Characterisation methods for powder bed fusion processed surface topography
Powder bed fusion (PBF) is a popular additive manufacturing (AM) process with wide applications in key industrial sectors, including aerospace, automotive, healthcare, defence. However, a deficiency of PBF is its low quality of surface finish. A number of PBF process variables and other factors (e.g...
Saved in:
Published in | Precision engineering Vol. 57; pp. 1 - 15 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.05.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 0141-6359 1873-2372 |
DOI | 10.1016/j.precisioneng.2018.09.007 |
Cover
Loading…
Abstract | Powder bed fusion (PBF) is a popular additive manufacturing (AM) process with wide applications in key industrial sectors, including aerospace, automotive, healthcare, defence. However, a deficiency of PBF is its low quality of surface finish. A number of PBF process variables and other factors (e.g. powders, recoater) can influence the surface quality. It is of significant importance to measure and characterise PBF surfaces for the benefits of process optimisation, product performance evaluation and also product design. A state-of-the-art review is given to summarise the current research work on the characterisation of AM surfaces, particularly PBF surfaces. It is recognised that AM processes are different from conventional manufacturing processes and their produced surface topographies are different as well. In this paper, the surface characterisation framework is updated to reflect the unique characteristics of PBF processes. The surface spatial wavelength components and other process signature features are described and their production mechanisms are elaborated. A bespoke surface characterisation procedure is developed based on the updated framework. The robust Gaussian regression filter and the morphological filters are proposed to be used for the separation of the waviness component due to their robustness. The watershed segmentation is enhanced to extract globules from the residual surface. Two AM components produced by electron beam melting (EBM) and selective laser melting (SLM), are measured and characterised by the proposed methodology. Both of the two filters are qualified for the extraction of melted tracks. The watershed segmentation can enable the extraction of globules. The standard surface texture parameters of different surface wavelength components are compared. A set of bespoke parameters are intentionally developed to offer a quantitative evaluation of the globules.
•A state-of-the-art review of the AM surface texture characterisation is provided.•Significant topographical features of PBF layer surfaces are identified and described.•A bespoke surface characterisation procedure is developed for PBF surface texture.•The developed characterisation techniques are applied to two SLM and EBM surfaces. |
---|---|
AbstractList | Powder bed fusion (PBF) is a popular additive manufacturing (AM) process with wide applications in key industrial sectors, including aerospace, automotive, healthcare, defence. However, a deficiency of PBF is its low quality of surface finish. A number of PBF process variables and other factors (e.g. powders, recoater) can influence the surface quality. It is of significant importance to measure and characterise PBF surfaces for the benefits of process optimisation, product performance evaluation and also product design. A state-of-the-art review is given to summarise the current research work on the characterisation of AM surfaces, particularly PBF surfaces. It is recognised that AM processes are different from conventional manufacturing processes and their produced surface topographies are different as well. In this paper, the surface characterisation framework is updated to reflect the unique characteristics of PBF processes. The surface spatial wavelength components and other process signature features are described and their production mechanisms are elaborated. A bespoke surface characterisation procedure is developed based on the updated framework. The robust Gaussian regression filter and the morphological filters are proposed to be used for the separation of the waviness component due to their robustness. The watershed segmentation is enhanced to extract globules from the residual surface. Two AM components produced by electron beam melting (EBM) and selective laser melting (SLM), are measured and characterised by the proposed methodology. Both of the two filters are qualified for the extraction of melted tracks. The watershed segmentation can enable the extraction of globules. The standard surface texture parameters of different surface wavelength components are compared. A set of bespoke parameters are intentionally developed to offer a quantitative evaluation of the globules.
