An engineering model of fatigue crack growth under variable amplitude loading
Fatigue crack growth in structure components subjected to variable amplitude loading is a very complex subject. Many models have been proposed, but as yet no universal model exists. In this paper, the concept of an equivalent stress intensity factor (SIF) range corresponding to R = 0 and a modified...
Saved in:
Published in | International journal of fatigue Vol. 30; no. 1; pp. 2 - 10 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
2008
Elsevier Science |
Subjects | |
Online Access | Get full text |
ISSN | 0142-1123 1879-3452 |
DOI | 10.1016/j.ijfatigue.2007.03.004 |
Cover
Loading…
Abstract | Fatigue crack growth in structure components subjected to variable amplitude loading is a very complex subject. Many models have been proposed, but as yet no universal model exists. In this paper, the concept of an equivalent stress intensity factor (SIF) range corresponding to
R
=
0 and a modified Wheeler model are introduced. These innovations lead to a fatigue life prediction model that depends mainly on the stress ratio and the plastic zone size ahead of the crack tip. This model also describes the phenomena of retardation and arrest due to overload, and the acceleration due to a state of underload following an overload. The plastic zone size ahead of the crack tip is modeled as a continuous function of the maximum applied SIF, yield strength, and plate thickness, making its calculation precise and easy. The proposed model is validated using experimental fatigue crack growth data in 7075-T6 and 2024-T3 aluminum alloys and 350WT steel under various overload, underload, and spectrum loadings published in the literature. The predicted results are in good agreement with these test data. |
---|---|
AbstractList | Fatigue crack growth in structure components subjected to variable amplitude loading is a very complex subject. Many models have been proposed, but as yet no universal model exists. In this paper, the concept of an equivalent stress intensity factor (SIF) range corresponding to R=0 and a modified Wheeler model are introduced. These innovations lead to a fatigue life prediction model that depends mainly on the stress ratio and the plastic zone size ahead of the crack tip. This model also describes the phenomena of retardation and arrest due to overload, and the acceleration due to a state of underload following an overload. The plastic zone size ahead of the crack tip is modeled as a continuous function of the maximum applied SIF, yield strength, and plate thickness, making its calculation precise and easy. The proposed model is validated using experimental fatigue crack growth data in 7075-T6 and 2024-T3 aluminum alloys and 350WT steel under various overload, underload, and spectrum loadings published in the literature. The predicted results are in good agreement with these test data. Fatigue crack growth in structure components subjected to variable amplitude loading is a very complex subject. Many models have been proposed, but as yet no universal model exists. In this paper, the concept of an equivalent stress intensity factor (SIF) range corresponding to R = 0 and a modified Wheeler model are introduced. These innovations lead to a fatigue life prediction model that depends mainly on the stress ratio and the plastic zone size ahead of the crack tip. This model also describes the phenomena of retardation and arrest due to overload, and the acceleration due to a state of underload following an overload. The plastic zone size ahead of the crack tip is modeled as a continuous function of the maximum applied SIF, yield strength, and plate thickness, making its calculation precise and easy. The proposed model is validated using experimental fatigue crack growth data in 7075-T6 and 2024-T3 aluminum alloys and 350WT steel under various overload, underload, and spectrum loadings published in the literature. The predicted results are in good agreement with these test data. |
