Selection of Working Correlation Structure and Best Model in GEE Analyses of Longitudinal Data
The Generalized Estimating Equations (GEE) method is one of the most commonly used statistical methods for the analysis of longitudinal data in epidemiological studies. A working correlation structure for the repeated measures of the outcome variable of a subject needs to be specified by this method...
Saved in:
Published in | Communications in statistics. Simulation and computation Vol. 36; no. 5; pp. 987 - 996 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Colchester
Taylor & Francis Group
30.08.2007
Taylor & Francis |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The Generalized Estimating Equations (GEE) method is one of the most commonly used statistical methods for the analysis of longitudinal data in epidemiological studies. A working correlation structure for the repeated measures of the outcome variable of a subject needs to be specified by this method. However, statistical criteria for selecting the best correlation structure and the best subset of explanatory variables in GEE are only available recently because the GEE method is developed on the basis of quasi-likelihood theory. Maximum likelihood based model selection methods, such as the widely used Akaike Information Criterion (AIC), are not applicable to GEE directly. Pan (
2001
) proposed a selection method called QIC which can be used to select the best correlation structure and the best subset of explanatory variables. Based on the QIC method, we developed a computing program to calculate the QIC value for a range of different distributions, link functions and correlation structures. This program was written in Stata software. In this article, we introduce this program and demonstrate how to use it to select the most parsimonious model in GEE analyses of longitudinal data through several representative examples. |
---|---|
AbstractList | The Generalized Estimating Equations (GEE) method is one of the most commonly used statistical methods for the analysis of longitudinal data in epidemiological studies. A working correlation structure for the repeated measures of the outcome variable of a subject needs to be specified by this method. However, statistical criteria for selecting the best correlation structure and the best subset of explanatory variables in GEE are only available recently because the GEE method is developed on the basis of quasi-likelihood theory. Maximum likelihood based model selection methods, such as the widely used Akaike Information Criterion (AIC), are not applicable to GEE directly. Pan (
2001
) proposed a selection method called QIC which can be used to select the best correlation structure and the best subset of explanatory variables. Based on the QIC method, we developed a computing program to calculate the QIC value for a range of different distributions, link functions and correlation structures. This program was written in Stata software. In this article, we introduce this program and demonstrate how to use it to select the most parsimonious model in GEE analyses of longitudinal data through several representative examples. |