•A state-of-the-art review of the AM surface texture characterisation is provided.•Significant topographical features of PBF layer surfaces are identified and described.•A bespoke surface characterisation procedure is developed for PBF surface texture.•The developed characterisation techniques are applied to two SLM and EBM surfaces. |
Author | Jiang, X. Lou, S. Sun, W. Zeng, W. Pagani, L. Scott, P.J. |
Author_xml | – sequence: 1 givenname: S. surname: Lou fullname: Lou, S. organization: EPSRC Future Metrology Hub, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK – sequence: 2 givenname: X. surname: Jiang fullname: Jiang, X. email: x.jiang@hud.ac.uk organization: EPSRC Future Metrology Hub, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK – sequence: 3 givenname: W. surname: Sun fullname: Sun, W. organization: National Physical Laboratory, Engineering, Materials and Electrical Science, Hampton Road, Teddington, Middlesex, TW11 0LW, UK – sequence: 4 givenname: W. surname: Zeng fullname: Zeng, W. organization: EPSRC Future Metrology Hub, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK – sequence: 5 givenname: L. surname: Pagani fullname: Pagani, L. organization: EPSRC Future Metrology Hub, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK – sequence: 6 givenname: P.J. surname: Scott fullname: Scott, P.J. organization: EPSRC Future Metrology Hub, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK |
BookMark | eNqNkDFPwzAUhC1UJNrCf4jYE-w4iWMmUKGAqMQCs-XYz62rNo5sF9R_j0sZEFOnJ53efae7CRr1rgeErgkuCCbNzboYPCgbbJL7ZVFi0haYFxizMzQmLaN5SVk5QmNMKpI3tOYXaBLCGqePFldj9DpbSS9VBG-DjAmTbSGunA6ZcT4b3JcGn3WgM7M7hGSDdwpCSELYeSMVZNENbunlsNpfonMjNwGufu8Ufcwf32fP-eLt6WV2v8gVZU3MeacogOmAtC2vNBDCq67RspKGU8MoKTVrZV0bU7UNrkkngakOl4QRyjtd0ym6PXKVdyF4MGLwdiv9XhAsDrOItfg7izjMIjAXqXQy3_0zKxt_mkcv7eY0xMMRAankpwUvgrLQK9A2WaLQzp6C-Qb3H401 |
CitedBy_id | crossref_primary_10_1007_s00170_021_07527_z crossref_primary_10_1134_S0031918X24600908 crossref_primary_10_1016_j_addma_2021_101913 crossref_primary_10_1108_RPJ_06_2021_0132 crossref_primary_10_1007_s00170_022_09608_z crossref_primary_10_1016_j_promfg_2021_06_005 crossref_primary_10_1088_2051_672X_ab520a crossref_primary_10_1016_j_matdes_2022_111453 crossref_primary_10_1007_s00170_024_13627_3 crossref_primary_10_1016_j_cossms_2021_100974 crossref_primary_10_1016_j_surfin_2022_102442 crossref_primary_10_1016_j_jmrt_2023_01_153 crossref_primary_10_1364_JOSAA_396186 crossref_primary_10_1007_s12540_022_01378_3 crossref_primary_10_1007_s00170_023_11534_7 crossref_primary_10_1088_1757_899X_1135_1_012020 crossref_primary_10_1016_j_jmbbm_2021_104712 crossref_primary_10_3390_en15093121 crossref_primary_10_3390_ma13173830 crossref_primary_10_1016_j_procir_2022_06_004 crossref_primary_10_1088_1361_6501_ab63b1 crossref_primary_10_1016_j_procir_2022_03_078 crossref_primary_10_1016_j_jmapro_2024_03_095 crossref_primary_10_1002_qre_2980 crossref_primary_10_1007_s40544_023_0826_7 crossref_primary_10_1109_TMECH_2021_3110818 crossref_primary_10_1016_j_procir_2020_04_118 crossref_primary_10_3390_machines11111001 crossref_primary_10_1007_s10921_020_00721_1 crossref_primary_10_1007_s00170_023_11004_0 crossref_primary_10_3390_app122412788 crossref_primary_10_1007_s00170_023_11541_8 crossref_primary_10_1016_j_measurement_2024_116218 crossref_primary_10_1016_j_jmapro_2022_06_078 crossref_primary_10_1016_j_jmapro_2024_12_028 crossref_primary_10_3390_ma17071456 crossref_primary_10_1016_j_jallcom_2021_163207 crossref_primary_10_1016_j_precisioneng_2021_12_003 crossref_primary_10_1016_j_jallcom_2023_170559 crossref_primary_10_1007_s00170_023_12826_8 crossref_primary_10_3390_metrology3020011 crossref_primary_10_1002_adem_202402882 crossref_primary_10_1007_s00170_020_06309_3 crossref_primary_10_1016_j_ijfatigue_2025_108956 crossref_primary_10_1016_j_precisioneng_2020_02_005 crossref_primary_10_1007_s00170_023_10865_9 crossref_primary_10_1007_s00170_022_10024_6 crossref_primary_10_1016_j_mtla_2021_101260 crossref_primary_10_3390_met9121284 crossref_primary_10_1016_j_procir_2024_05_064 crossref_primary_10_3390_ma14226758 crossref_primary_10_3390_met11071093 crossref_primary_10_1007_s42242_019_00042_x crossref_primary_10_1016_j_precisioneng_2023_10_007 crossref_primary_10_1016_j_procir_2020_02_082 crossref_primary_10_1016_j_cirpj_2023_03_006 crossref_primary_10_1016_j_addma_2020_101283 crossref_primary_10_1520_JTE20220422 crossref_primary_10_1016_j_jmrt_2024_06_118 crossref_primary_10_1016_j_matpr_2020_08_488 crossref_primary_10_1016_j_promfg_2021_06_042 crossref_primary_10_1016_j_powtec_2023_119324 crossref_primary_10_1016_j_measurement_2024_114414 crossref_primary_10_1016_j_measurement_2024_116434 crossref_primary_10_1007_s00170_020_05458_9 crossref_primary_10_1016_j_jmapro_2024_02_046 crossref_primary_10_1016_j_precisioneng_2022_07_008 crossref_primary_10_1515_zwf_2021_0215 