Decomposition Algorithm Model for Singly Linearly-Constrained Problems Subject to Lower and Upper Bounds

Many real applications can be formulated as nonlinear minimization problems with a single linear equality constraint and box constraints. We are interested in solving problems where the number of variables is so huge that basic operations, such as the evaluation of the objective function or the upda...

Full description

Saved in:
Bibliographic Details
Published inJournal of optimization theory and applications Vol. 141; no. 1; pp. 107 - 126
Main Authors Lin, C. J., Lucidi, S., Palagi, L., Risi, A., Sciandrone, M.
Format Journal Article
LanguageEnglish
Published Boston Springer US 01.04.2009
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Many real applications can be formulated as nonlinear minimization problems with a single linear equality constraint and box constraints. We are interested in solving problems where the number of variables is so huge that basic operations, such as the evaluation of the objective function or the updating of its gradient, are very time consuming. Thus, for the considered class of problems (including dense quadratic programs), traditional optimization methods cannot be applied directly. In this paper, we define a decomposition algorithm model which employs, at each iteration, a descent search direction selected among a suitable set of sparse feasible directions. The algorithm is characterized by an acceptance rule of the updated point which on the one hand permits to choose the variables to be modified with a certain degree of freedom and on the other hand does not require the exact solution of any subproblem. The global convergence of the algorithm model is proved by assuming that the objective function is continuously differentiable and that the points of the level set have at least one component strictly between the lower and upper bounds. Numerical results on large-scale quadratic problems arising in the training of support vector machines show the effectiveness of an implemented decomposition scheme derived from the general algorithm model.
AbstractList Many real applications can be formulated as nonlinear minimization problems with a single linear equality constraint and box constraints. We are interested in solving problems where the number of variables is so huge that basic operations, such as the evaluation of the objective function or the updating of its gradient, are very time consuming. Thus, for the considered class of problems (including dense quadratic programs), traditional optimization methods cannot be applied directly. In this paper, we define a decomposition algorithm model which employs, at each iteration, a descent search direction selected among a suitable set of sparse feasible directions. The algorithm is characterized by an acceptance rule of the updated point which on the one hand permits to choose the variables to be modified with a certain degree of freedom and on the other hand does not require the exact solution of any subproblem. The global convergence of the algorithm model is proved by assuming that the objective function is continuously differentiable and that the points of the level set have at least one component strictly between the lower and upper bounds. Numerical results on large-scale quadratic problems arising in the training of support vector machines show the effectiveness of an implemented decomposition scheme derived from the general algorithm model.
Many real applications can be formulated as nonlinear minimization problems with a single linear equality constraint and box constraints. We are interested in solving problems where the number of variables is so huge that basic operations, such as the evaluation of the objective function or the updating of its gradient, are very time consuming. Thus, for the considered class of problems (including dense quadratic programs), traditional optimization methods cannot be applied directly. In this paper, we define a decomposition algorithm model which employs, at each iteration, a descent search direction selected among a suitable set of sparse feasible directions. The algorithm is characterized by an acceptance rule of the updated point which on the one hand permits to choose the variables to be modified with a certain degree of freedom and on the other hand does not require the exact solution of any subproblem. The global convergence of the algorithm model is proved by assuming that the objective function is continuously differentiable and that the points of the level set have at least one component strictly between the lower and upper bounds. Numerical results on large-scale quadratic problems arising in the training of support vector machines show the effectiveness of an implemented decomposition scheme derived from the general algorithm model. [PUBLICATION ABSTRACT]
Author Palagi, L.
Sciandrone, M.
Lucidi, S.
Risi, A.
Lin, C. J.