Author | Cui, James Qian, Guoqi |
Author_xml | – sequence: 1 givenname: James surname: Cui fullname: Cui, James email: james.cui@med.monash.edu.au organization: Department of Epidemiology and Preventive Medicine , Monash University – sequence: 2 givenname: Guoqi surname: Qian fullname: Qian, Guoqi organization: Department of Mathematics and Statistics , University of Melbourne |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19946721$$DView record in Pascal Francis |
BookMark | eNqFkMFOAjEQhhuDiYA-gLdePK62u93tbuIFEdEE4wESb27GbkuqpSVtifL2LqAeJMHLzGTm__7MTA91rLMSoXNKLikpyRXJCkoqSjiheVYVlB-hblulCaOMdlB3M09aQXmCeiG8EUKykpVd9DKVRoqoncVO4Wfn37Wd46HzXhrYtqfRr0RceYnBNvhGhogfXSMN1haPRyM8sGDWQYYNP3F2ruOq0W0P30KEU3SswAR59p37aHY3mg3vk8nT-GE4mCQi40VMKqGqhgrV5FkpGOFMkVSW8rUNwFgBvFEppIQD5JxDnuepYMBVQ6kqSiKzPrrY2S4hCDDKgxU61EuvF-DXNa0qVvCUtjq-0wnvQvBS1ULH7ZnRgzY1JfXmm_XeN1uS_iF_zQ8w1ztGW-X8Aj6cN00dYW2c_1kxO4Tzf_E9qo6fMfsC4Z6dTA |
CODEN | CSSCDB |
CitedBy_id | crossref_primary_10_26599_1671_5411_2024_03_002 crossref_primary_10_1371_journal_pone_0215563 crossref_primary_10_1007_s00198_025_07453_w crossref_primary_10_1186_s12877_021_02344_1 crossref_primary_10_2188_jea_JE20230223 crossref_primary_10_3354_meps12822 crossref_primary_10_1016_j_ssmph_2022_101285 crossref_primary_10_1007_s11409_021_09279_3 crossref_primary_10_1016_j_technovation_2024_102954 crossref_primary_10_1002_sim_4013 crossref_primary_10_3354_meps13594 crossref_primary_10_3390_ijerph19148541 crossref_primary_10_1016_j_agrformet_2014_06_006 crossref_primary_10_1093_ageing_afae269 crossref_primary_10_1111_mms_13015 crossref_primary_10_1016_j_ejrad_2018_04_014 crossref_primary_10_1016_j_jtherbio_2023_103485 crossref_primary_10_3390_w14162503 crossref_primary_10_1002_smj_3402 crossref_primary_10_3389_fpsyg_2019_02845 crossref_primary_10_1016_j_rssm_2023_100762 crossref_primary_10_1001_jamanetworkopen_2023_44186 crossref_primary_10_1080_09540121_2018_1510109 crossref_primary_10_1176_ps_2009_60_9_1222 crossref_primary_10_1111_tbed_14754 crossref_primary_10_1186_s12877_022_03588_1 crossref_primary_10_1080_02664763_2021_1963422 crossref_primary_10_1038_srep35028 crossref_primary_10_1016_j_jcrimjus_2024_102164 crossref_primary_10_1007_s10198_018_1004_0 crossref_primary_10_1016_j_csda_2009_11_006 crossref_primary_10_23736_S0375_9393_20_14420_1 crossref_primary_10_1155_2014_303728 crossref_primary_10_1007_s10755_021_09591_5 crossref_primary_10_1007_s10549_022_06750_w crossref_primary_10_1016_j_soscij_2019_03_013 crossref_primary_10_1002_sim_3478 crossref_primary_10_1186_s12913_016_1259_z crossref_primary_10_1007_s00180_024_01499_w crossref_primary_10_1002_jwmg_843 crossref_primary_10_1093_aje_kwn292 crossref_primary_10_1186_1471_2261_11_24 crossref_primary_10_1186_s41687_020_00276_9 crossref_primary_10_1016_j_socscimed_2019_03_001 