Selection of Working Correlation Structure and Best Model in GEE Analyses of Longitudinal Data

The Generalized Estimating Equations (GEE) method is one of the most commonly used statistical methods for the analysis of longitudinal data in epidemiological studies. A working correlation structure for the repeated measures of the outcome variable of a subject needs to be specified by this method...

Full description

Saved in:
Bibliographic Details
Published inCommunications in statistics. Simulation and computation Vol. 36; no. 5; pp. 987 - 996
Main Authors Cui, James, Qian, Guoqi
Format Journal Article
LanguageEnglish
Published Colchester Taylor & Francis Group 30.08.2007
Taylor & Francis
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The Generalized Estimating Equations (GEE) method is one of the most commonly used statistical methods for the analysis of longitudinal data in epidemiological studies. A working correlation structure for the repeated measures of the outcome variable of a subject needs to be specified by this method. However, statistical criteria for selecting the best correlation structure and the best subset of explanatory variables in GEE are only available recently because the GEE method is developed on the basis of quasi-likelihood theory. Maximum likelihood based model selection methods, such as the widely used Akaike Information Criterion (AIC), are not applicable to GEE directly. Pan ( 2001 ) proposed a selection method called QIC which can be used to select the best correlation structure and the best subset of explanatory variables. Based on the QIC method, we developed a computing program to calculate the QIC value for a range of different distributions, link functions and correlation structures. This program was written in Stata software. In this article, we introduce this program and demonstrate how to use it to select the most parsimonious model in GEE analyses of longitudinal data through several representative examples.
AbstractList The Generalized Estimating Equations (GEE) method is one of the most commonly used statistical methods for the analysis of longitudinal data in epidemiological studies. A working correlation structure for the repeated measures of the outcome variable of a subject needs to be specified by this method. However, statistical criteria for selecting the best correlation structure and the best subset of explanatory variables in GEE are only available recently because the GEE method is developed on the basis of quasi-likelihood theory. Maximum likelihood based model selection methods, such as the widely used Akaike Information Criterion (AIC), are not applicable to GEE directly. Pan ( 2001 ) proposed a selection method called QIC which can be used to select the best correlation structure and the best subset of explanatory variables. Based on the QIC method, we developed a computing program to calculate the QIC value for a range of different distributions, link functions and correlation structures. This program was written in Stata software. In this article, we introduce this program and demonstrate how to use it to select the most parsimonious model in GEE analyses of longitudinal data through several representative examples.
Author Cui, James
Qian, Guoqi
Author_xml – sequence: 1
  givenname: James
  surname: Cui