Author_xml – sequence: 1
  givenname: C. J.
  surname: Lin
  fullname: Lin, C. J.
  organization: Department of Computer Science, National Taiwan University
– sequence: 2
  givenname: S.
  surname: Lucidi
  fullname: Lucidi, S.
  organization: Dipartimento di Informatica e Sistemistica “Antonio Ruberti”, University of Rome “La Sapienza”
– sequence: 3
  givenname: L.
  surname: Palagi
  fullname: Palagi, L.
  organization: Dipartimento di Informatica e Sistemistica “Antonio Ruberti”, University of Rome “La Sapienza”
– sequence: 4
  givenname: A.
  surname: Risi
  fullname: Risi, A.
  organization: Istituto di Analisi dei Sistemi ed Informatica “A. Ruberti”, CNR
– sequence: 5
  givenname: M.
  surname: Sciandrone
  fullname: Sciandrone, M.
  email: sciandro@dsi.unifi.it
  organization: Dipartimento di Sistemi e Informatica, University of Florence
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21359554$$DView record in Pascal Francis
BookMark eNp9kduKFDEQhoOs4OzqA3jXCHqXNYfuHC7X8bDCiMK61yGdpMcM6aRNupF5m3mWeTIzzAqyoBShCHxfUdR_CS5iig6AlxhdY4T424KR7DhESEDZCgnlE7DCHaeQCC4uwAohQiAlVD4Dl6XsEEJS8HYFwntn0jil4mefYnMTtin7-cfYfEnWhWZI-Xi483Eb9s3GR6dz2MN1imXOun5t8y2nPrixNHdLv3NmbuZ0PGzSL1c9He3xcD9NLjfv0hJteQ6eDjoU9-KhX4H7jx--r2_h5uunz-ubDTSUsxlKxogjlgvNEKL1oaHvey0s65mrxSzutWtbyhGnlglrDaIDN6SK0nQ9vQJvznOnnH4ursxq9MW4EHR0aSmKUsYx56KCrx6Bu7TkWHdTWLJOUoFxhV4_QLoYHYaso_FFTdmPOu8VwbSTXddWjp85k1Mp2Q3K-Fmfzno6VlAYqVNU6hyVqlGpU1RKVhM_Mv8M_59Dzk6pbNy6_Nfq_5R-A7qXrAw
CODEN JOTABN
CitedBy_id crossref_primary_10_1007_s11590_009_0119_8
crossref_primary_10_1137_090750639
crossref_primary_10_1016_j_eswa_2012_02_007
crossref_primary_10_1007_s10479_022_04655_x
crossref_primary_10_1016_j_ejor_2014_09_054
crossref_primary_10_1007_s11590_010_0214_x
crossref_primary_10_1007_s10898_014_0151_9
crossref_primary_10_1007_s10589_017_9953_2
crossref_primary_10_1007_s10898_019_00792_z
crossref_primary_10_1016_j_cor_2012_05_015
crossref_primary_10_1007_s10994_012_5291_x
crossref_primary_10_1080_10556788_2025_2453110
crossref_primary_10_1137_15M1037810
crossref_primary_10_1007_s10957_014_0617_4
crossref_primary_10_1016_j_apm_2011_10_017
crossref_primary_10_1016_j_ejor_2013_05_049
crossref_primary_10_1007_s10288_018_0378_2
crossref_primary_10_1287_opre_2023_2478
crossref_primary_10_1137_130940037
crossref_primary_10_1007_s10589_018_9987_0
crossref_primary_10_1016_j_proeng_2011_08_683
crossref_primary_10_1007_s10589_011_9405_3
crossref_primary_10_1007_s10957_013_0491_5
crossref_primary_10_1007_s10589_019_00082_0
crossref_primary_10_1007_s10589_019_00150_5
crossref_primary_10_1137_20M1328014
crossref_primary_10_1007_s10589_013_9598_8
crossref_primary_10_1007_s10589_016_9824_2
crossref_primary_10_1007_s11222_016_9644_3
crossref_primary_10_1007_s00158_013_0999_1
Cites_doi 10.1109/TAC.1969.1099299
10.1007/s10589-007-9044-x
10.1007/s10107-005-0595-2
10.1109/72.788643
10.1109/72.857780
10.1023/A:1011215321374
10.1023/A:1008230200610
10.1137/S1052623400374379
10.1080/10556780500140714
10.1109/72.963765
10.1007/s10957-006-9157-x
10.1109/72.822516
10.1080/10556780512331318209
10.1287/moor.1040.0098
10.1007/978-1-4757-2440-0
10.1017/CBO9780511801389
ContentType Journal Article
Copyright Springer Science+Business Media, LLC 2009
2009 INIST-CNRS
Copyright_xml – notice: Springer Science+Business Media, LLC 2009
– notice: 2009 INIST-CNRS
DBID AAYXX
CITATION
IQODW
3V.