crossref_primary_10_5691_jjb_32_1 crossref_primary_10_1111_jpm_12572 crossref_primary_10_1002_bimj_201400045 crossref_primary_10_1002_sim_3489 crossref_primary_10_1097_WON_0000000000000980 crossref_primary_10_1186_1471_2458_12_544 crossref_primary_10_1111_j_1365_2699_2010_02359_x crossref_primary_10_1177_2333721419862885 crossref_primary_10_1016_j_ecss_2024_108697 crossref_primary_10_1371_journal_pone_0123812 crossref_primary_10_1080_13557858_2017_1418300 crossref_primary_10_1007_s10578_024_01742_x crossref_primary_10_1177_1759720X211034063 crossref_primary_10_1038_s41386_021_01065_8 crossref_primary_10_1177_0007650319847477 crossref_primary_10_1007_s11266_021_00365_3 crossref_primary_10_3102_0002831213486511 crossref_primary_10_1111_add_15368 crossref_primary_10_1016_j_clgc_2019_12_004 crossref_primary_10_1111_j_1524_4733_2010_00701_x crossref_primary_10_1644_09_MAMM_A_057_1 crossref_primary_10_1007_s00421_019_04261_z crossref_primary_10_1016_j_ijresmar_2018_08_001 crossref_primary_10_1002_smj_1945 crossref_primary_10_4315_JFP_21_144 crossref_primary_10_1080_03610910802446985 crossref_primary_10_3102_10769986211017480 crossref_primary_10_1002_smj_2765 crossref_primary_10_1080_03610918_2018_1468457 crossref_primary_10_1080_24694452_2024_2370919 crossref_primary_10_1111_j_1600_0447_2009_01511_x crossref_primary_10_1214_23_BJPS587 crossref_primary_10_17269_s41997_019_00281_6 crossref_primary_10_1186_s13613_021_00885_7 crossref_primary_10_1016_j_jcrimjus_2022_101915 crossref_primary_10_1007_s00362_017_0881_0 crossref_primary_10_1371_journal_pmed_1003227 crossref_primary_10_1177_10887679211060030 crossref_primary_10_1007_s11414_009_9205_z crossref_primary_10_1002_nur_21572 crossref_primary_10_1002_bimj_202100246 crossref_primary_10_1002_jor_25475 crossref_primary_10_1080_03610926_2010_501938 crossref_primary_10_1186_s12889_022_12701_3 crossref_primary_10_1007_s11524_019_00406_9 crossref_primary_10_3389_fpubh_2023_1122648 crossref_primary_10_1111_j_1600_0447_2009_1511_x crossref_primary_10_1214_09_AOAS242 crossref_primary_10_1007_s11606_020_06293_0 crossref_primary_10_1644_09_MAMM_A_407_1 crossref_primary_10_1016_j_appet_2021_105756 crossref_primary_10_1111_corg_12406 crossref_primary_10_1007_s10508_021_02209_z crossref_primary_10_3899_jrheum_201131 crossref_primary_10_1016_j_ijcard_2016_08_300 crossref_primary_10_1109_TLT_2024_3393766 crossref_primary_10_1111_radm_12394 crossref_primary_10_3899_jrheum_220038 |
Cites_doi | 10.1007/978-1-4899-3242-6 10.2307/2685208 10.1093/biomet/73.1.13 10.1007/BF03500911 10.1002/sim.2572 10.1093/biomet/83.1.41 10.1210/jc.85.8.2832 10.1086/318187 10.1164/arrd.1983.128.3.405 10.1080/13607860310001594727 10.1109/TAC.1974.1100705 10.1002/sim.1745 10.1007/978-3-642-56046-0_32 10.1111/j.0006-341X.2001.00120.x 10.2333/bhmk.32.141 10.1093/oso/9780198524847.001.0001 10.1177/1094428104263672 10.1063/1.1699114 10.1086/320114 10.2307/2344614 10.1093/biomet/57.1.97 10.2307/2981739 |
ContentType | Journal Article |
Copyright | Copyright Taylor & Francis Group, LLC 2007 2008 INIST-CNRS |
