j_ijfatigue_2022_107166
crossref_primary_10_1016_j_oceaneng_2022_112514
ContentType Journal Article
Copyright 2007 Elsevier Ltd
2008 INIST-CNRS
Copyright_xml – notice: 2007 Elsevier Ltd
– notice: 2008 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7QF
7SR
8BQ
8FD
JG9
DOI 10.1016/j.ijfatigue.2007.03.004
DatabaseName CrossRef
Pascal-Francis
Aluminium Industry Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Aluminium Industry Abstracts
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1879-3452
EndPage 10
ExternalDocumentID 19373572
10_1016_j_ijfatigue_2007_03_004
S0142112307000783
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6OB
7-5
71M
8P~
9JN
AABCJ
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABDEX
ABEFU
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
T9H
TN5
VH1
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
7QF
7SR
8BQ
8FD
JG9
ID FETCH-LOGICAL-c376t-a0cbd2716b884220f1dab8c21011a1ab0e804c08ca5f6a190b2f8d609b7ece313
IEDL.DBID AIKHN
ISSN 0142-1123
IngestDate Thu Jul 10 18:58:41 EDT 2025
Mon Jul 21 09:16:17 EDT 2025
Thu Apr 24 22:59:33 EDT 2025
Tue Jul 01 03:22:30 EDT 2025
Fri Feb 23 02:28:38 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Plastic zone size
Equivalent SIF range
Fatigue life prediction
Variable amplitude loading
R-ratio
Fatigue life
Prediction
Mechanical properties
Fatigue
Modeling
Fatigue crack
Crack propagation
Plasticity zone
Lifetime
Variable load
Plasticity
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c376t-a0cbd2716b884220f1dab8c21011a1ab0e804c08ca5f6a190b2f8d609b7ece313
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 31000578
PQPubID 23500
PageCount 9
ParticipantIDs proquest_miscellaneous_31000578
pascalfrancis_primary_19373572
crossref_citationtrail_10_1016_j_ijfatigue_2007_03_004
crossref_primary_10_1016_j_ijfatigue_2007_03_004
elsevier_sciencedirect_doi_10_1016_j_ijfatigue_2007_03_004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008
2008-01-00
20080101
PublicationDateYYYYMMDD 2008-01-01
PublicationDate_xml – year: 2008
  text: 2008
PublicationDecade 2000
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle International journal of fatigue
PublicationYear 2008
Publisher Elsevier Ltd
Elsevier Science
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science
References Huang XP, Cui WC, Leng JX. A model of fatigue crack growth under various load spectra. In: Proc of Sih GC, 7th Int conf of MESO, August 1–4, Montreal, Canada; 2005. p. 303–08.
Willenborg JD, Engle Jr RM, Wood HA. A crack growth retardation model using effective stress concept. AFDL-TM-71-1-FBR. January 1971.
Kujawski (bib16) 2001; 23
James, Paterson (bib3) 1997; 19
Ray, Patanker (bib9) 2001; 25
Guo (bib22) 1999; 62
Newman (bib8) 1984; 24
Elber (bib7) 1972; 486
Taheri, Trask, Pegg (bib4) 2003; 16
Ohta, Suzuki, Maeda (bib20) 1997; 19
Irwin (bib21) 1968; 1
Porter (bib23) 1972; 4
Voorwald, Torres (bib13) 1991; 13
Newman Jr JC. Phillips EP, Everett RA. Fatigue analyses under constant and variable amplitude loading using small-crack theory. NASA/TM-1999-209329, ARL-TR-2001.
Noroozi, Glinka, Lambert (bib18) 2005; 27
Paris, Tada, Donald (bib1) 1999; 21
Huang, Zhang, Cui, Leng (bib15) 2005; 44
Wheeler (bib5) 1972; 94
Schijve (bib12) 1981; 14
Ray, Patanker (bib10) 2001; 25
Sadananda, Vasudevan (bib2) 1999; 21
Kujawski (bib17) 2001; 23
Huang, Moan (bib19) 2007; 29
References_xml – volume: 62
  start-page: 383
  year: 1999
  end-page: 407
  ident: bib22
  article-title: Three-dimensional analyses of plastic constraint for through-thickness cracked bodies
  publication-title: Engng Fract Mech
– volume: 16
  start-page: 69
  year: 2003
  end-page: 91
  ident: bib4
  article-title: Experimental and analytical investigation of fatigue characteristics of 350WT steel under constant and variable amplitude loading
  publication-title: Mar Struct
– volume: 19
  start-page: S109
  year: 1997
  end-page: S118
  ident: bib3
  article-title: Fatigue performance of 6261-T6 aluminium alloy – constant and variable amplitude loading of parent plate and welded specimens
  publication-title: Int J Fatigue
– reference: Willenborg JD, Engle Jr RM, Wood HA. A crack growth retardation model using effective stress concept. AFDL-TM-71-1-FBR. January 1971.
