Decomposition Algorithm Model for Singly Linearly-Constrained Problems Subject to Lower and Upper Bounds
Many real applications can be formulated as nonlinear minimization problems with a single linear equality constraint and box constraints. We are interested in solving problems where the number of variables is so huge that basic operations, such as the evaluation of the objective function or the upda...
Saved in:
Published in | Journal of optimization theory and applications Vol. 141; no. 1; pp. 107 - 126 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Boston
Springer US
01.04.2009
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Many real applications can be formulated as nonlinear minimization problems with a single linear equality constraint and box constraints. We are interested in solving problems where the number of variables is so huge that basic operations, such as the evaluation of the objective function or the updating of its gradient, are very time consuming. Thus, for the considered class of problems (including dense quadratic programs), traditional optimization methods cannot be applied directly. In this paper, we define a decomposition algorithm model which employs, at each iteration, a descent search direction selected among a suitable set of sparse feasible directions. The algorithm is characterized by an acceptance rule of the updated point which on the one hand permits to choose the variables to be modified with a certain degree of freedom and on the other hand does not require the exact solution of any subproblem. The global convergence of the algorithm model is proved by assuming that the objective function is continuously differentiable and that the points of the level set have at least one component strictly between the lower and upper bounds. Numerical results on large-scale quadratic problems arising in the training of support vector machines show the effectiveness of an implemented decomposition scheme derived from the general algorithm model. |
---|---|
AbstractList | Many real applications can be formulated as nonlinear minimization problems with a single linear equality constraint and box constraints. We are interested in solving problems where the number of variables is so huge that basic operations, such as the evaluation of the objective function or the updating of its gradient, are very time consuming. Thus, for the considered class of problems (including dense quadratic programs), traditional optimization methods cannot be applied directly. In this paper, we define a decomposition algorithm model which employs, at each iteration, a descent search direction selected among a suitable set of sparse feasible directions. The algorithm is characterized by an acceptance rule of the updated point which on the one hand permits to choose the variables to be modified with a certain degree of freedom and on the other hand does not require the exact solution of any subproblem. The global convergence of the algorithm model is proved by assuming that the objective function is continuously differentiable and that the points of the level set have at least one component strictly between the lower and upper bounds. Numerical results on large-scale quadratic problems arising in the training of support vector machines show the effectiveness of an implemented decomposition scheme derived from the general algorithm model. Many real applications can be formulated as nonlinear minimization problems with a single linear equality constraint and box constraints. We are interested in solving problems where the number of variables is so huge that basic operations, such as