  fullname: Cui, James
  email: james.cui@med.monash.edu.au
  organization: Department of Epidemiology and Preventive Medicine , Monash University
– sequence: 2
  givenname: Guoqi
  surname: Qian
  fullname: Qian, Guoqi
  organization: Department of Mathematics and Statistics , University of Melbourne
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19946721$$DView record in Pascal Francis
BookMark eNqFkMFOAjEQhhuDiYA-gLdePK62u93tbuIFEdEE4wESb27GbkuqpSVtifL2LqAeJMHLzGTm__7MTA91rLMSoXNKLikpyRXJCkoqSjiheVYVlB-hblulCaOMdlB3M09aQXmCeiG8EUKykpVd9DKVRoqoncVO4Wfn37Wd46HzXhrYtqfRr0RceYnBNvhGhogfXSMN1haPRyM8sGDWQYYNP3F2ruOq0W0P30KEU3SswAR59p37aHY3mg3vk8nT-GE4mCQi40VMKqGqhgrV5FkpGOFMkVSW8rUNwFgBvFEppIQD5JxDnuepYMBVQ6kqSiKzPrrY2S4hCDDKgxU61EuvF-DXNa0qVvCUtjq-0wnvQvBS1ULH7ZnRgzY1JfXmm_XeN1uS_iF_zQ8w1ztGW-X8Aj6cN00dYW2c_1kxO4Tzf_E9qo6fMfsC4Z6dTA
CODEN CSSCDB
CitedBy_id crossref_primary_10_26599_1671_5411_2024_03_002
crossref_primary_10_1371_journal_pone_0215563
crossref_primary_10_1007_s00198_025_07453_w
crossref_primary_10_1186_s12877_021_02344_1
crossref_primary_10_2188_jea_JE20230223
crossref_primary_10_3354_meps12822
crossref_primary_10_1016_j_ssmph_2022_101285
crossref_primary_10_1007_s11409_021_09279_3
crossref_primary_10_1016_j_technovation_2024_102954
crossref_primary_10_1002_sim_4013
crossref_primary_10_3354_meps13594
crossref_primary_10_3390_ijerph19148541
crossref_primary_10_1016_j_agrformet_2014_06_006
crossref_primary_10_1093_ageing_afae269
crossref_primary_10_1111_mms_13015
crossref_primary_10_1016_j_ejrad_2018_04_014
crossref_primary_10_1016_j_jtherbio_2023_103485
crossref_primary_10_3390_w14162503
crossref_primary_10_1002_smj_3402
crossref_primary_10_3389_fpsyg_2019_02845
crossref_primary_10_1016_j_rssm_2023_100762
crossref_primary_10_1001_jamanetworkopen_2023_44186
crossref_primary_10_1080_09540121_2018_1510109
crossref_primary_10_1176_ps_2009_60_9_1222
crossref_primary_10_1111_tbed_14754
crossref_primary_10_1186_s12877_022_03588_1
crossref_primary_10_1080_02664763_2021_1963422
crossref_primary_10_1038_srep35028
crossref_primary_10_1016_j_jcrimjus_2024_102164
crossref_primary_10_1007_s10198_018_1004_0
crossref_primary_10_1016_j_csda_2009_11_006
crossref_primary_10_23736_S0375_9393_20_14420_1
crossref_primary_10_1155_2014_303728
crossref_primary_10_1007_s10755_021_09591_5
crossref_primary_10_1007_s10549_022_06750_w
crossref_primary_10_1016_j_soscij_2019_03_013
crossref_primary_10_1002_sim_3478
crossref_primary_10_1186_s12913_016_1259_z
crossref_primary_10_1007_s00180_024_01499_w
crossref_primary_10_1002_jwmg_843
crossref_primary_10_1093_aje_kwn292
crossref_primary_10_1186_1471_2261_11_24
crossref_primary_10_1186_s41687_020_00276_9
crossref_primary_10_1016_j_socscimed_2019_03_001
crossref_primary_10_5691_jjb_32_1
crossref_primary_10_1111_jpm_12572
crossref_primary_10_1002_bimj_201400045
crossref_primary_10_1002_sim_3489
crossref_primary_10_1097_WON_0000000000000980
crossref_primary_10_1186_1471_2458_12_544
crossref_primary_10_1111_j_1365_2699_2010_02359_x
crossref_primary_10_1177_2333721419862885
crossref_primary_10_1016_j_ecss_2024_108697
crossref_primary_10_1371_journal_pone_0123812
crossref_primary_10_1080_13557858_2017_1418300
crossref_primary_10_1007_s10578_024_01742_x
crossref_primary_10_1177_1759720X211034063
crossref_primary_10_1038_s41386_021_01065_8
crossref_primary_10_1177_0007650319847477