Author | Huang, Xiaoping Torgeir, Moan Cui, Weicheng |
Author_xml | – sequence: 1 givenname: Xiaoping surname: Huang fullname: Huang, Xiaoping email: xiaoping.huang@ntnu.no, xphuang@sjtu.edu.cn organization: State Key Lab of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200030, China – sequence: 2 givenname: Moan surname: Torgeir fullname: Torgeir, Moan organization: Department of Marine Technology, Norwegian University of Science and Technology, Otto Nielsens, N-7491 Trondheim, Norway – sequence: 3 givenname: Weicheng surname: Cui fullname: Cui, Weicheng organization: State Key Lab of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200030, China |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19373572$$DView record in Pascal Francis |
BookMark | eNqFkLtu3DAQRYnABrJ-fEPYJJ2UISmJUpFiYeQFOEgT18SIGm244ZIbUnKQvw-NXbhI42qae-7gnit2EWIgxt4IqAWI7v2-dvsZF7dbqZYAugZVAzSv2Eb0eqhU08oLtgHRyEoIqV6zq5z3ADCAbjfs2zZwCjsXiJILO36IE3keZ36u5Dah_cV3Kf5ZfvI1TJT4IyaHoyeOh6N3yzoR9xGngt-wyxl9ptvzvWYPnz7-uPtS3X___PVue19ZpbulQrDjJLXoxr5vpIRZTDj2VpY9AgWOQD00FnqL7dyhGGCUcz91MIyaLCmhrtm7U-8xxd8r5cUcXLbkPQaKazZKlIGt7kvw7TmI2aKfEwbrsjkmd8D014hBadVqWXIfTjmbYs6JZmPdUgzEsCR03ggwT7LN3jzLNk-yDShTZBde_8c_v3iR3J5IKr4eHSWTraNgaXKJ7GKm6F7s-AfuVqFm |
CODEN | IJFADB |
CitedBy_id | crossref_primary_10_1016_j_tafmec_2023_104218 crossref_primary_10_1016_j_engfailanal_2017_02_005 crossref_primary_10_1108_IJSI_10_2014_0053 crossref_primary_10_1016_j_engfracmech_2022_108522 crossref_primary_10_1016_j_jcsr_2021_106676 crossref_primary_10_1016_j_oceaneng_2022_112996 crossref_primary_10_3390_met11101509 crossref_primary_10_3390_modelling5020023 crossref_primary_10_1016_j_engfracmech_2021_107672 crossref_primary_10_4028_www_scientific_net_KEM_882_296 crossref_primary_10_1007_s11804_022_00305_7 crossref_primary_10_1016_j_engfracmech_2014_05_001 crossref_primary_10_1016_j_engfailanal_2023_107645 crossref_primary_10_4028_www_scientific_net_AMR_538_541_3012 crossref_primary_10_1590_S1516_14392013005000110 crossref_primary_10_1111_ffe_13774 crossref_primary_10_1016_j_marstruc_2023_103535 crossref_primary_10_1016_j_tafmec_2020_102796 crossref_primary_10_1016_j_enggeo_2019_01_012 crossref_primary_10_1016_j_ijfatigue_2019_105199 crossref_primary_10_1007_s11223_011_9301_1 crossref_primary_10_1155_2022_2383789 crossref_primary_10_1186_s40323_018_0112_9 crossref_primary_10_1177_1056789516642613 crossref_primary_10_1590_1679_78253057 crossref_primary_10_1016_j_ijfatigue_2016_03_018 crossref_primary_10_1016_j_ijfatigue_2018_03_017 crossref_primary_10_1016_j_ijfatigue_2020_105886 crossref_primary_10_1016_j_oceaneng_2020_107707 crossref_primary_10_1103_PhysRevMaterials_7_053602 crossref_primary_10_1016_j_ijnaoe_2022_100481 crossref_primary_10_1016_j_matdes_2010_06_010 crossref_primary_10_1080_17445300903439207 crossref_primary_10_1111_ffe_13785 crossref_primary_10_1115_1_4037219 crossref_primary_10_1016_j_msea_2015_10_085 crossref_primary_10_1016_j_tafmec_2022_103637 crossref_primary_10_1007_s12206_015_0306_8 crossref_primary_10_1016_j_tafmec_2022_103268 crossref_primary_10_1177_1056789512448803 crossref_primary_10_1016_j_joes_2022_06_041 crossref_primary_10_1016_j_euromechsol_2017_03_008 crossref_primary_10_1016_j_ijfatigue_2020_105957 crossref_primary_10_1016_j_prostr_2019_12_083 