the evaluation of the objective function or the updating of its gradient, are very time consuming. Thus, for the considered class of problems (including dense quadratic programs), traditional optimization methods cannot be applied directly. In this paper, we define a decomposition algorithm model which employs, at each iteration, a descent search direction selected among a suitable set of sparse feasible directions. The algorithm is characterized by an acceptance rule of the updated point which on the one hand permits to choose the variables to be modified with a certain degree of freedom and on the other hand does not require the exact solution of any subproblem. The global convergence of the algorithm model is proved by assuming that the objective function is continuously differentiable and that the points of the level set have at least one component strictly between the lower and upper bounds. Numerical results on large-scale quadratic problems arising in the training of support vector machines show the effectiveness of an implemented decomposition scheme derived from the general algorithm model. [PUBLICATION ABSTRACT] |
Author | Palagi, L. Sciandrone, M. Lucidi, S. Risi, A. Lin, C. J. |
Author_xml | – sequence: 1 givenname: C. J. surname: Lin fullname: Lin, C. J. organization: Department of Computer Science, National Taiwan University – sequence: 2 givenname: S. surname: Lucidi fullname: Lucidi, S. organization: Dipartimento di Informatica e Sistemistica “Antonio Ruberti”, University of Rome “La Sapienza” – sequence: 3 givenname: L. surname: Palagi fullname: Palagi, L. organization: Dipartimento di Informatica e Sistemistica “Antonio Ruberti”, University of Rome “La Sapienza” – sequence: 4 givenname: A. surname: Risi fullname: Risi, A. organization: Istituto di Analisi dei Sistemi ed Informatica “A. Ruberti”, CNR – sequence: 5 givenname: M. surname: Sciandrone fullname: Sciandrone, M. email: sciandro@dsi.unifi.it organization: Dipartimento di Sistemi e Informatica, University of Florence |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21359554$$DView record in Pascal Francis |
BookMark | eNp9kduKFDEQhoOs4OzqA3jXCHqXNYfuHC7X8bDCiMK61yGdpMcM6aRNupF5m3mWeTIzzAqyoBShCHxfUdR_CS5iig6AlxhdY4T424KR7DhESEDZCgnlE7DCHaeQCC4uwAohQiAlVD4Dl6XsEEJS8HYFwntn0jil4mefYnMTtin7-cfYfEnWhWZI-Xi483Eb9s3GR6dz2MN1imXOun5t8y2nPrixNHdLv3NmbuZ0PGzSL1c9He3xcD9NLjfv0hJteQ6eDjoU9-KhX4H7jx--r2_h5uunz-ubDTSUsxlKxogjlgvNEKL1oaHvey0s65mrxSzutWtbyhGnlglrDaIDN6SK0nQ9vQJvznOnnH4ursxq9MW4EHR0aSmKUsYx56KCrx6Bu7TkWHdTWLJOUoFxhV4_QLoYHYaso_FFTdmPOu8VwbSTXddWjp85k1Mp2Q3K-Fmfzno6VlAYqVNU6hyVqlGpU1RKVhM_Mv8M_59Dzk6pbNy6_Nfq_5R-A7qXrAw |
CODEN | JOTABN |
CitedBy_id | crossref_primary_10_1007_s11590_009_0119_8 crossref_primary_10_1137_090750639 crossref_primary_10_1016_j_eswa_2012_02_007 crossref_primary_10_1007_s10479_022_04655_x crossref_primary_10_1016_j_ejor_2014_09_054 crossref_primary_10_1007_s11590_010_0214_x crossref_primary_10_1007_s10898_014_0151_9 crossref_primary_10_1007_s10589_017_9953_2 crossref_primary_10_1007_s10898_019_00792_z crossref_primary_10_1016_j_cor_2012_05_015 crossref_primary_10_1007_s10994_012_5291_x crossref_primary_10_1080_10556788_2025_2453110 crossref_primary_10_1137_15M1037810 crossref_primary_10_1007_s10957_014_0617_4 crossref_primary_10_1016_j_apm_2011_10_017 crossref_primary_10_1016_j_ejor_2013_05_049 crossref_primary_10_1007_s10288_018_0378_2 crossref_primary_10_1287_opre_2023_2478 crossref_primary_10_1137_130940037 crossref_primary_10_1007_s10589_018_9987_0 crossref_primary_10_1016_j_proeng_2011_08_683 crossref_primary_10_1007_s10589_011_9405_3 crossref_primary_10_1007_s10957_013_0491_5 crossref_primary_10_1007_s10589_019_00082_0 crossref_primary_10_1007_s10589_019_00150_5 crossref_primary_10_1137_20M1328014 crossref_primary_10_1007_s10589_013_9598_8 crossref_primary_10_1007_s10589_016_9824_2 crossref_primary_10_1007_s11222_016_9644_3 crossref_primary_10_1007_s00158_013_0999_1 |