crossref_primary_10_1016_j_addma_2020_101270 crossref_primary_10_1016_j_msea_2021_142226 crossref_primary_10_1108_RPJ_05_2024_0190 crossref_primary_10_1007_s00170_019_04092_4 crossref_primary_10_1115_1_4050455 crossref_primary_10_1016_j_addma_2020_101273 crossref_primary_10_1016_j_addma_2024_104144 crossref_primary_10_3390_photonics11111011 crossref_primary_10_1016_j_jmapro_2022_06_023 crossref_primary_10_1007_s00170_023_12445_3 crossref_primary_10_1088_2051_672X_acb8ce crossref_primary_10_1177_14644207231212566 crossref_primary_10_1007_s11249_023_01758_9 crossref_primary_10_3390_ma14133575 crossref_primary_10_1016_j_jmapro_2023_01_052 crossref_primary_10_1016_j_addma_2024_104534 crossref_primary_10_1016_j_bioadv_2023_213327 crossref_primary_10_1088_2051_672X_abedf9 crossref_primary_10_3390_cryst11111371 crossref_primary_10_1016_j_precisioneng_2022_07_014 crossref_primary_10_1016_j_procir_2022_03_039 crossref_primary_10_1016_j_addma_2020_101402 crossref_primary_10_1016_j_cirp_2021_05_001 crossref_primary_10_1520_SSMS20190024 crossref_primary_10_1007_s40964_023_00482_z crossref_primary_10_3390_s22249622 crossref_primary_10_1115_1_4055606 crossref_primary_10_1007_s11665_022_07013_x crossref_primary_10_1016_j_pmatsci_2024_101357 crossref_primary_10_1007_s00170_023_11153_2 crossref_primary_10_1016_j_mtcomm_2024_108042 crossref_primary_10_1016_j_addlet_2025_100275 |
Cites_doi | 10.1016/j.cirp.2012.05.009 10.1016/j.actamat.2010.02.004 10.1016/j.cirp.2010.03.138 10.1016/j.jmatprotec.2010.05.010 10.1098/rspa.2004.1291 10.1016/j.bushor.2011.11.003 10.1088/0957-0233/21/3/032001 10.1016/j.jmatprotec.2013.06.010 10.1016/j.jmatprotec.2012.11.011 10.1108/13552540910943397 10.1088/1361-6501/aa9e19 10.1007/BF01189221 10.1115/1.1580851 10.1016/j.measurement.2012.10.001 10.1243/09544054JEM670 10.1016/j.measurement.2017.05.028 10.1007/s11249-013-0111-4 10.1016/j.matchar.2015.02.008 10.1016/S1359-6462(99)00276-6 10.1088/1742-6596/13/1/059 10.1088/2051-672X/3/1/014001 10.1088/0957-0233/21/5/055108 10.1016/j.mprp.2017.02.003 10.1016/j.matdes.2012.05.017 10.1007/s11661-015-2882-8 10.1098/rspa.2013.0150 10.1088/2051-672X/4/4/045002 10.1016/j.wear.2008.04.056 |
ContentType | Journal Article |
Copyright | 2018 |
Copyright_xml | – notice: 2018 |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.precisioneng.2018.09.007 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-2372 |
EndPage | 15 |
ExternalDocumentID | 10_1016_j_precisioneng_2018_09_007 S0141635918300345 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1~. 1~5 29O 4.4 457 4G. 5VS 6I. 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SSM SST SSZ T5K TN5 UHS WH7 WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ADNMO AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AIIUN ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c376t-9bc3eefbe18894de1194b6da4af93f7312d78a55ff486051bae7cb0217139bd53 |
IEDL.DBID | .~1 |
ISSN | 0141-6359 |
IngestDate | Thu Apr 24 23:08:10 EDT 2025 Tue Jul 01 02:12:59 EDT 2025 Fri Feb 23 02:23:48 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Powder bed fusion Surface texture Additive manufacturing Surface characterisation |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c376t-9bc3eefbe18894de1194b6da4af93f7312d78a55ff486051bae7cb0217139bd53 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0141635918300345 |
PageCount | 15 |
ParticipantIDs | crossref_primary_10_1016_j_precisioneng_2018_09_007 crossref_citationtrail_10_1016_j_precisioneng_2018_09_007 elsevier_sciencedirect_doi_10_1016_j_precisioneng_2018_09_007 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2019 2019-05-00 |
PublicationDateYYYYMMDD | 2019-05-01 |
PublicationDate_xml | – month: 05 year: 2019 text: May 2019 |
PublicationDecade | 2010 |
PublicationTitle | Precision engineering |
PublicationYear | 2019 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Strano, Hao, Everson, Evans (bib8) 2013; 213 Bacchewar, Singhal, Pandey (bib10) 2007; 221 Jiang (bib42) 2010; 59 Simonelli, Tuck, Aboulkhair, Maskery, Ashcroft, Wildman (bib31) 2015; 46 Niu, Chang (bib30) 1999; 41 Scott (bib48) 2009; 266 Lou, Townsend, Blunt, Zeng, Jiang, Scott (bib22) 2016 ISO 25178-2 (bib20) 2012 Thijs, Verhaeghe, Craeghs, Humbeeck, Kruth (bib32) 2010; 58 Ghanekar, Crawford (bib9) 2003 ISO 4287 (bib24) 1997 ISO 25178-3 (bib34) 2012 Yadroitsev, Gusarov, Yadroitsava, Smurov (bib11) 2010; 210 Senin, Thompson, Leach (bib21) 2018; 29 Reese, Taylor, Evans (bib19) 2016 ISO 4287 (bib35) 1997 Malburg (bib44) 2003; 125 Pagani, Qi, Jiang, Scott (bib27) 2017; 109 Serra, Vincent (bib47) 1992; 11 Tammas-Williams, Zhao, Léonard, Derguti, Todd (bib33) 2015; 102 Whitehouse (bib16) 2002 Leach, Haitjema (bib49) 2010; 21 Zeng, Jiang, Scott (bib37) 2010; 21 Gibson, Rosen, Stucker (bib4) 2015 Karlsson, Snis, Engqvist, Lausmaa (bib13) 2013; 213 Seewig (bib41) 2005; 13 