Copyright_xml | – notice: Copyright Taylor & Francis Group, LLC 2007 – notice: 2008 INIST-CNRS |
DBID | AAYXX CITATION IQODW |
DOI | 10.1080/03610910701539617 |
DatabaseName | CrossRef Pascal-Francis |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics Computer Science |
EISSN | 1532-4141 |
EndPage | 996 |
ExternalDocumentID | 19946721 10_1080_03610910701539617 253822 |
GroupedDBID | -~X .7F .DC .QJ 0BK 0R~ 29F 2DF 30N 4.4 5GY 5VS AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABEHJ ABFIM ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACIWK ACTIO ADCVX ADGTB ADXPE AEISY AEOZL AEPSL AEYOC AFKVX AGCQS AGDLA AGMYJ AIJEM AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CAG CCCUG CE4 COF CS3 DGEBU DKSSO EBS EJD E~A E~B GTTXZ H13 HZ~ H~P IPNFZ J.P K1G KYCEM M4Z NA5 NY~ O9- P2P RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEJ TFL TFT TFW TN5 TTHFI TUROJ TWF UPT UT5 UU3 WH7 ZGOLN ~S~ AAGDL AAHIA AAYXX ADYSH AFRVT AIYEW AMPGV AMVHM CITATION 07G 1TA 8VB AAIKQ AAKBW ACAGQ ACGEE AEUMN AGLEN AGROQ AHMOU AI. ALCKM AMEWO AMXXU BCCOT BPLKW C06 CRFIH DMQIW DWIFK HF~ H~9 IQODW IVXBP LJTGL NHB NUSFT QCRFL QWB TAQ TASJS TFMCV TOXWX UB9 UU8 V3K V4Q VH1 XOL ZL0 |
ID | FETCH-LOGICAL-c376t-9cf9d1cfd538c4074f02e8eb2e8a446a7df2a207aa577a5552c4a7fd11f680e3 |
ISSN | 0361-0918 |
IngestDate | Mon Jul 21 09:13:46 EDT 2025 Tue Jul 01 03:09:49 EDT 2025 Thu Apr 24 23:15:51 EDT 2025 Mon May 13 12:09:31 EDT 2019 Wed Dec 25 09:01:14 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Biometrics Rank statistic Correlation Statistical distribution Information criterion QIC. Primary 62J12 Multivariate analysis Computing Epidemiology Parametric method Medical science Generalized equation Distribution function Repeated measurement Correlation function Selection method Approximation theory Secondary 62P10 AIC Likelihood function Data analysis Statistical analysis Model selection GEE Longitudinal study Statistical association Akaike information criterion Statistical estimation Statistical method Selection problem Correlation analysis Quasi likelihood Numerical simulation Estimating equation Software Maximum likelihood Application Computing method |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c376t-9cf9d1cfd538c4074f02e8eb2e8a446a7df2a207aa577a5552c4a7fd11f680e3 |
PageCount | 10 |
ParticipantIDs | crossref_citationtrail_10_1080_03610910701539617 pascalfrancis_primary_19946721 informaworld_taylorfrancis_310_1080_03610910701539617 crossref_primary_10_1080_03610910701539617 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 8/30/2007 |
PublicationDateYYYYMMDD | 2007-08-30 |
PublicationDate_xml | – month: 08 year: 2007 text: 8/30/2007 day: 30 |
PublicationDecade | 2000 |
PublicationPlace | Colchester |
PublicationPlace_xml | – name: Colchester |
PublicationTitle | Communications in statistics. Simulation and computation |
PublicationYear | 2007 |
Publisher | Taylor & Francis Group Taylor & Francis |