Cites_doi | 10.1109/TAC.1969.1099299 10.1007/s10589-007-9044-x 10.1007/s10107-005-0595-2 10.1109/72.788643 10.1109/72.857780 10.1023/A:1011215321374 10.1023/A:1008230200610 10.1137/S1052623400374379 10.1080/10556780500140714 10.1109/72.963765 10.1007/s10957-006-9157-x 10.1109/72.822516 10.1080/10556780512331318209 10.1287/moor.1040.0098 10.1007/978-1-4757-2440-0 10.1017/CBO9780511801389 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC 2009 2009 INIST-CNRS |
Copyright_xml | – notice: Springer Science+Business Media, LLC 2009 – notice: 2009 INIST-CNRS |
DBID | AAYXX CITATION IQODW 3V. 7SC 7TB 7WY 7WZ 7XB 87Z 88I 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FR3 FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- KR7 L.- L.0 L6V L7M L~C L~D M0C M2O M2P M7S MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PTHSS Q9U |
DOI | 10.1007/s10957-008-9489-9 |
DatabaseName | CrossRef Pascal-Francis ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Research Library (Alumni) Materials Science & Engineering Collection ProQuest Central ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Collection (ProQuest) ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database Civil Engineering Abstracts ABI/INFORM Professional Advanced ABI/INFORM Professional Standard ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Research Library Science Database Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection ProQuest Central Basic |
DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ABI/INFORM Complete ProQuest One Applied & Life Sciences ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ABI/INFORM Professional Standard ProQuest Central Korea ProQuest Research Library Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Civil Engineering Abstracts ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | Civil Engineering Abstracts ProQuest Business Collection (Alumni Edition) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics Applied Sciences |
EISSN | 1573-2878 |
EndPage | 126 |
ExternalDocumentID | 1663660871 21359554 10_1007_s10957_008_9489_9 |
Genre | Feature |
GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 7WY 88I 8AO 8FE 8FG 8FL 8G5 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDPE ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF H~9 I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW L6V LAK LLZTM M0C M2O M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM OVD P19 P2P P62 P9R PF0 PKN PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC TUS TWZ U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 VOH W23 W48 WH7 WK8 YLTOR YQT Z45 Z7R Z7S Z7U Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8R Z8S Z8T Z8U Z8W Z92 ZCG ZMTXR ZWQNP ZY4 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADXHL AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ IQODW PQGLB 7SC 7TB 7XB 8FD 8FK FR3 JQ2 KR7 L.- L.0 L7M L~C L~D MBDVC PKEHL PQEST PQUKI Q9U |
ID | FETCH-LOGICAL-c376t-9662e2d78a60036000fbbba8d6b6e6e66d1bae4437073d68ddc03f7c29669c5b3 |
IEDL.DBID | BENPR |
ISSN | 0022-3239 |