crossref_primary_10_1007_s11266_021_00365_3
crossref_primary_10_3102_0002831213486511
crossref_primary_10_1111_add_15368
crossref_primary_10_1016_j_clgc_2019_12_004
crossref_primary_10_1111_j_1524_4733_2010_00701_x
crossref_primary_10_1644_09_MAMM_A_057_1
crossref_primary_10_1007_s00421_019_04261_z
crossref_primary_10_1016_j_ijresmar_2018_08_001
crossref_primary_10_1002_smj_1945
crossref_primary_10_4315_JFP_21_144
crossref_primary_10_1080_03610910802446985
crossref_primary_10_3102_10769986211017480
crossref_primary_10_1002_smj_2765
crossref_primary_10_1080_03610918_2018_1468457
crossref_primary_10_1080_24694452_2024_2370919
crossref_primary_10_1111_j_1600_0447_2009_01511_x
crossref_primary_10_1214_23_BJPS587
crossref_primary_10_17269_s41997_019_00281_6
crossref_primary_10_1186_s13613_021_00885_7
crossref_primary_10_1016_j_jcrimjus_2022_101915
crossref_primary_10_1007_s00362_017_0881_0
crossref_primary_10_1371_journal_pmed_1003227
crossref_primary_10_1177_10887679211060030
crossref_primary_10_1007_s11414_009_9205_z
crossref_primary_10_1002_nur_21572
crossref_primary_10_1002_bimj_202100246
crossref_primary_10_1002_jor_25475
crossref_primary_10_1080_03610926_2010_501938
crossref_primary_10_1186_s12889_022_12701_3
crossref_primary_10_1007_s11524_019_00406_9
crossref_primary_10_3389_fpubh_2023_1122648
crossref_primary_10_1111_j_1600_0447_2009_1511_x
crossref_primary_10_1214_09_AOAS242
crossref_primary_10_1007_s11606_020_06293_0
crossref_primary_10_1644_09_MAMM_A_407_1
crossref_primary_10_1016_j_appet_2021_105756
crossref_primary_10_1111_corg_12406
crossref_primary_10_1007_s10508_021_02209_z
crossref_primary_10_3899_jrheum_201131
crossref_primary_10_1016_j_ijcard_2016_08_300
crossref_primary_10_1109_TLT_2024_3393766
crossref_primary_10_1111_radm_12394
crossref_primary_10_3899_jrheum_220038
Cites_doi 10.1007/978-1-4899-3242-6
10.2307/2685208
10.1093/biomet/73.1.13
10.1007/BF03500911
10.1002/sim.2572
10.1093/biomet/83.1.41
10.1210/jc.85.8.2832
10.1086/318187
10.1164/arrd.1983.128.3.405
10.1080/13607860310001594727
10.1109/TAC.1974.1100705
10.1002/sim.1745
10.1007/978-3-642-56046-0_32
10.1111/j.0006-341X.2001.00120.x
10.2333/bhmk.32.141
10.1093/oso/9780198524847.001.0001
10.1177/1094428104263672
10.1063/1.1699114
10.1086/320114
10.2307/2344614
10.1093/biomet/57.1.97
10.2307/2981739
ContentType Journal Article
Copyright Copyright Taylor & Francis Group, LLC 2007
2008 INIST-CNRS
Copyright_xml – notice: Copyright Taylor & Francis Group, LLC 2007
– notice: 2008 INIST-CNRS
DBID AAYXX
CITATION
IQODW
DOI 10.1080/03610910701539617
DatabaseName CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
Computer Science
EISSN 1532-4141
EndPage 996
ExternalDocumentID 19946721
10_1080_03610910701539617
253822
GroupedDBID -~X
.7F
.DC
.QJ
0BK
0R~
29F
2DF
30N
4.4
5GY
5VS
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABEHJ
ABFIM
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AEOZL
AEPSL
AEYOC
AFKVX
AGCQS
AGDLA
AGMYJ
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CAG
CCCUG
CE4
COF
CS3
DGEBU
DKSSO
EBS
EJD
E~A
E~B
GTTXZ
H13
HZ~
H~P
IPNFZ
J.P
K1G
KYCEM
M4Z
NA5
NY~
O9-
P2P
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TWF
UPT
UT5
UU3
WH7
ZGOLN
~S~
AAGDL
AAHIA
AAYXX
ADYSH
AFRVT
AIYEW
AMPGV
AMVHM
CITATION
07G
1TA
8VB
AAIKQ
AAKBW
ACAGQ
ACGEE
AEUMN
AGLEN
AGROQ
AHMOU
AI.