crossref_primary_10_1109_ACCESS_2018_2810826 crossref_primary_10_1016_j_ijfatigue_2021_106365 crossref_primary_10_1016_j_ijfatigue_2020_105792 crossref_primary_10_1134_S1061830924601648 crossref_primary_10_1016_j_ijfatigue_2017_01_024 crossref_primary_10_1016_j_ijfatigue_2022_106722 crossref_primary_10_1103_PhysRevResearch_3_L042029 crossref_primary_10_1016_j_ijfatigue_2012_03_010 crossref_primary_10_4028_www_scientific_net_AMM_446_447_240 crossref_primary_10_1016_j_tafmec_2021_103115 crossref_primary_10_1016_j_tafmec_2016_12_001 crossref_primary_10_1016_j_tafmec_2022_103372 crossref_primary_10_1007_s11431_011_4656_x crossref_primary_10_1111_j_1460_2695_2012_01721_x crossref_primary_10_4028_www_scientific_net_AMR_978_118 crossref_primary_10_3901_CJME_2012_04_816 crossref_primary_10_1016_j_engfracmech_2021_107908 crossref_primary_10_1016_j_ijfatigue_2019_105227 crossref_primary_10_1016_j_ress_2013_02_019 crossref_primary_10_1111_j_1460_2695_2011_01618_x crossref_primary_10_1007_s00500_018_3378_4 crossref_primary_10_1016_j_ijfatigue_2018_09_013 crossref_primary_10_1016_j_prostr_2021_12_053 crossref_primary_10_1016_j_engfailanal_2014_07_020 crossref_primary_10_1088_1742_6596_1529_4_042074 crossref_primary_10_1016_j_oceaneng_2022_112039 crossref_primary_10_3390_jmse11112075 crossref_primary_10_1016_j_ijfatigue_2022_106943 crossref_primary_10_1016_j_marstruc_2011_02_007 crossref_primary_10_1016_j_tafmec_2016_02_009 crossref_primary_10_3390_s21227655 crossref_primary_10_1016_j_ijfatigue_2024_108725 crossref_primary_10_1016_j_marstruc_2017_10_003 crossref_primary_10_1007_s43452_020_00131_0 crossref_primary_10_1016_j_cja_2016_10_002 crossref_primary_10_1016_j_engfailanal_2021_105939 crossref_primary_10_1016_j_ijfatigue_2024_108169 crossref_primary_10_2514_1_C031808 crossref_primary_10_1016_j_marstruc_2009_06_001 crossref_primary_10_1016_j_ress_2014_09_014 crossref_primary_10_1016_j_mechmat_2022_104309 crossref_primary_10_1051_e3sconf_202341003020 crossref_primary_10_1007_s11665_021_06562_x crossref_primary_10_1155_2016_4298507 crossref_primary_10_1016_j_actamat_2019_11_024 crossref_primary_10_1016_j_ijfatigue_2017_12_018 crossref_primary_10_1088_1757_899X_700_1_012028 crossref_primary_10_1016_j_jmps_2016_10_001 crossref_primary_10_1016_j_proeng_2013_09_139 crossref_primary_10_1016_j_ijfatigue_2013_06_022 crossref_primary_10_1111_ffe_12536 crossref_primary_10_1016_j_ijfatigue_2018_10_016 crossref_primary_10_1016_j_engfracmech_2013_01_016 crossref_primary_10_1177_1687814015619135 crossref_primary_10_3390_app12136344 crossref_primary_10_3390_ma8105367 crossref_primary_10_1007_s40430_016_0557_z crossref_primary_10_1109_ACCESS_2021_3050132 crossref_primary_10_1088_1742_6596_1441_1_012124 crossref_primary_10_1016_j_ijfatigue_2019_03_046 crossref_primary_10_5781_JWJ_2022_40_1_5 crossref_primary_10_1177_1056789521998737 crossref_primary_10_4028_www_scientific_net_KEM_462_463_501 crossref_primary_10_1016_j_engfracmech_2022_108660 crossref_primary_10_1155_2022_3715840 crossref_primary_10_1007_s11804_022_00301_x crossref_primary_10_2478_fas_2021_0011 crossref_primary_10_4028_www_scientific_net_KEM_462_463_59 crossref_primary_10_1007_s00158_022_03348_0 crossref_primary_10_1016_j_ijfatigue_2019_105414 crossref_primary_10_1111_ffe_12467 crossref_primary_10_1016_j_tafmec_2024_104355 crossref_primary_10_1051_matecconf_201816522012 crossref_primary_10_1155_2014_713678 crossref_primary_10_4028_www_scientific_net_AMM_69_45 crossref_primary_10_1007_s11668_021_01306_4 crossref_primary_10_1016_j_ijfatigue_2019_105378 crossref_primary_10_4028_www_scientific_net_AMM_117_119_180 crossref_primary_10_3390_met11122025 