IngestDate | Fri Jul 11 04:21:12 EDT 2025 Sat Aug 16 22:21:38 EDT 2025 Mon Jul 21 09:12:48 EDT 2025 Thu Apr 24 22:53:13 EDT 2025 Tue Jul 01 03:54:05 EDT 2025 Fri Feb 21 02:34:15 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Large scale optimization Support vector machines Decomposition methods Freedom degree Program optimization Decomposition method Modeling Convex programming Vector support machine Numerical convergence Large scale system Lower bound Objective analysis Minimization Quadratic programming Global solution Exact solution Upper bound Non differentiable programming Equality constraint Sparse set Descent method Problem solving Large scale Objective function |
Language | English |
License | http://www.springer.com/tdm CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c376t-9662e2d78a60036000fbbba8d6b6e6e66d1bae4437073d68ddc03f7c29669c5b3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
PQID | 196593811 |
PQPubID | 48247 |
PageCount | 20 |
ParticipantIDs | proquest_miscellaneous_33671778 proquest_journals_196593811 pascalfrancis_primary_21359554 crossref_citationtrail_10_1007_s10957_008_9489_9 crossref_primary_10_1007_s10957_008_9489_9 springer_journals_10_1007_s10957_008_9489_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-04-01 |
PublicationDateYYYYMMDD | 2009-04-01 |
PublicationDate_xml | – month: 04 year: 2009 text: 2009-04-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Boston |
PublicationPlace_xml | – name: Boston – name: New York, NY – name: New York |
PublicationTitle | Journal of optimization theory and applications |
PublicationTitleAbbrev | J Optim Theory Appl |
PublicationYear | 2009 |
Publisher | Springer US Springer Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V |
References | Palagi, Sciandrone (CR19) 2005; 20 Chang, Hsu, Lin (CR18) 2000; 11 Cristianini, Shawe-Taylor (CR24) 2000 Lucidi, Palagi, Risi, Sciandrone (CR15) 2007; 38 Keerthi, Shevade, Bhattacharyya, Murthy (CR23) 2000; 11 Barr, Gilbert (CR1) 1969; 14 Lin (CR14) 2001; 12 Ferris, Munson (CR8) 2004; 101 Scheinberg (CR12) 2006; 7 Bertsekas (CR20) 1999 Bomze (CR5) 1997; 10 Mangasarian, Musicant (CR16) 1999; 10 Meyer (CR4) 1985; 22 CR2 Serafini, Zanni (CR17) 2005; 20 Mangasarian, Musicant, Lee, Dietter (CR11) 2001 CR25 Joachims, Schölkopf, Smola (CR22) 1998 CR21 Kao, Lee, Pitt (CR3) 2001; 2 Vapnik (CR6) 1995 Dai, Fletcher (CR13) 2006; 106 Ferris, Munson (CR7) 2003; 13 Lee, Mangasarian (CR9) 2001; 20 Mangasarian, Thompson (CR10) 2006; 131 9489_CR25 9489_CR21 9489_CR2 M.C. Ferris (9489_CR8) 2004; 101 N. Cristianini (9489_CR24) 2000 M.C. Ferris (9489_CR7) 2003; 13 S. Lucidi (9489_CR15) 2007; 38 S.S. Keerthi (9489_CR23) 2000; 11 D.P. Bertsekas (9489_CR20) 1999 O.L. Mangasarian (9489_CR11) 2001 V.N. Vapnik (9489_CR6) 1995 T. Serafini (9489_CR17) 2005; 20 L. Palagi (9489_CR19) 2005; 20 Yu.-H. Dai (9489_CR13) 2006; 106 K. Scheinberg (9489_CR12) 2006; 7 O.L. Mangasarian (9489_CR10) 2006; 131 T. Joachims (9489_CR22) 1998 R.R. Meyer (9489_CR4) 1985; 22 I.M. Bomze (9489_CR5) 1997; 10 C.-J. Lin (9489_CR14) 2001; 12 O.L. Mangasarian (9489_CR16) 1999; 10 R.O. Barr (9489_CR1) 1969; 14 C. Kao (9489_CR3) 2001; 2 C.-C. Chang (9489_CR18) 2000; 11 Y.-J. Lee (9489_CR9) 2001; 20 |
References_xml | – year: 2000 ident: CR24 publication-title: An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods – volume: 14 start-page: 640 year: 1969 end-page: 652 ident: CR1 article-title: Some efficient algorithms for a class of abstract optimization problems arising in optimal control publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.1969.1099299 – ident: CR2 – volume: 101 start-page: 185 year: 2004 end-page: 204 ident: CR8 article-title: Semismooth support vector machines publication-title: Math. Program. – volume: 38 start-page: 217 year: 2007 end-page: 234 ident: CR15 article-title: A convergent decomposition algorithm for support vector machines publication-title: Comput. Optim. Appl. doi: 10.1007/s10589-007-9044-x – year: 1998 ident: CR22 article-title: Making large scale SVM learning practical publication-title: Advances in Kernel Methods—Support Vector Learning – volume: 106 start-page: 403 year: 2006 end-page: 421 ident: CR13 article-title: New algorithms for singly linearly constrained quadratic programs subject to lower and upper bounds publication-title: Math. Program. doi: 10.1007/s10107-005-0595-2 – year: 1999 ident: CR20 publication-title: Nonlinear Programming – start-page: 577 year: 2001 end-page: 583 ident: CR11 article-title: Active set support vector machine classification publication-title: Neural Information Processing Systems 2000 (NIPS 2000) – ident: CR25 – volume: 10 start-page: 1032 year: 1999 end-page: 1037 ident: CR16 article-title: Successive overrelaxation for support vector machines publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.788643 – volume: 11 start-page: 1003 year: 2000 end-page: 1008 ident: CR18 article-title: The analysis of decomposition methods for support vector machines publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.857780 – volume: 20 start-page: 5 year: 2001 end-page: 22 ident: CR9 article-title: SSVM: a smooth support vector machine for classification publication-title: Comput. Optim. Appl. doi: 10.1023/A:1011215321374 – ident: CR21 – volume: 10 start-page: 143 year: 1997 end-page: 164 ident: CR5 article-title: Evolution towards the maximum clique publication-title: J. Glob. Optim. doi: 10.1023/A:1008230200610 – volume: 13 start-page: 783 year: 2003 end-page: 804 ident: CR7 article-title: Interior-point methods for massive support vector machines publication-title: SIAM J. Optim. doi: 10.1137/S1052623400374379 – year: 1995 ident: CR6 publication-title: The Nature of Statistical Learning Theory – volume: 20 start-page: 583 year: 2005 end-page: 596 ident: CR17 article-title: On the working set selection in gradient projection-based decomposition techniques for support vector machines publication-title: Optim. Methods Softw. doi: 10.1080/10556780500140714 – volume: 7 start-page: 2237 year: 2006 end-page: 2257 ident: CR12 article-title: An efficient implementation of an active set method for SVMs publication-title: J. Mach. Learn. Res. – volume: 12 start-page: 1288 year: 2001 end-page: 1298 ident: CR14 article-title: On the convergence of the decomposition method for support vector machines publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.963765 – volume: 131 start-page: 315 issue: 3 year: 2006 end-page: 325 ident: CR10 article-title: Massive data classification via unconstrained support vector machines publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-006-9157-x – volume: 2 start-page: 203 year: 2001 end-page: 223 ident: CR3 article-title: Simulated maximum likelihood estimation of the linear expenditure system with binding non-negativity constraints publication-title: Ann. Econ. Finance – volume: 22 start-page: 185 year: 1985 end-page: 205 ident: CR4 article-title: Multipoint methods for separable nonlinear networks publication-title: Math. Program. Study – volume: 11 start-page: 124 year: 2000 end-page: 136 ident: CR23 article-title: A fast iterative nearest point algorithm for support vector machine classifier design publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.822516 – volume: 20 start-page: 311 year: 2005 end-page: 328 ident: CR19 article-title: On the convergence of a modified version of SVM algorithm publication-title: Optim. Methods Softw. doi: 10.1080/10556780512331318209 – volume: 13 start-page: 783 year: 2003 ident: 9489_CR7 publication-title: SIAM