7SC
7TB
7WY
7WZ
7XB
87Z
88I
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FR3
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
KR7
L.-
L.0
L6V
L7M
L~C
L~D
M0C
M2O
M2P
M7S
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
Q9U
DOI 10.1007/s10957-008-9489-9
DatabaseName CrossRef
Pascal-Francis
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Research Library (Alumni)
Materials Science & Engineering Collection
ProQuest Central
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Collection (ProQuest)
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
Civil Engineering Abstracts
ABI/INFORM Professional Advanced
ABI/INFORM Professional Standard
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Research Library
Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ABI/INFORM Professional Standard
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Civil Engineering Abstracts
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList Civil Engineering Abstracts
ProQuest Business Collection (Alumni Edition)

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Applied Sciences
EISSN 1573-2878
EndPage 126
ExternalDocumentID 1663660871
21359554
10_1007_s10957_008_9489_9
Genre Feature
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
7WY
88I
8AO
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDPE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
H~9
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M2O
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9R
PF0
PKN
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
TWZ
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
VOH
W23
W48
WH7
WK8
YLTOR
YQT
Z45
Z7R
Z7S
Z7U
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZCG
ZMTXR
ZWQNP
ZY4
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADXHL
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
IQODW
PQGLB
7SC
7TB
7XB
8FD
8FK
FR3
JQ2
KR7
L.-
L.0
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c376t-9662e2d78a60036000fbbba8d6b6e6e66d1bae4437073d68ddc03f7c29669c5b3
IEDL.DBID BENPR
ISSN 0022-3239
IngestDate Fri Jul 11 04:21:12 EDT 2025
Sat Aug 16 22:21:38 EDT 2025
Mon Jul 21 09:12:48 EDT 2025
Thu Apr 24 22:53:13 EDT 2025
Tue Jul 01 03:54:05 EDT 2025
Fri Feb 21 02:34:15 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Large scale optimization
Support vector machines
Decomposition methods
Freedom degree
Program optimization
Decomposition method
Modeling
Convex programming
Vector support machine
Numerical convergence
Large scale system
Lower bound
Objective analysis
Minimization
Quadratic programming
Global solution
Exact solution
Upper bound
Non differentiable programming
Equality constraint
Sparse set
Descent method
Problem solving
Large scale
Objective function
Language English
License http://www.springer.com/tdm
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c376t-9662e2d78a60036000fbbba8d6b6e6e66d1bae4437073d68ddc03f7c29669c5b3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 196593811
PQPubID 48247
PageCount 20
ParticipantIDs proquest_miscellaneous_33671778
proquest_journals_196593811
pascalfrancis_primary_21359554
crossref_citationtrail_10_1007_s10957_008_9489_9
crossref_primary_10_1007_s10957_008_9489_9
springer_journals_10_1007_s10957_008_9489_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-04-01
PublicationDateYYYYMMDD 2009-04-01
PublicationDate_xml – month: 04
  year: 2009
  text: 2009-04-01
  day: 01
PublicationDecade 2000
PublicationPlace Boston
PublicationPlace_xml – name: Boston
– name: New York, NY
– name: New York
PublicationTitle Journal of optimization theory and applications
PublicationTitleAbbrev J Optim Theory Appl
PublicationYear 2009
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References Palagi, Sciandrone (CR19) 2005; 20
Chang, Hsu, Lin (CR18) 2000; 11
Cristianini, Shawe-Taylor (CR24) 2000
Lucidi, Palagi, Risi, Sciandrone (CR15) 2007; 38
Keerthi, Shevade, Bhattacharyya, Murthy (CR23) 2000; 11
Barr, Gilbert (CR1) 1969; 14
Lin (CR14) 2001; 12
Ferris, Munson (CR8) 2004; 101
Scheinberg (CR12) 2006; 7
Bertsekas (CR20) 1999
Bomze (CR5) 1997; 10
Mangasarian, Musicant (CR16) 1999; 10
Meyer (CR4) 1985; 22