crossref_primary_10_1080_17445302_2021_2018223 crossref_primary_10_1016_j_ress_2024_110151 crossref_primary_10_1016_j_oceaneng_2021_110320 crossref_primary_10_1016_j_ijfatigue_2020_105588 crossref_primary_10_1016_j_oceaneng_2015_10_056 crossref_primary_10_1007_s11668_024_01938_2 crossref_primary_10_1016_j_ymssp_2019_106486 crossref_primary_10_1109_TIE_2019_2931491 crossref_primary_10_1007_s40997_017_0101_5 crossref_primary_10_1016_j_ijfatigue_2017_04_015 crossref_primary_10_1016_j_engfracmech_2019_03_029 crossref_primary_10_7734_COSEIK_2012_25_3_267 crossref_primary_10_1016_j_ijfatigue_2022_107166 crossref_primary_10_1016_j_oceaneng_2022_112514 |
ContentType | Journal Article |
Copyright | 2007 Elsevier Ltd 2008 INIST-CNRS |
Copyright_xml | – notice: 2007 Elsevier Ltd – notice: 2008 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7QF 7SR 8BQ 8FD JG9 |
DOI | 10.1016/j.ijfatigue.2007.03.004 |
DatabaseName | CrossRef Pascal-Francis Aluminium Industry Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Aluminium Industry Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences |
EISSN | 1879-3452 |
EndPage | 10 |
ExternalDocumentID | 19373572 10_1016_j_ijfatigue_2007_03_004 S0142112307000783 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6OB 7-5 71M 8P~ 9JN AABCJ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABDEX ABEFU ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SST SSZ T5K T9H TN5 VH1 WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS IQODW 7QF 7SR 8BQ 8FD JG9 |
ID | FETCH-LOGICAL-c376t-a0cbd2716b884220f1dab8c21011a1ab0e804c08ca5f6a190b2f8d609b7ece313 |
IEDL.DBID | AIKHN |
ISSN | 0142-1123 |
IngestDate | Thu Jul 10 18:58:41 EDT 2025 Mon Jul 21 09:16:17 EDT 2025 Thu Apr 24 22:59:33 EDT 2025 Tue Jul 01 03:22:30 EDT 2025 Fri Feb 23 02:28:38 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Plastic zone size Equivalent SIF range Fatigue life prediction Variable amplitude loading R-ratio Fatigue life Prediction Mechanical properties Fatigue Modeling Fatigue crack Crack propagation Plasticity zone Lifetime Variable load Plasticity |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c376t-a0cbd2716b884220f1dab8c21011a1ab0e804c08ca5f6a190b2f8d609b7ece313 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 31000578 |
PQPubID | 23500 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_31000578 pascalfrancis_primary_19373572 crossref_citationtrail_10_1016_j_ijfatigue_2007_03_004 crossref_primary_10_1016_j_ijfatigue_2007_03_004 elsevier_sciencedirect_doi_10_1016_j_ijfatigue_2007_03_004 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2008 2008-01-00 20080101 |
PublicationDateYYYYMMDD | 2008-01-01 |
PublicationDate_xml | – year: 2008 text: 2008 |
PublicationDecade | 2000 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | International journal of fatigue |
PublicationYear | 2008 |
Publisher | Elsevier Ltd Elsevier Science |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science |
References | Huang XP, Cui WC, Leng JX. A model of fatigue crack growth under various load spectra. In: Proc of Sih GC, 7th Int conf of MESO, August 1–4, Montreal, Canada; 2005. p. 303–08. Willenborg JD, Engle Jr RM, Wood HA. A crack growth retardation model using effective stress concept. AFDL-TM-71-1-FBR. January 1971. Kujawski (bib16) 2001; 23 James, Paterson (bib3) 1997; 19 Ray, Patanker (bib9) 2001; 25 Guo (bib22) 1999; 62 Newman (bib8) 1984; 24 Elber (bib7) 1972; 486 Taheri, Trask, Pegg (bib4) 2003; 16 Ohta, Suzuki, Maeda (bib20) 1997; 19 Irwin (bib21) 1968; 1 Porter (bib23) 1972; 4 Voorwald, Torres (bib13) 1991; 13 Newman Jr JC. Phillips EP, Everett RA. Fatigue analyses under constant and variable amplitude loading using small-crack theory. NASA/TM-1999-209329, ARL-TR-2001. Noroozi, Glinka, Lambert (bib18) 2005; 27 Paris, Tada, Donald (bib1) 1999; 21 Huang, Zhang, Cui, Leng (bib15) 2005; 44 Wheeler (bib5) 1972; 94 Schijve (bib12) 1981; 14 Ray, Patanker (bib10) 2001; 25 Sadananda, Vasudevan (bib2) 1999; 21 Kujawski (bib17) 2001; 23 Huang, Moan (bib19) 2007; 29 |