– volume: 19
  start-page: S303
  year: 1997
  end-page: S310
  ident: bib20
  article-title: Unique fatigue threshold and growth properties of welded joints in a tensile residual stress field
  publication-title: Int J Fatigue
– volume: 21
  start-page: S35
  year: 1999
  end-page: S46
  ident: bib1
  article-title: Service load fatigue damage – a historical perspective
  publication-title: Int J Fatigue
– volume: 486
  start-page: 230
  year: 1972
  end-page: 242
  ident: bib7
  article-title: The significance of fatigue crack closure in fatigue
  publication-title: ASTM STP
– volume: 13
  start-page: 423
  year: 1991
  end-page: 427
  ident: bib13
  article-title: Modeling of fatigue crack growth following overloads
  publication-title: Int J Fatigue
– volume: 14
  start-page: 461
  year: 1981
  end-page: 465
  ident: bib12
  article-title: Some formulas for the crack opening stress level
  publication-title: Engng Fract Mech
– volume: 44
  start-page: 105
  year: 2005
  end-page: 115
  ident: bib15
  article-title: Fatigue crack growth with overload under spectrum loading
  publication-title: Theor Appl Fract Mech
– volume: 24
  start-page: R131
  year: 1984
  end-page: R135
  ident: bib8
  article-title: A crack opening stress equation for fatigue crack growth
  publication-title: Int J Fract
– volume: 27
  start-page: 1277
  year: 2005
  end-page: 1296
  ident: bib18
  article-title: A two parameter driving force for fatigue crack growth analysis
  publication-title: Int J Fatigue
– volume: 25
  start-page: 979
  year: 2001
  end-page: 994
  ident: bib9
  article-title: Fatigue crack growth under variable amplitude loading: Part I – Model formulation in state space setting
  publication-title: Appl Math Model
– volume: 94
  start-page: 181
  year: 1972
  end-page: 186
  ident: bib5
  article-title: Spectrum loading and crack growth
  publication-title: J Basic Engng, Trans ASME, Ser D
– volume: 25
  start-page: 995
  year: 2001
  end-page: 1013
  ident: bib10
  article-title: Fatigue crack growth under variable-amplitude loading: Part II-Code development and model validation
  publication-title: Appl Math Model
– reference: Newman Jr JC. Phillips EP, Everett RA. Fatigue analyses under constant and variable amplitude loading using small-crack theory. NASA/TM-1999-209329, ARL-TR-2001.
– volume: 23
  start-page: S239
  year: 2001
  end-page: S246
  ident: bib17
  article-title: A fatigue crack driving force parameter with load ratio effects
  publication-title: Int J Fatigue
– reference: Huang XP, Cui WC, Leng JX. A model of fatigue crack growth under various load spectra. In: Proc of Sih GC, 7th Int conf of MESO, August 1–4, Montreal, Canada; 2005. p. 303–08.