ALCKM
AMEWO
AMXXU
BCCOT
BPLKW
C06
CRFIH
DMQIW
DWIFK
HF~
H~9
IQODW
IVXBP
LJTGL
NHB
NUSFT
QCRFL
QWB
TAQ
TASJS
TFMCV
TOXWX
UB9
UU8
V3K
V4Q
VH1
XOL
ZL0
ID FETCH-LOGICAL-c376t-9cf9d1cfd538c4074f02e8eb2e8a446a7df2a207aa577a5552c4a7fd11f680e3
ISSN 0361-0918
IngestDate Mon Jul 21 09:13:46 EDT 2025
Tue Jul 01 03:09:49 EDT 2025
Thu Apr 24 23:15:51 EDT 2025
Mon May 13 12:09:31 EDT 2019
Wed Dec 25 09:01:14 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Biometrics
Rank statistic
Correlation
Statistical distribution
Information criterion
QIC. Primary 62J12
Multivariate analysis
Computing
Epidemiology
Parametric method
Medical science
Generalized equation
Distribution function
Repeated measurement
Correlation function
Selection method
Approximation theory
Secondary 62P10
AIC
Likelihood function
Data analysis
Statistical analysis
Model selection
GEE
Longitudinal study
Statistical association
Akaike information criterion
Statistical estimation
Statistical method
Selection problem
Correlation analysis
Quasi likelihood
Numerical simulation
Estimating equation
Software
Maximum likelihood
Application
Computing method
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c376t-9cf9d1cfd538c4074f02e8eb2e8a446a7df2a207aa577a5552c4a7fd11f680e3
PageCount 10
ParticipantIDs crossref_citationtrail_10_1080_03610910701539617
pascalfrancis_primary_19946721
informaworld_taylorfrancis_310_1080_03610910701539617
crossref_primary_10_1080_03610910701539617
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 8/30/2007
PublicationDateYYYYMMDD 2007-08-30
PublicationDate_xml – month: 08
  year: 2007
  text: 8/30/2007
  day: 30
PublicationDecade 2000
PublicationPlace Colchester
PublicationPlace_xml – name: Colchester
PublicationTitle Communications in statistics. Simulation and computation
PublicationYear 2007
Publisher Taylor & Francis Group
Taylor & Francis
Publisher_xml – name: Taylor & Francis Group
– name: Taylor & Francis
References Qian G. (CIT0022) 1999; 14
Dockery D. W. (CIT0010) 1983; 128
CIT0014
CIT0013
Fitzmaurice G. M. (CIT0011) 2004
CIT0016
CIT0015
Diggle P. (CIT0009) 2002
CIT0017
CIT0019
Snedecor G. W. (CIT0025) 1967
CIT0021
CIT0020
CIT0001
CIT0023
Wedderburn R. W. M. (CIT0027) 1974; 61
Hardin J. W. (CIT0012) 2003
McCullagh P. (CIT0018) 1989
CIT0003
Cantoni E. (CIT0004) 2005; 61
CIT0002
CIT0024
CIT0005
CIT0007
CIT0006
CIT0028
CIT0008
(CIT0026) 2005
References_xml – volume-title: Generalized Linear Models.
  year: 1989
  ident: CIT0018
  doi: 10.1007/978-1-4899-3242-6
– volume-title: Applied Longitudinal Analysis
  year: 2004
  ident: CIT0011
– ident: CIT0006
  doi: 10.2307/2685208
– ident: CIT0015
  doi: 10.1093/biomet/73.1.13
– volume: 14
  start-page: 293
  year: 1999
  ident: CIT0022
  publication-title: Computat. Statist.
  doi: 10.1007/BF03500911
– ident: CIT0005
  doi: 10.1002/sim.2572
– ident: CIT0024
  doi: 10.1093/biomet/83.1.41
– ident: CIT0003
  doi: 10.1210/jc.85.8.2832
– ident: CIT0007
  doi: 10.1086/318187
– volume-title: Generalized Estimating Equations
  year: 2003
  ident: CIT0012
– volume: 61
  start-page: 507
  year: 2005
  ident: CIT0004
  publication-title: Statist. Med.