Publisher_xml | – name: Taylor & Francis Group – name: Taylor & Francis |
References | Qian G. (CIT0022) 1999; 14 Dockery D. W. (CIT0010) 1983; 128 CIT0014 CIT0013 Fitzmaurice G. M. (CIT0011) 2004 CIT0016 CIT0015 Diggle P. (CIT0009) 2002 CIT0017 CIT0019 Snedecor G. W. (CIT0025) 1967 CIT0021 CIT0020 CIT0001 CIT0023 Wedderburn R. W. M. (CIT0027) 1974; 61 Hardin J. W. (CIT0012) 2003 McCullagh P. (CIT0018) 1989 CIT0003 Cantoni E. (CIT0004) 2005; 61 CIT0002 CIT0024 CIT0005 CIT0007 CIT0006 CIT0028 CIT0008 (CIT0026) 2005 |
References_xml | – volume-title: Generalized Linear Models. year: 1989 ident: CIT0018 doi: 10.1007/978-1-4899-3242-6 – volume-title: Applied Longitudinal Analysis year: 2004 ident: CIT0011 – ident: CIT0006 doi: 10.2307/2685208 – ident: CIT0015 doi: 10.1093/biomet/73.1.13 – volume: 14 start-page: 293 year: 1999 ident: CIT0022 publication-title: Computat. Statist. doi: 10.1007/BF03500911 – ident: CIT0005 doi: 10.1002/sim.2572 – ident: CIT0024 doi: 10.1093/biomet/83.1.41 – ident: CIT0003 doi: 10.1210/jc.85.8.2832 – ident: CIT0007 doi: 10.1086/318187 – volume-title: Generalized Estimating Equations year: 2003 ident: CIT0012 – volume: 61 start-page: 507 year: 2005 ident: CIT0004 publication-title: Statist. Med. – volume: 128 start-page: 405 year: 1983 ident: CIT0010 publication-title: Amer. Rev. Respiratory Dis. doi: 10.1164/arrd.1983.128.3.405 – volume: 61 start-page: 439 year: 1974 ident: CIT0027 publication-title: Biometrika – ident: CIT0016 doi: 10.1080/13607860310001594727 – ident: CIT0001 doi: 10.1109/TAC.1974.1100705 – ident: CIT0017 doi: 10.1002/sim.1745 – volume-title: Statistical Methods. year: 1967 ident: CIT0025 – ident: CIT0023 doi: 10.1007/978-3-642-56046-0_32 – ident: CIT0021 doi: 10.1111/j.0006-341X.2001.00120.x – ident: CIT0014 doi: 10.2333/bhmk.32.141 – volume-title: Analysis of Longitudinal Data. year: 2002 ident: CIT0009 doi: 10.1093/oso/9780198524847.001.0001 – ident: CIT0002 doi: 10.1177/1094428104263672 – ident: CIT0019 doi: 10.1063/1.1699114 – ident: CIT0008 doi: 10.1086/320114 – ident: CIT0020 doi: 10.2307/2344614 – volume-title: Stata Statistical Software: Release 9 year: 2005 ident: CIT0026 – ident: CIT0013 doi: 10.1093/biomet/57.1.97 – ident: CIT0028 doi: 10.2307/2981739 |
SSID | ssj0003848 |
Score | 2.122006 |
Snippet | The Generalized Estimating Equations (GEE) method is one of the most commonly used statistical methods for the analysis of longitudinal data in epidemiological... |
SourceID | pascalfrancis crossref informaworld |
SourceType | Index Database Enrichment Source Publisher |
StartPage | 987 |
SubjectTerms | AIC Distribution theory Exact sciences and technology GEE Longitudinal study Mathematics Multivariate analysis Numerical analysis Numerical analysis. Scientific computation Numerical methods in probability and statistics Parametric inference Primary 62J12 Probability and statistics QIC Sciences and techniques of general use Secondary 62P10 Statistics |
Title | Selection of Working Correlation Structure and Best Model in GEE Analyses of Longitudinal Data |