References_xml | – volume: 62 start-page: 383 year: 1999 end-page: 407 ident: bib22 article-title: Three-dimensional analyses of plastic constraint for through-thickness cracked bodies publication-title: Engng Fract Mech – volume: 16 start-page: 69 year: 2003 end-page: 91 ident: bib4 article-title: Experimental and analytical investigation of fatigue characteristics of 350WT steel under constant and variable amplitude loading publication-title: Mar Struct – volume: 19 start-page: S109 year: 1997 end-page: S118 ident: bib3 article-title: Fatigue performance of 6261-T6 aluminium alloy – constant and variable amplitude loading of parent plate and welded specimens publication-title: Int J Fatigue – reference: Willenborg JD, Engle Jr RM, Wood HA. A crack growth retardation model using effective stress concept. AFDL-TM-71-1-FBR. January 1971. – volume: 19 start-page: S303 year: 1997 end-page: S310 ident: bib20 article-title: Unique fatigue threshold and growth properties of welded joints in a tensile residual stress field publication-title: Int J Fatigue – volume: 21 start-page: S35 year: 1999 end-page: S46 ident: bib1 article-title: Service load fatigue damage – a historical perspective publication-title: Int J Fatigue – volume: 486 start-page: 230 year: 1972 end-page: 242 ident: bib7 article-title: The significance of fatigue crack closure in fatigue publication-title: ASTM STP – volume: 13 start-page: 423 year: 1991 end-page: 427 ident: bib13 article-title: Modeling of fatigue crack growth following overloads publication-title: Int J Fatigue – volume: 14 start-page: 461 year: 1981 end-page: 465 ident: bib12 article-title: Some formulas for the crack opening stress level publication-title: Engng Fract Mech – volume: 44 start-page: 105 year: 2005 end-page: 115 ident: bib15 article-title: Fatigue crack growth with overload under spectrum loading publication-title: Theor Appl Fract Mech – volume: 24 start-page: R131 year: 1984 end-page: R135 ident: bib8 article-title: A crack opening stress equation for fatigue crack growth publication-title: Int J Fract – volume: 27 start-page: 1277 year: 2005 end-page: 1296 ident: bib18 article-title: A two parameter driving force for fatigue crack growth analysis publication-title: Int J Fatigue – volume: 25 start-page: 979 year: 2001 end-page: 994 ident: bib9 article-title: Fatigue crack growth under variable amplitude loading: Part I – Model formulation in state space setting publication-title: Appl Math Model – volume: 94 start-page: 181 year: 1972 end-page: 186 ident: bib5 article-title: Spectrum loading and crack growth publication-title: J Basic Engng, Trans ASME, Ser D – volume: 25 start-page: 995 year: 2001 end-page: 1013 ident: bib10 article-title: Fatigue crack growth under variable-amplitude loading: Part II-Code development and model validation publication-title: Appl Math Model – reference: Newman Jr JC. Phillips EP, Everett RA. Fatigue analyses under constant and variable amplitude loading using small-crack theory. NASA/TM-1999-209329, ARL-TR-2001. – volume: 23 start-page: S239 year: 2001 end-page: S246 ident: bib17 article-title: A fatigue crack driving force parameter with load ratio effects publication-title: Int J Fatigue – reference: Huang XP, Cui WC, Leng JX. A