– volume: 128
  start-page: 405
  year: 1983
  ident: CIT0010
  publication-title: Amer. Rev. Respiratory Dis.
  doi: 10.1164/arrd.1983.128.3.405
– volume: 61
  start-page: 439
  year: 1974
  ident: CIT0027
  publication-title: Biometrika
– ident: CIT0016
  doi: 10.1080/13607860310001594727
– ident: CIT0001
  doi: 10.1109/TAC.1974.1100705
– ident: CIT0017
  doi: 10.1002/sim.1745
– volume-title: Statistical Methods.
  year: 1967
  ident: CIT0025
– ident: CIT0023
  doi: 10.1007/978-3-642-56046-0_32
– ident: CIT0021
  doi: 10.1111/j.0006-341X.2001.00120.x
– ident: CIT0014
  doi: 10.2333/bhmk.32.141
– volume-title: Analysis of Longitudinal Data.
  year: 2002
  ident: CIT0009
  doi: 10.1093/oso/9780198524847.001.0001
– ident: CIT0002
  doi: 10.1177/1094428104263672
– ident: CIT0019
  doi: 10.1063/1.1699114
– ident: CIT0008
  doi: 10.1086/320114
– ident: CIT0020
  doi: 10.2307/2344614
– volume-title: Stata Statistical Software: Release 9
  year: 2005
  ident: CIT0026
– ident: CIT0013
  doi: 10.1093/biomet/57.1.97
– ident: CIT0028
  doi: 10.2307/2981739
SSID ssj0003848
Score 2.122006
Snippet The Generalized Estimating Equations (GEE) method is one of the most commonly used statistical methods for the analysis of longitudinal data in epidemiological...
SourceID pascalfrancis
crossref
informaworld
SourceType Index Database
Enrichment Source
Publisher
StartPage 987
SubjectTerms AIC
Distribution theory
Exact sciences and technology
GEE
Longitudinal study
Mathematics
Multivariate analysis
Numerical analysis
Numerical analysis. Scientific computation
Numerical methods in probability and statistics
Parametric inference
Primary 62J12
Probability and statistics
QIC
Sciences and techniques of general use
Secondary 62P10
Statistics
Title Selection of Working Correlation Structure and Best Model in GEE Analyses of Longitudinal Data
URI https://www.tandfonline.com/doi/abs/10.1080/03610910701539617
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbQeBkPXAqIcpn8wBNVpiRObOcRRmFFbGhqK-2JyvFFmgTttKUS4tdzfImTtqhcXqIqspso57PPsX3O9yH02pCCK1GahHNikkIzmvDcsERKVguhZEmMLXA-O6en8-LTZXnZpQ656pKmPpY_f1tX8j9WhXtgV1sl-w-WjX8KN-A32BeuYGG4_pWNp07EJoR8YdsbRvjNTchws2fO6-6M4B14ACd-Znk2Rh_H40BJ4nlnP6-sdNFaOZms975krSMx6NeRuBRaW4nkSZ6PR9Or70EFrC2Tu15vHvGfzCcxJzem_My_XExGF5PAJ9tuPTC3l5pGsMx2VEB6kxehWQKxCO_PtJ7qJCCqSPoTZxXcrvfBlVe53ZneQz4ksRzxsG6FUIZUNGOdL2vP77dcXEw8tEzIlFnigbs5rCus5AVJz6PrJtzJrcWXb4_BLRn79kM3ApkNmlubXytuYYgZ_1V6AcvsIbofVhr4rYfNI3RHLwfoQavigcOkPkD3ziJz7-0AHU6jXR-jrxFgeGVwABjuAQxHgGEwPLYAww5g-GqJAWC4BZjt3wcYtgB7gmYfxrOT0yQIciQS_FCTVNJUKpNGgZeUBQSfJs011zVcRFFQwZTJRZ4yIUrGRFmWuSwEMyrLDOWpJk_RwXK11M8QJpVSimjNaogRKTN1baUhTcUVrwul6BCl7cddyEBWbzVTvi2yltN22x5D9CZ2ufZMLfsap32LLRoH5WCv3eaL5kczROWeLmTPo4420NC9XMDi8z81eIEOu9H3Eh2AZfUrCIWb-sjB9xdqIbGS