Cooper, Stanford, Kibble, Gibbons (bib15) 2012; 41 Fox, Moylan, Lane, Whitenton, Heigel (bib14) 2016 ISO 16610-40 (bib43) 2015 Scott (bib36) 2017 National Institute of Standards and Technology (bib3) 2013 Jiang, Whitehouse (bib28) 2012; 61 Lemoine, Mancini, Velez, Brown (bib26) 2016 Triantaphyllou, Giusca, Macaulay, Roerig, Hoebel, Leach, Tomita, Milne (bib12) 2015; 3 Thompson, Senin, Leach (bib29) 2016 Lou, Jiang, Bills, Scott (bib46) 2013; 50 Kruth, Yasa, Deckers (bib5) 2008 ISO 16610-30 (bib40) 2015 Mumtaz, Hopkinson (bib7) 2009; 15 Lou, Jiang, Scott (bib38) 2013; 469 Grimm, Wiora, Witt (bib17) 2015; 3 Vetterli, Schmid, Wegener (bib18) 2014 Dalgarno (bib6) 2007 Sidambe (bib25) 2017; 72 Scott (bib39) 2004; 460 Lou, Jiang, Scott (bib45) 2013; 42 Rosa, Brient, Samper, Hascoët (bib23) 2016; 4 Berman (bib2) 2012; 55 TSB Additive Manufacturing Special Interest Group (bib1) 2012 ISO 25178-2 (10.1016/j.precisioneng.2018.09.007_bib20) 2012 Senin (10.1016/j.precisioneng.2018.09.007_bib21) 2018; 29 Zeng (10.1016/j.precisioneng.2018.09.007_bib37) 2010; 21 Rosa (10.1016/j.precisioneng.2018.09.007_bib23) 2016; 4 Serra (10.1016/j.precisioneng.2018.09.007_bib47) 1992; 11 Lou (10.1016/j.precisioneng.2018.09.007_bib22) 2016 Scott (10.1016/j.precisioneng.2018.09.007_bib36) 2017 ISO 4287 (10.1016/j.precisioneng.2018.09.007_bib35) 1997 Lemoine (10.1016/j.precisioneng.2018.09.007_bib26) 2016 Thijs (10.1016/j.precisioneng.2018.09.007_bib32) 2010; 58 Jiang (10.1016/j.precisioneng.2018.09.007_bib42) 2010; 59 Scott (10.1016/j.precisioneng.2018.09.007_bib39) 2004; 460 Niu (10.1016/j.precisioneng.2018.09.007_bib30) 1999; 41 ISO 25178-3 (10.1016/j.precisioneng.2018.09.007_bib34) 2012 Lou (10.1016/j.precisioneng.2018.09.007_bib38) 2013; 469 Leach (10.1016/j.precisioneng.2018.09.007_bib49) 2010; 21 Triantaphyllou (10.1016/j.precisioneng.2018.09.007_bib12) 2015; 3 National Institute of Standards and Technology (10.1016/j.precisioneng.2018.09.007_bib3) ISO 16610-30 (10.1016/j.precisioneng.2018.09.007_bib40) 2015 Lou (10.1016/j.precisioneng.2018.09.007_bib46) 2013; 50 Fox (10.1016/j.precisioneng.2018.09.007_bib14) 2016 Strano (10.1016/j.precisioneng.2018.09.007_bib8) 2013; 213 Berman (10.1016/j.precisioneng.2018.09.007_bib2) 2012; 55 Scott (10.1016/j.precisioneng.2018.09.007_bib48) 2009; 266 Dalgarno (10.1016/j.precisioneng.2018.09.007_bib6) 2007 Thompson (10.1016/j.precisioneng.2018.09.007_bib29) 2016 Whitehouse (10.1016/j.precisioneng.2018.09.007_bib16) 2002 Vetterli (10.1016/j.precisioneng.2018.09.007_bib18) 2014 Tammas-Williams (10.1016/j.precisioneng.2018.09.007_bib33) 2015; 102 Sidambe (10.1016/j.precisioneng.2018.09.007_bib25) 2017; 72 Cooper (10.1016/j.precisioneng.2018.09.007_bib15) 2012; 41 Reese (10.1016/j.precisioneng.2018.09.007_bib19) 2016 Ghanekar (10.1016/j.precisioneng.2018.09.007_bib9) 2003 Mumtaz (10.1016/j.precisioneng.2018.09.007_bib7) 2009; 15 Jiang (10.1016/j.precisioneng.2018.09.007_bib28) 2012; 61 Pagani (10.1016/j.precisioneng.2018.09.007_bib27) 2017; 109 Simonelli (10.1016/j.precisioneng.2018.09.007_bib31) 2015; 46 Malburg (10.1016/j.precisioneng.2018.09.007_bib44) 2003; 125 Karlsson (10.1016/j.precisioneng.2018.09.007_bib13) 2013; 213 ISO 16610-40 (10.1016/j.precisioneng.2018.09.007_bib43) 2015 Bacchewar (10.1016/j.precisioneng.2018.09.007_bib10) 2007; 221 Grimm (10.1016/j.precisioneng.2018.09.007_bib17) 2015; 3 Seewig (10.1016/j.precisioneng.2018.09.007_bib41) 2005; 13 Lou (10.1016/j.precisioneng.2018.09.007_bib45) 2013; 42 Yadroitsev (10.1016/j.precisioneng.2018.09.007_bib11) 2010; 210 Gibson (10.1016/j.precisioneng.2018.09.007_bib4) 2015 Kruth (10.1016/j.precisioneng.2018.09.007_bib5) 2008 TSB Additive Manufacturing Special Interest Group (10.1016/j.precisioneng.2018.09.007_bib1) 2012 ISO 4287 (10.1016/j.precisioneng.2018.09.007_bib24) 1997 |
References_xml | – year: 2017 ident: bib36 article-title: Foundation of decomposition for manufacturing geometrical products, the 16'th metrology and properties of engineering surfaces – volume: 210 start-page: 1624 year: 2010 end-page: 1631 ident: bib11 article-title: Single track formation in selective laser melting of metal powders publication-title: J Mater Process Technol – volume: 11 start-page: 47 year: 1992 end-page: 108 ident: bib47 article-title: An overview of morphological filtering publication-title: Circ Syst Signal Process – volume: 3 year: 2015 ident: bib17 article-title: Characterization of typical surface effects in additive manufacturing with confocal microscopy publication-title: Surf Topogr Metrol Prop – year: 2014 ident: bib18 article-title: Comprehensive investigation of surface characterization methods for laser sintered parts publication-title: Fraunhofer direct digital manufacturing conference – volume: 55 start-page: 155 year: 2012 end-page: 162 ident: bib2 article-title: 3-D printing: the new industrial revolution publication-title: Bus Horiz – year: 2016 ident: bib29 article-title: Towards an additive surface Atlas publication-title: Proc ASPE summer topical – volume: 21 year: 2010 ident: bib49 article-title: Bandwidth characteristics and comparisons of surface texture measuring instruments publication-title: Meas Sci Technol – volume: 213 start-page: 2109 year: 2013 end-page: 2118 ident: bib13 article-title: Characterization and comparison of materials produced by electron beam melting (EBM) of two different Ti-6AL-4V powder fraction publication-title: J Mater Process Technol – volume: 266 start-page: 548 year: 2009 end-page: 551 ident: bib48 article-title: Feature parameters publication-title: Wear – start-page: 50 year: 2016 end-page: 54 ident: bib19 article-title: Surface finish metrology of additive-manufactured components publication-title: Proc ASPE Summer Top – year: 2012 ident: bib34 article-title: Geometrical product specifications (GPS) – surface texture: areal – Part 3: specification operators – year: 2016 ident: bib14 article-title: Preliminary study toward surface texture as a process signature in laser powder bed fusion additive manufacturing publication-title: Proc ASPE summer topical – volume: 58 start-page: 3303 year: 2010 end-page: 3312 ident: bib32 article-title: A study of the microstructural evolution during selective laser melting of Ti–6Al–4V publication-title: Acta Mater – start-page: 138 year: 2015 ident: bib4 article-title: Additive manufacturing technologies: rapid prototyping to direct digital manufacturing – volume: 29 year: 2018 ident: bib21 article-title: Feature-based characterisation of signature topography in laser powder bed fusion of metals publication-title: Meas Sci Technol – volume: 21 year: 2010 ident: bib37 article-title: Fast algorithm of the robust Gaussian regression filter for areal surface analysis publication-title: Meas Sci Technol – volume: 42 start-page: 993 year: 2013 end-page: 1001 ident: bib45 article-title: Correlating motif analysis and morphological filters for surface texture analysis publication-title: Measurement – year: 2012 ident: bib1 article-title: Shaping our national competency in additive manufacturing: a technology innovation needs analysis – volume: 72 start-page: 200 year: 2017 end-page: 205 ident: bib25 article-title: Three dimensional surface topography characterization of the electron beam melted Ti6Al4V publication-title: Met Powder Rep – start-page: 170 year: 2008 end-page: 183 ident: bib5 article-title: Roughness improvement in selective laser melting publication-title: Proc. of int. Conf. PMI, Ghent, Belgium – year: 2002 ident: bib16 article-title: Surfaces and their measurement – volume: 109 start-page: 281 year: 2017 end-page: 291 ident: bib27 article-title: Towards a new definition of areal surface texture parameters on freeform surface publication-title: Measurement – start-page: 174 year: 2016 end-page: 179 ident: bib26 article-title: On the metrology of surface produced by laser melting of powders publication-title: Proc ASPE Summer Top – volume: 46 start-page: 3842 year: 2015 end-page: 3851 ident: bib31 article-title: A study on the laser spatter and the oxidation reactions during selective laser melting of 316L stainless steel, Al-Si10-Mg, and Ti-6Al-4V publication-title: Metall Mater Trans A – volume: 13 start-page: 254 year: 2005 end-page: 257 ident: bib41 article-title: Linear and robust Gaussian regression filters publication-title: J Phys Conf Ser – volume: 59 start-page: 573 year: 2010 end-page: 576 ident: bib42 article-title: Robust solution for the evaluation of stratified functional surface publication-title: CIRP Ann Manuf Technol – year: 2012 ident: bib20 article-title: Geometrical product specifications (GPS) – surface texture: areal – Part 2: terms, definitions and surface texture parameters – year: 2016 ident: bib22 article-title: On characterising surface topography of metal powder bed fusion additive manufactured parts publication-title: Proc. 16th EUSPEN – year: 1997 ident: bib35 article-title: Geometrical Product Specifications (GPS) – surface texture: profile method – terms, definitions and surface texture parameters – volume: 15 start-page: 96 year: 2009 end-page: 103 ident: bib7 article-title: Top surface and side roughness of Inconel 625 parts processed using selective laser melting publication-title: Rapid Prototyp J – volume: 4 year: 2016 ident: bib23 article-title: Influence of additive laser manufacturing parameters on surface using density of partially melted particles publication-title: Surf Topogr Metrol Prop – volume: 61 start-page: 815 year: 2012 end-page: 836 ident: bib28 article-title: Technological shifts in surface metrology publication-title: CIRP Ann - Manuf Technol – year: 1997 ident: bib24 article-title: Geometrical Product Specifications (GPS) – surface texture: profile method – terms, definitions and surface texture parameters – volume: 213 start-page: 589 year: 2013 end-page: 597 ident: bib8 article-title: Surface roughness analysis, modelling and prediction in selective laser melting publication-title: J Mater Process Technol – volume: 50 start-page: 185 year: 2013 end-page: 193 ident: bib46 article-title: Defining true tribological contact through application of the morphological method to surface topography publication-title: Tribol Lett – volume: 41 start-page: 226 year: 2012 end-page: 230 ident: bib15 article-title: Additive manufacturing for product improvement at red bull technology publication-title: Mater Des – volume: 3 year: 2015 ident: bib12 article-title: Surface texture measurement for additive manufacturing publication-title: Surf Topogr: Metrol Prop – volume: 221 start-page: 35 year: 2007 end-page: 52 ident: bib10 article-title: Statistical modelling and optimization of surface roughness in the selective laser sintering process publication-title: Proc Inst Mech Eng B J Eng Manuf – volume: 125 start-page: 624 year: 2003 end-page: 627 ident: bib44 article-title: Surface profile analysis for conformable interfaces publication-title: J Manuf Sci Eng, Trans ASME – volume: 102 start-page: 47 year: 2015 end-page: 61 ident: bib33 article-title: Prangnell PB XCT analysis of the influence of melt strategies on defect population in Ti–6Al–4V components manufactured by selective electron beam melting publication-title: Mater Char – volume: 460 start-page: 2845 year: 2004 end-page: 2864 ident: bib39 article-title: Pattern analysis and metrology: the extraction of stable features from observable measurements publication-title: Proc R Soc London, Ser A – year: 2015 ident: bib40 article-title: Geometrical product specifications (GPS) – filtration – Part 30: robust profile filters: basic concepts – start-page: 147 year: 2007 end-page: 156 ident: bib6 article-title: Materials research to support high performance RM parts publication-title: Rapid manufacturing 2nd international conference – volume: 469 year: 2013 ident: bib38 article-title: Geometric computation theory for morphological filtering on freeform surfaces publication-title: Proc R Soc London, Ser A – start-page: 348 year: 2003 end-page: 362 ident: bib9 article-title: Optimization of SLS process parameters using D-optimality publication-title: Proc. 14th int. Solid freeform fabrication symp – year: 2015 ident: bib43 article-title: Geometrical product specifications (GPS) – filtration – Part 40: morphological profile filters: basic concepts – year: 2013 ident: bib3 article-title: Measurement science roadmap for metal-based additive manufacturing – volume: 41 start-page: 1229 year: 1999 end-page: 1234 ident: bib30 article-title: Instability of scan tracks of selective laser sintering of high speed steel powder publication-title: Scripta Mater – year: 2015 ident: 10.1016/j.precisioneng.2018.09.007_bib40 – volume: 61 start-page: 815 issue: 2 year: 2012 ident: 10.1016/j.precisioneng.2018.09.007_bib28 article-title: Technological shifts in surface metrology publication-title: CIRP Ann - Manuf Technol doi: 10.1016/j.cirp.2012.05.009 – start-page: 348 year: 2003 ident: 10.1016/j.precisioneng.2018.09.007_bib9 article-title: Optimization of SLS process parameters using D-optimality – volume: 58 start-page: 3303 year: 2010 ident: 10.1016/j.precisioneng.2018.09.007_bib32 article-title: A study of the microstructural evolution during selective laser melting of Ti–6Al–4V publication-title: Acta Mater doi: 10.1016/j.actamat.2010.02.004 – volume: 59 start-page: 573 year: 2010 ident: 10.1016/j.precisioneng.2018.09.007_bib42 article-title: Robust solution for the evaluation of stratified functional surface publication-title: CIRP Ann Manuf Technol doi: 10.1016/j.cirp.2010.03.138 – volume: 210 start-page: 1624 year: 2010 ident: 10.1016/j.precisioneng.2018.09.007_bib11 article-title: Single track formation in selective laser melting of metal powders publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2010.05.010 – volume: 460 start-page: 2845 year: 2004 ident: 10.1016/j.precisioneng.2018.09.007_bib39 article-title: Pattern analysis and metrology: the extraction of stable features from observable measurements publication-title: Proc R Soc London, Ser A doi: 10.1098/rspa.2004.1291 – year: 2012 ident: 10.1016/j.precisioneng.2018.09.007_bib34 – volume: 55 start-page: 155 year: 2012 ident: 10.1016/j.precisioneng.2018.09.007_bib2 article-title: 3-D printing: the new industrial revolution publication-title: Bus Horiz doi: 10.1016/j.bushor.2011.11.003 – volume: 21 issue: 3 year: 2010 ident: 10.1016/j.precisioneng.2018.09.007_bib49 article-title: Bandwidth characteristics and comparisons of surface texture measuring instruments publication-title: Meas Sci Technol doi: 10.1088/0957-0233/21/3/032001 – start-page: 147 