model of fatigue crack growth under various load spectra. In: Proc of Sih GC, 7th Int conf of MESO, August 1–4, Montreal, Canada; 2005. p. 303–08. – volume: 29 start-page: 591 year: 2007 end-page: 602 ident: bib19 article-title: Improved modeling of the effect of R-ratio on crack growth rate publication-title: Int J Fatigue – volume: 21 start-page: S233 year: 1999 end-page: S246 ident: bib2 article-title: Analysis of overload effects and related phenomena publication-title: Int J Fatigue – volume: 23 start-page: 733 year: 2001 end-page: 740 ident: bib16 article-title: A new (ΔK publication-title: Int J Fatigue – volume: 4 start-page: 717 year: 1972 end-page: 736 ident: bib23 article-title: Method of analysis and prediction for variable amplitude fatigue crack growth publication-title: Engng Fract Mech – volume: 1 start-page: 241 year: 1968 end-page: 257 ident: bib21 article-title: Linear fracture mechanics, fracture transition and fracture control publication-title: Engng Fract Mech |
SSID | ssj0009075 |
Score | 2.333529 |
Snippet | Fatigue crack growth in structure components subjected to variable amplitude loading is a very complex subject. Many models have been proposed, but as yet no... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2 |
SubjectTerms | Applied sciences Equivalent SIF range Exact sciences and technology Fatigue Fatigue life prediction Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology Metals. Metallurgy Plastic zone size R-ratio Variable amplitude loading |
Title | An engineering model of fatigue crack growth under variable amplitude loading |
URI | https://dx.doi.org/10.1016/j.ijfatigue.2007.03.004 https://www.proquest.com/docview/31000578 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BuYAQYhVlKT5wDXUSJ3G5VRWogOAEEjfLW6ClSqsuHPl2xllaKoR64GplZGvGmcV-fgNwiUk4p2lqvJgZ4zETRR6XDrajecv6SiU2B48_PsXdF3b_Gr2uQad6C-NglaXvL3x67q3LkWapzeao12s6WBJWLw7InAe6cB02grAV49beaN89dJ8W3LsF36773nMCSzCvXj9FFbhTkoLO0BGesr-C1PZITlB1adHz4pf7zmPS7S7slMkkaRfr3YM1m-3D1g-KwQN4bGfELgZI3vmGDFNSrofosdQf5A2r8ek7cS_KxuQT62f3oopIBzd35JdkMMyx9ofwcnvz3Ol6ZQsFT6PnmHqSamUCrIkU5ywIaOobqbjGOs_3pS8VtZwyTbmWURpLTA5UkHIT0xYaSdvQD4-glg0zewwEcyOtLZWaxYZxphSzcdSSQWKpsUmk6xBXOhO65Bd3bS4GogKS9cVc2a77ZSJoKFDZdaBzwVFBsbFa5LoyiljaLQIDwWrhxpIZF5NiqhZGSVCHi8quAn82d4MiMzucTUR-G4I-7uQ_85_CZgE6cec4Z1Cbjmf2HDObqWrA-tWX3yj37zcFLvo_ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB6lcKAVQkBBhEfiQ69LvLveXYcbQqDwCCeQuFl-bQmgTRRCj_3tndlH0gghDlwtW7Zm7HnYn78B-IVBuOR57oJUOBcIlySB1ATbsbLvQ2MyX4LHh7fp4F5cPSQPLThr_sIQrLK2_ZVNL6113dKrpdmbjEY9giVh9kJA5tLRxd9gVeDxpdN5_HeB8-hXbLvUO6DuSyCv0VOOAqA7korMkOhOxUcuan2iX1FweVXx4p3xLj3SxSZs1KEkO61WuwUtX2zDj_8IBn_C8LRgftHAyro3bJyzej3MTrV9Zr8xF589MvpPNmV_MHum_1RME9icqC_Zy7hE2u_A_cX53dkgqAsoBBbtxizQ3BoXYUZkpBRRxPPQaSMtZnlhqENtuJdcWC6tTvJUY2hgoly6lPdRRdbHYbwLK8W48HvAMDKy1nNtReqEFMYInyZ9HWWeO58ltg1pIzNla3ZxKnLxohoY2ZOaC5tqX2aKxwqF3QY-HzipCDY-H3LSKEUt7RWFbuDzwZ0lNS4mxUAtTrKoDd1GrwqPGr2f6MKP315V-RaCFm7_K_N3YW1wN7xRN5e31wfwvYKf0I3OIazMpm_-CGOcmemUe_gfFFf7Aw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+engineering+model+of+fatigue+crack+growth+under+variable+amplitude+loading&rft.jtitle=International+journal+of+fatigue&rft.au=Huang%2C+Xiaoping&rft.au=Torgeir%2C+Moan&rft.au=Cui%2C+Weicheng&rft.date=2008&rft.pub=Elsevier+Ltd&rft.issn=0142-1123&rft.eissn=1879-3452&rft.volume=30&rft.issue=1&rft.spage=2&rft.epage=10&rft_id=info:doi/10.1016%2Fj.ijfatigue.2007.03.004&rft.externalDocID=S0142112307000783 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-1123&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-1123&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-1123&client=summon |