CR2
Serafini, Zanni (CR17) 2005; 20
Mangasarian, Musicant, Lee, Dietter (CR11) 2001
CR25
Joachims, Schölkopf, Smola (CR22) 1998
CR21
Kao, Lee, Pitt (CR3) 2001; 2
Vapnik (CR6) 1995
Dai, Fletcher (CR13) 2006; 106
Ferris, Munson (CR7) 2003; 13
Lee, Mangasarian (CR9) 2001; 20
Mangasarian, Thompson (CR10) 2006; 131
9489_CR25
9489_CR21
9489_CR2
M.C. Ferris (9489_CR8) 2004; 101
N. Cristianini (9489_CR24) 2000
M.C. Ferris (9489_CR7) 2003; 13
S. Lucidi (9489_CR15) 2007; 38
S.S. Keerthi (9489_CR23) 2000; 11
D.P. Bertsekas (9489_CR20) 1999
O.L. Mangasarian (9489_CR11) 2001
V.N. Vapnik (9489_CR6) 1995
T. Serafini (9489_CR17) 2005; 20
L. Palagi (9489_CR19) 2005; 20
Yu.-H. Dai (9489_CR13) 2006; 106
K. Scheinberg (9489_CR12) 2006; 7
O.L. Mangasarian (9489_CR10) 2006; 131
T. Joachims (9489_CR22) 1998
R.R. Meyer (9489_CR4) 1985; 22
I.M. Bomze (9489_CR5) 1997; 10
C.-J. Lin (9489_CR14) 2001; 12
O.L. Mangasarian (9489_CR16) 1999; 10
R.O. Barr (9489_CR1) 1969; 14
C. Kao (9489_CR3) 2001; 2
C.-C. Chang (9489_CR18) 2000; 11
Y.-J. Lee (9489_CR9) 2001; 20
References_xml – year: 2000
  ident: CR24
  publication-title: An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods
– volume: 14
  start-page: 640
  year: 1969
  end-page: 652
  ident: CR1
  article-title: Some efficient algorithms for a class of abstract optimization problems arising in optimal control
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.1969.1099299
– ident: CR2
– volume: 101
  start-page: 185
  year: 2004
  end-page: 204
  ident: CR8
  article-title: Semismooth support vector machines
  publication-title: Math. Program.
– volume: 38
  start-page: 217
  year: 2007
  end-page: 234
  ident: CR15
  article-title: A convergent decomposition algorithm for support vector machines
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-007-9044-x
– year: 1998
  ident: CR22
  article-title: Making large scale SVM learning practical
  publication-title: Advances in Kernel Methods—Support Vector Learning
– volume: 106
  start-page: 403
  year: 2006
  end-page: 421
  ident: CR13
  article-title: New algorithms for singly linearly constrained quadratic programs subject to lower and upper bounds
  publication-title: Math. Program.
  doi: 10.1007/s10107-005-0595-2
– year: 1999
  ident: CR20
  publication-title: Nonlinear Programming
– start-page: 577
  year: 2001
  end-page: 583
  ident: CR11
  article-title: Active set support vector machine classification
  publication-title: Neural Information Processing Systems 2000 (NIPS 2000)
– ident: CR25
– volume: 10
  start-page: 1032
  year: 1999
  end-page: 1037
  ident: CR16
  article-title: Successive overrelaxation for support vector machines
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.788643
– volume: 11
  start-page: 1003
  year: 2000
  end-page: 1008
  ident: CR18
  article-title: The analysis of decomposition methods for support vector machines
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.857780
– volume: 20
  start-page: 5
  year: 2001
  end-page: 22
  ident: CR9
  article-title: SSVM: a smooth support vector machine for classification
  publication-title: Comput. Optim. Appl.
  doi: 10.1023/A:1011215321374
– ident: CR21
– volume: 10
  start-page: 143
  year: 1997
  end-page: 164
  ident: CR5
  article-title: Evolution towards the maximum clique
  publication-title: J. Glob. Optim.
  doi: 10.1023/A:1008230200610
– volume: 13
  start-page: 783
  year: 2003
  end-page: 804
  ident: CR7
  article-title: Interior-point methods for massive support vector machines
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623400374379
– year: 1995
  ident: CR6
  publication-title: The Nature of Statistical Learning Theory
– volume: 20
  start-page: 583
  year: 2005
  end-page: 596
  ident: CR17
  article-title: On the working set selection in gradient projection-based decomposition techniques for support vector machines
  publication-title: Optim. Methods Softw.
  doi: 10.1080/10556780500140714
– volume: 7
  start-page: 2237
  year: 2006
  end-page: 2257
  ident: CR12
  article-title: An efficient implementation of an active set method for SVMs
  publication-title: J. Mach. Learn. Res.