year: 2007 ident: 10.1016/j.precisioneng.2018.09.007_bib6 article-title: Materials research to support high performance RM parts – start-page: 174 year: 2016 ident: 10.1016/j.precisioneng.2018.09.007_bib26 article-title: On the metrology of surface produced by laser melting of powders publication-title: Proc ASPE Summer Top – volume: 213 start-page: 2109 year: 2013 ident: 10.1016/j.precisioneng.2018.09.007_bib13 article-title: Characterization and comparison of materials produced by electron beam melting (EBM) of two different Ti-6AL-4V powder fraction publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2013.06.010 – volume: 213 start-page: 589 year: 2013 ident: 10.1016/j.precisioneng.2018.09.007_bib8 article-title: Surface roughness analysis, modelling and prediction in selective laser melting publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2012.11.011 – volume: 15 start-page: 96 issue: 2 year: 2009 ident: 10.1016/j.precisioneng.2018.09.007_bib7 article-title: Top surface and side roughness of Inconel 625 parts processed using selective laser melting publication-title: Rapid Prototyp J doi: 10.1108/13552540910943397 – volume: 29 issue: 4 year: 2018 ident: 10.1016/j.precisioneng.2018.09.007_bib21 article-title: Feature-based characterisation of signature topography in laser powder bed fusion of metals publication-title: Meas Sci Technol doi: 10.1088/1361-6501/aa9e19 – volume: 11 start-page: 47 year: 1992 ident: 10.1016/j.precisioneng.2018.09.007_bib47 article-title: An overview of morphological filtering publication-title: Circ Syst Signal Process doi: 10.1007/BF01189221 – ident: 10.1016/j.precisioneng.2018.09.007_bib3 – volume: 125 start-page: 624 year: 2003 ident: 10.1016/j.precisioneng.2018.09.007_bib44 article-title: Surface profile analysis for conformable interfaces publication-title: J Manuf Sci Eng, Trans ASME doi: 10.1115/1.1580851 – start-page: 50 year: 2016 ident: 10.1016/j.precisioneng.2018.09.007_bib19 article-title: Surface finish metrology of additive-manufactured components publication-title: Proc ASPE Summer Top – volume: 42 start-page: 993 year: 2013 ident: 10.1016/j.precisioneng.2018.09.007_bib45 article-title: Correlating motif analysis and morphological filters for surface texture analysis publication-title: Measurement doi: 10.1016/j.measurement.2012.10.001 – year: 2014 ident: 10.1016/j.precisioneng.2018.09.007_bib18 article-title: Comprehensive investigation of surface characterization methods for laser sintered parts – volume: 221 start-page: 35 year: 2007 ident: 10.1016/j.precisioneng.2018.09.007_bib10 article-title: Statistical modelling and optimization of surface roughness in the selective laser sintering process publication-title: Proc Inst Mech Eng B J Eng Manuf doi: 10.1243/09544054JEM670 – volume: 109 start-page: 281 year: 2017 ident: 10.1016/j.precisioneng.2018.09.007_bib27 article-title: Towards a new definition of areal surface texture parameters on freeform surface publication-title: Measurement doi: 10.1016/j.measurement.2017.05.028 – year: 2016 ident: 10.1016/j.precisioneng.2018.09.007_bib22 article-title: On characterising surface topography of metal powder bed fusion additive manufactured parts – year: 2012 ident: 10.1016/j.precisioneng.2018.09.007_bib20 – volume: 50 start-page: 185 year: 2013 ident: 10.1016/j.precisioneng.2018.09.007_bib46 article-title: Defining true tribological contact through application of the morphological method to surface topography publication-title: Tribol Lett doi: 10.1007/s11249-013-0111-4 – volume: 102 start-page: 47 year: 2015 ident: 10.1016/j.precisioneng.2018.09.007_bib33 article-title: Prangnell PB XCT analysis of the influence of melt strategies on defect population in Ti–6Al–4V components manufactured by selective electron beam melting publication-title: Mater Char doi: 10.1016/j.matchar.2015.02.008 – volume: 41 start-page: 1229 year: 1999 ident: 10.1016/j.precisioneng.2018.09.007_bib30 article-title: Instability of scan tracks of selective laser sintering of high speed steel powder publication-title: Scripta Mater doi: 10.1016/S1359-6462(99)00276-6 – volume: 13 start-page: 254 year: 2005 ident: 10.1016/j.precisioneng.2018.09.007_bib41 article-title: Linear and robust Gaussian regression filters publication-title: J Phys Conf Ser doi: 10.1088/1742-6596/13/1/059 – volume: 3 year: 2015 ident: 10.1016/j.precisioneng.2018.09.007_bib17 article-title: Characterization of typical surface effects in additive manufacturing with confocal microscopy publication-title: Surf Topogr Metrol Prop doi: 10.1088/2051-672X/3/1/014001 – year: 2012 ident: 10.1016/j.precisioneng.2018.09.007_bib1 – year: 2002 ident: 10.1016/j.precisioneng.2018.09.007_bib16 – start-page: 138 year: 2015 ident: 10.1016/j.precisioneng.2018.09.007_bib4 – year: 2015 ident: 10.1016/j.precisioneng.2018.09.007_bib43 – volume: 21 year: 