– volume: 29
  start-page: 591
  year: 2007
  end-page: 602
  ident: bib19
  article-title: Improved modeling of the effect of R-ratio on crack growth rate
  publication-title: Int J Fatigue
– volume: 21
  start-page: S233
  year: 1999
  end-page: S246
  ident: bib2
  article-title: Analysis of overload effects and related phenomena
  publication-title: Int J Fatigue
– volume: 23
  start-page: 733
  year: 2001
  end-page: 740
  ident: bib16
  article-title: A new (ΔK
  publication-title: Int J Fatigue
– volume: 4
  start-page: 717
  year: 1972
  end-page: 736
  ident: bib23
  article-title: Method of analysis and prediction for variable amplitude fatigue crack growth
  publication-title: Engng Fract Mech
– volume: 1
  start-page: 241
  year: 1968
  end-page: 257
  ident: bib21
  article-title: Linear fracture mechanics, fracture transition and fracture control
  publication-title: Engng Fract Mech
SSID ssj0009075
Score 2.333529
Snippet Fatigue crack growth in structure components subjected to variable amplitude loading is a very complex subject. Many models have been proposed, but as yet no...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2
SubjectTerms Applied sciences
Equivalent SIF range
Exact sciences and technology
Fatigue
Fatigue life prediction
Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology
Metals. Metallurgy
Plastic zone size
R-ratio
Variable amplitude loading
Title An engineering model of fatigue crack growth under variable amplitude loading
URI https://dx.doi.org/10.1016/j.ijfatigue.2007.03.004
https://www.proquest.com/docview/31000578
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BuYAQYhVlKT5wDXUSJ3G5VRWogOAEEjfLW6ClSqsuHPl2xllaKoR64GplZGvGmcV-fgNwiUk4p2lqvJgZ4zETRR6XDrajecv6SiU2B48_PsXdF3b_Gr2uQad6C-NglaXvL3x67q3LkWapzeao12s6WBJWLw7InAe6cB02grAV49beaN89dJ8W3LsF36773nMCSzCvXj9FFbhTkoLO0BGesr-C1PZITlB1adHz4pf7zmPS7S7slMkkaRfr3YM1m-3D1g-KwQN4bGfELgZI3vmGDFNSrofosdQf5A2r8ek7cS_KxuQT62f3oopIBzd35JdkMMyx9ofwcnvz3Ol6ZQsFT6PnmHqSamUCrIkU5ywIaOobqbjGOs_3pS8VtZwyTbmWURpLTA5UkHIT0xYaSdvQD4-glg0zewwEcyOtLZWaxYZxphSzcdSSQWKpsUmk6xBXOhO65Bd3bS4GogKS9cVc2a77ZSJoKFDZdaBzwVFBsbFa5LoyiljaLQIDwWrhxpIZF5NiqhZGSVCHi8quAn82d4MiMzucTUR-G4I-7uQ_85_CZgE6cec4Z1Cbjmf2HDObqWrA-tWX3yj37zcFLvo_
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB6lcKAVQkBBhEfiQ69LvLveXYcbQqDwCCeQuFl-bQmgTRRCj_3tndlH0gghDlwtW7Zm7HnYn78B-IVBuOR57oJUOBcIlySB1ATbsbLvQ2MyX4LHh7fp4F5cPSQPLThr_sIQrLK2_ZVNL6113dKrpdmbjEY9giVh9kJA5tLRxd9gVeDxpdN5_HeB8-hXbLvUO6DuSyCv0VOOAqA7korMkOhOxUcuan2iX1FweVXx4p3xLj3SxSZs1KEkO61WuwUtX2zDj_8IBn_C8LRgftHAyro3bJyzej3MTrV9Zr8xF589MvpPNmV_MHum_1RME9icqC_Zy7hE2u_A_cX53dkgqAsoBBbtxizQ3BoXYUZkpBRRxPPQaSMtZnlhqENtuJdcWC6tTvJUY2hgoly6lPdRRdbHYbwLK8W48HvAMDKy1nNtReqEFMYInyZ9HWWeO58ltg1pIzNla3ZxKnLxohoY2ZOaC5tqX2aKxwqF3QY-HzipCDY-H3LSKEUt7RWFbuDzwZ0lNS4mxUAtTrKoDd1GrwqPGr2f6MKP315V-RaCFm7_K_N3YW1wN7xRN5e31wfwvYKf0I3OIazMpm_-CGOcmemUe_gfFFf7Aw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+engineering+model+of+fatigue+crack+growth+under+variable+amplitude+loading&rft.jtitle=International+journal+of+fatigue&rft.au=Huang%2C+Xiaoping&rft.au=Torgeir%2C+Moan&rft.au=Cui%2C+Weicheng&rft.date=2008&rft.pub=Elsevier+Ltd&rft.issn=0142-1123&rft.eissn=1879-3452&rft.volume=30&rft.issue=1&rft.spage=2&rft.epage=10&rft_id=info:doi/10.1016%2Fj.ijfatigue.2007.03.004&rft.externalDocID=S0142112307000783
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-1123&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-1123&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-1123&client=summon