– volume: 12
  start-page: 1288
  year: 2001
  end-page: 1298
  ident: CR14
  article-title: On the convergence of the decomposition method for support vector machines
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.963765
– volume: 131
  start-page: 315
  issue: 3
  year: 2006
  end-page: 325
  ident: CR10
  article-title: Massive data classification via unconstrained support vector machines
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-006-9157-x
– volume: 2
  start-page: 203
  year: 2001
  end-page: 223
  ident: CR3
  article-title: Simulated maximum likelihood estimation of the linear expenditure system with binding non-negativity constraints
  publication-title: Ann. Econ. Finance
– volume: 22
  start-page: 185
  year: 1985
  end-page: 205
  ident: CR4
  article-title: Multipoint methods for separable nonlinear networks
  publication-title: Math. Program. Study
– volume: 11
  start-page: 124
  year: 2000
  end-page: 136
  ident: CR23
  article-title: A fast iterative nearest point algorithm for support vector machine classifier design
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.822516
– volume: 20
  start-page: 311
  year: 2005
  end-page: 328
  ident: CR19
  article-title: On the convergence of a modified version of SVM algorithm
  publication-title: Optim. Methods Softw.
  doi: 10.1080/10556780512331318209
– volume: 13
  start-page: 783
  year: 2003
  ident: 9489_CR7
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623400374379
– ident: 9489_CR2
  doi: 10.1287/moor.1040.0098
– volume: 12
  start-page: 1288
  year: 2001
  ident: 9489_CR14
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.963765
– volume: 20
  start-page: 583
  year: 2005
  ident: 9489_CR17
  publication-title: Optim. Methods Softw.
  doi: 10.1080/10556780500140714
– volume: 101
  start-page: 185
  year: 2004
  ident: 9489_CR8
  publication-title: Math. Program.
– ident: 9489_CR25
– ident: 9489_CR21
– volume: 38
  start-page: 217
  year: 2007
  ident: 9489_CR15
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-007-9044-x
– volume-title: The Nature of Statistical Learning Theory
  year: 1995
  ident: 9489_CR6
  doi: 10.1007/978-1-4757-2440-0
– volume-title: An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods
  year: 2000
  ident: 9489_CR24
  doi: 10.1017/CBO9780511801389
– volume: 14
  start-page: 640
  year: 1969
  ident: 9489_CR1
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.1969.1099299
– volume: 2
  start-page: 203
  year: 2001
  ident: 9489_CR3
  publication-title: Ann. Econ. Finance
– volume: 11
  start-page: 1003
  year: 2000
  ident: 9489_CR18
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.857780
– volume: 20
  start-page: 5
  year: 2001
  ident: 9489_CR9
  publication-title: Comput. Optim. Appl.
  doi: 10.1023/A:1011215321374
– volume: 106
  start-page: 403
  year: 2006
  ident: 9489_CR13
  publication-title: Math. Program.
  doi: 10.1007/s10107-005-0595-2
– volume-title: Nonlinear Programming
  year: 1999
  ident: 9489_CR20
– volume-title: Advances in Kernel Methods—Support Vector Learning
  year: 1998
  ident: 9489_CR22
– volume: 10
  start-page: 1032
  year: 1999
  ident: 9489_CR16
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.788643
– start-page: 577
  volume-title: Neural Information Processing Systems 2000 (NIPS 2000)
  year: 2001
  ident: 9489_CR11
– volume: 11
  start-page: 124
  year: 2000
  ident: 9489_CR23
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.822516
– volume: 131
  start-page: 315
  issue: 3
  year: 2006
  ident: 9489_CR10
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-006-9157-x
– volume: 10
  start-page: 143
  year: 1997
  ident: 9489_CR5
  publication-title: J. Glob. Optim.
  doi: 10.1023/A:1008230200610
– volume: 20
  start-page: 311
  year: 2005
  ident: 9489_CR19
  publication-title: Optim. Methods Softw.
  doi: 10.1080/10556780512331318209
– volume: 7
  start-page: 2237
  year: 2006
  ident: 9489_CR12
  publication-title: J. Mach. Learn. Res.