2010 ident: 10.1016/j.precisioneng.2018.09.007_bib37 article-title: Fast algorithm of the robust Gaussian regression filter for areal surface analysis publication-title: Meas Sci Technol doi: 10.1088/0957-0233/21/5/055108 – volume: 72 start-page: 200 year: 2017 ident: 10.1016/j.precisioneng.2018.09.007_bib25 article-title: Three dimensional surface topography characterization of the electron beam melted Ti6Al4V publication-title: Met Powder Rep doi: 10.1016/j.mprp.2017.02.003 – year: 1997 ident: 10.1016/j.precisioneng.2018.09.007_bib24 – volume: 41 start-page: 226 year: 2012 ident: 10.1016/j.precisioneng.2018.09.007_bib15 article-title: Additive manufacturing for product improvement at red bull technology publication-title: Mater Des doi: 10.1016/j.matdes.2012.05.017 – volume: 46 start-page: 3842 year: 2015 ident: 10.1016/j.precisioneng.2018.09.007_bib31 article-title: A study on the laser spatter and the oxidation reactions during selective laser melting of 316L stainless steel, Al-Si10-Mg, and Ti-6Al-4V publication-title: Metall Mater Trans A doi: 10.1007/s11661-015-2882-8 – volume: 3 year: 2015 ident: 10.1016/j.precisioneng.2018.09.007_bib12 article-title: Surface texture measurement for additive manufacturing publication-title: Surf Topogr: Metrol Prop – volume: 469 year: 2013 ident: 10.1016/j.precisioneng.2018.09.007_bib38 article-title: Geometric computation theory for morphological filtering on freeform surfaces publication-title: Proc R Soc London, Ser A doi: 10.1098/rspa.2013.0150 – volume: 4 year: 2016 ident: 10.1016/j.precisioneng.2018.09.007_bib23 article-title: Influence of additive laser manufacturing parameters on surface using density of partially melted particles publication-title: Surf Topogr Metrol Prop doi: 10.1088/2051-672X/4/4/045002 – volume: 266 start-page: 548 year: 2009 ident: 10.1016/j.precisioneng.2018.09.007_bib48 article-title: Feature parameters publication-title: Wear doi: 10.1016/j.wear.2008.04.056 – year: 1997 ident: 10.1016/j.precisioneng.2018.09.007_bib35 – year: 2017 ident: 10.1016/j.precisioneng.2018.09.007_bib36 – year: 2016 ident: 10.1016/j.precisioneng.2018.09.007_bib14 article-title: Preliminary study toward surface texture as a process signature in laser powder bed fusion additive manufacturing – year: 2016 ident: 10.1016/j.precisioneng.2018.09.007_bib29 article-title: Towards an additive surface Atlas – start-page: 170 year: 2008 ident: 10.1016/j.precisioneng.2018.09.007_bib5 article-title: Roughness improvement in selective laser melting |
SSID | ssj0007804 |
Score | 2.541067 |
Snippet | Powder bed fusion (PBF) is a popular additive manufacturing (AM) process with wide applications in key industrial sectors, including aerospace, automotive,... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Additive manufacturing Powder bed fusion Surface characterisation Surface texture |
Title | Characterisation methods for powder bed fusion processed surface topography |
URI | https://dx.doi.org/10.1016/j.precisioneng.2018.09.007 |
Volume | 57 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La8JAEB7EXtpD6ZPah-yh11STTWL20INIxVbwVMHbsq8US9Ggkd762zuTR7XQg9BjlgwsH8PMLPvt9wHcB3Tbk5jAc6m2XqgE1kEedunCkUwyLTbFgm0xiUfT8GUWzRowqN_CEK2yqv1lTS-qdbXSqdDsZPN5h2hJOExEApOSVFbooTmp12FOP3xtaR4ksFPSGH2P_q6FRwuOV7aqjWwWb0TzSgrNU7KW_atJ7TSe4QkcVxMj65ebOoWGW5zB0Y6O4DmMB1vZ5QJpVhpDrxmOpCxbflq3YtpZlm5oGywrXwfgwnqzSpVxLF9mlXb1BUyHT6-DkVe5JHgGi0PuCW24Q6SdnyQitM73Rahjq0KVCp72uB_YXqKiKE3JbyrytXI9o-kogsOfthG_hOYCEbgChtN2orUyvsFjo7YiwfNgN7bY0wPFY81bIGpYpKkkxMnJ4kPWXLF3uQupJEhlV0iEtAX8JzYrhTT2inqs0Ze_0kJixd8j_vqf8TdwiF-iZDjeQjNfbdwdTiG5bhdp1oaD_vN4NPkGUUPf3w |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LasJAFL1YXbRdlD6pfc6i26AxDzOLLkQqsVpXCu6GeaVYioYY6e_3TjKxFroQup1wYTgM595hTs4BeOqY155IdhydCOX4nCIPen7bPDiakEyFTbFQW0zCeOa_zoN5DfrVvzBGVmm5v-T0gq3tSsui2UoXi5aRJeEwEVA8lMZlJTiAhnGn8uvQ6A1H8WRLyMZjp1Qyuo4pqLxHC5lXmlVZNst3o_SKCttTky77V5_a6T2DUzixQyPplfs6g5pensPxjpXgBYz6P87LBdikzIZeE5xKSbr6UjojQiuSbMw2SFr-IIAL602WcKlJvkqtffUlzAYv037s2KAERyI_5A4V0tMItnajiPpKuy71Rai4zxPqJV3P7ahuxIMgSUzkVOAKrrtSmNsIzn9CBd4V1JeIwDUQHLgjIbh0Jd4chaIRXgnbocK23uFeKLwm0AoWJq2LuAmz-GSVXOyD7ULKDKSsTRlC2gRvW5uWXhp7VT1X6LNfJ4Mh6e9Rf_PP-kc4jKdvYzYeTka3cIRfaCl4vIN6nm30PQ4luXiwh-4b_G_ikA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterisation+methods+for+powder+bed+fusion+processed+surface+topography&rft.jtitle=Precision+engineering&rft.au=Lou%2C+S.&rft.au=Jiang%2C+X.&rft.au=Sun%2C+W.&rft.au=Zeng%2C+W.&rft.date=2019-05-01&rft.pub=Elsevier+Inc&rft.issn=0141-6359&rft.eissn=1873-2372&rft.volume=57&rft.spage=1&rft.epage=15&rft_id=info:doi/10.1016%2Fj.precisioneng.2018.09.007&rft.externalDocID=S0141635918300345 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-6359&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-6359&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-6359&client=summon |