J. Optim. doi: 10.1137/S1052623400374379 – ident: 9489_CR2 doi: 10.1287/moor.1040.0098 – volume: 12 start-page: 1288 year: 2001 ident: 9489_CR14 publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.963765 – volume: 20 start-page: 583 year: 2005 ident: 9489_CR17 publication-title: Optim. Methods Softw. doi: 10.1080/10556780500140714 – volume: 101 start-page: 185 year: 2004 ident: 9489_CR8 publication-title: Math. Program. – ident: 9489_CR25 – ident: 9489_CR21 – volume: 38 start-page: 217 year: 2007 ident: 9489_CR15 publication-title: Comput. Optim. Appl. doi: 10.1007/s10589-007-9044-x – volume-title: The Nature of Statistical Learning Theory year: 1995 ident: 9489_CR6 doi: 10.1007/978-1-4757-2440-0 – volume-title: An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods year: 2000 ident: 9489_CR24 doi: 10.1017/CBO9780511801389 – volume: 14 start-page: 640 year: 1969 ident: 9489_CR1 publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.1969.1099299 – volume: 2 start-page: 203 year: 2001 ident: 9489_CR3 publication-title: Ann. Econ. Finance – volume: 11 start-page: 1003 year: 2000 ident: 9489_CR18 publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.857780 – volume: 20 start-page: 5 year: 2001 ident: 9489_CR9 publication-title: Comput. Optim. Appl. doi: 10.1023/A:1011215321374 – volume: 106 start-page: 403 year: 2006 ident: 9489_CR13 publication-title: Math. Program. doi: 10.1007/s10107-005-0595-2 – volume-title: Nonlinear Programming year: 1999 ident: 9489_CR20 – volume-title: Advances in Kernel Methods—Support Vector Learning year: 1998 ident: 9489_CR22 – volume: 10 start-page: 1032 year: 1999 ident: 9489_CR16 publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.788643 – start-page: 577 volume-title: Neural Information Processing Systems 2000 (NIPS 2000) year: 2001 ident: 9489_CR11 – volume: 11 start-page: 124 year: 2000 ident: 9489_CR23 publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.822516 – volume: 131 start-page: 315 issue: 3 year: 2006 ident: 9489_CR10 publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-006-9157-x – volume: 10 start-page: 143 year: 1997 ident: 9489_CR5 publication-title: J. Glob. Optim. doi: 10.1023/A:1008230200610 – volume: 20 start-page: 311 year: 2005 ident: 9489_CR19 publication-title: Optim. Methods Softw. doi: 10.1080/10556780512331318209 – volume: 7 start-page: 2237 year: 2006 ident: 9489_CR12 publication-title: J. Mach. Learn. Res. – volume: 22 start-page: 185 year: 1985 ident: 9489_CR4 publication-title: Math. Program. Study |
SSID | ssj0009874 |
Score | 2.0333416 |
Snippet | Many real applications can be formulated as nonlinear minimization problems with a single linear equality constraint and box constraints. We are interested in... |
SourceID | proquest pascalfrancis crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 107 |
SubjectTerms | Algorithms Applications of Mathematics Applied sciences Calculus of Variations and Optimal Control; Optimization Decomposition Engineering Exact sciences and technology Mathematical programming Mathematics Mathematics and Statistics Methods Operational research and scientific management Operational research. Management science Operations Research/Decision Theory Optimization Studies Support vector machines Theory of Computation |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb5tAEB217iVVVKVNqlA37h5yaoUEu8CyRyeNZVVNVSm15BtilyWpRDEy5NB_49_iX9YZDI4dpZUqTogdBPv2Y2Zn9z2Acy2NUdZiWKIlBija9900jTPXM9LToQ28XNM65PW3aDoLvszDeXeOu-53u_cpyXak3jnspkLpUrpeBbFy1XN4EVLojo14xscPTLtxT73MXcGF6lOZT71ibzI6rNIa6yXfCFrseZyPkqTt3DM5gled08jGG5RfwzNbvoGXO1SCeHe95V-tj6H4bGmveLchi42L28XyZ3P3i5H0WcHQUV2vbtCu-M0wGLVEcuySdGcrGGEz9n0jM1MzHFdooYY1i_XqKwmqrVdpma1Xs6qyS3ZBmkz1CcwmVz8up26nq-AaHE4aIuTklmcyTiOio8E6y7XWiFCkI4tXlPk6tUEgJPb_LIqzzHgil4ajoTKhFm9hUC5KewpM-BjhKpnHxoSBxIiU59yKNA9krHMtIwe8voIT05GO068UyQNdMmGSkBgmYZIoBz5uTaoN48a_Co_2UNtacJ9OHIeBA8MexqTrnXXSsiiiq-I78GH7FLsV5UrS0i7u60SICANdGTvwqcd-x_5vn_Puv0oP4aDPTXn-exg0y3t7hi5Oo0dtk_4DQKn3Gg priority: 102 providerName: Springer Nature |