– volume: 22
  start-page: 185
  year: 1985
  ident: 9489_CR4
  publication-title: Math. Program. Study
SSID ssj0009874
Score 2.0333416
Snippet Many real applications can be formulated as nonlinear minimization problems with a single linear equality constraint and box constraints. We are interested in...
SourceID proquest
pascalfrancis
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 107
SubjectTerms Algorithms
Applications of Mathematics
Applied sciences
Calculus of Variations and Optimal Control; Optimization
Decomposition
Engineering
Exact sciences and technology
Mathematical programming
Mathematics
Mathematics and Statistics
Methods
Operational research and scientific management
Operational research. Management science
Operations Research/Decision Theory
Optimization
Studies
Support vector machines
Theory of Computation
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb5tAEB217iVVVKVNqlA37h5yaoUEu8CyRyeNZVVNVSm15BtilyWpRDEy5NB_49_iX9YZDI4dpZUqTogdBPv2Y2Zn9z2Acy2NUdZiWKIlBija9900jTPXM9LToQ28XNM65PW3aDoLvszDeXeOu-53u_cpyXak3jnspkLpUrpeBbFy1XN4EVLojo14xscPTLtxT73MXcGF6lOZT71ibzI6rNIa6yXfCFrseZyPkqTt3DM5gled08jGG5RfwzNbvoGXO1SCeHe95V-tj6H4bGmveLchi42L28XyZ3P3i5H0WcHQUV2vbtCu-M0wGLVEcuySdGcrGGEz9n0jM1MzHFdooYY1i_XqKwmqrVdpma1Xs6qyS3ZBmkz1CcwmVz8up26nq-AaHE4aIuTklmcyTiOio8E6y7XWiFCkI4tXlPk6tUEgJPb_LIqzzHgil4ajoTKhFm9hUC5KewpM-BjhKpnHxoSBxIiU59yKNA9krHMtIwe8voIT05GO068UyQNdMmGSkBgmYZIoBz5uTaoN48a_Co_2UNtacJ9OHIeBA8MexqTrnXXSsiiiq-I78GH7FLsV5UrS0i7u60SICANdGTvwqcd-x_5vn_Puv0oP4aDPTXn-exg0y3t7hi5Oo0dtk_4DQKn3Gg
  priority: 102
  providerName: Springer Nature
Title Decomposition Algorithm Model for Singly Linearly-Constrained Problems Subject to Lower and Upper Bounds
URI https://link.springer.com/article/10.1007/s10957-008-9489-9
https://www.proquest.com/docview/196593811
https://www.proquest.com/docview/33671778
Volume 141
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fj5QwEJ54ty8aY_wZ8XTtg08aIrRA2yezq7t3UW9zUTc5nwgtxXtYWRTuwf_emaVwtyZeeABSJtBOmc502u8DeGWktdo5DEuMxADFxHFYFKoMIysjk7okqgzNQ56uspN18vE8Pfdrc1q_rHKwiTtDXW4tzZG_3SHf4fASv2t-hUQaRclVz6BxABO0wApjr8l8sTr7coW6qwYYZh4KLvSQ1uz3zulUhpT914nSod4bmO42RYttVPXkFnve5z8J0904tLwP97wDyWa9xh_ALVc_hDvXYAXx7nTEYm0fwcUHR-vG_eIsNtv8wHp1Fz8Z0aBtGDqt7CuKbf4wjEsd4R2HxOK5445wJTvrGWdahiaG5mxYt2WfiVqNFXXJ1k2DV3PiZmofw3q5-Pb-JPT8CqFFs9IRMCd3vJSqyAiWBturMsagpjKTOTyyMjaFSxIh0Q6UmSpLG4lKWo6C2qZGPIHDelu7p8BEjJGulpWyNk0kRqa84k4UVSKVqYzMAoiGxs2tBx-nemzyK9hk0kdOpJikj1wH8HoUaXrkjZsenu5pbJTgMe08TpMAjgYV5v4vbfOxTwXwcizF34tyJkXttpdtLkSGAa9UAbwZ9H5N_n-f8-zGtx3B7SEnFcXP4bD7feleoGvTmSkcqOXxFCaz5Xy-ovPx90-Lqe_WWLrms78A8Ps6