URI | https://www.tandfonline.com/doi/abs/10.1080/03610910701539617 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbQeBkPXAqIcpn8wBNVpiRObOcRRmFFbGhqK-2JyvFFmgTttKUS4tdzfImTtqhcXqIqspso57PPsX3O9yH02pCCK1GahHNikkIzmvDcsERKVguhZEmMLXA-O6en8-LTZXnZpQ656pKmPpY_f1tX8j9WhXtgV1sl-w-WjX8KN-A32BeuYGG4_pWNp07EJoR8YdsbRvjNTchws2fO6-6M4B14ACd-Znk2Rh_H40BJ4nlnP6-sdNFaOZms975krSMx6NeRuBRaW4nkSZ6PR9Or70EFrC2Tu15vHvGfzCcxJzem_My_XExGF5PAJ9tuPTC3l5pGsMx2VEB6kxehWQKxCO_PtJ7qJCCqSPoTZxXcrvfBlVe53ZneQz4ksRzxsG6FUIZUNGOdL2vP77dcXEw8tEzIlFnigbs5rCus5AVJz6PrJtzJrcWXb4_BLRn79kM3ApkNmlubXytuYYgZ_1V6AcvsIbofVhr4rYfNI3RHLwfoQavigcOkPkD3ziJz7-0AHU6jXR-jrxFgeGVwABjuAQxHgGEwPLYAww5g-GqJAWC4BZjt3wcYtgB7gmYfxrOT0yQIciQS_FCTVNJUKpNGgZeUBQSfJs011zVcRFFQwZTJRZ4yIUrGRFmWuSwEMyrLDOWpJk_RwXK11M8QJpVSimjNaogRKTN1baUhTcUVrwul6BCl7cddyEBWbzVTvi2yltN22x5D9CZ2ufZMLfsap32LLRoH5WCv3eaL5kczROWeLmTPo4420NC9XMDi8z81eIEOu9H3Eh2AZfUrCIWb-sjB9xdqIbGS |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB5BOVAODQQQaSHsgRPSFtvr9a6PfaSENsmlqdRTrfU-pIoqqRpHQvz6znrt0LQoh95n7X3Mzsvj7wP45lgqjeKOSskcTa3IqEycoFqLUimjOXP-B-fxJBtepKeX_LIpuC2atkqfQ7sAFFHban-5fTG6bYn7gVbX41mituJ9zdEHv4RXPM-EZzBg0WRliZms2bO8OEV52X7V_N8j1vzSGmqpb5dUC9wxF6guHvifkw4U7cxD28nv_WVV7uu_j0Adn7-0t7DThKbkIOjSO3hhZ13otLQPpLECXXgzXkG9Lrqw7cPVgPb8Hq7Oa1odPGsyd6QpxJMjzwASeu7IeY1Xu7yzBOdIDtEnEU_HdkOuZ-TnYEACSIpd-PGjuSdTWhpP3EWOVaU-wPRkMD0a0obBgWo0XBXNtctNrJ1Bs6oxdUxdlFiJybyVCvNQJYxLVBIJpbgQinOe6FQJZ-LYZTKy7CNszeYz-wkIy40xzFpRYlCRCVeWnkvQ5dLIMjUm60HUHl-hG3RzT7JxU8QtCOrjne3B99WQ2wDtsUk4eqgTRVXXUxqNeCpeVH-qHvANQ9iGV_XX9O3f5PIcl57Eu8988Fd4PZyOR8Xo1-RsD7ZDlVpSFn2GLTx8-wXDq6rs13foHtfZGM0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RkCo4lLJt1S0t9YETkmkSJ7FzLLBb2sIKCSpxauTYHqkq2kUkK1X99R3HyZal1R64jx0_xvNwxt8HsI8iVVZnyJUSyFMnc64SlNwYWWltTSbQP3A-n-Sn39Iv19l1V5tTd2WVPofGABTR2mp_uG8t9hVxH8joejhLUlY6rgW54CewkXvgcP-CI5osDLFQLXmWF-ckr_qfmv_rYsktLYGW-mpJXdOCYWC6uOd-xtuBY7VuUQt91cnPw3lTHZrfDzAdHz2z5_CsC0zZx6BJO7DmpgPY7kkfWGcDBrB1vgB6rQew6YPVgPX8Ar5ftqQ6tNNshqy7hmfHnv8jVNyxyxatdn7nGA2RHZFHYp6M7Yb9mLJPoxELECmu9u3PZp5KaW49bRc70Y1-CVfj0dXxKe_4G7ghs9XwwmBhY4OWjKqhxDHFKHGKUnmnNGWhWlpMdBJJrTMpdZZliUm1RBvHmKvIiVewPp1N3WtgorDWCudkRSFFLrGqPJMgFsqqKrU2H0LU715pOmxzT7FxU8Y9BOrDlR3CwaLJbQD2WCUc3VeJsmlvUzqF-Fe8bH41Q8hWNBErPrW3pG5_B1cUNPUkfvPIjt_D04uTcXn2efJ1FzbDFbXiInoL67T37h3FVk21156gP0fFF3E |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Selection+of+Working+Correlation+Structure+and+Best+Model+in+GEE+Analyses+of+Longitudinal+Data&rft.jtitle=Communications+in+statistics.+Simulation+and+computation&rft.au=CUI%2C+James&rft.au=GUOQI+QIAN&rft.date=2007-08-30&rft.pub=Taylor+%26+Francis&rft.issn=0361-0918&rft.volume=36&rft.issue=4-6&rft.spage=987&rft.epage=996&rft_id=info:doi/10.1080%2F03610910701539617&rft.externalDBID=n%2Fa&rft.externalDocID=19946721 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0361-0918&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0361-0918&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0361-0918&client=summon |