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB5BOVAODQQQaSHsgRPSFtvr9a6PfaSENsmlqdRTrfU-pIoqqRpHQvz6znrt0LQoh95n7X3Mzsvj7wP45lgqjeKOSskcTa3IqEycoFqLUimjOXP-B-fxJBtepKeX_LIpuC2atkqfQ7sAFFHban-5fTG6bYn7gVbX41mituJ9zdEHv4RXPM-EZzBg0WRliZms2bO8OEV52X7V_N8j1vzSGmqpb5dUC9wxF6guHvifkw4U7cxD28nv_WVV7uu_j0Adn7-0t7DThKbkIOjSO3hhZ13otLQPpLECXXgzXkG9Lrqw7cPVgPb8Hq7Oa1odPGsyd6QpxJMjzwASeu7IeY1Xu7yzBOdIDtEnEU_HdkOuZ-TnYEACSIpd-PGjuSdTWhpP3EWOVaU-wPRkMD0a0obBgWo0XBXNtctNrJ1Bs6oxdUxdlFiJybyVCvNQJYxLVBIJpbgQinOe6FQJZ-LYZTKy7CNszeYz-wkIy40xzFpRYlCRCVeWnkvQ5dLIMjUm60HUHl-hG3RzT7JxU8QtCOrjne3B99WQ2wDtsUk4eqgTRVXXUxqNeCpeVH-qHvANQ9iGV_XX9O3f5PIcl57Eu8988Fd4PZyOR8Xo1-RsD7ZDlVpSFn2GLTx8-wXDq6rs13foHtfZGM0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RkCo4lLJt1S0t9YETkmkSJ7FzLLBb2sIKCSpxauTYHqkq2kUkK1X99R3HyZal1R64jx0_xvNwxt8HsI8iVVZnyJUSyFMnc64SlNwYWWltTSbQP3A-n-Sn39Iv19l1V5tTd2WVPofGABTR2mp_uG8t9hVxH8joejhLUlY6rgW54CewkXvgcP-CI5osDLFQLXmWF-ckr_qfmv_rYsktLYGW-mpJXdOCYWC6uOd-xtuBY7VuUQt91cnPw3lTHZrfDzAdHz2z5_CsC0zZx6BJO7DmpgPY7kkfWGcDBrB1vgB6rQew6YPVgPX8Ar5ftqQ6tNNshqy7hmfHnv8jVNyxyxatdn7nGA2RHZFHYp6M7Yb9mLJPoxELECmu9u3PZp5KaW49bRc70Y1-CVfj0dXxKe_4G7ghs9XwwmBhY4OWjKqhxDHFKHGKUnmnNGWhWlpMdBJJrTMpdZZliUm1RBvHmKvIiVewPp1N3WtgorDWCudkRSFFLrGqPJMgFsqqKrU2H0LU715pOmxzT7FxU8Y9BOrDlR3CwaLJbQD2WCUc3VeJsmlvUzqF-Fe8bH41Q8hWNBErPrW3pG5_B1cUNPUkfvPIjt_D04uTcXn2efJ1FzbDFbXiInoL67T37h3FVk21156gP0fFF3E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Selection+of+Working+Correlation+Structure+and+Best+Model+in+GEE+Analyses+of+Longitudinal+Data&rft.jtitle=Communications+in+statistics.+Simulation+and+computation&rft.au=CUI%2C+James&rft.au=GUOQI+QIAN&rft.date=2007-08-30&rft.pub=Taylor+%26+Francis&rft.issn=0361-0918&rft.volume=36&rft.issue=4-6&rft.spage=987&rft.epage=996&rft_id=info:doi/10.1080%2F03610910701539617&rft.externalDBID=n%2Fa&rft.externalDocID=19946721
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0361-0918&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0361-0918&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0361-0918&client=summon