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgCEEE8RCq0PcAFFJHYSxweECmXZ0t0Kia7UWxo_Qg9LNpBUqD-K_8hMXu0i0VuVS6JkEsczHns89vcBvNTSGOUchiVaYoCiw9DP89T6gZGBjl0UFJrmIeeHyXQRfTmOjzfgz7AXhpZVDj6xddR2ZWiO_G2LfIfdS_i--ukTaRQlVwcGjc4qDtz5b4zY6nf7e6jeV5xPPh19nPo9qYBvsC01hEbJHbcyzRPCYkGPUGitsXiJThweiQ117qJISDR-m6TWmkAU0nAUVCbWAt97A25GQihqUOnk8wXGbzqAPnNfcKGGJGq3U0_F0qe1BipKla_WusG7VV6jRoqOSmNtrPtPerbt9Sb34V4_XGW7nX09gA1XPoQ7l0AM8Wo-Ir_Wj-B0z9Eq9X4pGNtdfsdabE5_MCJdWzIcIrNvKLY8ZxgFO0JX9okztGWqcJZ97fhtaoYOjWaIWLNiMyJyY3lp2aKq8OwDMUHVj2FxLRX_BDbLVemeAhMhxtVKFqkxcSQxDuYFdyIvIpnqQsvEg2Co3Mz0UOf0H8vsAqSZ9JERBSfpI1MevB5Fqg7n46qHt9c0NkrwkPY5x5EHW4MKs94n1NlowR7sjHexMVOGJi_d6qzOhEgwvJapB28GvV-S_19xnl35tR24NT2az7LZ_uHBFtwesmFB-Bw2m19n7gUOqhq93Zoyg5Prbjt_AYToMbw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fT9swED6xIk2bJrSfWgYDP2wvmyISO4mTBzTBSgUDqmpbJd5C7DjjoaRhCZr40_jvdtfEgU4abygvjZprHZ_v7POdvw_gg5JaJ8ZgWKIkBijK990si3PX09JToQm8QtE-5Mk4OpgG307D0xW4sWdhqKzS-sSFo87nmvbItxfIdzi9-NtFVxUxGY6-VJcuEUhRotWyabQj5Mhc_8Hord45HKKqP3I-2v_59cDtCAZcjXbVEDIlNzyXcRYRLgt6h0IphU2NVGTwinJfZSYIhERDyKM4z7UnCqk5CiY6VAJ_9xGsSgyKvAGs7u2PJ99vEX9jCwHNXcFFYlOq7bm9JJQuVR4kQZy4ydKk-KzKatRP0RJrLK18_0nWLubA0XNY6xavbLcdbS9gxZQv4ekdSEO8O-lxYOtXcD40VLPeFYax3dkv7Mfm_IIRBduM4YKZ_UCx2TXDmNgQ1rJLDKIL3gqTs0nLdlMzdG-0X8SaOTsmWjeWlTmbVhV-2iNeqPo1TB-k69_AoJyX5i0w4WOUncgi1joMJEbFvOBGZEUgY1UoGTng2c5NdQd8Tu8xS28hm0kfKRFykj7SxIFPvUjVon7c9_DmksZ6Ce7TqecwcGDdqjDtPESd9uPZga3-WzRtytdkpZlf1akQEQbbMnbgs9X7Hfn_Nefdvf-2BY_RbtLjw_HROjyxqTHP34BB8_vKvMcVVqM2u7HM4Oyhzecv-Fc3Tg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decomposition+Algorithm+Model+for+Singly+Linearly-Constrained+Problems+Subject+to+Lower+and+Upper+Bounds&rft.jtitle=Journal+of+optimization+theory+and+applications&rft.au=Lin%2C+C+J&rft.au=Lucidi%2C+S&rft.au=Palagi%2C+L&rft.au=Risi%2C+A&rft.date=2009-04-01&rft.pub=Springer+Nature+B.V&rft.issn=0022-3239&rft.eissn=1573-2878&rft.volume=141&rft.issue=1&rft.spage=107&rft_id=info:doi/10.1007%2Fs10957-008-9489-9&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=1663660871
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3239&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3239&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3239&client=summon