Title | Decomposition Algorithm Model for Singly Linearly-Constrained Problems Subject to Lower and Upper Bounds |
URI | https://link.springer.com/article/10.1007/s10957-008-9489-9 https://www.proquest.com/docview/196593811 https://www.proquest.com/docview/33671778 |
Volume | 141 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fj5QwEJ54ty8aY_wZ8XTtg08aIrRA2yezq7t3UW9zUTc5nwgtxXtYWRTuwf_emaVwtyZeeABSJtBOmc502u8DeGWktdo5DEuMxADFxHFYFKoMIysjk7okqgzNQ56uspN18vE8Pfdrc1q_rHKwiTtDXW4tzZG_3SHf4fASv2t-hUQaRclVz6BxABO0wApjr8l8sTr7coW6qwYYZh4KLvSQ1uz3zulUhpT914nSod4bmO42RYttVPXkFnve5z8J0904tLwP97wDyWa9xh_ALVc_hDvXYAXx7nTEYm0fwcUHR-vG_eIsNtv8wHp1Fz8Z0aBtGDqt7CuKbf4wjEsd4R2HxOK5445wJTvrGWdahiaG5mxYt2WfiVqNFXXJ1k2DV3PiZmofw3q5-Pb-JPT8CqFFs9IRMCd3vJSqyAiWBturMsagpjKTOTyyMjaFSxIh0Q6UmSpLG4lKWo6C2qZGPIHDelu7p8BEjJGulpWyNk0kRqa84k4UVSKVqYzMAoiGxs2tBx-nemzyK9hk0kdOpJikj1wH8HoUaXrkjZsenu5pbJTgMe08TpMAjgYV5v4vbfOxTwXwcizF34tyJkXttpdtLkSGAa9UAbwZ9H5N_n-f8-zGtx3B7SEnFcXP4bD7feleoGvTmSkcqOXxFCaz5Xy-ovPx90-Lqe_WWLrms78A8Ps6 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgCEEE8RCq0PcAFFJHYSxweECmXZ0t0Kia7UWxo_Qg9LNpBUqD-K_8hMXu0i0VuVS6JkEsczHns89vcBvNTSGOUchiVaYoCiw9DP89T6gZGBjl0UFJrmIeeHyXQRfTmOjzfgz7AXhpZVDj6xddR2ZWiO_G2LfIfdS_i--ukTaRQlVwcGjc4qDtz5b4zY6nf7e6jeV5xPPh19nPo9qYBvsC01hEbJHbcyzRPCYkGPUGitsXiJThweiQ117qJISDR-m6TWmkAU0nAUVCbWAt97A25GQihqUOnk8wXGbzqAPnNfcKGGJGq3U0_F0qe1BipKla_WusG7VV6jRoqOSmNtrPtPerbt9Sb34V4_XGW7nX09gA1XPoQ7l0AM8Wo-Ir_Wj-B0z9Eq9X4pGNtdfsdabE5_MCJdWzIcIrNvKLY8ZxgFO0JX9okztGWqcJZ97fhtaoYOjWaIWLNiMyJyY3lp2aKq8OwDMUHVj2FxLRX_BDbLVemeAhMhxtVKFqkxcSQxDuYFdyIvIpnqQsvEg2Co3Mz0UOf0H8vsAqSZ9JERBSfpI1MevB5Fqg7n46qHt9c0NkrwkPY5x5EHW4MKs94n1NlowR7sjHexMVOGJi_d6qzOhEgwvJapB28GvV-S_19xnl35tR24NT2az7LZ_uHBFtwesmFB-Bw2m19n7gUOqhq93Zoyg5Prbjt_AYToMbw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fT9swED6xIk2bJrSfWgYDP2wvmyISO4mTBzTBSgUDqmpbJd5C7DjjoaRhCZr40_jvdtfEgU4abygvjZprHZ_v7POdvw_gg5JaJ8ZgWKIkBijK990si3PX09JToQm8QtE-5Mk4OpgG307D0xW4sWdhqKzS-sSFo87nmvbItxfIdzi9-NtFVxUxGY6-VJcuEUhRotWyabQj5Mhc_8Hord45HKKqP3I-2v_59cDtCAZcjXbVEDIlNzyXcRYRLgt6h0IphU2NVGTwinJfZSYIhERDyKM4z7UnCqk5CiY6VAJ_9xGsSgyKvAGs7u2PJ99vEX9jCwHNXcFFYlOq7bm9JJQuVR4kQZy4ydKk-KzKatRP0RJrLK18_0nWLubA0XNY6xavbLcdbS9gxZQv4ekdSEO8O-lxYOtXcD40VLPeFYax3dkv7Mfm_IIRBduM4YKZ_UCx2TXDmNgQ1rJLDKIL3gqTs0nLdlMzdG-0X8SaOTsmWjeWlTmbVhV-2iNeqPo1TB-k69_AoJyX5i0w4WOUncgi1joMJEbFvOBGZEUgY1UoGTng2c5NdQd8Tu8xS28hm0kfKRFykj7SxIFPvUjVon7c9_DmksZ6Ce7TqecwcGDdqjDtPESd9uPZga3-WzRtytdkpZlf1akQEQbbMnbgs9X7Hfn_Nefdvf-2BY_RbtLjw_HROjyxqTHP34BB8_vKvMcVVqM2u7HM4Oyhzecv-Fc3Tg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decomposition+Algorithm+Model+for+Singly+Linearly-Constrained+Problems+Subject+to+Lower+and+Upper+Bounds&rft.jtitle=Journal+of+optimization+theory+and+applications&rft.au=Lin%2C+C+J&rft.au=Lucidi%2C+S&rft.au=Palagi%2C+L&rft.au=Risi%2C+A&rft.date=2009-04-01&rft.pub=Springer+Nature+B.V&rft.issn=0022-3239&rft.eissn=1573-2878&rft.volume=141&rft.issue=1&rft.spage=107&rft_id=info:doi/10.1007%2Fs10957-008-9489-9&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=1663660871 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3239&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3239&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3239&client=summon |